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Summary

This dissertation deals with optimization in high-dimemsl Euclidean spacBR". Namely, a
particular type of direct-search methods known as EvaluStrategies (ESs) are investigated.
Evolution Strategies mimic natural evolution, in partenumutation, in order to “evolve” an ap-
proximate solution.

As this dissertation focuses on theoretical investigatiBSs in the way randomized approx-
imation algorithms are analyzed in theoretical computerse (rather than by means of conver-
gence theory or dynamical-system theory), very basic amglei ESs are considered. Namely,
the only search operator that is applied are so-calledopmtmutations. That is, a new candidate
solution is obtained by adding a random vector to the curantidate solution the distribution
of which is spherically symmetric.

General lower bounds on the number of steps/isotropic moaatvhich are necessary to reduce
the approximation error in the search space are proved.axherfocus is on how the number of
optimization steps depends on (and scales with) the diroealiy of the search space. These
lower bounds hold independently of the function to be optediand for large classes of ESs.
Moreover, for several concrete optimization scenariosretoertain ESs optimize a unimodal
function, upper bounds on the number of optimization stepgeoved.
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Symbols and Abbreviations

i.i.d. independently identically distributed

a.s. almost sure, i. e. with probability one

W. 0. p. with overwhelming probability (pafell5)

PDQF positive definite quadratic form

1 indicator variable (padell4)

X>=Y the random variablX stochastically dominates the random variabl@pagd’1B)
X~Y X>=Y andX <Y, i.e., the random variables andY are equidistributed
X bold small letters usually denote vectors/search points

Q bold capital letters usually denote matricesjenotes the identity matrix
IX| Euclidean norm of the vector e R", i.e.,v/X12+ - - - + X2

P{&} probability of the eveng

E[X] expectation of the random variab}e

Var[ X] variance of the random variabk¢

X0 ith order statistic (of ) of the random variabl&

X, X~ X-1x=0} resp.X - 1{x<0} (whereX is a random variable)

r the (complete) Gamma function

G the random variable defined in Equati@ni3.2) on gage 21

Axe the random variable defined in Equati@ni4.1) on dage 32

G, A, etc. random variables that relate to a so-called Gaussigation

X an individual, where an individual is more than just a segint

0,Q,0,0,0 asymptotic notations (pagell5)
poly(n) O(n®) for some constart

= asymptotically equal (padgell’5)

e Euler's constant 2.7182 (base of the natural logarithm, i. e., le<€l)
R the reals

R-o the positive reals

N the set{1, 2,3....} of natural numbers

INo INU {0}

v the value of(*,(1— x2)"3/2dx, cf. Inequality [35) on pageR4
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1 Introduction

Finding an optimum of a given functioh: S— R is one of the fundamental problems—in the-
ory as well as in practice. The search sp&ean be discrete or continuous, liRéor R. If S
has more than one dimension, it may also be a mixture, liketheé case for optimization tasks
that are so-called mixed-integer programs where, for msd0, 1} x [0, 1] might be the search
space, i. e., one of thgecision variabless discrete (here 0-1-valued) and another one is continu-
ous (here non-negative yet at most 1). In this dissertati@optimization in “high-dimensional”
Euclidean space is considered, i. e., the search spdk® i¥Vhat “high-dimensional” means is
usually anything but well-defined. A particular 10-dimensil problem in practice may already
be considered “high-dimensional” by the ones who try to &aly In this dissertation, the cru-
cial aspect of the optimization is how the optimization tiseales with the dimensionality of
the search spadR", i. e., we consider the optimization time as a functiomofin other words,
here we are interested in what happens when the dimendionathe search space gets higher
and higher. This viewpoint is typical for analyses in congougcience. Unfortunately, it seems
that the optimization in continuous search spaces is notobiee core topics in computer sci-
ence. Rather it lies in the domain of operations researchratiematical programming. There,
however, focusing on how the optimization time scales withgearch space’s dimension seems
rather uncommon. Rather, the performance of an optimizatiethod is described by means of
convergence theory. As an example, let us take a closer Ibdknaar convergence.” Lek*
denote the optimum search point of a unimodal functionxdHdthe approximate solution aft&r
optimization steps. Then we have

dist(x*, xk+11)
dist(x*, x[KI)

where dist(,-) denotes some distance measure, most commonly the Eutliigance between
two points (when considering convergence towaxtisn the search spad&"), or the absolute
difference in function value (when considering convergetosvards the optimum function value
in the objective space). From a computer scientist’s pdimiaw, the first issue with such a result
is that we do not know whekiis large enough to actually ensure dist(x[k+1) < ¢’ - dist(x*, x4

for some constant’ < 1, i. e., to ensure progress of the optimization. The secssukiis that
there seems to be no connectiom{dhe dimension of the search space. Only i an absolute
constant, there is actual independence;ofet in general, theonvergence rate depends om.
When we are interested in, say, the number of steps necedsshajve the approximation error
(given by the distance fromm*), the order of this number with respectrigrecisely depends on
how ¢ depends om. For instance, it = 1— 0.5/n, we needd(n) steps; ifc = 1— 0.5/n?, how-
ever, we need®(n?) steps—wherk is large enough, of course. Thus, the order of convergence
(“linear” in the example above) tells us something abouttimal speed” of the optimization, but

in general nothing about thedependence of the number of steps necessary to ensureas cert

—ceR.1 as k—
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approximation error (unlegsis an absolute constant; then it takes a constant numbeed &b
halve the distance from™* independently oh).

Regarding the approximation error, for unconstrainednoizgtion inIR" it is generally not
clear how the optimization time can be measured solely wa8pect to the absolute error of
the approximation. In contrast to discrete and finite pnoisi€like CLIQUE), the initial error
is generally not bounded (for CLIQUE the trivial solutionnsisting of a single vertex is an
approximation with bounded error). Hence, the question hamy steps it takes to get into the
¢-ball aroundx* does not make sense without specifying the starting camditiRather we must
consider the optimization time with respect the relativpriovement of the approximation.

The simple optimization problems that we will consider tegua somehow homogeneous
optimization process which enables us to measure the peafare of the algorithm by the number
of steps which are necessary to halve the approximatiom, &€reo the distance from™*. Starting
at distance - ¢ for someb € IN, i. e., distg*, x[%) = 2°. ¢, then gives an additional factor bffor
the number of steps which are necessary to obtain asapproximation, i. e., disk*, x!{) < ¢.

Methods for solving optimization problems in continuousrdins, essentiallys = R", are
usually classified into first-order, second-order, andtheonder methods, depending on whether
they utilize the gradient (the first derivative) of the oltjee function, the gradient and the Hessian
(the second derivative), or neither of both. A zeroth-ontkethod is also callederivative-free
or direct search methodNewton’s method is a classical second-order method; frdgrameth-
ods can be (sub)classified into Quasi-Newton, steepestdesnd conjugate gradient methods.
Classical zeroth-order methods try to approximate theigracgand to then plug this estimate
into a first-order method. Finally, amongst the modern reostler methods, evolutionary al-
gorithms (EAs) come into play, which are (often generalpoge) search heuristics that mimic
natural evolution—sometimes in a very broad sense. EAsdnticuous optimization, however,
are commonly subsumed under the t@awolution(ary) strategies (Eﬂ)

When information about the gradient is not available, fatamce if f relates to a property
of some workpiece and is given by computer simulations ondwe real-world experiments,
first-order (and also second-order) methods just cannotpipyiesl. As the approximation of
the gradient usually involveR(n) f-evaluations, a single optimization step of a classicabtrer
order-method is computationally expensive, in particiflaf is given implicitly by simulations.
In practical optimization, especially in mechanical emgiring, this is often the case, and particu-
larly in this field EAs are becoming more and more popular. ey, the enthusiasm in practical
EAs has led to an unclear variety of very sophisticated antlpm-specific EAs. Unfortunately,
from a theoretical point of view, the development of such EAsolely driven by practical suc-
cess, whereas the aspect of a theoretical analysis is Idé.aBarticularly “[ijn the early phase
of ES[s], these EA[s] were mainly developed and analyzedigyreers. A more or less system-
theoretic approach aiming at the prediction of the EA[shd&é@or as a dynamical system served
as the central paradigm. That is, the usual way of thinkirauah theory of EA[s] is considering
the EA and the objective functiof: R" — R [...] in terms of a dynamical (or evolutionary)
system” as noted by Beyer, Schwefel, and Wegener in thétteattHow to analyze evolutionary

IBeyer, Schwefel, and Wegeher (2002, p. 107) point out: “tidsimon belief that evolutionary optimization
of real-valued objective functions iR" search spaces is a specialty of evolution strategies (EBije\tiere
are indeed state-of-the-art ES versions specially tailéoe R" supporting this belief, it is historically not
correct (for the history see Beyver and Schwefel (2002)).”



algorithms” in Theoretical Computer Scien¢2002, p. 107). On page 108 the authors further
note that even when the stochastic process which is indugeoh lES is a Markov process, so
that the Markov kernel “describes the dynamics of the EAaystompletely, its usefulness is
rather limited: the analytical determination of the dynesnis almost always excluded. Even in
the simplest cases the analytical determination of the MaHRernel is excluded. [...] When
thinking of EA practice, the user often monitors the dynatthe fithess values, e. g., expected
average population fitness and expected best-so-far fidmesse into mind. From a theoretical
viewpoint also the expected distance to the optimum statbdie is a single one) is of interest.
It should be the aim of theory to predict these mean-valuanyos for a given EA system an-
alytically. However, up until now, even this task can onlydmomplished for the simplest EA
systems using asymptotin (> oo) considerations or by relying on approximations.”

To summarize, concerning EAs, theory has not kept up witletime, and thus, we should
not try to analyze the most sophisticated EA en vogue, buteminate on very basic, or call
them “simple”, EAs to build a sound and solid basis for EAdiyewithin the field of theoretical
computer science.

For discrete search spaces, essent{@ll{}", such a theory has been started successfully in the
1990s, for instance_Miihlenbzin (1992), Rudolph (1997),siroJansen, and Wegener (1998),
and Garnier, Kallel, and Schoenzuer (1999); cf. WegendJ(Pénd Droste, Jansen, and Wegener
(2002b). Meanwhile first results for non-artificial, but Wishown problems have been obtained,
e.g., for sorting and the shortest path problem by Scharfimmefeld, and Wegener (2002), for
the maximum matching problem by Giel and Wegener (2003)fHerminimum spanning tree
problem by Neumann and Wegener (2004), and for a simple stihggbroblem by Wiiti(2005b).
Such results deal with the efficiency of concrete EAs for acoete class of problems. Also
complexity theoretical aspects have already been inastigy

When f is given to the optimization algorithm as an oracle feevaluations (zeroth-order or-
acle) and the cost of the optimization (the runtime) is defim@the number of queries to this ora-
cle, we are in the so-callddack-box optimizatioscenariol_ Nemirovsky and Yudin (1983, p. 333)
state (w.r. t. the optimization in continuous search spaoeteir bookProblem Complexity and
Method Efficiency in OptimizatiorfFrom a practical point of view this situation would seem to
be more typical. At the same time it is objectively more cacgiked and it has been studied in
a far less extend than the one [with first-order oracles/odsthconsidered earlier.” After more
than two decades there still seems to be some truth in tlaemsent—yet to a smaller extent.
For discrete black-box optimization, a complexity theoag lheen successfully started by Droste,
Jansen, Tinnefeld, and Wegener (2002a), _cf. Wegener|(20@8Droste, Jansen, and Wegéener
(2006). Lower bounds on the number bfevaluations (théolack-box complexijyare proved
with respect to classes of functions when an arbitrary(¥jnoigation heuristic (just for instance
an EA) knows about the clags of functions to whichf belongs, but nothing abodtitself. The
benefits of such results are obvious: They can prove thatlageally poor performance of an
apparently simple black-box algorithm dnis not due to the algorithm’s simpleness, but due to
the inherent black-box complexity df.

As mentioned above, the situation for evolutionary optatian in continuous search spaces is
different. Besides the dynamical-system approach discuabove—-Rechenberg (1973, 1994),
Schwefel|(1981, 1995), and in particular Beyer (2001)—thst majority of the results are based
on empiricism, i.e., experiments are performed and theicaues are interpreted. However,
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convergence properties of EAs have been studied to a cextéemt, in particular by Rudolph
(1997), by Bienvenue and Francais (2003), and already i® 1§8Rappl. Unfortunately, those
results are “based on the assumption that the EA ‘is abledmirol the mutation strength (i. e. the
expected step size) such that the conditions for the praefdudfilled. The mutation control
part of the EA is usually not analyzed. The inclusion of thetation control part in the analysis
appears in all cases investigated until now as a difficuk’tas noted by _Bever et all (2002,
p.110). Just recently, Auger (2005) succeeded in proviegctinvergence of a basic evolution
strategy (namely of the (1) ES using Schwefel's self-adaptation). As the minimizatd the
1-dimensional functionf : R — R with f(x) = x? is considered, also this very sophisticated
proof does not reveal how the number of steps scales withrdiioe of the search space.

The starting point of this dissertation was the aim to adaypt 8 enhance tools,
methods, and techniques, which are known mainly from aeralgérandomized ap-
proximation algorithms for discrete problems, in ordernalgle a probabilistic anal-
ysis of evolutionary algorithms for the continuous seamdiceRR", so that theorems
can be obtained—in particular on how the number of stepstwaic EA needs to
realize a given approximation quality dependson

(Textbooks on randomized algorithms and their probakilishalysis have been published by
Hofri (1987),. Motwani and Raghavan (1995), and Mitzenmaeimel Upfél (2005), for instance.)
In particular, the initial challenge was that the proofsidtdacover the adaptation mechanism
that the ES uses. As it might have become clear from the dismusbove, it would have been
overconfident to start with a sophisticated adaptation rmeisim which works particular well in
today’s practice. Rather the simplest one should be chosensarting point. In particular,
it should be a deterministic adaptation mechanism to keepjdégree of randomness”—which
usually makes an analysis hard—as small a possible. ThebgRberg’s 1/5-success-rule (1965)
almost suggested itself as a candidate: it is determirasiidit is simple (as it originated in a time
when computational resources were very limited).

Somewhat surprisingly, it turned out that for proving thag tL/5-rule “works”—at least in
a very simple scenario—a general lower bound on the numbstept which are necessary to
obtain a certain reduction of the approximation error wdadd great help. As lower bounds (and
complexity considerations; cf. the discussion on black-tmmplexity above) are of independent
interest anyway, such lower-bound results will be preskmteChaptef¥ before the analyses of
concrete scenarios in Chapiér 5 in which several ESs withulésare considered.

In contrast to the results on the black-box complexity otaiarclasses of pseudo-Boolean
functions discussed above, however, here the general loovards will be obtained with respect
to particular types of evolution strategies (which are dbsd in Sectiofi 112 (j218)). The restric-
tions can be roughly summarized as follows:

¢ “Mutation” is the only search operator (in particular, nogsover), where mutation consists
in adding a random vector (sometimes called perturbatma)dearch point ifR" in order
to obtain a new candidate solution (a mutant).

e The random mutation vector is isotropically distributec.j its distribution ovelR" is
rotationally/spherically symmetric (more precisely: anant w. r.t. orthonormal transfor-
mations).



The rigorous analysis of such an “isotropic mutation” is lieart of the lower bounds (and also
very important to obtain upper bounds for concrete scesaabcourse). In particular, the spa-
tial gain of a mutation towards a fixed search point—usudily tor, a fixed) optimum—uwill
be of utmost interest. And precisely this measure is covbyethe progress-rate theoryn the
dynamical-system approach. A large number of results ogrpes rates exist, and many of them
can be found ifThe Theory of Evolution Strategiby |IBeyer (2001). Situations in which noise
disturbs the evaluation of the function to be optimized Hasen considered by Beyer and Meyer-
Nieberg (2005, for instance) and particularlylby Arnold@2)

Unfortunately, those results cannot be (re)used to ob@mesults we are aiming at here. The
reason for this is the following: These progress rates haen lmbtained using the asymptotic
simplificationn — oo (cf. the discussion above). Although the results that vélbbtained in this
dissertation are also asymptotic ones, here a differemt tyasymptotic will be used. To make
the difference clear, we quote froAsymptotic Methods in Analydiyide Bruijin (1970, pp. 1-3):

“A typical asymptotic result, and one of the oldest, is 8tgls formula|...]:

lim n!/(e""n"v27n) = 1. (1.1)

n—o0

For eachn, the numbem! can be evaluated without any theoretical difficulty, and
the largem is, the larger the number of necessary operations beconeStling’s
formula gives a decent approximation"@"+/2zn, and the largen is, the smaller
its relative error becomes.

[-.-]

For no single special value ofcan we draw any conclusion frofn{lL.1) abodit
It is a statement about infinitely many valuesnpfwhich, remarkably enough, does
not state anything about any special value of

For the purpose of closer investigation of this feature, lgreviate[(T11) to

nIim fn)=1, or f(nN)—>1 (h— ). (1.2)
This formula expresses the mere existence of a fundtifr) with the property that:
for eache > 0: n > N(¢g) implies | f(n)—1| <. (1.3)

When provingf (n) — 1, one usually produces, hidden or not, information of the
form (L.3) with explicit construction of a suitable funatid(¢). It is clear that the
knowledge ofN(¢) actually means numerical information abdut However, when
using the notatiorf (n) — 1, this information is suppressed. So if we wrlfe]1.2), the
knowledge of a functioN(¢) with the property[[113) is replaced by the knowledge
of the existence of such a function.

[..]

A weaker form of suppression of information is given by theBaann-Landau
O-notatiorl. It does not suppress a function, but only a number. That &ayp it
replaces the knowledge of a number with certain propertyethé knowledge that
such a number exists. TH@-notation suppresses much less information than with
the limit notation, and yet it is easy enough to handle.”

2 See E. Landau, Vorlesung tiber die Zahlentheorie, Leipz&y 19ol. 2, p. 3-5.
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Obtaining asymptotic results with the help of tRenotation is common practice in computer
science. Letf denote a function ifR andg a function inR-o. Then we say f(x) = O(g(x)) as

x grows” if (and only if) there exists a constamsuch that f (x)| < c-g(x) for all x > x" € R-o,

so that the constaatis suppressﬁ.

The crucial difference that these two notions of “asymptothakes for the analysis of ESs
(and in particular for the analysis of a mutation’s spatah{is the following: If the variance of a
random variable (which is normalized w. m).tends to zero as grows, in the h — oo” approach
one may replace this random variable by its expectationchvban simplify the calculations
significantly. When one aims at a probabilistic analysisasyinptotic results in the sense @~
however, such a simplification is precluded. (This will bettier discussed in SectinB.4[(pl 28).)

1.1 Overview

For the reason that has been discussed above, we have tm@ielgr the random variable which
corresponds to the spatial gain of an isotropic mutatiohérsearch spade". Before we come to
this integral part of this dissertation, however, the fravokk of the evolution strategies considered
in this work will be presented in the following Sectibnll.2[@p. At the end of this introductory
chapter, the publications that build the basis of this dtasen will be listed in Section 113 (R1L1).

Some preliminaries which may help to understand the follgwthapters are presented in
Chaptel2. A few basic notions from probability theory areamtulated, some notations are
given, and well-known bounds on tail probabilities of randweariables are quoted, namely the
bounds/inequalities by Markov, Chebyshev, and Hoeffding.

ChaptefB on “Isotropic Mutations” starts in Section 3. (). with a formal look at isotropic
probability distributions. A very important type of isofri@ mutations, namely so-called Gaussian
mutations, are covered by Sectionl3.2{p. 19). Subsequewgltart the analysis of the spatial
gain of an isotropic mutation in SectiénB.3[(pl 20). The ¢bapnds with some additional notes
on isotropic mutations in Secti@n 8.4 [pl 28).

The lower-bound results are presented in Chdpter 4. Theref@ proceed with the analysis of
the spatial gain of an isotropic mutation in Secfiod 4. L. Ihen the lower bounds are derived:

e In Sectio 4P (1-35) we prove a lower bound<efn) for the expected number of steps
which a (1+1) ES needs to halve the approximation error irsé@ch space (the Euclidean
distance from a fixed search pointlf'). This bound holds for any adaptation mechanism
as long as isotropic mutations are used and for any functenasio.

o In Sectior 4B (1339) it is proved that{L) ESs and (1)) ESs that use a “global mutation
strength” as well as (1) ES that use self-adaptive mutation strengths need withvan o
whelming probability (of - e=(M) Q(n/In(1+1)) steps to halve the approximation error
in the search spadR" (independently of the adaptation of isotropic mutationd fom any
function scenario).

3The O-notation is not limited to the case “asgrows”, cf.[de Bruijh (1970, Section 1.2: Ti@-symbol).



1.1 Overview

e In Section[Z ¥ (L43)(+1) ESs are considered and we prove that they rie@d u)
steps/isotropic mutations with overwhelming probabilityhalve the approximation er-
ror in the search space (independently of the mutation atlaptand the function to be
optimized).

In Sectiol4b (1-47) we reconsider{1) ESs and address the question how long it takes such
elitist ESs to overcome “gaps” or “cliffs” in the fitness |lawdpe. Lower bounds w.r. t. the size of
a so-called “spherically separated gap” and of a so-calleddrly separated gap” are proved. The
chapter on the lower bounds ends with additional commenisemarks in Section 4.6 (p.154).
Chapte b deals with concrete optimization scenarios. lsa@narios Gaussian mutations
adapted by a 1/5-rule will be considered, which are intreduim Sectiorf B8]l (p.%7). Subse-
guently in Sectiofi 512 (p61) the class aft&RElike functions is defined and upper bounds on
the runtimes of various ES are obtained for this scenari@(gproper initialization):

e The (1+1) ES performs with overwhelming probabili®(n) steps to halve the approxima-
tion error in the search space.

e The (4+A)ES as well as the (1) ES get along withO(n//In(1+1)) steps with over-
whelming probability—when the 1/5-rule bases on the nunalbsuccessful mutations.

e The (1+1) ES using a modified 1/5-rule, which bases on the number afesstulstepsis
proved to be indeed capable of getting along vaXn/In(1+1)) steps with overwhelming
probability, which is asymptotically optimal.

e The (u+1) ES using Gaussian mutations adapted by the 1/5-rulenpesfO(u - n) steps
with overwhelming probability to halve the approximatiamnce in the search space, which
is also asymptotically optimal.

In Sectiol5.B (1-84) a different function scenario, whiam ®e considered a generalization of
SPHERElIike functions, is investigated: positive definite quadrdorms (PDQFs). We restrict
ourselves to the analysis of the (1+1) ES (using Gaussiaatioos adapted by the 1/5-rule) for
this scenario. It turns out that for PDQFs with a bounded tamrdnumber the upper bound of
O(n) obtained for $HERElike functions carries over. For PDQFs with a condition tn@mthat

is not bounded but grows in, a linear number of steps do not necessarily suffice to halee t
approximation error. To show this, for the class of PDQES R" — R with

fEX) = & (X% Xn2%) + Xnj212 -+ X0,

wheren € 2IN andé: IN — R.; such thatt = poly(n) as well as 1&n) — 0 asn grows, it is
proved that the optimization process stabilizes such@tfat n) steps are necessary with over-
whelming probability to halve the approximation error.

Finally, conclusions are drawn and an outlook is given ined6.
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1.2 The Evolution Strategies under Consideration

1.2.1 (1+X) Evolution Strategy

Let A: IN — IN such thath = poly(n). “A” may also abbreviateX{n)” in the following. The
(1+2) ES for minimization off : R" — R that we consider works as follows. A single/global
mutation strengtlr which takes values iR - is used for mutation adaptation—for the adapta-
tion of isotropic mutations.

For a given initialization of the evolving search poor# R" and the mutation strengéhe R,
the followingevolution loops performed:

1. FORi :=1TOA DO
Create a new search poigfi] := c+ m € R", where the mutation vectaon is drawn ac-
cording to an isotropic mutation that depends onlyon

2. IFmingg, n{f(yi1)} < f(c) THEN c:= argmine{lmk}{ f(yii1)} (when there are more
than one mutant with minimum fitness, one of them is chosefoumly at random).

3. Decide whether to increase, or to decrease, or to keeputetion strengtly unchanged;
adapto accordingly. (Details follow below.)

4. GOTO 1.

In practice, obviously, the GOTO is conditioned on a stogmn'teriorﬂ Fortunately, for the
results we are aiming at, we need not define a reasonableirsgoppterion. Rather we will
consider a run of a (¢A) ES as an infinite stochastic process. We are interestedvinfést

c evolves. Therefore, we lett']” denote the current search poiatter theith iteration of the
evolution loop (so thatd®” denotes the initial search point)of1” denotes the mutation strength
that is usedn theith iteration.

Note that the (31) ES is a so-called “hill climber” since mutants with a worbevalue are
always discarded so that the sequencd -ofalues corresponding to the evolving search point is
monotonic, i. e. non-increasing for minimization.

Concerning the generation of mutants in Instruclibn 1, wen&dly need a mapping frol- o
into the set of isotropic distributions which tells us (giva specific mutation strength) which
isotropic distribution is to be used for the mutation vecidris mapping is fixed.

Concerning the adaptation of the mutation strengtim Instruction[B, the decision (whether
to increase, or to decrease, or to keepnchanged) may depend on the complete history of the
optimization process, namely, in tkéh step on the sequence¥, f(d)),..., (dk-1, f(dk-1))
given by the evolving search poiotaind also on the discarded mutants (including tHieuralues).
The decision, however, must result in one of the three ouésoniincrease”, “decrease”, or
“keep.” Depending solely on this outcome, the mutationrgjtke o is updated—possibly in a
randomized manner. For instance, the adaptation may betsathwhen “increase” is the out-
come,o is multiplied by a factor that is uniformly chosen over theeival [1, 2].

4In fact, since the evolution loop is repeated over and ovairano termination), this outline of a 41.) ES
is formally not an algorithm. (Moreover, the concrete itiation is left open.) It seems that in such cases
(when a framework for a class of algorithms is describedrofhe notion “method” is used (cf., for instance,
“Newton’s method”).



1.2 The Evolution Strategies under Consideration

1.2.2 (1,A) Evolution Strategy

We obtain the “(14) ES with a global mutation strength” by dropping the IF-chiod in In-
struction[2 in the (1) ES above, implying that is always replaced by (one of) the best of
the A mutants. Unlike the elitist (1) ES, the (1) ES may accept mutations that result in a
search point with a worsé-value. Obviously, a (1,1) ES does not make much sense s@ce s
lection becomes meaningless (in fact, no selection cangkae). The search of a (1,1) ES is
not completely random, i. e. independent of the functionclvhs to be optimized, though. The
function which is to be optimized does influence the seansbesit does affect the adaptation of
the mutation strength.

In particular for the (1) ES, the concept of “self adaptation” (“SA”") has been widsiyd-
ied. The underlying idea is to evolve the mutation strengttother parameters) along with the
evolving search point (leading to the notion efSA” for self-adaptive mutation-strength control).
Thus, anindividua€ = (c,0) € R" x R~ consisting of a search point and an associated mutation
strength is evolved. Self adaptation is sometimes alsoresf¢o agnutative strategy-parameter
control.

For a given initialization of the evolving individu& = (c,0) € R" x R., the (1)) 0 SA-ES
(cf.IBever (2001, p. 261)) performs the following evolutioop, wheref (€) := f(c):

1. FORi :=1TOx DO
Create a new individudyi] = (yii1,o1i1), where
oli] € R0 depends only oa (possibly, and usually, in a randomized manner), and where
yIi] := ¢+ m € R" with a mutation vectom drawn according to an isotropic mutation that
depends only on the previously generadgigl.

2. (c,0) :=argmingy ,{f(¥)} (when there are more than one mutant with minimum
fitness, one of them is chosen uniformly at random).

3. GOTO 1.

For various operators to mutate the mutation strengtfee Bever (2001, Section 7.1.4). Presum-
ably, the one that is most often used is scatinigy multiplying it with a log-normally distributed
random variable, which is duelto Schwetel (1995, p. 143 fstance). For a general lower bound
on the number of iterations which a {3,0 SA-ES performs, however, the concret8A is not of
interest. Thus, we will not go into further details of selaatation here.

1.2.3 (n+1) Evolution Strategy

(uTA) Evolution Strategies use a population consisting @fdividuals. As in our (1)) 0 SA-ES,
an individual X = (x,0) € R" x R.o consists of a search point and an associated mutation
strength.

Let u : IN — IN such thaiu = poly(n). The (u+1) ES for minimization off : R" — R works
as follows: For a given initialization of the population gfindividuals, the following evolution
loop is performed:
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1. Choose one of the individuals in the (current) population uniformly at ramdoLet this
beC = (c,0¢).

2. Create a new search poit= c+m € R", where the distribution of the isotropic mutation
(vector)m depends only onr.

3. Evaluatef (y) and decide whether. is to be increased, or decreased, or kept unchanged,;
adapto. accordingly.

4. Create the mutaryf := (y,o¢)
(i. e., ¥ inherits the possibly updated/adapted mutation stresgttom its parente).

5. Discard one of the. + 1 individuals by uniformly choosing one of the worst indivals
(maximal f -value when minimizing).

6. GOTO 1.

Again, in practice the GOTO would be conditioned on some itgation criterion. Furthermore,
for the generation of the mutant and the adaptation of thetiaut strengtle the same properties
as stated for the (1) ES must be met.

We are interested in how fast the population, namely the ipelstidual in the population,
evolves. Which one of the individuals in the population ie tiest one changes (usually) over
time, of course.

The (u+1)-selection method is sometimes also referred tst@sdy-state selection.

1.2.4 Additional Notes, Notions, and Notations

We can obtain two (1+1) ES: the{)ES withx := 1 and the +1) ES withu := 1. These
two (1+1) ES differ in one aspect: In the{1)ES with A := 1, whenever the mutant of the
current search point is at least as good as its parent, thentngplaces its parent and becomes
the new/next current search point. In thetQ) ES withu := 1, however, if the mutant and its
parent have equdl-values, both have a 50-50 chance to survive and to beconreetheurrent
search point (in fact, the new single-individual populajio

If the function to be optimized is such that the probabilifyhdting the level set of a search
point (the set containing all search points with the sametfan value) with an isotropic mu-
tation is zero anyway, this difference is meaningless, ghoiNamely, for such functions and a
mutation adaptation that precludes mutation vectors wetio fength, the mutant and its parent
have differentf -values (with probability one), so that the difference ie #election mechanism
could not be observed anyway.

However, in this work, “(1+1) ES” means “@@A) ES withA := 1.” Moreover, “(11) ES” means
“(1, 1) ES with a global mutation strength.” Whenever a self-adaptariant is considered, we
will explicitly use the term “(10) 0 SA-ES.” “(1TA) ES” stands for “(#1) ES and/or (1}) ES
with global mutation strength.”

Finally, note that the stochastic process induced by ax) ASA-ES is necessarily Markovian,
whereas the stochastic process induced byta)ES (with a global mutation strength) is not
necessarily Markovian (and in most cases it is actually. not)

10
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1.3 Underlying Publications
This dissertation bases on the following publications:

1. J. J. (2003): Analysis of a Simple Evolutionary Algorittion Minimization in Euclidean
Spaces. IfProceedings of the 30th International Colloquium on Auttanhanguages, and
Programming (ICALP 2003)5pringer LNCS 2719, pp. 1068-1079.

2. J. J. (2005): Rigorous Runtime Analysis of the (1+1) ES:Rile and Ellipsoidal Fitness
Landscapes. Ifroundations of Genetic Algorithms: 8th International Waitkp, FOGA
2005, Revised Selected Pape3pringer LNCS 3469, pp. 260-281.

This work has been expanded and extended:

3. J. J. (2006): How the (1+1) ES Using Isotropic Mutationsnivtizes Positive Definite
Quadratic FormsTheoretical Computer Sciencg1(1):38-56.

4. C. Witt and J. J. (2005): Rigorous Runtime Analysis ofx&1) ES for the Sphere Func-
tion. In Proceedings of the 2005 Conference on Genetic and EvoarjoGomputation
(GECCO 2005)ACM Press, pp. 849-856.

5. J. J. (2005): On the Complexity of Overcoming Gaps wittirtgmic Mutations and Eli-
tist Selection. InProceedings of the 2005 IEEE Congress on Evolutionary Coatipn
(CEC 2005))EEE Press, pp. 206-213.

6. J. J. (2006): Probabilistic Runtime Analysis of {) Evolution Strategies Using Isotropic
Mutations. InProceedings of the 2006 Conference on Genetic and Evoarfddomputa-
tion (GECCO 2006)ACM Press, pp. 461-468.

The article that has emerged from joint work with CarstentWidue to both authors to almost
the same extent in ideas, proofs, and writing.
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2 Preliminaries

We recall some notions concerning probability measurssibutions from Fellen (1971).

Definition 2.1. Let F denote a probability distribution ové@&". A point in R" is called aratom
(of F) if it carries positive mass (w.r. £). We call the distributiorF

concentratedn a setSC R" if R"\ Shas zero probability (i. e. zero mass w. ;

singularif it is concentrated on a set with Lebesgue measure zero;

atomicif it is concentrated on the set of its atoms;

absolutely continuouéw. r.t. Lebesgue’s measure) if there exists a funciigin R" — R such
that for any Borel se§ C R" the probability ofS (i. e. the mass oB w.r.t. F) is given by the
Lebesgue integraf, _cDr(x)dx. In such a cas®r is called the probability density (function)
corresponding to the probability distributidh

Note that any probability distribution can be decomposéd alinear combination of three
distributions, one of which is absolutely continuous, oh@/bich is singular without atoms, and
one of which is atomic (Lebesgue/Jordan decompositionEeller (1971, pp. 138, 142)). (For
distributions overR, “atomic” and “singular” means the same; for distributiamser R" with
n > 2, however, this is not the case.)

Definition 2.2. Let X andY denote random variables.

e X stochastically dominates, Yh short “X = Y,” if (and only if) P{X < a} < P{Y < a} for
allaeR.

o If X =Y aswellasy >~ X,i.e.,Vae R: P{X <a} =P{Y <a}, thenwe write X ~Y."

e We call a random variabl¥ symmetrigf (and only if) — X ~ X.

It is readily seen that, i)X = Y and E[ X] exists, thenE[Y] < E[X]. Obviously, stochastic
dominance is a transitive relation.

Now we come to a very useful tool for probabilistic analyseweffding’s bound; see also
Hofri (1987, Section 2.6.2).

'heorem 2.3. Hoeffding (1963, Theorem 2): LeX;,..., Xk denote independent random vari-
ables, each with bounded range. Koz {1,...,k} let [a;,b]] C R be the range of;, where
a <b.LetS:=X1+---+ Xk. Then foranyx >0

P{S>E[S]+x} < exp(#).
> ica (b —&)?

13
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Note thaty"*_, (b —a)? < k- (b— a)? with a := min{a;} andb := max(b;}, i. e., the values of
all X; liein [a,b] C R (with probability one). Furthermore, we directly obtain

—2x2
P{S<E[S]—x} < exp(ﬁ)

and, consequently,

—2x2
P{I|S—E[S]|>x} < 2.exp(m>'

In particular, if the range oK4,..., Xk is [0,1], for instance when considering the number of
successful Bernoulli or Poisson trials, the{S > E[S] + x} < e2¢/K_As an example, the prob-
ability of observing at least/2 + /n heads inn independent (and fair) coin flips is at most
e 2 < 0.14. As another example, the probability that at leash @#6the n flips show head is
bounded from above by &/°0. This might look like a weak bound. Asgrows, however, the
probability drops rapidly (as it is exponentially small).

In some cases, for discrete 0-1-variables the Chernoff d®wyreld better estimates for the
tail probability, cf. Motwani and Raghavan (1995, Sectioh: 4rhe Chernoff Bound). However,
when we apply Hoeffding’s bound to discrete random varisbhee will use the term “Chernoff’'s
bound.”

Another inequality which helps with the estimation of tarbpabilities is due to Markov,
cf.Motwani and Raghavan (1995, Theorem 3.2):

Theorem 2.4. (Markov’s Inequality) LetX denote a non-negative random variable. Then for all
t e Rog: P{X >t} <E[X]/t.

If one knows about the variance of a random variable, theswtrey Chebyshev can be useful,
cf.Motwani and Raghavan (1995, Theorem 3.3):

Theorem 2.5. (Chebyshev’s Inequality) LeX denote a random variable. H] X] exists and
Var[X] < oo, then for anyt € R.o: P{|X —E[X]| > t-/Var[X]} < 1/t

Note thaty/Var[ X] is the standard deviatiomf the random variabl&.

An indicator variablel s associated with a s& C M is a mapping fromM into {0, 1} (i.e. a
0-1-variable) such thatx € M: 15(x) =1 <= x € S. For instanceM may denoteR; then
Ir.,(x) =11if x> 0 andlg_,(x) =0 if Xx < 0. Thus, in such cases (whév is clear from
the context), we may writeTx>0," instead of “Ig_,(x)” for instance. In particular, we may
apply an indicator (variable) to a random variabde and we letX™ := X - 1(x=0; as well as
X~ = X-1{x<0}, so thatX* is a non-negative random variable a¥d is a non-positive random
variable. Note that, as a consequerigd,(x<aj] = P{X < a} for all a € R. If E[X™] exists, then
E[X*] > E[X - 1(x=a)] for all a € R, and in particularE[ X*] > E[X].

For a symmetric random variabl, we have— X~ ~ X* (and in particulaE[ X] = 0), so that
applying Markov's inequality toX™ (and—X ) yieldsP{|X| >t} < E[XT]/t for allt > O.

14



Definition 2.6. A probability p(n) is exponentially smalin n if there is a constant > 0 such
that p(n) = exp(=2(n°)). An event&(n) happensvith overwhelming probability (w. 0. pWith
respect tan if 1 —P{&(n)} is exponentially small im.

We say that a statemeB(x), wherex € R, holdsfor x large enoughf (Ix’ € R)(VXx > x’) Z(x).
Let f andg denote functions ifR. Recall the following asymptotic notations (&s—> o)
wheng(x),h(x) > 0 for x large enough, cf. Motwani and Raghavan (1995, Definitior):B.1

e g(x) = O(h(x)) if there exists a constart> 0 such thag(x) < « - h(x) for x large enough,
o 9(x) = Q(h(x)) if h(x) = O(g(x)),

o g(x) = 0(h(x)) if g(x) is O(h(x)) as well ax2(h(x)),

e g(x) = o(h(x)) if g(x)/h(x) — 0 asx — oo,

o 9(x) = o(h(x)) if h(x) = o(g(x)),

e g(x) = h(x) if g(x)/h(x) = 1 asx — oo,

e g(x) = poly(x) if there exists a constastsuch thag(x) = O(x°).

Note thatg < h impliesg = ©(h) (as well ash = ©(g), of course), yet thagg = ©(h) does not
even imply the existence of lim. ., g(x)/h(x) as shown by the examplfx) := x - (2+ sinx)
andh(x) := x.

15
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3 lIsotropic Mutations

3.1 Isotropic Probability Distributions

Definition 3.1. Let a vectorx be distributed according to some distributibroverR". ThenF is
spherically symmetrior isotropig if it is invariant w. r. t. orthonormal transformationsei, for
any orthogonal matrit (i.e. M ™M = |) the distribution ofVl x equals the one of, namelyF.
Thenx is calledisotropically distributedoverR".

The nice property of isotropically distributed vectorshat their (possibly) random length is
independent of their random direction and that the direciso“uniformly random.” Formally,
this can be stated as follows:

Proposition 3.2. Let u € R" be uniformly distributed over the unit hyper-spfﬁerﬂ vectorx is
isotropically distributed if and only if there exists a nnagative random variabke(independent
of u) such that the distribution of equals the one of- u.

aBy “hyper-sphere” we mean thgeometrical rdimensional spheren{sphere) in Euclidean-space. From
a topologist’s point of view, however, our geometnisphere is an instance of a topologicai1)-sphere
(since our geometrin-sphere is anr—1)-dimensional sub-manifold of anspace, namely dRk").

A proof can be found in_Fang, Kotz, andINg (1990, Sec. 2.1)t Tedirection is “uniformly
random” is intuitive. The main idea why the length of an iepically distributed vectox is
independent of its direction reads in short: We pick a diogcby picking a half-lineL start-
ing at the origin. Then we obtain a conditional distributiopassuming thax € L. Since the
mappingx — M x defined by the multiplication with an orthogonal matik (an orthonormal
transformation) is a bijection iR" which preserves the inner product (implyipg = |M x|), this
conditional distribution is invariant w.r.t. the choice bf Namely, we obtain the same condi-
tional distributionindependenbf the choice of “the directionL. Hence, we have just found the
distribution of¢.

Definition 3.3. We call a vectoru which is uniformly distributed upon the unit hyper-sphere
{x € R" | |x| = 1} aunit isotropic mutation (vector).

If the distribution of an isotropically distributed vect® singular (like the one of a unit
isotropic mutation), ther’s distribution is atomic (for instance, for a unit isotropgnutation,
¢ is concentrated on the singletéh}). If the distribution is absolutely continuous, then alse t
distribution of the corresponding random varialblés absolutely continuous. There are more
direct consequences of the definition of isotropy:

17



3 Isotropic Mutations

Proposition 3.4. An atomic distribution is isotropic if and only if it is cono&ated on the origin.

An absolutely continuous probability distributidghoverR" is isotropic if (and only if) for all
X,y € R": [x| =]yl = Dg(x) =Dr(Y).

Let the random vectam € R" be distributed according to a distributiéfy, which is singular
overRR" and has no atoms. Thenis isotropically distributed if and only if there exists aucd-
able sel. C R.¢ such that, is concentrated ofx € R" | |x| € L} such that, under the condition
Im| = ¢ € L, the vectom is uniformly distributed upon the hyper-sphdrec R" | |x| = ¢}.

Lemma 3.5. Let the vectors< and y be independently (not necessarily identically) isotrafiic
distributed ovelR". Thenz:= x + y is also isotropically distributed ovét".

Proof. Sincex andy are isotropically distributed, respectively, for any adeof an orthogonal
matrix M, the distribution ofx equals the onéM x and the one ofy equals the one oM y.
Because of the independence, the distribution &f y equals the one oM x + My, and since
Mx + My = M(x+ y), the distribution ofx + y in fact equals the one d¥1 (x + y)—for any
choice of an orthogonal matriM , precisely matching the definition of isotropy. O

By induction, we directly obtain

Corollary 3.6. Let the vectors,...,xx be independently (not necessarily identically) isotropi-
cally distributed oveRR". Then the distribution of the vectgr:= x1 + - - - + X is also isotropic.

So, we know that adding two independent isotropically disted vectors results in a vec-
tor that is also isotropically distributed. Hence, we kndwattall directions are “equiproba-
ble” (actually “equidense”). However, the result tells ustimng about the distribution of the
length. And in fact, isotropy is preserved already when tinections of the isotropically dis-
tributed vectors that we add are independent, i. e., thehedigtributions need not necessarily
be independent. Therefore, letbe isotropically distributed oveR", and lety be distributed
according to an isotropic mutation that may depend>drbut that is independent of's direc-
tion, i. e., y’s distribution is parameterized and we use the notatigyi to indicate this. Then,
given an orthogonal matri¥, we haveM x ~ x and, in particular]M x| ~ |x|. Consequently,
due to our assumptions on hoyis distribution may depend or, we havey, ~ yy,. Thus,
X+ Yy ~ MX+ yyyx ~ MX+y,. Since moreovey, ~ My, whatever the value of, we have
X+ Y, ~Mx+My,,iex+y, ~M(x+y,). Since this holds for any choice of the orthogonal
matrix M, we have just shown that+ vy, is isotropically distributed. By induction, we obtain

Lemma 3.7. Consider a sequenoeag, ..., Xk of isotropically distributed vectors, where the distri-
bution of x; may depend offix;_1| (but not on the direction o%;_;) fori € {2,...,k}. Then the
vector obtained by subsequently adding these vectorsti®soally distributed.

This property will be very useful in the reasoning for the ésvbounds on the number of
isotropic mutations which are necessary to obtain a reolicti the approximation error.

18



3.2 Gaussian Mutations

3.2 Gaussian Mutations
Gaussian mutations date back to the very first applicati@vaolutionary strategies. Namely, they
were used in the original (1+1) ES by Rechenberg and Schwefel

Definition 3.8. Let each of then components of the random veci@roverR" be independently
standard-normally distributed.

We call the random vectdn a Gaussian mutation (vectorfor a giveno € R. g, the random
vectoro - M is called ascaled Gaussian mutation (vector).

As one may have already guessed, Gaussian mutations bdalidtiagng property:
Proposition 3.9. A (scaled) Gaussian mutation vector is isotropically distied.

Proof. As the components ah are independently standard-normally distributed, thesitigmt
x € R" equals

ﬁexp(—xiZ/Z) _ exp(TiL—x%/2) _ expIx1/2)

i1 N 21 N 2w B N 2w
Hence, vectors of equal length have the same density; oflyidhe scaling does not affect this
property. ]

The distribution ofi|, of the random length of a Gaussian mutation vector, is wedl¥n. It
is a x -distribution withn degrees of freedom, df. Arfken (1990). Its densityxat R~ equals
x1-1.e%/2.91-0/2 ) 1(n/2) (where ‘T” denotes the well-know Gamma-function), forming a
unimodal density having its mode afn—1 and two inflection points a{/n—1/2+/2n—7/a for
n> 3. As a consequence, far> +/2n the density drops exponentially so that large deviations
are not probable. More precisely:

Lemma 3.10. For a scaled Gaussian mutation= o - M overR" with o € R-¢

= o-4/N
E[Im] { < o-¥n
> o-4/n=-1/2.
Let Z_abbreviateE[lm|]. Foré >0
P{[Im—¢|>s-£} < .
- - 52.2n-1)

Let my,...,mx denotek independent instances of. For any constant > O there exist two
constants,,b, > 0 such that, for the index sét={i € {1,...,k} |a.-£ < |m;| < b, - £}, we have
P{# <k-(1—¢g)} =e 20,

Proof. The random variabl&m| is x -distributed (withn degrees of freedom), and hence,

E[IM] = \/E-W e [\/n—l/z,\/ﬁ]

(cf.Haagerupl(1982) for the bracketing of the fraction imutg the Gamma function).
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3 Isotropic Mutations

Furthermore, since the random varialité? is x 2-distributed, we havE[|rT1|2] =n, and hence,
we can bound the variance of the length of a Gaussian mutation

var[|f]] = E[|M2]-E[m]? < n—(,/n—l/z)2 — 12

(in fact, it has been shown thear[|m|] 7 1/2 ash — o).

If for a random variabléy, E[YZ] exists ancE[Y] > 0, then Chebyshev's inequality yields that
foranys§ > O:

Var[Y]
< - -
~ (6-E[Y])?
SinceE[|m|] = o - E[|M|] and Var[|m|] = o2 - Var[||], applying this bound tom|, the random
length of a scaled Gaussian mutation, yields
0%.1/2 _ 1/2

(-0 -E[MNZ ~ 62-(n—1/2)°

Finally, we considek i.i. d. scaled Gaussian mutations. Siige = ®(E[|m|]) with probabil-
ity 1 — O(1/n) as we have just seeB[#1] = k — O(k/n). Applying Chernoff’s bound yields that
#1 deviates by a positive constant fraction below its expamtainly with probability e 2(EF!D,
which is %0 asn grows. O

P{Y —E[Y]] = 8-E[Y]}

P{im—¢] >3-}

3.3 Spatial Gain of an Isotropic Mutation

Since any isotropic mutation can be decomposed into a ramtieation, on the one hand, and
an independent distribution for its length on the other havelfocus on unit isotropic mutations
first.

3.3.1 Spatial Gain of a Unit Isotropic Mutation

Consider an arbitrary but fixed search pairg R" and a unit isotropic mutation overRR", and
let ¢’ := c+ u denote the random mutant. Then this mutgis isotropically distributed upon the
hyper-spheré&:. ;.= {x € R" | dist(x, ¢) = 1}, the so-callednutation sphereFurthermore, consider
the linear function 8m,,: R" — R defined by

SUM(X) = > X (3.1)
i=1

which is also called @EMAX whenx € {0,1}". For a givena € R let “Hsyy—a" denote the
hyper-plane{x € R" | Sum(x) = a}, and let ‘H¢" abbreviateHsyu=sum(g. Furthermore, for
> e {<,>,<,>}we let “Hsyusa" denote the open/closed half-spgeec R" | Sum(x) > a}, and
let “Hy.c” abbreviateHsyusum(o)-

When talking about “the gain” of a mutation or a step, in thest®on we mean thepatial
gain of a mutation. The change in theu®-value is merely used as an indicator whether the
mutant ofc lies in the one half-space w.r.t. the hyper-pladgor in the other. In particular,
instead of M we could have chosen any other linear function that esslgndiepends on alh
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3.3 Spatial Gain of an Isotropic Mutation

components. In fact, we may chose an arbitrary but fixed hgfgare containing since we may
rotateH; aroundc. Because of the isotropy of the mutation vector’s distidoutnothing would
change.

As we focus on isotropically distributed mutation vectahg larger the length of the mutation
vector, the larger the expected distance between the neitand H.. Recall that, to focus on the
core of the reasoning, we decided to consider unit isotropitations for the present. (Later we
show how to extend the calculations to (scaled) Gaussiaatioos, the length of which follows
a (scaled)y -distribution.) So, the random variab® defined by

dist(c,Hc) if ¢ lies in the (closed) half-spadé-
—dist(c,Hc) if ¢ liesin the (open) half-spadd.. .

G (3.2)

corresponds to theigned distancef the mutant (generated by a unit isotropic mutation) from
the hyper-plandd. (or from any other predefined hyper-plane containing itepte, as we have
seen). The nice property of this random variaBles that it maps anri-dimensional randomness”
to a single dimension—Ileaving just enough information ttaobinteresting results as we shall
see. As we consider unit isotropic mutations for n@us concentrated on the intervatl, 1],
and naturally, we would like to kno®’s distribution. In particular, we are interested in howsthi
distribution changes with, the dimensionality of the search space.

Recall the mutation spher&; := {x € R" | dist(x,c) = 1} in which the mutantt must lie.
Then we haves > g for some fixedg > 0 if ' lies in the hyper-hemisphei® N H-. such that
dist(c’, H¢) > g. Since all points in the hyper-hemisphedgN H- that have distancg from the
hyper-planeH; form an fi—1)-sphere lying in some hyper-pladewhich is parallel toH; with
distanceg, the set consisting of all potential mutants that resulBir g in fact forms a hyper-
spherical cap with height := 1 — g (cf. the figure on page_22); l&.4 denote this cap. For
g =1, the capC.4 degenerates to a singleton, and ¢ox 1, obviouslyCq is no longer a cap
but the empty set. Thus, we concentrategon[1,0] in the following, and since’ is uniformly
distributed uport., we have

(n—1)-volume ofCq4

PiG=gl = (n—1)-volume of S, (33)

Since G is symmetric, i.e.G and —G follow the same distribution, we hawe{G < —qg} =
P{G > g} for anyg € R. In particular,P{G > g} = P{G > g} because the hyper-plardecon-
taining the boundary of the cap.g is hit with zero probability (just like any other predefined
hyper-plane).

In the following we concentrate on the ratio of the hyperface area of a hyper-spherical cap
to the one of the hyper-sphere of which this cap is cut off lgyittiersection with some hyper-
plane, namely. In particular, we are interested in how this ratio dependthe height of the cap
and onn, the dimension of the search space.

Therefore, we assume thatcoincides with the origiro and use polar/spherical coordinates:
Letr denote the distance from the originthe azimuthal angle with range [072, andgs,..., Bn
the remaining angles with range {f}. Here, for a giverx € R"\ {0}, B; is the angle between

1The probability space that underli€sconsists ofR", the corresponding Borel-algebra, and the probability
measure induced by the distribution of the random mutatemtor overR".
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3 Isotropic Mutations

(the positive half of) theth axis (in the Cartesian coordinate system) and the hadfdtarting at
o and passing througk. Let p denote an arbitrary permutation . ..,n}. Fixingr in n-space,
but none of the angles, defines msphereg" with radiusr ; additionally fixing B,(n) results in
an (—1)-sphere§"~Y c g having radiug - sing,); fixing B,n—1) in addition tor and g,m)
results in anif—2)-sphereg"—2 ¢ §n-1 c g with radiusr - SinB,() - SiNB,y(n-1), and so on
(cf.lIKendall (1961)). Thus, the hyper-surface area ofi@phere with radius is given by

T T T 2
/ / / / (r-sinBn---sinBada) - (r -sinBn---sinBsdps) - - -
n=0Ypgn_1=0 B3=0Ja=0
oo(r-sinBndBn_1) - (r dBn).

Re-grouping the factors and solving tlentegral, namel%z” da = 27, yields

n-2 .n
n-1 . ; i d
r=t.2x .11/0 (sing) dp

for the area of am-sphere with radius. Naturally, we could have looked up the formula for the
hyper-surface area of amsphere in a formulary, but we also need a formula for the dape
formula for the cap can easily be derived from the one abovet-egly if one knows about the
derivation of the latter.

The area of an-dimensional spherical cap is calculated by adjusting
the upper limit on the anglg, appropriately. In the figure on the right,
the interdependence between the upper limjt ¢n the angles, and
the height [1) of a spherical cap is shown (where the sheet this fig
is drawn on corresponds to the plane spanned by the first @thh
axis whenw = 0). Consequently, the area of a hyper-spherical cap with
radiusr and heighth=r - (1—cosy) €[0,2r],i.e. y €[0,x], is in fact
given by

n-3 .p
r=t.27. < fo y(sinﬁ)”‘zdﬁ) : <]‘[ fo (sinB) d,B) .
i=1

All'in all, in n-spacen > 3, the ratio of the hyper-surface area of a spherical cap katpht
h €[0,2r], on the one hand, to the hyper-surface area of the hypearsphtith radiug the cap is
cut off, on the other hand, reduces to

4 (sing)"~2dB
o (sing)"—-2dB
Since the mutation sphei® in which the mutant lies has unit radius (i.re= 1), we have
1-h/r=1-(1-9g)/1=g. Thus, forn > 3, Equation[(313) on padelR?1 reads in fact
Jo 9 (sinp)"2dB
fo (sinp)n—2dp

with y =arccos(th/r).

P{G > g} (for n > 3).
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3.3 Spatial Gain of an Isotropic Mutation

Unfortunately, the anti-derivative of ir{i. e. the indefinite integraJ (sinx)¥dx) does not have
an “algebraically closed” form. Nevertheless, this idgntells us something: Since arccos and
sin are differentiable, we may try to find the dendity of G, namelyd—oéJ P{G < g}.

Therefore, we will now transform the formula that we havé flesived into one which makes
such an estimation simple and which will turn out useful dlsdhe analysis of the expected
spatial gain. Namely, we will concentrate on the probaptiénsity of hitting the boundary of
the capC¢g C S. With the help of this density, we will obtain an alternatfeemula for the
probability of hitting a cap.

Let Wy(X) := fé‘(sinﬂ)”—zdﬁ and let “U” abbreviateW,(;r). Then for the probability distribu-
tion of G we obtain

W, (arccog)
a Wn(mr)

P(G<g} = 1-P{G>g¢g} =1

and hence, fog € (—1,1),

d -1 d¥p(arccog)
—P{G < = :
dg" °=9 = Y
-1 d arccoy >
= ?d_gfo (sinB)"“dB.

Let Sinc denote the anti-derivative of dini. e. the indefinite integraf(sinx)" dx, such that
Sing(0)=0. Then

d faecos _ dSinc(arccog)
A ACLOL

= Sin(arccog)-arccosg
= (sin(arccog))* - arccosg,

and since sin(arccep = /1—g? and arccog = —1/,/1— g2, we obtain fork > 2

dSin(arccog) (1_gz)k/2_
dg 1—g2

= —1. (1 _ g2)(k_1)/2 )
All'in all, we finally obtain forn > 4 the probability density o6 atg € (—1,1) inn-space

1 n-
De(g) = &PiG=g) = ;(1—92)( V2 (fornz4). (3.4)

This density function can now be used to derive an alteradtivmula for the probability that
G is at leasg, namely

1t -
P(G>g} = E./ (1—x2)(n 372 4x forg e [—1,1] andn > 4. (3.5)
9

Moreover, as a by-product, we obtaln= Wy () = f_ll(l — x?)(=3)/2dx. The value of this def-
inite integral equals/m - T'(n/2—1/2)/T'(n/2), cf.|Gradshteyn and Ryzhik (1994) for instance.
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3 Isotropic Mutations

Using the bracketing of the ratio of the two Gamma-functiatues already applied in the proof
of Lemmd3.ID (£9), we obtain the following bracketingtfoe normalization factor /¥

n—2 1 n—1
Vo =3 S35 (ornz4, (36)

which implies ¥ ¥ < \/n/«/2r ~ 0.4/n.

Unfortunately, as one may expect, also{%?)"~3/2—like the function¥,—does not have
an “algebraically closed” anti-derivative. (We see clgadw that the probabilit?{G > g} drops
exponentially ag — 1, though.) However, the function: (1 — x2)("=3)/2 has an anti-derivative,
namely (1- x2)™-1/2/(1—n) for n > 4. Thus, for instance, we can compute the expected distance
of the mutantc’ from the hyper-planeH., which equalsE[G"] — E[G™] = 2- E[G™], where
we use the symmetry of the random variallg(recall thatGt and G~ abbreviateG - 1{G>0}
resp.G - 1{G<0}). More generally, we obtain the following result.

Lemma 3.11. Let G denote the random variable as defined in Equafion (3.2) oal@ag Then
forge[0,1] andn >4

(1- )92/ /2n

(1-g?"-1/2.0.4//n—1
> (1-9¢?"-1/2.0.3989/n+1.

(1_ g2)(n—1)/2
(n—1)-w

A

E[G-liczg] =

Proof. As we have already noted above k?)("=1/2 /(1 —n) is an anti-derivative of the func-
tion x - (1 —x?)("=3/2_ Hence,

1
E[G-1{G=g)] = / X - (L= x?) =172 gx
9

1

R &l

-1
1= (- k-2
[n_l( )

1
T (1—g)D2
w_(n_l)( 99

Using the bracketing of ¥ (Inequality [3.6) on page24), we obtain

1 < JIh=1)/27r /(n—-1) 1//2r(n—=1) < 0.4//n—-1
v-n-1) | = Jh-2y2r/(n-1) > 1/y2r(n+1I) > 0.3989/n+1

(usingv/n—2/(n—1)>1/+/n+1 forn > 3). O

This lemma tells us that for the expected distance of the mditam H¢ (or from any other
predefined hyper-plane containing its paregf)G|] < 2/+/27rn ~ 0.8/,/n. This might appear
bewildering (at first) since this implies that, as the seapace’s dimensionality increases, the
expected distance from; tends to zero—although the distancecbform c is fixed to one and
Hc is hit with zero probability. However, noting thai; is an affine subspace with dimension
n—1 (i.e. codimension 1), it may become more plausible thdtrgetar away fromH. becomes

9

v
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3.3 Spatial Gain of an Isotropic Mutation

less and less probable asncreases. It might also help to recall thatrahypercube with unit
diameter (longest diagonal) has edges of lengtjiii.

Let us come back to the probabili®{G > g} as given in Equation{3.5) on pafel 23. Al-
though we may not be able to compute the integral (algeldhaicaa closed form), we may
approximate the integral’s value. Namely, upper and lowemigls on the value of the integral
fgl(l— x2)("=3)/2dx must be derived—in dependencegandn.

Lemma 3.12. Let G denote the random variable as defined in Equalion (3.2) oelBag

1. Forn> 9 andg: IN — R such thag(n) € [¢/+/n, 1/3] for some constant > 0,

> % o exp(_92 4n)
P{G =g} g exp(-g*-n/3) g
N7 = =. 2. _
< Y iemE@m = w SPEEn/3)-e)

so thatP{G > g} = «/n-g-e~©@*" Furthermore,
2. 0>g=0(1/4/n) = P{G>g} — 1/2 asn — oo,
3.921/3 = P{G=g)=¢ ",
4. P{G >0} =Q(1) < g=0(1/V/n),

5. 1/2—P{G > g} = Q(1) < g=Q(1//n).

Proof. Let 8/./n substitutey. Then forp € [¢,4/n/3] andn > 9, on the one hand,

1
\IJP{GE,B/\/H} _ '/ﬁ;/\/_(l—xz)(n_S)/de

ING
(1 _ XZ)(n—S)/Z dx

A%
—

NG

- Lo

> % -exp(— %) (because (+1/m)™ 1 > 1/e)
- ()

> % -exp(—48?) (becaused < +/n/3 andn > 9),

and on the other hand,
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3 Isotropic Mutations

1
v.-P{G>g/Vn} = fﬂ/f(l—XZ)(”—@/de

" g - 2\ (1-3)/2 i
< ; %~(1—(Iﬁ/\/ﬁ)) (upper sum; widthg//n)
_ ﬁ L%J (1_(| )2 n)(n—?’)/z
= & 2 B/
< % : ig;exp<— %) (because (£ 1/m)™ < 1/e)
< P iexp(—(i B)?/3) (becausen;3 >Liorn> 9)
- Jn — 2n — 3 -
p 2 1
R ST )

= 0(1) sinceg > ¢ € R.o

where the last inequality follows because the summandsedadhies drop by a factor of

exp(=(i+1)°8%/3)

— exp(2i +1)-$2/3) ‘= exp(-p?)
exp— 2 pB2/3) - '

Thus, forB € [¢,4/n/3] (i. ., forg € [¢/4/n,1/3] sinceB = /N - g) we obtain

1 [t 1
PG2g = [ @) = a%.e—@(ﬂ% = J/n.g-e 0@
n

since ¥ ¥ = O(y/n) (cf. Inequality B:8) on pagé3a4).

Concerning the second claim, note tigat o(1/./n) implies (1— g?)™3/2 — 1 asn grows,
and concerning the third claim, we have/3¥"~3/2/w = =" . O(,/n), which is bounded
above by e,

Finally, for the proof of the fourth and the fifth claim, notet./n- g-exp(®(g?-n)) = O(1)
if and only if g = ®(1/4/n). O

3.3.2 Spatial Gain of a Gaussian Mutation

As we have seen, a Gaussian mutation is in fact a unit isatnopitation which is scaled by
multiplying it with a x -distributed random variable, (with n degrees of freedom and which is
independent of the direction given by the unit isotropic ation). Analogously to the definition
of the random variabl& (Equation [3.2) on padeR1), I&tdenote the “signed distance” of- M
from the hyper-plandic, wheref is a Gaussian mutation vector. Thés distribution indeed
equals the one of the random varialle- G. In particular, we have (fon > 4 since we apply
Lemma3Tll (£-24) for the value &[G*])
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3.3 Spatial Gain of an Isotropic Mutation

E[GY] = E[¢,]-E[G]
r‘(n/2+1/2) 1
V2. r(n/2) \IJ.(n—l)

NG rn/2+1/2) r(n/2)

"T(n/2) ‘T(n/2—1/2)- J/7-(n—1)

n/2—1/2 1
V2 MRS Y. 0.3989...
where we us&'(n/2+1/2)=(n/2—1/2)-I'(n/2—1/2) and the result o&[¢, ] from the proof of
Lemma3.ID (L19). In this case, multiplying the expectwtiis indeed allowed since we inves-
tigateE[G . ]l{é>0}]. Namely, whether the indicator variable is one or zero i€pehdent of the
random variablé , sinceP{¢, > 0} = 1. Orin other words, the indicator variable merely checks
whether the random direction points into the half-spBicg or into H- ¢, which is—per defini-
tion—independent of the (distribution of the) length. Whemare interested iE[é - 1(G=g)] for
someg # 0, things become more complicated, of course. Clearlygfer0, the larger the length
of the isotropically distributed vector, the larger the fpability thatG exceedsy. Formally, we
have the convolution involving the density of thedistributed length. Namely, fay > 0,

P{C>g] = /OODX(X)'P{G > g/x} dx
g

21—n/2 00 yN— 1

T T2 Jy e PGz g/xidx,

where the integration starts gt(rather than 0) becaugg/x > 1 for x < g andP{G > 1} =0
anyway (in less formal words, if the mutation’s length is #erahang then the mutant’s distance
from Hc must also be smaller thay).

SinceP{¢, € [/n/2,2yn]} equalsff/zD (X)dx = 1— O(1/n) as implied by Lemm&=3.10
(p.[19), by substituting “1” for P{G > g/x}” whenx ¢ [,/n/2,2,/n] we obtain the upper bound

- 21-n/2 2[ n—-1
P - £
=29l = oy Jij2 €412

By substituting “0” for ‘P{G > g/x}” whenx ¢ [,/n/2,2,/n] we trivially obtain the lower bound

- 21-n/2 2[ n—-1
PiG
{ = g} = F(n/2) Jh/2 /2
Thus, in the remaining part of the convolutionPfG > g/x)} with the distribution of the ran-
dom length we have € [/n/2,2,/n], i.e., g/x = ©(g/./n). SinceP{G > g/x)} is bounded
from below byQ(1) and from above by /2 — ©(1) if and only if g/x = ©(1/4/n) as shown in
Lemmda3.IPR (L25) (items 4 and 5), we directly obtain

Corollary 3.13. Let G denote (analogously t6 given in Equation[[3]2) on padel21) the ran-
dom variable corresponding to the “signed distancet #fm from H;, wherem is a Gaussian
mutation. Then

‘P{G>g/x}dx + O(1/n).

-P{G > g/x}dx.

e P[G>g}=9(1) < g=0(),

e 1/2-P{G > g} =Q(1) < g=2Q(1).
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3 Isotropic Mutations

We note again that this result is no surprise asykdistribution shows only very small devia-
tions from its expectation. Therefore recall that its vaciis upper bounded by 2, whereas the
expectation is9(,/n). This may become even more clear when we consider a scalessi@aa
mutationo - M which is scaled such that we expect unit length, which insplie= ©(1/,/n).
Then the variance i©(c?), i. e. O(1/n)—which obviously tends to zero asgrows.

3.4 Additional Notes

The random variable§ andG are not tailored to the analysis of a specific function—aitjto
we use the linear functionu® in its definition. As has been already noted several tinigs,
could denote any predefined hyper-plane contaigjrigther thar{x € R" | Sum(x) = Sum(c)}.
Due to the isotropy of a unit isotropic mutation, we woulduadty end up with the same random
variable—or, more precisely, with a random variable havivgsame distribution &S.

Furthermore, we would like to stress that the random vagi@otliffers from the random vari-
able Ay« corresponding to a unit mutation’s spatial gain towards edfigointx* € R" (usually
the/an optimum). However, as distk*) — oo, the (sequence of) random variablefs)- con-
verges in distribution to the random varialife In fact, G stochastically dominateAy+ as we
shall see.

Finally, the approach of usin@ when Gaussian mutations are considered differs from the
commonly followed progress-rate approach at least in onei@raspect: The reasoning in most
progress-rate results is the following: Assume for a montattc coincides with the origin and
that the optimunx* lies on the positive halve of the first axis. Then the mutatiector can be de-
composed into a component pointing towaxdsalong the first axis, callecentral componer(or
radial component)and into a so-callethteral componen(or traversal componeigiven by the
mutant’s distance from the first axis. Then the central campbof the gain towards* is indeed
normally distributed—because it is just the first comporunihe Gaussian mutation vector. The
lateral component, however, lies in the hyper-plane spdibgehe remainingi—1 axes (in fact an
(n—1)-subspace sinaecoincides with the origin by assumption). The length of theation vec-
tor’s lateral component, i. e. the mutant’s distance froatfitst axis, is agairy -distributed—with
n—1 degrees of freedom rather thajthough. As we have seen, the variance of the lateral com-
ponent’s length is by a®(1/n)-factor smaller than its expectation. In the very most pesg-rate
results, this fact is taken as a reason to substitute thectagn of the lateral component’s length
for the random variable in the calculations. This does S§icgmtly ease the calculations since the
central component follows an ordinary normal distributiepresumably, one of the best known
and best investigated distributions. This simplificatioamely the assumption that the lateral
component’s length were not random, however, rules outaissipility of obtaining theorems on
the algorithm’s behavior. Rather the results are actuditgioed for/in a simplifying model of the
stochastic process that is induced by the algorithm undesideration, and simulations become
necessary to justify this simplification.

When we consider the random varial@ie then the randomness “in all dimensions” is re-
garded—rather than only the central component—, and thetavihyeorems on the algorithm’s
“true” behavior is still open.
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3.4 Additional Notes

A Note on Isotropic Mutations for Bit-Strings

When EAs for the search spafte 1}" are investigated, the commonly used mutation operator flips
each of then bits independently with some fixed probabiliy:, usually pmyt ;= 1/n. However,
just like (scaled) Gaussian mutations ¥, this can be considered a particular type of isotropic
binary mutation: The number of bits that flip follows a binaindistribution. However, one may
say that the mutation remains isotropic when we choose atnaagbdistribution ovef0, 1,...,n}

for the number of bits to be flipped. Liebe distributed according to this distribution (which might
depend on the course of the optimization), then a subsktobfthe n bits is uniformly chosen,
and thosek bits are flipped. The reason why we may call this an isotropiaty mutation is
the following: If we pick a particular bit (and disregard thiern — 1 bits), then the probability
that this bit is actually flipped is independent of our choiEermally, the mutation of an-bit-
string is associated with a distribution over the powereddtl,...,n}. Then we call a mutation
isotropic if (and only if) any two subsets of equal cardityakre equiprobable. This implies
that the distribution is invariant w.r.t. permutations bétbits’ positions in the string (cf. the
invariance w. r. t. rotations of the search spac&WM).

Considering adaptation of the mutation operator is ratheommon wher0, 1}" is the search
space. In some cases, one wants to consider the best casethie mutation operator, and then
considering this general notion of isotropic mutations migy useful. In general, in the best
case there is a particular numbenof bits such that flipping (uniformly chosen) bits results
in maximum success probability for an isotropic mutatiamg éence, the best-case assumption
would just be to assume that with probability 1 we HKipniformly distributed bits.

For constank, choosingpmut := K/n results in &-bit-mutation to occur with probabilitg2(1),
so that for most (of the interesting?) asymptotic analygese might be only small differences
between an “optimally adapted isotropic binary mutatiomd an optimally chosepm,; for inde-
pendent bit-flips. However, for lardethere might be a substantial difference.

We will come back to this in Sectidn'4.5 [pl47).
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4 General Lower Bounds

In this chapter we will derive lower bounds on the number otrigpic mutations which are
necessary to reduce the approximation error in the seasdesfNamely, in the following, the
approximation error (in the search space) is gived by dist(c, x*), the Euclidean distance of the
evolving search point from a fixed search point* € R"—for instance the (or a fixed) optimum
of a function to be optimized. In particular, we consider tlunber of mutations to halve this
approximation error. The lower bounds that we will obtaindnimdependently of the function
to be optimized, i. e., they are valid for any function scemaro follow the reasoning, however,
one may keep in mind the minimization oP8ERE: R" — R defined as the squared distance
from the origin. This function scenario is in some sense & ¢t@se since a mutation results in a
gainw.r.t. the 8HEREValue if and only if it results in a spatial gain towards themmum in the
search space. Halving the distance from the optimum carrelspto a BHEREgain of 75%, i. e.,
the function-value is quartered. Besides, this examplevstibat a lower bound on the runtime
w. . t. the reduction of the approximation error in the shamgace usually implies a lower-bound
result on the reduction of the approximation error w. r. & thnction value (this implied bound
may be weak, though; we shall see an example for this effeamt lmamely when we investigate
positive definite quadratic forms).

Moreover, the lower bounds on the runtime we are going to shitMoe valid independently of
the adaptation of the mutation strength. In fact, they valifdependent of the length-distribution
of the isotropic distribution that is used to generate mistarFor instance, the length could
be distributed according to a (scaled) Cauchy distribytrather than according to a (scaled)
x -distribution (withn degrees of freedom) when Gaussian mutations are used.

One may ask whether lower bounds that hold in such a genenaksmeay be too general,
i. e. too weak, so that common concrete mutation mechanisshegnnot achieve a runtime which
is upper bounded by the same order, i. e., which is at most bystant factor larger than the lower
bound. This is not necessarily the case as we will see in thptehwhere concrete scenarios are
investigated.

We will start off with a closer look at the spatial gain whiclsiagle isotropic mutation may
yield, since a general upper bound on the expectation ofjirswill enable us to obtain various
lower-bound results.

4.1 Spatial Gain Towards a Fixed Search Point
When we want to prove a lower bound on the number of mutatidnistwvare necessary to realize a
certain reduction of the approximation error, an upper ldoamthe expected spatial gain towards

x*in a single step is needed. So far we have considered thedsitistance of the mutant from a
fixed hyper-plane which contains its parent. In the follogvieasoning, leH. denote the hyper-
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4 General Lower Bounds

plane that contains and lies perpendicular to the line passing throwgind x*. Essentially,
we have considered the random varia@lédefined in Equation{312) on pafel 21) which bases
on a unit isotropic mutation. Le&s, denote the random variable defined just l{Beexcept for
the length of the mutation vecton being fixed to¢ > O rather than to 1, i.em is isotropically
distributed such th&{|m| = ¢} = 1. ThenG, ~ ¢ - G since this is just a rescaling of the situation.
Then the random variable

Ay = dist(c, x*) —dist(c+m, x*) (4.1)

corresponds to the spatial gain towards (Note that this is not to be mixed up with the so-called
“central component” of a mutation as discussed in Se€lidr{B23).)

The interdependence between the signed distag)ceqm H. and the gaing) towardsx* is
depicted in the following figure.

Figure 4.1: Interrelation betweén(gain towards<*) andg (signed distance frorki,)

Obviously (and as we have seen), the larger the length of@romc mutation, the larger
the expected distance from the hyper-plahe Recall thatd is defined as dist{x*). The best
possible gain towards* is £—if ¢ < d. If £ > d, however, the best possible gain towaxdss
2d — ¢ since all mutants have distance at lelastd from x*. The least possible gain towarg$
is —¢, independently of how relates tad. All in all, the range ofAx+, is [—¢, min{¢,2d — ¢}].
(Hence, in particular, the gain towarg$ is always negative if > 2d.)

Now, note this trivial but essential geometric fact:

Fact 4.1. The spatial gais towardsx* corresponding to the signed distargéfrom the hyper-
plane that containsand lies perpendicular to the line passing throagimdx*) cannot be larger
thang.

SinceAy+, > § impliesG, > g(8), whereg(s) denotes the that corresponds to the specified
8 € [¢,min{¢,2d — ¢}], and sinceg(8) > § as just noticed, this trivial observation directly implies
that P{Ax«¢ > 8} < P{G; > g(8)} < P{G, > 8}. In other words,Ay-; < G;. Note that this
stochastic dominance holds for any fixed lengthAs a consequence, the dominance indeed
holds for any distribution ofm|, i. e., for arbitrary isotropic mutations. We have just ah¢al
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4.1 Spatial Gain Towards a Fixed Search Point

Proposition 4.2. Consider an arbitrary but fixed search paiite R". Let the mutation vector
be distributed according to an arbitrary isotropic disttibn F.

Let the random variablé,« ¢ be defined (analogously to Equatidn{4.1) on pade 32) as the
mutation’s spatial gain towards®, and let the random variablér be defined (analogously to
Equation[[3.R) on padeP1) as the mutant’s signed distanaetine hyper-planéi.

ThenAy+ g < GE (i. e., G stochastically dominatesy- g).

Due to the isotropy of the mutation vecto, for any pointx** € R" that has the same distance
(namelyd) from c asx*, we haveAy- g ~ Ay« . Because of this invariance, it makes sense
to use the subscriptd” rather than %*.” Furthermore, we may drop the subscriptsince the
dominance holds for anly (as long ad- is isotropic, of course).

Naturally, one may ask how the random varialbdes and Ag4, relate when, sayl; < dp. One
may already guess thaly, < Ag,. As this might not be that obvious, the concrete correspocele
betweens andg will be derived in the following. Therefore, reconsider &ig[4.1 (p[33R) and
assume that the length of the isotropic mutation happene to Burthermore, we defin®l; :=
{x | dist(x, c) = £ Adist(x,x*) = d — §} as the set which consists of all potential mutants that are
exactlys closer tox* thanc. Foré < —¢ and/or§ > min{¢,2d — ¢}}, Ms is empty since such
gains are impossible, and fér= —¢ and/or§ = min{¢,2d — ¢}}, M; is a singleton. Finally, for
—¢ < § <min{¢,2d — ¢}, Ms forms an i—1)-sphere; namely; is the intersection of the two
hyper-sphereS&., (the mutation sphere) arfi- 4_s (consisting of all points having distande- §
from x*).

Now, using Pythagoras, we obtain tlfat- g° as well as§ — §)?> — (g — d)? equal the squared
radius ofM;. Solving the equatiofi® — g? = (d — §)? — (g — d)? for g yields the correspondence

02— 52
2d

As we can see now, the additive term by whegefthe gain away fronHc) must be larger than the
corresponding (the spatial gain towards*), namely¢? — §2/(2d), is indeed anti-proportional
to d, the distance fronx*. Since, on the one hanB,{Ad,g > 8} =1 for any$§ < —¢ and, on the

other handP{Aq, > §} = 0 for anys > min{¢, 2d — ¢} anyway, we have indeed

g = 5+ for 8 € [—¢, min{¢,2d — ¢}]. (4.2)

P{Ad128} < P{AdZZS} when d; <do

for any/arbitrarys € R. As our choice of¢ in the above reasoning was again arbitrary, the in-
equality that we derived above does not only hold for anyragit mutation of an arbitrarily
fixed length but for arbitrary isotropic mutations. We ohttie following result (which is not at
all a surprise, yet it will be of great help):

Proposition 4.3. Consider two arbitrary but fixed search poirtsx** € R". The search poirtis
mutated by adding a vector which is distributed accordirgrtarbitrary isotropic distributiof.
Then distk*, ¢) < dist(x**, c) implieS Axx g < Ay F.

The stochastic-dominance relations that we have derivethéovarious random variables in-
duced by an isotropic mutation will be frequently used in Boowus reasonings and calculations.
As another consequence of the interrelation between thedidistance front and the spatial

gain towards a fixed search point (Equati@nl(4.2) on pgage \88)see thatAq, > 0 implies
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4 General Lower Bounds

G, > ¢?/(2d), and henceP{Ad,g > O}, the probability of the mutant being at least as close to
x* asc, is upper bounded b?{Gg > 62/2d}. Furthermore, utilizing the stochastic-dominance
relation, we directly obtain that

E[Af,] = EIGe-Lic=e/(d)].
Using Lemmd=311 (j24) (and the fact ti@t~ ¢ - G), we obtain fom > 4
E[G Miezi/ey] = €04 (1-(e/@d)?)" " /v,

and thus, by substituting for £/(2d), we have (fom > 4)
0.8d

E[Aq,] =X (1= (4.3)
wherex e (0, 1). Considen to be fixed for a moment. It is readily seen tha(l — x?)("~1/2 has
a unigue maximum, and since

i X . (l _ X2)(ﬂ—l)/2 — (l _ X2)(ﬂ—l)/2 _ X2 . (n _ 1) . (l— X2)(n—1)/2—1

dx
= 1-x30VZF(1-x%)—x?.(n—-1))
= (1—x®)M-2-1.(1-x2.n),

solving 1— x2-n = 0 for x yields thatx - (1 — x2)"=1/2 takes its maximum at/L/n. Substituting

“1//n” for “ x - (1—x?)"=1/2" in the RHS of Inequality[[Z]3) on padel34, we obtain for 4
08d 1 0.8d 0.52d

< —.— . (1-1 n(n—l)/2 __343/2 e

N n—lﬁ( /n) n—1(/) = h-1

Note that also this bound holds independently of the lergti the isotropic mutation, i.e.,

it holds for any isotropic mutatiom with P{{m| = ¢} = 1. Thus, the bound indeed holds for

arbitrary distributions ofm|, i. e., for any isotropic mutation. Finally, note that—faryaandom

variableX —we haveE[ X*] > E[ X - 1{x=a}] for anya € R. Thus, we have shown the following

result:

A

E[Ad]

Lemma 4.4. Consider the optimization of an arbitrary functién R" — RR. Letx* € R" denote
an arbitrary but fixed point (for instance an optimumfqfif one exists). Lett denote the cur-
rent search point to which an isotropic mutations added, resulting in the mutadt= c+ m.
Then—independently of the distribution gh| and independently of the selection rule, which
decides whether' replaces or not—the expected spatial gain of this step (mutatiorovedd by
selection) towardg™ is smaller than 0.52ist(c,x*)/(n — 1) forn > 4.

This lemma tells us that, even when the length of an isotropitation and the selection rule
are chosen optimally (i. e. such that the expected gain ofthition followed by selection is
maximum), the approximation error (in the search space,twx*) is reduced at most by a
%-fraetion. This generalpperbound on the expected best-case one-step gain of a mutation ¢
now be turned into a generdalwer bound on the expected number of steps which are necessary to
realize a certain reduction of the approximation error engdbarch space (defined as the Euclidean
distance from a certain search point).
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4.2 Lower Bound on the Expected Number of Steps of (1+1) ESs

Before we will do this, however, we will prove that a gain whis “considerably” larger than
the best-case expected gain is very unlikely:

Lemma 4.5. Let x* € R" denote an arbitrary but fixed point ang4 x* the current search point
to which an isotropic mutatiom is added, i.e.d := dist(c,x*) > 0. Then, for any constant
¢ € (0,1], independently of the distribution ¢i|, the probability that the mutant is such that
d —dist(c+m, x*) = Q(d -n¢/n) is bounded from above by €M), i.e., the mutant’s distance
from x* is by an2(n®/n)-fraction smaller than the one of its parent only with anagntially
small probability.

Proof. Assume that the length of the isotropic mutationis £ > 0. Then withs :=d-nf/n
Equation[4.R) on padeB3 tells us that
¢ 8 dnf /oty 2 dr
2d7°72d = 24" n ( ‘%) = 2
Since the two summands in our lower boundggrare equal fo = d - n¢=1/2, we obtain that
when? > d-n¢-1/2 then % is the larger summand, and whén< d - n=1/2, then *42" is
the larger summand.

For¢>d-nt=1/2 j e d<¢-n@)/2 we havegs > ¢2/(2d) > (¢/2)-n=1/2 whereas for
¢<d-nt=12 je d=>¢-nl1-4)/2 we havegs > dnf/(2n) > (¢/2)-n€=Y/2, In other words,
gs > (¢/2)-n¢=1/2 for any length? > 0 of the mutation vectom, and thus,

P{distc+m,x*) =d—d-n/n} = P{G, = (¢/2)-n“"%}.

This probability is bounded from above by%¥") according to LemmBE312 [@R5).
Finally, it is readily checked that this asymptotic uppeuibd on the probability does not only
hold for as of exactlyd - n®/n, but for anys that is2(d - n®/n). O

g =

Like the upper bound on the expected gain of a mutation, &isobiound on the gain of a
mutation can be turned into a lower bound on the number of timagwhich are necessary to
reach a certain reduction of the approximation error. Befee do so, however, we focus on the
expected gain and on the expected number of steps again.

4.2 Lower Bound on the Expected Number of Steps of
(14+1) ESs

Recall our framework for (1+1) ESs from Sectignl1.2[{p. 8).tHa following, cl'! denotes the
evolving individual aftei steps and we letl'l denote the approximation error in the search space
given by dist(l'l, x*) afteri steps. Therl! is the initial approximation error. Moreover, in this
section letx be such that - d is the best-case expected one-step gain @ €. max-.o E[A(Ll,g])
for which we have just proved that< 0.52/(n— 1) = O(1/n). Note that, because of the scaling
invariance of the situation, = max;-.o E[A}]/d with the length of the underlying mutation being
fixed to an arbitrary positive length, i. e:,is well defined.

Our best-case assumptions on the step length and the seleate obviously result in the
largest possible expected one-step gain—yet one may astherhibe “greedy” assumption of
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4 General Lower Bounds

assuming the best case for each of a number of steps doesl irededt in a best-case multi-step
assumption. Therefore, consider two successive stepssande that in the first step a (possibly
negative) spatial gain 6f!! is realized. Then, assuming the best-case for the secaaldffap, we
obtain for the minimum (best possible) expected approxonagrror after the two steps (under
the condition of the gain in the first step beigly)

E[d[z] |5[l]] = (l-a)-d¥ = 1—a)- @T-5 = 1-a)-dT—(@1—a)- s

Obviously, the larges!t], the smaller the expected final approximation error. Aé{ denote
the random variable corresponding to the spatial gain ofiteestep (mutatiorand selection).
Using the linearity of expectation, we obtdifid?] = (1—«)-d% — (1—«) - E[AlM], and hence,
applying the one-step best-case assumption also to thestiystindeed results in the expected
final approximation error to be minimum. Namely, after tweyxs we have in the best case (w.r. t.
the expected approximation error)

E[d?]=(1-a) d¥-(1-a) («-d9) = (1-a)? dl.

By induction we obtain that in the best case—namely whench step the length of the mutation
was such thaE[A™] is maximum and the selection was such that a mutation ispaedef and
only if the approximation error is decreased—afesteps the expected approximation error is
(1—o)X-dl, Since (- a)k > 1—« -k, the smallest number of stepsuch tha€[d{] < d® /2

is atleast’? > g2 > 0.961— 1).

So, now we know a lower bound on the number of steps which aessary until we expect the
approximation error to be halved. However, in general, méing theexpected total gaineed
not necessarily result in minimizing tlexpected number of stefisrealize a specified gain (for
instance, to halve the approximation error). Neverthe@$go (which is larger than 0.96(— 1)
as we have already seen) will turn out to be a lower bound oaxpected number of steps which
are necessary to halve the approximation error. The probbeieasy once we know about the
following lemma, which is a modification of Wald’s equaticseé Feller (1971, Formula(2.8) in
Chapter 12), for instance).

Lemma 4.6. Let X1, X2,... denote random variables with bounded range &tite random vari-
able defined bys = min{t | X1+ ---+ X; > g} for a giveng > 0. Given thatSis a stopping time
(i.e., the evenfS =t} depends only orXy,..., X;), if E[S] < co andE[X; | S>i] <u # 0 for

i € IN, thenE[S] > g/u.

Proof. First of all note that (unlike in Wald’s equation) tb& need not be independent—making
the assumption necessary tl&s a stopping time, though.

ObviouslyS> 1, and fori > 2, the condition S>i” is equivalent to X1+ ---+ Xk < g for
ke{l,...,i —1}.” Since theX; are boundedE[X;+---+ Xg] < oo if E[S] < c0. The proof
follows the one of Wald’s equation (up to the point where tpper bound orE[X; | S>i] is
utilized rather than the original assumption that ¥jeare i.i. d.).
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4.2 Lower Bound on the Expected Number of Steps of (1+1) ESs

g < E[Xi+---+Xg]

o0
= Y P{S=t}-E[Xi++X¢ | S=1]
t=1

00 t
= Y P{S=t}.) E[Xi|S=t]
t=1 i=1

oo t
= Y > P{S=t}-E[X | S=t1]

t=1i=1
since the series converges absolutely due to the boundedhtee X;

- iiP{S:t}E[Xi |S=1]

i=1 t=i
00 00

= Y > P{S=t|S>i}-P{S=i}-E[Xi | S=1]

i=1 t=i

= Y P{Sx=i}-) P{S=t|Sx>i}-E[X|S=t]
i=1 t=i
sincet >1i, S=t impliesS>i

= Y P{S=i}-) P{S=t|S>i}-E[X |S=tASxIi]
i=1 t=i
sincet <i impliesP{S=t|S>i}=0

= Zp{szi}.ZP{szuszi}.E[xi|S=tAszi]
i=1 t=1

= Y P{Sx=i}-E[X | Sxi]
i=1

< ) P{Szi}-u
i—1
= E[F-u
U

Before we apply this lemma to prove the lower bound on the eégagenumber of steps which
are necessary to halve the approximation error, howevewiWshow that also when assuming
the best case w.r. t. the expected number of steps, we camasisat mutations which result in a
larger approximation error are always discarded. Theeefetx* € R" be an arbitrary (but fixed)
point and assume that a (1+1) ES minimizes the funcfio®R" — R with ¢+ dist(c, x*) using
isotropic mutations.

Assume that the spatial gain towandsin the first step (mutatioand selection) iss!! < 0 so
thatd™ = dl% — s > dl%. Let L be the distribution of the mutation’s length which is used by
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4 General Lower Bounds

the original (1+1) ES in the second step to mutate the seaictt fwhich was generated in the
first step) at distancd!tl = dl% — sltl (> d[%) from x*. Then we claim that discarding the first
mutation and instead using the scaled length distributioe= L - (d% /d[X) in the second step to
mutate the initial individual anew results in a “better”tdilsution of the mutant that is generated
in the second stefbéforeselection). Formally, we consider the random variae+ Aqu | for
the original process (whe@!! < 0 is fixed) and the random variableyq . for the alternative
process. We will show that the latter one is “better” in thesgethat it stochastically dominates
the random variablé!!! + Aqny, . (which describes the original process). Therefore, nodé, th
because of the scaling invariance of the situation, we have

[1]

Ad[ll,L ~ % . Ad[O],L/-
Thus, in the alternative process the total spatial gain #fte second mutatiorbéforeselection)
is at least’ with exactly the same probability with which in the originaiocess a total spatial
gain of at leass! + 4’ - dit /dl% occurs—for anys’ € R. Sincest! < 0 (by assumption) and
dl > 0, the following inequalities are equivalent:

sMys o dt a0 <
§ - (@@ — sty g0l 57— sl
§ - (=8t < s —sl
s . (—8[1]/d[0]) < _ st
§ < do,

Obviously, reducing the approximation error by more thadistance fronx* is impossible, and
x* is hit with zero probability anyway. Thus, inde&d< d[° with probability one. Consequently,
a gain of at leas#’ is realized in the alternative procesith exactly the same probabilityith
which in the original process ttenallergain of at leass!t + - d[*l /d[% is realized. This directly
implies the claimed stochastic dominance relation:

Proposition 4.7. Let dl° > 0 as well ass!! < 0 be fixed, and ledil*! := dl® — 5[ (> d%). For
any length distribution (non-negative random varialhlgyve haveA o | g1 g > 8™ + Aguy | -

So, up to now we considered the first step (consisting of atiountéollowed by selection) and
the second mutation (without selection). For the seledtidihe second step, we obtain by the
same reasoning that it is again “best” to discard the mutatidhis second step if it results in a
negative gain, and so on. By induction, we obtain that aftgrnumber of steps, thital gain
of the alternative (imaginary) process (in which mutaticesulting in a negative gain are always
discarded) stochastically dominates the total gain of thigir@l process. In other words, for
any number of stepg, the probability of realizing a predefined reduction of tippmximation
error within the firstk steps is at least as large for the alternative process afhdooriginal
process. This directly implies that the random number gistehich are necessary to realize this
reduction for the original process stochastically donesadhe respective random variable for the
alternative process. As a simple consequence, we obtainvithaxpect the original process to
perform at least as many steps (to realize the predefinedtiedwf the approximation error) as
the alternative process needs in expectation.
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Now we can easily prove the lower bound on the expected nupflsteps:

Theorem 4.8.Let x* € R" be an arbitrary (but fixed) point. Let a (1+1) ES minimize thidtion
f: R" - R, n > 4, with c+— dist(c, x*) (or any other function) using isotropic mutations and
assume that in each step the distribution of the mutatiemgth as well as the selection rule are
such that the expected number of steps until digt&*) < dist(c®, x*)/2 for the first time is
minimum. Then this expected number of steps is larger th@@é (h — 1).

Correspondingly, the expected number of steps until dist¢*) < dist(c®, x*)/2°M for the
first time, whereb: IN — IN, is larger tharb(n) - (0.96n — 2)+ 1.

Proof. For the application of Lemmia—4.6 (pl36) we Kt denote the random variable which
corresponds to the spatial gainith step (mutation and selection). As we have just seen, we can
assume that mutations which result in a negative gain arayahdiscarded. Consequently, the
distance fronx*, i. e. the approximation error, will never exceg (the initial approximation
error). As a further consequence, teare bounded, namely® X; < d[%.

We choosey := dl% /2 and note thaSis a stopping time in our case. Leminal4.41p. 34) gives
the upper bound[Xi] < d¥ .« < d¥. 852 and hence, we choose:= d¥ . 222 Then the
lower boundg/u on the expected number of steps necessary to halve the apptemn error
(from Lemmé&ZB (136)) finally solves tdif!/2) /(d¥ - 222y > 0.96. (n— 1) > 0.96h — 1.

Due to the linearity of expectation, the expected numbetegssto halve the approximation
errorb times is lower bounded by (0.66-1)+ (b—1)-(0.96h— 1— 1), where the rightmost=1"
emerges because the last step within a halving-phase iGaldanust be counted as) the first step
of the following halving-phase. O

Now that we know that2(n) steps are necessairy expectatiorto halve the approximation
error in the search space, we would like to know whether tieeeegood chance of getting by
with considerably fewer steps, i. e., we want a bound on tbbatility that a certain number of
steps does—or, does not—suffice to halve the approximation e

4.3 Lower Bound for (11A) ESs which Holds with Overwhelming
Probability

As in the previous section, we concentrate on the numberegissto halve the approximation
error in the search space, i. e. the distance from a predefgadh poink* € R". However, now
we want to obtain a lower bound on the number of steps whictishwith a certain probability,
namely with overwhelming probability, i. e., the probatyilihat fewer steps suffice is exponen-
tially small.

Therefore recall Lemmia4.5 (pJ35). This lemma indeed alrdiwsttly implies the following
lower-bound result:

Theorem 4.9. Let a (1t1) ES using isotropic mutations and an arbitrary mutationptataon
optimize an arbitrary function. Let* denote some fixed point (for instance the/a fixed optimum).
Given thatd := dist(c®,x*) > 0, for b : IN — IN such thatb = poly(n) and any two constants
«,& > 0, the probability that withir - brn) - n1~¢ steps (i. e - « - be) - n*~¢ mutations) a search
point d'l with dist(cl'l, x*) < d/2°M is generated is upper bounded by*&").
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4 General Lower Bounds

Proof. We can focus on the number of iterations to halve the appratxim error since the total
error probability is bounded from above bye=*™), which is e ("),

Assume thak n'~¢ steps suffice to halve the approximation error. Then at le@ststep must
yield a gain of at leastl/2)/(x n'~¢) = Q(d-n®/n). Using Lemm&Zl5 (1-35), the probability that
at least one of the = poly(n) mutants in a step yields such a gain is upper bounded by*("),
which is bounded by &), O

The proof is appealingly simple. One feels, however, thattitue” lower bound on the number
of steps should become smaller whers increased. Bever (2001, p. 77) states that “an increase
in the number of offspring of the (1) ES yields a logarithmic increase of the progress hte.”
So the proof of our lower-bound result may be so simple bexthes bound is weak. To obtain
a better lower bound, however, a more sophisticated reagdhan a simple application of the
pigeonhole principle seems necessary.

As a starting point, one may ask with what probability a (1E$)might halve the approxima-
tion error in a single step. In other words, we aim atugperbound on the success probability
of an isotropic mutation to result in a spatial gain of at tah&, whered denotes the distance
from x*. More precisely, we want to bourl%i{Ad,L > d/2} from above, where the length dis-
tribution L is arbitrary, i.e., we must again assume that the best lafigthbution was chosen.
Clearly, there is one particular length of an isotropic mutation that results in the best chance of
halving the approximation error. Therefore, recall Equat{Z.2) on pagé-33 which tells us the
correspondence between the distance from the hyperplantaicimg the parent (and lying per-
pendicular to the line passing througlandx*) and the spatial gain towaras, where¢ denotes
the length of the isotropic mutation. Fgr> 0, the large compared ta, the largeP{G, > g},
and thus, we need to minimize

g s £2-52 5 82

Z = -4 = — 4+ ——

14 ¢ ¢-2d ¢ 2d ¢-2d
(where we assume> 0). As

dg _ d(s ¢ 52\ —5 1. 82 1 s(2d-9)
dee  de\e 2d ¢2d)  ¢2 2d ¢22d @ 2d e22d '

solving the equatior% g/¢ = 0 for ¢ yields that, for O< § < d, the length

= /8-(2d =) (4.4)
results in maximum success probability. Sidce 2d — §, we havel* < 2d — §, and consequently,

MaxP{Ax-, > 8} = maxP{G, > gasn} = P{Ge = guseh, (4.5)
whereg,s.e) = 8 + (¢£2 — 82)/(2d) andd is the distance from*.

So, as we want to know the probability of halvidgwe substituted /2 for § and obtain that
in this case* = /8- (2d —8) = /(d/2)(2d —d/2) = d - \/3/4 andg(ds=d/2¢*) = d - 3/4. Since

1 where the progress rate “measures the expected changemphtation with respect to a reference point in
the parameter space from generatgto generatiorg + 1", describing a “microscopic aspect of the local
evolution” (Bever| 2001, p. 17)
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4.3 Lower Bound for (1*1) ESs which Holds with Overwhelming Probability

(for any fixed¢ > 0) G, ~ ¢ - G, we haveP{G,« > g(ds.c*)} = P{G > g(d.s.c*)/£*}, and hence, the
probability that an isotropic mutation halves the appraadion error equalE’{G > M} in the
best case, i. e., when the mutation’s length is chosen ofiyima

Lemmal3IR (25) tells us that this probability is%". We obtain a more precise upper
bound by recalling Equatiofi{3.5) on pdgé 23, which tellshas torn > 4

1t .
P{Gz 3/4} = = (1=x)"Pdx < @-3/4)" 2y = 2773y,
v J e

Thus (using the upper bound o\l given in Inequality[[316) on pade?4) we have just proved

Lemma 4.10. Let x* € R" andc € R"\ {x*} be fixed search points and let be arbitrarily iso-
tropically distributed oveRR". Then, forn > 4, the probabilityP{dist(c+ m, x*) < dist(c, x*)/2}
is bounded above by 2+3/W < 273, /n—1//27 <27".3.2/n.

So, what does this lemma tell us? Though it is no surprise ttteichance of halving the
approximation error with a single mutation drops when theeatisionality increases, we now
know a concrete (exponentially small) upper bound on thabability. And indeed, this upper
bound will enable us to also obtain an upper bound on the sagu®bability within multiple
steps of a (1) ES.

The idea behind this bound is the “curse of dimensionalityRI'. Therefore, firstly consider
the search spad@, 1}" and the standard mutation operator, which flips each ofi thies indepen-
dently with probability ¥n. When we repeatedly mutate a search point without doingtere
then each point in the search space is hit infinitely ofterhasiumber of mutations approaches
infinity. In particular, the number of steps it takes thisdam search to visit a certain search point
is finite. Now consideRR" for n > 3. Let us start with a fixed point and repeatedly add an isetrop
ically distributed vector (with an arbitrary distributiaf the length that is not concentrated on 0)
to this point. Despite the fact that our starting point isereaxactly hit again, even the probability
of ever getting close again to our starting point tends to asrthe dimensionality increases, even
if the number of mutations approaches infinity;lcf. Grindtaad Snellll(1997, Section 12.1).

Obviously, the search of a{1) ES is not purely random, yet guided by selection (unlesga fla
fitness landscape is given, of course). Selection, howewerely means that search paths which
do not seem promising are no longer followed (pruned). Ong @aaily imagine that also these
search paths would be followed (in addition to the promigings, of course).

In the following, we modify the (A1) ES (with a global mutation strength as described in
Sectior IR (i.18)) such that we end up with a search proceldatés independent of the function
to be optimized and, thus, purely random: Consider thelES after initialization, i.e., an
initial starting point and an initial mutation strength ageen. In the first step. mutants are
generated, each by adding an isotropic mutation (the ligtan of which depends solely on the
currento) to the starting point. In contrast to the originatr¢) ES, we now danot select one of
the A(+1) individuals, yet keep all 3 A search points as a populatiéfill. After the first step
o may be up- or down-scaled—depending on the individualstfion values. Thus, to also get
rid of this function-dependency, each of the-1 points inPY is mutated 3 times: once without
changingo, once with an up-scaled, and once with a down-scaled mutation strength. Again
we keep all (1 1) - 3» newly generated individuals (each of which consists of acsepoint and
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theo that was use to generate this search point). Consequemtlgavwe (1 A) + (1+1)-3A =
(1+2)(1+ 32) individuals after the second step in the populatRifl. Repeating this procedure,
afteri iterations a populatio!'! is generated which contains

(L+A)A+30) < 1+3) = i3

individuals. The crucial point is tha®l'! is built without any dependency on the function to
be optimized, and that all search paths of the origingdhJES emerge in this modified search
procedure with the same probability density. ISat R" denote an arbitrary Borel set. Then the
probability thatPl! hits S, namelyP{Sn Pl 3£ ¢}, is an upper bound on the probability that the
search point evolved withiniterations by the original (1) ES is inS. This is readily proved by
induction on the number of steps; it is crucial that the alitiation is done in the same way for
both search procedures, of course.

Since each search poirte Pl is generated by successively addirigotropically distributed
vectors to the initial search point, Leminal3.7(d. 18) tedishatx is indeed isotropically distrib-
uted w.r. t. the initial search point. We do not know the (dlsttion of the) distance between
and the initial search point, yet this does not matter—ngmet may assume the best case.

Now, if we choose the “target sef as the hyper-ball containing all search points that have a
distance of at most half the initial distance froth, and if we know that the probability that an
individual in Pl'l hits Sis very small, say, upper bounded by"23/ ¥ = e~ (n2(-3) /¢ (which
is at most €%69% for n large enough since In2 0.693), then the probability th&l] contains at
least one point frons is bounded above by

#plil @ 0.690  _  dn(14+31)i  o-069D _  Jn(1+31)i-0.692

for n large enough (using the union bound). Then choosirg0.6M/In(1+ 31) finally yields

an upper bound of @000 — e=%(") on the probability that after 0.8691n(1+ 31) steps the pop-
ulation contains an individual that lies 8 In other words, more than 0.69In(1+ 31) steps are
necessary with probability 4 e (" to halve the approximation error. Since adding up a poly-
nomial number of “error probabilities” each of which is8" results in a total error probability
that is still %", we obtain the following lower-bound result:

Theorem 4.11.Let a (IfA) ES optimize an arbitrary functiori : R" — R, and letx* € R"
be some fixed point (for instance an optimum). betlN — IN such thatb = poly(n). Given
that the initial search point has distange- 0 from x*, with probability 1— e=*(" more than
bn)-0.6M/In(1+ 31) steps (i. e -bn)-0.6N/In(1+ 31) f-evaluations) are necessary until (for
the first time) the current search point has a distance of atdy@®™ from x*.

In particular, for the (1+1) ES we obtain that at least 8,884 > 0.49'h stepsf -evaluations
are necessary with probability-1e—%" to halve the approximation error. Recall that we obtained
0.9 — 1 as a lower bound on thexpectechumber of steps to halve the approximation error in
Theoreni’ZB (1.339).

So, what about the (1) 0 SA-ES, i. e. (1)) ESs that use -self-adaptation instead of a global
mutation strength, one might ask. In fact, the same reagampplies: We drop selection and
end up with a purely random search (since the way ko updated/mutated is independent
of the function to be optimized). The population generatgdHhis search procedure contains
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(1+ 1) = D1 individuals afteri steps (rather than @ A)(1+31) 1 < @431 5o that
we obtain a slightly better lower bound:

Theorem 4.12.Let a (1,1) 0 SA-ES optimize an arbitrary functioh: R" — R, and letx* € R"

be some fixed point (for instance an optimum). betIN — IN such thatb = poly(n). Given
that the initial search point has distange- 0 from x*, with probability 1— e more than
bn)-0.6MN/In(1+ 1) steps (i.eAr-bm)-0.6N/In(1+ 1) f-evaluations) are necessary until (for
the first time) the current search point has a distance of atdy@™ from x*.

4.4 Lower Bound for (1+1) ESs which Holds with Overwhelming
Probability

Recall the selection mechanism for reproduction in thel() ES: In each iteration of the evolution
loop one of theu individuals in the population is selected uniformly at ramd Thus, if we
pick one individual in advance (and disregard the ofler 1 individuals), this one is actually
selected with probability 4u. We assign to each individual, which is generated in a rurmef t
(+1) ES, a unique number. Therefore, let the individuals @itfitial population be numbered
—(u—1),...,0. The mutant thatis generated in the first iteration of thedwgion loop is numbered
with “1” and so on.

Then each potential lineage of an individual of depttorresponds to a sequencg (.. ,i¢) €
7' suchthai, > --- > ip € {—u+1,...,0}. We will address the question with what probability
a fixed such sequence emerges within the kirgerations of the evolution loop in a run of the
(u+1) ES. Forj € {1,...,¢}, the probability that the individua) _1 is selected (for reproduction)
in thei;th step is either 0 or/Ju, depending on whether this individual has already been veoho
from the population or not. Thug,~¢ is an upper bound on the unconditional probability that
the lineage corresponding to our fixed sequence emergesignagdrd that an individual may
already have been deleted).

Obviously, two such events, e. g., that the lineages respéctorresponding to the sequences
“0,1”and “—1,1" emerge, are not independent (since the label “1” igagsl only once; in other
words, the mutant generated in the first step cannot be a tfthoth, of individual “0” and of
individual “—1").

Besides the. choices folig € {—u+1,...,0}, there are(‘g) choices foriy,...,i; € {1,...,k}, and
thus, the number of sequences which cover all potentiahtjes of deptli equalsu - ('2) Since
the probability of a union of events is upper bounded by thm efithe probabilities of the single
events (union bound), the probability that a lineage of démmerges within the firdt steps is
upper bounded by

KY ek
. . < —_— . .
o <£) o= < ¢ ) o

This way of bounding the probability that a specific lineageeeges has already been proposed
by Witl (2005a, Lemma 2).

Obviously, if no lineage of depthexists (aftek steps), then the depth of each of lhéamily
trees (each of which is rooted at one of fhanitial individuals) is smaller thad.
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Theorem 4.13.Let a (u+1) ES, whereu = poly(n), optimize an arbitrary function ifR". Let
a : IN — R.o such thatx(n) > 1/n, and let ‘&” abbreviate &(n)” Then the probability that after
aun iterations/mutations there is an individual in the popolatwvhich has at least3n ancestors
is upper bounded by - 0.744",

If « = Q(n°/n) for a constant > 0, then, forn large enoughg 3n is an upper bound on the
expected depth of the forest aftenn steps.

Proof. Choosingl := 3k/u, the upper bound on the probability which we derived abowebes
w - (e/3)%/* When we choosk := « - n- u (implying that¢ = 3k/u = «3n), this upper bound
becomeg. - (€/3)*3". Finally, (g/3)% < 0.744.

Substituting “2.9” for “3” in the preceding arguments yiglthat aftexxny steps with a proba-
bility of less thanu - 0.83" the depth of the forest is at masR.9n. Hence, the expected depth of
the forest is upper bounded W2.9n +anw - (1 - 0.83"), which is smaller thaw 3n for n large
enough whenr - n = Q(n¢) and . = poly(n) (because thep?-0.83" = u2.e ) < 0.1 for
n large enough). O

This theorem tells us that, if we want a lineage to emerge épghdof which is linear in the
dimensionality of the search space, then w. @22 n) steps are necessary. Consequently, if we
knew that a lineage of linear depth is necessary w. o. p. feri@it progress of the optimization,
then w. 0. p.2(u n) steps would be necessary to obtain such a progress.

Reconsider the (1+1) ES for a moment. As we have shown, itséaekn in the best case)
more than 0.96{— 1) steps until the expected gain towardss at least halve the initial distance
from x*. As we have just seen, for the{1) ES the number of steps until we expect a linage of
length at least 0.96(— 1) to emerge is by a factor of at legst3 larger. Thus, if the best-case
progress along a linage of the<€1) ES was somehow “bounded” by the best-case progress in the
(1+1) ES, we would obtain for the«t1) ES a lower bound ofi{/3)-0.966— 1) = £ 0.32(1— 1)
on the expected number of steps necessary to halve the apptmn error.

Unfortunately, this first rough idea of a reasoning about howhow a lower bound cannot
be extended to a formal proof. The selection mechanism fuacement raises dependencies
between the events which correspond to the emergence afrcéneages. Namely, on the one
hand, if a mutant makes it into the population, then theretrbest least one individual in the
population which is not better than the mutant. If, on thesotiand, an individual is elimi-
nated from the population, this event tells us that the respeprogress along the lineage sadif
otheru — 1 individuals has been at least as good as the progress dlerigpéage ofX;. These
dependencies among the individuals in the population (amohg their lineages) make an anal-
ysis very hard, possibly impractical. (In particular, wacat multiply the expected depth with
the expected best-case one-step progress to obtain anhqpet on the expected total progress.)
Nevertheless, in particular the bound on the depth (of tiealjes to emerge within a certain num-
ber of steps) which holds w. o. p. will later be useful in thalgsis of the t+1) ES in a concrete
scenario.

To obtain a general lower bound for the«1) ES, however, and to get around this kind of
dependencies, we may imagine that elimination in th€l() ES was omitted (just as we did in the
derivation of the general lower bound fortgl) ESs). As a consequence, the population grows in
each iteration. Let['l denote the population’s sizdter theith iteration, so that[®! = .. Instead
of generating one mutant per iteration, we now choose a setlbf!l /.. individuals uniformly
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at random in théth iteration each of which is mutated. This ensures thatwiaving a look at
a fixed individual in the population after a fixed number ofpstéand disregarding all the other
individuals), then this individual is selected for reprotian with a probability of at least/}..
Besides the selection for elimination, there is anotheruesion within the evolution loop of
the (u+1) ES that raises dependencies when observing the dexisioich are made within this
instruction: the mutation adaptation. Whether the mutaitength is increased or decreased
tells us something about the course of the optimizationgs®so far. To get around this kind of
dependencies we replace the mutation adaptation by tleviol procedure: In théth iteration
3. [t~ /4] new individuals are generated; namdlyl'—11/,.7 new search points are generated
(by mutating each of the randomly selected individuals pnget each new search point bears
three new individuals: one with the scaling factor decrdasee with the scaling factor increased,
and one adopts the unmodified scaling factor of its parent.
Since the population grows (in each stgy a factor that is at least#3/u but smaller than
1+ 6/u, the population’s size after> 1 steps is bracketed by

w-(@+3/p) < pll < - @+6/p) < op-em

All in all, our modifications to the (+1) ES lead to the following search procedure which
we may call “(u+1) Random Search” ({(+1) RS”), where they- and b-counters are useless
and, hence, omitted: For a given initialization of the papioin of « individuals, the (t+1) RS
performs the following loop:

1. Choosek := [current population siz:] of the individuals in the current population uni-
formly at random (without replacement). Let thoseXeg ..., Xk.

2. ForeachX,o) € {X1,...,Xx} do

a) create a new search point= x + m e R" with an isotropic mutation vectan (the
distribution of which depends solely ar);

b) add the individualsy, o), (y, 20),(y,o/2) to the population.
3. GOTO 1.

Obviously, this algorithm does not take the function to b&mjzed into account, yet performs
some kind of “non-guided” random search. Neverthelessilitog useful in the analysis of the
(u+1) ES. Namely, for any Borel s&c R", the probability that they(+1) ES hitsS (i. e., at least
one individual from the population lies iB) within i steps is upper bounded by the probability
that afteri iterations the population of the.f-1) RS contains an individual i8. This is again
readily proved by induction on the number of steps, and aigasncrucial that for both search
procedures the population is initialized in the same way.

Hence, if this “hitting-probability” of the £+1) RS is bad, namely exponentially small, after
iterations, then theu(+1) ES needs at leastiterations w. 0. p. The main advantage, however, is
the following: Since the random search of the-() RS is unbiased, each lineage corresponds to
an “independent-mutation sequence” (this notion was cbinydWitt (20054)), i. e., each member
in the population has evolved from some individo&k= (x, o) in the initial population by adding
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independently isotropically distributed vectorstoThus, each search point in the population is
isotropically distributed around the initial individuabim which it descends. This enables us to
prove the following lower-bound result:

Theorem 4.14.Let a (u+1) ES, = poly(n), optimize an arbitrary functiorf : R" — R using
isotropic mutations, and let* € R" be a fixed point (for instance an optimum). letIlN — IN
such thatb = poly(n). Given that each initial search point has distadce 0 from x*, with
probability 1— e~ more tharb(n) - 1« - 0.115n stepsf -evaluations are necessary until (for the
first time) there is a search point in the population that haistance of at most/2°M™ from x*.

Proof. We firstly concentrate on halving the approximation errdrerefore, recall LemmaZ10
(p.[4A2) and letS again denote the hyper-ball containing all search pointk widistance of at
mostd/2 from x*. Since afteli steps there are less than e%/# individuals in the population
that is generated by the - 1) RS, and since each of the search points is isotropicadtyibuted
around one of the initial search points (each of which has a distance of at l@&é®om x*), the
probability that this population hitSis smaller than

w8y = fiunin2 g g - Bi/mnin2 o, /hy, (4.6)

Since In2> 0.693, choosing := - 0.115 results in an upper bound of %9%. O(u/n) =
e % on the probability that after steps the population contains a search point that lie in
Hence, with probability - e=*" more thanw - 0.115 steps are necessary for the population to
halve the approximation error.

Finally, concerning halving the approximation ertotimes, summing ugp = poly(n) error
probabilities each of which is & results in a probability of €*(" that at least one df halvings
is accomplished within at mogt- 0.115 steps. O

In particular, for the “ft+1) ES withu := 1" this bound becomes 0.1@5or the number of
steps that are necessary w. o. p. to halve the approximation and since we dropped selection,
this bound also holds for the (1+1) ES, i. e. thef¢l) ES withA := 1.” This lower bound is worse
than the bound of 0.497implied for the (1+1) ES by the lower-bound result for theXLES in
the previous section (hamely TheorEm4.11(p. 42)), though.

However, it has not been our aim to obtain a good boundgifer 1. We are interested in how
the lower bound scales with the population sizethat is the point. And we see that in the best
case w.r.t. the minimization of the approximation errorhie search space, the number of steps
does indeed grow linearly in the population sjzéor the (u+1) ES.

The lower bound tells us that w. o. p. at leas0.115 steps are necessary to halve the approx-
imation error. Yet what about the number of steps that aressary to reduce the approximation
error by, say, 1% ? Therefore, recall Equatibnl(4.6) on & 4he proof of the lower bound,
and in particular the term “2+3/Ww.” This is an upper bound on the best-case probability to
halve the approximation error with an isotropic mutatiorowl LemmdZ4b (1-35) tells us that
the probability that an isotropic mutation (in particularthe best case) reduces the approxima-
tion error by 0.08 is bounded above by &M, Assume, this probability is at most@ for n
large enough. Then we can modify Equatibnl(4.6) on pape 4®btain an upper bound of

M_eBi/u_e—en — M‘eGi/u—en
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on the probability that there is at least one individual ia fopulationPl'! whose distance from
x* is at most 0.98. Choosingi := u-n-¢/7, this upper bound becomes e /7 = g%,
As all arguments hold not only for the reduction of the appr@tion error by 1%, but for any
positive constant fraction, we obtain the following:

Corollary 4.15. Let a (u+1) ES,u = poly(n), optimize an arbitrary functiorf : R" — IR using
isotropic mutations, and let* € R" be some fixed point (for instance an optimum). Assume that
each initial search point has distarite 0 from x*. Then, for any constat> 0, with probability

1—e 4" the (u+1) ES need$2(un) stepst -evaluations until (for the first time) there is a search
point in the population that has a distance of at most £]-d from x*.

4.5 Overcoming Gaps with Elitist Selection

We (re)consider (31) ESs in this section, and the crucial aspect to keep in mittteisollowing:
When elitist selection is used (as in theHi) ES), then a mutant must be at least as good as its
parent (w.r.t. to the function value) to have a chance to lecselected. In other words, mutants
with a worse function value are always discarded.

To get an idea of the problem which we want to deal with, casrsttie finite search space
{0, 1}" for a moment. One of the first functions that have been coresitia a theoretical runtime
analysis is OMPp, : {0,1}" — IN with m: IN — IN such that < m(n) < n/3, defined by

2n if1 <SuM(x) <m-—1,

JUMPm(x) = Sum(x) otherwise,
which is to be minimized (note thatu (x) equals the number of 1-bits k). We call the plateau
of worst UmP-value 2h “the gap” as it separates the global minimum, namely theiroitpe
all-zero string), from thé.1-norm based part of the fitness landscape; all bit-strindis @kactly
m ones are locally but not globally optimal. Since the (1+1)&oses the initial search point
x uniformly at random E[SuM(x)] = n/2 and, by Chernoff’'s bound?{|x| < n/3} = e,
Consequently, the initial search point is located in the@ap with an exponentially small prob-
ability; the probability that the initial search point isstbptimum equals?2'.

Droste, Jansen, and Wegener (2002b) prove that the expecttohe of the (1+1) EA using
the static mutation probability = 1/n on JUMpPy, is ®(N™) (in fact, a slightly different func-
tion which is to be maximized is investigated, yet the proafries over). Roughly speaking,
the (1+1) EA minimizes UMP, as it minimizes thd_1-norm up to the point when a locally but
not globally optimal point with Hamming distanee from the origin is created. Then a muta-
tion must exactly flip the remaining ones for the (1+1) EA to overcome the gap, i. €., to obtain
a search point with smalleudip-value (namely the global minimum). The probability of this
event (called “success” in the following) equal€' (1 — p)"~™, where p denotes the mutation
probability (recall that a mutation consists in flipping kit independently with probability).
Since% p™(1— p)"~™ =0 for p=m/n, the success probability is maximum when using the mu-
tation probabilityp = m/n, and hence, even if the (1+1) EA could adapatptimally, the success
probability is upper bounded byn(/n)™(1—m/n)"~™. Since the number of trials until a mutation
actually creates a better point is geometrically distelduthe expected runtime of the (1+1) EA
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on JUMP, is lower bounded by the reciprocal of the success probgbillthus, we expect a
super-polynomial number of steps ii(m)™ is super-polynomial or if (£ m/n)"~™ is super-
polynomially small. Fom € [n®,n/3] with ¢ € (0, 1), we have (+m/n)"™ < (1—n/n)"?%/3 <

e "2/3 and hence, the success probability is exponentially ssalhat the expected runtime is
exponential. Fom e [logn,n?] with ¢ € (0, 1), we haverf/m)™ > (n1~#)lo9n — p1-e)logn ‘gnd
thus, the expected runtime is super-polynomial. Finally,aensider the casa < logn. Then
(n/m)M = 2m(logn—logm) . om(logn—loglogn) _ pm-&(logn) — KM gnd hence, the expected runtime
is super-polynomial unlesa = O(1).

All'in all, the expected runtime of the (1+1) EA owNP, is polynomial (inn) if m= O(1)
when using the standard mutation probabilignland—as we we have just shown—it is super-
polynomial ifmis not O(1) even when the mutation probability could be adapted optimagk.,
our lower bound applies also, for instance, to the dynam#d)EA introduced by Droste, Jansen,
and Wegenel (2001), which varies the mutation probabiligoeding to a static periodic sched-
ule. Moreover, this remains true when considering arhjtisotropic binary mutations (cf. the
discussion on padeR9): In the best case, a uniformly chadeses ofm bits would be flipped,
resulting in a success probability of (/). And, sincem < n/3, we have(;) = poly(n) only if
m= O(1). In other words, an efficient optimization, i. e. a polymal (expected) runtime, is pos-
sible only for a gap corresponding to a constant number afip®its which have to be flipped
simultaneously by a single mutation.

The aim of this section is to prove a similar result for mirgation in the search spad®’
when using “isotropic-mutation hill-climbing”, i. e., wheapplying (1) ESs that use isotropic
mutations.

4.5.1 Linearly Separated Gaps

Consider a search poite R" and its lower-level sefA_; := {x € R" | f(x) < f(c)} for a
given functionf. Assume that the sé&_. is bounded (finite diameter) and that it has a positive
Lebesgue measure (a positivewwolume). Then we say thatfaces dinearly separated gajn the
search space if there is a hyper-plafecontainingc such thatA_ lies completely in one of the
two half-spaces w. r. Hc. Then distHc, A-¢) = inf{dist(x, y) | X € H¢, y € A_¢} is the (absolute)
size of the gap and we assume that the hyper-ptanis oriented such that this gap is as large as
possible. Let := supdist(c,x) | x € A_c}. We define the relative size of the linearly separated
gap as distfl;, A_c)/r forr > 0, and otherwise, the gap’s relative size is zero.

So, assume that a-2.) ES minimizes some functiori in R" and that the evolving search
point c does face a linearly separated gap of relative size0. If f is such thatc's level-set
A_c.:={xeR"| f(x) = f(c)} has zero Lebesgue measure (or such that any poift ifaces
a linearly separated gap of relative size at lesthe only chance to overcome the gap, i.e. to
leavec (resp.A—¢), is to generate a mutant iA_.. Depending on the gap’s relative size, we
can now ask for an upper bound on the success probability cfotropic mutation, i.e. on the
probability that the mutant+ m lies in A_. (which is the mass oA_. w.r.t. to the measure
induced by the distribution of the mutation vecta). However, depending on the shapeAaf
and/or the distribution ofn this might actually be intractable, and thus, we are goingéike
best-case assumptions:
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1. Consider the hyper-baB centered at with radiusr (cf. above) which is cut in half by
the hyperplandd.. One of the two parts contairs.. completely, let this part be denoted
by M,i.e,BD> M D A_.. LetC :={x € M | dist(x, H¢) = dist(H¢, A-¢)}, implying that
A_..CCC M c B. (C# M iff the gap’s absolute size is non-zero.) The Get a solid
cap of the balB.
Then we assume that hittirg > A_. is a success, in other words, we assume the best case
that the “success region” is “as large as possible” for themgrelative gap size.

2. We assume that the distribution of the isotropic mutatgoeuch that the probability of
hitting C > A_¢ is maximum.

Assume that this “hitting probability” igopest > O (under these best-case assumptions). Then
again assuming the best case that theA)IES repeats doing best-case mutations over and over
again, the number of trials necessary to get away foomamely to generate a mutant that lies
in C D A_.) is geometrically distributed. Consequently, the expéctember of trials to leave
equals ¥ prestin the very best case, so that the expected number of isotnayiations performed
by an (1) ES is lower bounded by - [(1/pres)/A)], Which is at least Appestand considerably
larger than 1ppestOnly if A is considerably larger than/ppes: Thus, we could add another
best-case assumption; namely, we may concentrate on (5&l) E

Consider an isotropic mutation with a fixed length¢af (0,r], i. e., for the isotropic mutation
m we haveP{|m| = ¢} = 1. Then the probability of hittin€ equals

Plc4meC|Im=¢ = P{G,>dist(He, A_c)} = P{G > dist(Hc, A_c)/¢}

(recall the definition of the random variab®in Equation [3.R) on padeR1). Thus, the larger
the larger the hitting probability, and hence we assume ttietength of the isotropic muta-
tion is concentrated on (the best case; cf. above). Recall that the relative gap esigmls
s =dist(H¢, A_¢)/r. Using Equation[{3]5) on pa@el23, we obtain a best-casedpitiobability
of

1t _
PlctmeC||ml=r} = P{G>s} = 5/ (1-x2) "I gy
S

Since (1— x?)"-3)/2 js decreasing (ix for 0 < x < 1), the integral’s value is in fact bounded
from above by (1-s?)("=3)/2 /W and it is super-polynomially small # is notO(logn/n) because
(1-t/kK*<etfor0O<t <k>1(and ¥ ¥ = O(y/n); cf. Inequality B8) on pag&24).

On the other hand, for argye (0,1/2),

2a
f (1=x)" a4 > a.(1-@a) "2,
a

and hencefsl(l— x2)("=3)/2dx is bounded also from below by a polynomial (of negative depre
for s = O(logn/n). (Note that the (negative) degree of the polynomial depamdthe disguised
constant in théD-notation.) In shorter words, we have proved

1/P{G > s} =poly(n) < s?>= O(logn/n).
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All'in all, we obtain

Theorem 4.16.Let a (1+A) ES,A = poly(n), optimize some functiori : R" — IR using isotropic
mutations. Assume that the current search pofiaces a linearly separated gap of relative size
and thatf is such thatc's level set{x € R" | f(x) = f(c)} has zero Lebesgue measure or that
anyx in c's level set faces a linearly separated gap of relative dileaats. Then, independently
of the mutation adaptation, the expected number of mutatimtil a better (w.r. t. thef -value)
search point is generated cannot be polynomialimlesss = O(./logn/n).

If in this situations = Q(n®/./n) for some positive constaat then, in expectation as well as
with probability 1— exp(—Q(n%)), the number of mutations which are necessary to generate a
better search point is ex@(n%)).

Proof. That the expected number of steps cannot be polynomialsisies O(logn/n) has just
been shown in the reasoning preceding the theorem.
For the proof of the second claim, ket= Q(n?/4/n), so that

_ Q). 2¢
W) LO(/R) = expa(n®))

is an upper bound on the best-case hitting-probabilityuassthate: IN — R is such that
exp(—a(n) - n%) is this upper bound, i.eq = Q(1). Then the probability of having at least one
hit in expe®) - n% /2) = exp(n%)) trials/mutations is upper bounded by exj(n) - % /2) =
exp(=£2(n?%)) (using the union bound). O

1—Q(n®)/n)"2/¢ < exp(—

Note that, since. = poly(n), this theorem remains valid when substituting “numberteps”
for “number of mutations,” which makes sense whemathutations in a step can be performed
in parallel.

4.5.2 Spherically Separated Gaps

Consider again a search point R" and its lower-level sefA_. := {x € R" | f(x) < f(0)},
and assume again that the #get; is bounded (finite diameter) and that it has a positive Lebesg
measure. Then there is a hyper-Bll. > A_. of smallest size (i. e. with smallest radius), and we
say that the search pointe R" faces aspherically separated gaip the search space of absolute
size dist€, B_¢) and relative size dist(B_¢)/ dist(c, center ofB_) (if defined).

So, we assume that a|{1) ES minimizes some functioh and that the evolving search point
c faces a spherically separated gap of relative si2ze0. If f is such that the level-s&%_. has
zero Lebesgue measure (or such that any poiAtinfaces a spherically separated gap of relative
size at leass), the only chance to overcome the gap, i. e. to leayesp.A_.), is to generate a
mutant inA_.. Again we make best-case assumptions:

1. We assume that hitting the hyper-bBll. © A_. is a success and that, in addition,

2. the distribution of the isotropic mutation is such tha grobability of hittingB. is maxi-
mum.

Assume that this hitting probability isyest> O under the best-case assumptions. Then, again, the
expected number of trials to leaedresp.A_¢) equals ¥ ppestin the very best case.
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4.5 Overcoming Gaps with Elitist Selection

Recall that we have already tackled the question of the dses#-probability to overcome a
spherically separated gap of relative size 0.5. Namely,rha@.T0 (p21) tells us (by letting*
denote the center of the hyper-bBll;) that fors = 0.5 the probability of hitting8_.—namely of
halving the distance from the centerB®f .—is bounded above by2 - 3.2,/n for any isotropic
mutation whem > 4. Thus, in our scenario the expected number of mutationsdoccome the
spherically separated gap of relative size 0.5 is boundemvidgy 2"-°0°9"  The reasoning that
has led to the previously mentioned lemma can also be usqipar bound the hitting probability
for other gap sizes. Therefore, reconsider Figuré 4.LJp. 82 can be considered the center
of the ball B.. and é the absolute size of the spherically separated gap whifsites. Then
Equation [4}) on padeHO tells us the lengttwhich makes an isotropic mutation Ht . with
the largest possible probability.

Namely, the optimal length of an isotropic mutation (under best-case assumptions) equals
/8- (2d —§), where heres denotes the absolute size of the spherically separatedngbg the
distance betweeaandx* (here the center dB_c). Moreover, Equatior[{415) on paQel 40 tells us
that the best-case hitting probability in this case eqB{S+ > gd.s.c%)} = P{G > gd.s.c*)/£*},
whereg(d.s.*) = 8 + ((¢*)? — §2) /(2d). Since

gasey | S+ELHT s 2N o g J5d=s)
e e  /5@d=s) /5 (2d=3) d d’
the best-case probability of hitting. ;. equals (fom > 4)

1 1 (n—3)/2
P{Ge > gusen} = P{G=gds/t*} = P{G=¢*/d} = v (1-x?) dx,
o /d

where the last equality is due to Equati@nl3.5) on fade 28tdthat this best-case probability
is an upper bound on the probability of hittidg. . for anyisotropic mutation.)

Since¢* = /§-(2d —6) and 0< § < d, we haver*/d = /€ -5/d for some functiort (of §)
with range [1, 2]. As the relative size of the sphericallya@ped gap is = §/d, we obtain

1
P{C+m € Boc| IM| :z*} = %fr (1_X2)(ﬂ—3)/2 dx
£s

as the best-case probability of hittiRy., i. e., when the isotropic distribution of is such that
P{|m| = ¢*} = 1. Analogously to the reasoning/calculation for lineadparated gaps, we get

1/P{c+me B.c|Im|=¢*} =poly(n) <= s=0O(logn/n),

where the degree of the polynomial depends on the conceatetant in theD-notation. All in
all, we obtain

Theorem 4.17.Let a (14+A) ES, A = poly(n), optimize some functiorf : R" — IR using isotropic
mutations. Assume that the current search poifgces a spherically separated gap of relative
sizes > 0 and thatf is such thatr's level set{x € R" | f(x) = f(c)} has zero Lebesgue measure
or that anyx in c's level set faces a spherically separated gap of relatheeatileass. Then, inde-
pendently of the mutation adaptation, the expected numibmutations until a better (w.r.t. the
f-value) search point is generated cannot be polynomialinlesss = O(logn/n).

If in this situations = (n®/n) for some positive constamt then—in expectation as well as
with probability 1— exp(—2(nf))—the number of mutations necessary to generate a be#tetse

point is expg(n°)).
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Proof. The first claim has just been shown in the reasoning that desctne theorem.
For the proof of the second claim, let= Q(nf/n), so that

(n—3)-Q(n°)
2

is an upper bound on the best-case hitting probability;rassthate (as a function of) is such
that expEa - n) is this upper bound, implying that = 2(1). Then the probability of having at
least one hitin exp(- n®/2) = exp(Q(n®)) trials/mutations is upper bounded by exjo(- n®/2) =
exp(=2(n®)) (using the union bound). O

(L— )/ < exp(— >'O(ﬁ) — expa(n)

Recall that, since. = poly(n), also this theorem remains valid when substituting “nundse
steps” for “number of mutations.”

4.5.3 Exemplary Application to Concrete Functions

To demonstrate how the lower-bound result on the (expect@aiper of steps necessary to over-
come a spherically separated gap can be applied, two exdinmglitons which yield more insight
will be introduced now. In the following, “gap” means “splaaily separated gap.” As mentioned
in the introduction, we want to investigate functionsiRir that correspond to the functioovipy,

for {0, 1}". Note that ImpPy, is symmetric (i. e., any two search points with the same nurobe
1-bits have the same function value). We will consider symniméinctions forR"—spherically
symmetric, of course.

GAP(X) CLIFF(x)

¢
2 / 2
1 1
5 X

Figure 4.2: The functions & and Q.IFF

Let¢y: IN — (0,1/3] denote a function (which determines the size of the gapg Jequence
of functions G\P?: R" — R, n € IN, is defined by

IX|+1 for |x|e[1l—¢(n),1)and

GAP?(x) =
n(x) :|x| otherwise.

Due to¢’s codomain, allx in the unit hyper-spherd = {x | |x| = 1} are locally but not globally
optimal, and the origin is the unique global optimum. Notatthnly search points ib) face a
(spherically separated) gap of positive size, namely & giz

A similar class of functions is

IX|+¢(n) for [x] <1—¢(n),

CLIFF?(x) =
n(X) {|x| otherwise.
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4.5 Overcoming Gaps with Elitist Selection

Also for CLIFF, only the local optima face a gap of positive size: A searditpa the hyper-
spherglx € R" | |x| = 1— ¢} faces a gap of absolute sigeand relative size) /(1 — ¢).

So, for both functions the set of search points that face g@gpositive size) forms a hyper-
sphere and, thus, has zero Lebesgue measure. Hence, tn@asgial search point is a local
optimum, the evolving search point will (almost surely) eeface a “spherically separated gap”
—as formally defined above—since any isotropic mutatios thie hyper-sphere containing the
local optima only with zero probability. It is intuitivelyiear, however, that the search faces some
kind of gap. As we will see, a small change in our notion of wienconsider a search point
better than some other point will enable us to apply the ldveamd result which we obtained in
TheorenZ.17 (.51).

Therefore, reconsider the set of points that are “betteah tthe current search point We
decided to consider a point better thanc iff f(x) < f(c) (for minimization), and hence, we
considered the smallest bdL. 2 A_. containing the lower level set af(w.r.t. f). Now, let
B* := {x | |X] < 1—¢} denote the open hyper-ball making up the “global optimumaoregof
GAP/CLIFF. Then we may consider a poirtbetter tharc iff it has a better function valuand
lies in the global-optimum regioB*. In other words, we redefine the size of the (spherical-
ly separated) gap based on the smallest ball contaiAing) B*. Then, for Gy\p, any point in
Rear = {X € R" | |X| > 1} faces a gap of absolute size at leastand for Q.IFF, any point in
Reurr := {x € R" | |x] > 1—¢} does so. Hence, for both functions the relative size of the ga
that a search point frorR faces is at leashk. Consequently, the best chance (under the best-case
assumptions) to overcome the gap —namely to get fRoimto B*—is at unit distance from the
optimum/origin.

Unlike for CLIFF, for GAP we must deal separately with poirdg {x € R" | x| > 2}: For such
points, the lower-level set contains the 8ét= {x € R" | |X| € [1 — ¢(n), 1) (the set of points
that get the penalty of “+1”), and hence, a mutant (of sua) that hitsM would get accepted
by the elitist selection of a (#1) ES. However, since in such situatiods distance fromM is
at least 1 andc| > 2, such a mutation would have to overcome a spherically aggigap of
absolute size 1 and relative size 1/2 (which is larger thamtbaximunyp-value of 1/3).

All in all, we have shown that Theorem 4117 [[pl 51) (almostedily implies the following
result:

Theorem 4.18. Let a (14+1) ES, » = poly(n), optimize GAP? or CLIFF? using isotropic mu-
tations. Assume that the initial search point liesRga,e = {Xx € R" | [X| > 1} resp. Rcy e =
{x e R" | |x| >1—¢}. Then, for any mutation adaptation, the expected numberwations
until the evolving search point enters the global-optim@gion B* = {x € R" | |[x| < 1—¢}
(for the first time) cannot be polynomial munlessp = O(logn/n). If ¢ = Q(nf/n) for some
positive constan, then this number of mutations is efp(®))—in expectation as well as with
probability 1— exp(—2(n®)).

4.5.4 Additional Notes on Overcoming Gaps

Naturally, we could easily define functions containing éirlg separated gaps to demonstrate the
applicability of the lower bound given in Theorém4.16[{g).50

Due to the shape of the set of points that we consider beterttie current search poiatthe
size of a spherically and/or linearly separated gap whiettes might be zero in many cases when
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4 General Lower Bounds

intuition may say that does face “some kind” of a gap. When considering isotropitatmns
and the approximation error w.r. t. to the distance from affpeint in the search space, however,
the two notions of a gap that we have just considered seemhsmme natural starting point.

Wheng = o(1), for instances(n) := 1/./n (so that the number of steps to overcome the cliff
is exponential w. 0. p.), thenl@F% converges uniformly to thé 2-norm asn — oo. Since the
smoothL?-norm does not show any gapsLIEF can serve as a perfect example for how the
assumption “in the limit of infinite dimensionality” can ottially lead to results that reveal only
ill-founded conclusions for finite dimensional search gpac

It is clear that the lower bounds do not only hold for-¢l) ES as defined in Sectién1.2 [p. 8),
yet for any search procedure which fits the following framew@r minimization): For a given
initialization of the evolving search pointe R" the following loop is performed:

1. Depending on the complete history of the minimizationaspdhoose a € IN.

2. FORI :=1 TO A DO create a new search point] by adding an isotropic mutation tg
where the isotropic distribution of the mutation vector f@et, the one of its length) may
depend on the complete history of the optimization so far.

3. IFS:={yi1]i €{1,...,4}, f(y,) < f(c)} is not empty THEN decide, depending on the
complete history of the optimization so far, whether a pbioin Sreplaces/becomesand,
if so, which one of them; updateaccordingly.

4. IF stopping criterion met THEN outpotELSE GOTO 1.

Note that in each iteration a differenican be chosen, and for each of thenutations, a different
isotropic mutation may be used; respectively dependinghencomplete history of the search.
The selection, however, is elitist, so that the sequencaradftion values which is induced by the
evolving search point is monotonic.

4.6 Remarks on the Lower-Bound Results

As we have just seen in the preceding section, the lower ondthe number of isotropic
mutations which are necessary to overcome a (linearly/ggily separated) gap do not only hold
for (1+) ESs that fit the framework given in Sectionl1.2{p. 8), butl@r generalized framework
described at the end of the preceding section. Also the Iboand of 0.68/In(14-3%) on the
number of steps a 1) ES and/or a (1) ES necessarily needs (to halve the approximation error
in the search space) is valid for a broader class of ESstshatristics. For instance, a ‘1) ES”
using a “Metropolis-like” selection which accepts a worsatamt with a probability of, say, 5%
would also be covered by the proof of TheoreEm .11 (. 42). rBlason for this is simple: In
the modified search procedure, which is used in the anabisjutants that are ever generated
survive and are kept in the (exponentially growing) popalatinyway. As a consequence, also a
“simulated annealing-like” selection, where the probiabidf accepting a worse mutant depends
on how worse the mutant is compared to its parent, would beredv

We have to be careful, though: The modifications must be swathour modified search pro-
cedure remains independent of the function to be optimizeslwe have just seen, this is no
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problem for the selection mechanism. The mutation adaytasi more critical in this respect.
In the proof of the lower bound we used that at the end of eah thiere are exactly three al-
ternatives for the adaptation of the mutation strengtlvhich may be called “increase”, “keep”,
“decrease.” We could allow more alternatives, though. éfréhwere, say, seven alternatives for
theo -adaptation, the lower bound on the number of steps to hak/approximation error in the
search space would become pth(1+71), for instance.

Although our lower-bound results do not formally prove tbkkdwing, they do strongly indicate
that (IfA) ESs cannot achieve super-linear convergence, i.e. a g@nee order of larger than
one, when using isotropic mutations. This topic has regdrgén discussed by Teytaud and Gelly
(2006) and by Teytaud, Gelly, and Marty (2006).
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5 Bounds for Concrete Scenarios

So, now that we know some fairly general lower bounds on thebmar of steps (and mutations)
which (1fA) ESs and +1) ESs need to reduce the approximation error in the sepateqas
long as they fit one of the frameworks given in Secfion 1.Z](poBcourse), the question arises
whether a concrete ES optimizing a concrete function caieeela runtime which asymptotically
meets the lower bound, i.e., which is larger than the lowemikdoonly by anO(1)-factor. It is
clear that this is possible, if at all, only for very simpla@iions, and that this, obviously, depends
on what kind of mutation adaptation is actually used.

We will consider Gaussian mutations since they are by fantbst common type of isotropic
mutations, and moreover, they have been used since the rstiyeys of evolution strategies. Fur-
thermore, we concentrate on the well-known 1/5-(success--mainly for two reasons: Firstly,
it is the oldest adaptation mechanism; it was used in the fiesty(1+1) ES by Rechenberg and
Schwefel (cfLRechenberg (1973), Schwefel (1995)). Sdgpids deterministic; namely, it does
not introduce further randomness in the stochastic prandssed by an ES. In particular, the mu-
tation strength is not part of the evolution, but externalifyapted. For this reason, it is sometimes
referred to as aexogenousdaptation mechanism, whereas self-adaptive methodsmetisnes
calledendogenous.

Usually, the 1/5-rule is used in the (1+1) ES only. Yet as wadlgee, it does make sense—at
least to some extent in the function scenarios to be coregideffor the (1A) ES and also for the
(u+1) ES. Namely, for very simple functions, the 1/5-rule iedeensures for the {1A) ES and
the (u+1) ES a runtime which is of the same order as our lower bousnat$ for the (12) ES, a
runtime which is off by at most a®(+/In 1)-factor.

5.1 Gaussian Mutations and 1/5-Rule

Hereinafter, we call a mutation of a search pairt R" with a mutation vectom which results
in f(c+ m) < f(c) asuccessful mutatiorand hence, when talking about a mutatisnccess
probability means the probability that the mutant is at least as goodsgsaitent. Based on
experiments and rough calculations for two function sdesainamely $HERE and a corridor
function), Rechenberg proposed the 1/5-rule for the adiaptaf Gaussian mutations within the
(1+1) ES. The idea behind this adaptation mechanism is ithat $tep of the (1+1) ES) the mu-
tation strengthy should be such that a scaled Gaussian mutation is successgfd probability
of (roughly) 1/5 since in such situations the expected gain of the step {ontéllowed by se-
lection) is maximum. Obviously, for the eletist (1+1) ESe fuccess probability of a step equals
the probability that the mutation is accepted to become #wecurrent search point in this step.
If o could be adapted such that every step was successful witalpitity 1/5, we would observe
that on average one fifth of the mutations are successfuls,Thea 1/5-rule works as follows: The
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5 Bounds for Concrete Scenarios

optimization process is observed without changingve “keep”o) until 5n mutations have been
performed; if more than one fifth of the mutations in this aliagon period have been successful,
o is doubled (“increased”), otherwise,is halved (“decreased”). As a consequence, the 1/5-rule
fits our (1f1) ES-framework from Sectidn.2 (gd. 8).

The number of mutations to be observed between two seguadiptations varies in the lit-
erature, but is almost alwayd(n). Also the choice of the constants for the adaptation diiere
2 resp. ¥2, seems somehow arbitrary. In fact, one result we will sbisthat—for the function
scenarios we consider—the order of the runtime (w.r.t. theedsionality of the search space)
is “robust” with respect to the concrete implementationhaf 1/5-rule. Namely, any 1/5-rule that
performs ther-adaptation ever(n) mutations using any two constants for the scaling dfiat
are greater resp. smaller than 1 results in the same asympintime; even the /5 can be re-
placed by any positive constant smaller tha@ Wvithout affecting the order of the runtime—in
the function scenarios that are considered here.

5.1.1 Gaussian Mutations and 1/5-Rule for the (171) Evolution Strategy

The “(1+1) ES using scaled Gaussian mutations adapted by the 1/5wal&s as follows: Let
A: IN — IN such thath = poly(n), and let ‘A" abbreviate ‘A(n)” We use two global counters:
“g” corresponds to the number of “good” (i. e. successful) mates, and H” counts the “bad”
ones (which have not been successful). Then, Witk 0 andg := 0 and a given initialization
of the evolving search point € R" and the global mutation strengthe R. o, the following
evolution loop is performed (the instructions that impletie 1/5-rule are marked gray):

1. FORi :=1TOX DO BEGIN

a) Create a new search poinit] := ¢+ m with m := o - M, where each component of
m € R" is independently standard-normally distributed.

b) IF f(yii]) < f(c) THENg:=g+1ELSEb:=b+1. END

2. IFmingq, u{ f(yin)} < f(c) THEN c:=argmin.; ;,{f(yi)} (when there are more
than one mutant with minimunf-value, one of them is chosen uniformly at random).

3. IFb+4+g>5nTHEN BEGIN
a) IFg<(g+b)-(1/5) THENo :=0/2 ELSEo =0 - 2.
b) g:=0.b:=0. END

4. GOTO 1.

Note that is adapted everbn/A] steps/iterations, implying that far> 5n there iso-adaptation
after every iteration of the evolution loop.

As expected, we obtain the “(1) ES using Gaussian mutations adapted by the 1/5-rule” by
dropping the IF-condition that determines whethés replaced by (one of) the best mutants or
not (Instruction 2).
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5.1.2 Gaussian Mutations and 1/5-Rule for the (;t41) Evolution Strategy

In the (u+1) ES framework each individual consists of a search paidtan associated mutation
strength. As we need the countels’ ‘and “g” for the adaptation of the individual mutation
strength, each individual is associated with its own setaafnters, so that an individuat =
(X,0,09,b)isinR" x R.g x INg x INg.

Let u : IN — IN such thaiw = poly(n). Then the “(++1) ES using Gaussian mutations adapted
by the 1/5-rule” works as follows (for minimization): For &/gn initialization of the population
of u individuals (where aly- andb-counters are zero) the following evolution loop is perfedn

1. Choose one of the individuals in the (current) populatioiiormly at random. Let this be
X = (x,0,0,b).

2. Create a new search poipt= x + m with a mutation (vectorm := o - M, where each
component ofn is independently standard-normally distributed

3. IF f(y)< f(x) THENg:=g+1ELSEb:=b+1.

4. IFb+g=>5nTHEN
a) IFg<(b+g)-(1/5) THEN. :=0/2 ELSEo :=0 - 2;
b) g:=0;b:=0.

5. Create the mutait := (y,0,0,b).
(Note thaty inherits the possibly updated/adapted parametdnsg from its parentX.)

6. Discard one of the. + 1 individuals by uniformly choosing one of the worst indivals
(maximal f -value).

7. GOTO 1.

5.1.3 Gaussian Mutations and 1/5-Rule and the Spatial Gain

Recall Corollan 318 (j.27) and, in particular, the randeariableG which corresponds to the
signed distance of the mutaot- M from a predefined hyperplane containing the search moint
which is mutated. Accordingly, we now l&tq denote the spatial gain towards a fixed search
point x* with d = dist(c, x*). Furthermore, when the Gaussian mutation is scaled ,bye let
A, 4 denote this spatial gain. Formally, for fixegk* € R"

Aogq = d—distc+o M, x*) (5.1)

whered = dist(c,x*) and M is a Gaussian mutation, i.e., each of fm&omponents is inde-
pendently standard-normally distributed. (Recall thatoae restrict ourselves to the distartte
betweernc andx* because of the isotropy of a Gaussian mutation.)

As mentioned above, the idea behind the 1/5-rule is to maerhe expected gain in a step
of the (1+1) ES. For instance forPBERE, a mutation is accepted if and only if the mutant is at
least as close to the optimum as its parent. In this situatlm spatial gain of a step is given
by Z:’d (which abbreviates?xa,d -1{A, ¢>0}), and the 1/5-rule is supposed to adauch that the
expected one-step gain EtZ:’d] iS maximum.

59



5 Bounds for Concrete Scenarios

Yet in fact, knowing max.o E[Z;d] for a given distancel from the optimum does not help
with an analysis. The 1/5-rule is obviously not able to adaptich that expected spatial gain is
actually maximum. Besides, we already know from Lenima 4.84jpthat forn > 4

T;anE[Z;d] < 052.d/v/n—=1 = O(d//n)
anyway. So the actual questions are: For Wla:icdinesE[Zj,d] = Q(d/+/n) hold? Is the 1/5-rule
able to kee in the respective range? And, if so, for how many iteratidrtte evolution loop?

In fact, we should not restrict ourselvesE@Z;Lvd] since this is the expected spatial gain of a
(1+1) ES on $HERE Nevertheless, the answer to the questions will be usefubnly for the
SPHERESscenario. Therefore, note thai;;,d = Q(d/+/n) with an(1)-probability” implies that
E[Zj,d] = Q(d/4/n) because negative gains are zeroed out by the elitist &idotthis scenario.

Of course, also the total gain of a sequence of steps will batefest. In particular, we are
interested in the total gain of a number of sequent steps$ af ahich the same mutation strength
o is used. As we shall see in the following, it is very unlikeiat such a total gain is actually
larger than the double of its expectation:

Therefore, assume that the4) ES uses for a phase &fsteps a fixed isotropic distribution
F to generate the mutants (i. e., for each mutation the mutattor is independently drawn
according toF). This is the case for Gaussian mutations adapted by a g5during an ob-
servation period, for instance. Lafl!l,... AIX denote the random variables which respectively
correspond to the gains in thesteps of the (31) ES. Optimistically assume that any mutation
that yields a positive spatial gain is accepted, and thatnagpative gain is rejected (as it is the
case for ®HERE). Then the distance from the optimum is non-increasing, lerte, we have
Al » ... AIM (cf. Propositioni 413 (1.33)). Ler, ..., Ak denotek independent copies of the
random variableAlt!, Then the random variabl:= A1 + ... A stochastically dominates the
total gain of the phase, namely the random variable defined%s- - - - + AK.

Let d denote the distance from the optimum at the beginning of tles@. Assume that the
isotropic distributiorF is such thaE[S] < d /4 and note thaE[AlY] < (d/4)/ k implies this upper
bound on the expected total gain of the phase. Then Hoeffdbmund, namely Theorein 2.3
(p.[13), tells us (sinc&[S] +d/4 < d/2) that

~2(d/4Y ) |

P{S>d/2} < exp(m

We can chosa := 0 since the gain of a step cannot be negative in our scenarimstiBiting forb
the trivial upper bound ofl on A, results in an upper bound of &8k on P{S> d/2}, which,
unfortunately, tends to one &sgrows. Therefore, assume that was bounded from above by
b:=d-nf/n. Then we have

. _d2/8 _n2—28
P{S>d/2| A1,...,Ak<d-n°/n} < exp K@) = expl —g— |-

If k is O(n), this upper bound on the probability is¥" ). Choosinge := 1/3, we obtain

P{S>d/2| Ay,...,Ac=d-n"3/n} = g ), (5.2)
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With this upper bound we can now prove the following lemmachhwill later be useful in the
analysis of the 1/5-rule.

Lemma 5.1. Let a (14+1) ES minimize $HERE in R". Consider a phase & = O(n) steps
in which all mutation vectors are independently drawn agicwy to the same isotropic distribu-
tion F. If F is such that the expected gain towards the optimum in thesfiegt of the phase is
at most ([ /4)/k, then the probability that the total gain of the phase is astel® /2 (i. e., the
approximation error in the search space is halved) is baliatieve by gn?),

Proof. According to Lemm&4]5 (|p-85) an isotropic mutation yieldsaén of at least - n/3/n
only with probability e "), (As a consequence, the probability that the best ofutations
in a step yields such a gain is bounded from above. by 2" — e=20"®) ) Thus, if F is
such that the expected gain of the first step of the phase issit(dy4)/k, thenP{S > d/2} (the
probability that the approximation error is halved in th@sidered phase &f steps) is bounded
from above by - k- e="?) 4 e=200") which is e sincex -k = poly(n). O

All the facts and arguments that we used to derive this lemonaad only hold for $HERE,
but for all functions that are “like 8HERE’ in the following sense.

5.2 SPHERE-like Functions

Consider unimodal functions that are monotone with resetite distance from the minimum.
More formally, a functionf : R" — R belongs to this class and is calledPi$eRrElike” if (and

only if)
1. aminimizerx* € R" exists, i.e.yx e R": f(x*) < f(x), and
2. Vx,y e R": dist(x*,x) < dist(x*,y) = f(x) < f(y).

The crucial property of such a function with respect to thel{lES is that any mutant which

is closer to the minimum is accepted, whereas any mutanthniki€arther away is discarded.

In other words, a reduction of the approximation error in $kearch space is always accepted,
whereas an increase is always rejected. We do not know, esywethether a mutant with the
same distance from the optimum as its paxeistaccepted; yet this does not make any difference
as the hyper-sphere centeredxatand containingc has zero Lebesgue measure and, hence, is
hit with zero probability. All in all, when starting with theame initial approximation error, the
stochastic process induced by the (1+1) ES depends on tbeaddining properties, but not on
the function itself.

In particular, the function SHERE(X) := Y | ; X2 = || belongs to our class, which is pre-
sumably the most investigated and most discussed fungtitrebry-oriented work on evolution
strategies; cf. for instance Rechenberg (1973, 11994), 8&iwl1995), Rudolph (1997), Beyer
(2001), Bienvenue and Francois (2003), Auger (2005). Amlithalso the reason for the notion
“SPHEREIlike.”

Obviously, thel_2-norm is $HERElike, and it is readily seen that a functidn= go L2 belongs
to our class ifg: R>o — R is monotone increasing and bounded from below. With redpebie
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5 Bounds for Concrete Scenarios

trajectory of the evolving search point/population in tieargh space, the optimization process
is independent ofj; the progression of the approximation with respect to thiecilve space,
however, crucially depends ay consider for instancg(x) = x2, i. e., f = SPHERE, as opposed

to g(x) = 2*. Results with respect tg can easily be obtained from ones with respect to the
search space, and hence, it makes sense to concentrateapptb&imation error in the search
space, which is defined as the distance from the unique mmiriue R". In particular, we may
assume, for notational convenience, that the minimdincoincides with the origin so that the
approximation error (in the search space) is givendpy

5.2.1 SPHERE-like Functions and the (1+1) ES with 1/5-Rule

As already noted above, obviously, the 1/5-rule cannot rentat each mutation is success-
ful with a probability of exactly 1/5. Nevertheless, the gtien for whicho a step succeeds
with a probability of 1/5 is interesting. Formally, we arddrested in the specifi¢ for which
P{A,q > 0} = 1/5. By using Equatiori{412) on pafel 33 with= 0, we obtain

P{Asa>0]|lo-M=¢}=1/5 <= P|{G,>¢?/(2d)}=1/5.

Since the equation on the right is equivalenP{@ > ¢/(2d)} = 1/5, Lemmd3IR (125) tells us
that

P{Asa>0|lo-M=¢}=1/5 = ¢=06(d/Vn).

Recall from the reasoning that precedes Corollaryl3. 134pttat|m| € [/n/2,2,/n] with prob-
ability 1— O(1/n), and hence, we obtain analogously to that reasoning

P{A,q>0}=1/5 = o =06(d/n).

Since all arguments remain valid when substitutings"lby an arbitrary constante (0, 1/2) (so
thate as well as 12— ¢ are2(1), cf. Corollany(3IB (127) again), we obtain

Lemma 5.2. Fixd € R-o ande € (0,1/2). ThenP{A, 4 > 0} = ¢ implieso = ©(d/n).

So, we considered a gain (of a mutant m) towards a pointx* (at distanced from c) of
size§ = 0, which corresponds to a “parallel gain” gf= ¢2/(2d) when|m| = £. What about
a positive gain? When choosing, say,= d/n rather than zero, then the correspondmg
becomesi/n+ (¢2 —d?/n?)/(2d) (cf. Equation [ZR) on padeB3). Thus, for= ©(d//n) we
obtain a corresponding that is®(d/n), i.e. ®(£/4/n). Since the arguments hold for adthat
is ®(d/n) rather than exactlg/n, we have in fact shown that, if= ®(d/./n), then as which is
©(d/n) corresponds to somgwhich is®(¢/,/n). Recall thatG, ~ ¢ - G. Thus, we can finally
apply Lemma&32 (o 25) (Item 4) to obtain the following fégecall Equation[{4l]1) on padel32
for the definition of Ay« ¢").

Lemma 5.3. Let x* € R" be fixed andl = dist(c, x*) > 0. Given that is ©(d/,/n), then for any
constant we haveP{Ay-, > ¢-d/n} = Q(1) .
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5.2 SPHERElike Functions

Since|M| € [/n/2,2,/n] with probability 1— O(1/n) (as utilized several times), we obtain as
a direct consequence

Corollary 5.4. Let x* € R" be fixed andd = dist(c,x*) > 0. Given thato is ®(d/n), then for
any constant we haveP{A, 4 > ¢-d/n} = Q(1).

Putting it all together with Corollarfy-3:13 ([p.127) we obt#ire following lemma which will be
very frequently used in our analyses.

Lemma 5.5. Let x* € R" be fixed andd = dist(c, x*) > 0. ThenP{Zayd >0} = (1) as well as
1/2—P{Asd = 0} = Q(1) if and only ifo = ®(d/n), and if so, then for any constantve have
P{As 4 >¢e-d/n} = Q(1).

In less formal words: If the mutation strengthis such that the probability of the mutant being
closer to the optimum is “roughly” 1/5, then the distancenfrthe optimum is reduced by an
1/n-fraction with a constant probability.

The lower bound on the one-step gain, which we have just ddaiwill enable us to show
our first result for a concrete scenario—once we have theviitlg lemma (the counterpart of

Lemmd4.® (d-36)).

Lemma 5.6. Let X1, Xo,... denote random variables with bounded range &ttt random vari-
able defined bys= min{t | X1 +---+ X; > g} for a giveng > 0. Given thatSis a stopping time,
if E[S] < ocoandE[X; | S>i]>¢>0fori € N, thenE[S] < E[ X1+ ---+ Xg]/¥.

Proof. First of all note that theX; need not be independent—making the assumption necessary
thatSis a stopping time, though. Note that, since ¥yeare bounded, the assumption/precondition
E[S] < oo impliesE[ X1+ -+ Xg] < o0.

The proof follows the one of Lemnia3.6 [n]36) up to the poinemehthe lower bound on
E[X; | S>i]is utilized (rather than an upper bound which is calleitherein).

E[X1+ "+ Xg]

o0
cf. LemmdZb (£236) ZP{SE i}-E[Xi| S>i]
i=1

> P{S>i}-¢
i=1
= E[S]- ¢

v

O

So, this lemma (which may sound trivial) enables us to showfimi result for a concrete and
well-known scenario:
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5 Bounds for Concrete Scenarios

Theorem 5.7.Let the (1+1) ES using scaled Gaussian mutations optimize+&Selike function

in R" using a fixed mutation strengéh(i. e. no mutation adaptation). Given that the initialipati
is such that® > 0 ando = ©(d® /n), the expected number of stapantil dl'l < d® /2 is®(n),
i.e., the expected number of steps to halve the approximatior in the search space grows
linearly in the dimensionality of the search space.

Proof. The (n)-bound has already been shown in Theokem 4.8 {p. 39), savihabncentrate
on theO(n)-bound in the following.

First of all note that negative gains are zeroed out by ekggection in this scenario. As long
as the approximation error has not been halved, in each lstegpiproximation error is reduced
by an I/ n-fraction with probability©2(1) since the distance from* is in (d%/2,d[%]. Thus, the
expected gain towards* is €2(dl® /n) in each step (recall: negative gains are zeroed out). For
the application of the previous Lemrhals.6[{d. 63), weXetdenote the spatial gain towards the
optimum in theith step, and we know that we can choose a lower bauond the single-step
gain which isQ(d® /n). Since the total gain of the steps (urdil! < dl®/2 for the first time)
is obviously at mostll®, Lemma5.b (83) yields an upper boundddt / (d[® /n), which is
O(n), on the expected number of steps udtil < dl® /2—if the expectation is finite (recall the
precondition E[S] < co” in Lemmals.® (pLEBR)).

Therefore, letB denote the hyper-ball exactly containing all points withistahce of at most
dl/2 from x*. We are interested in the number of iterations of the (1+1)ES the evolving
search point hitdB. Since the mass oB w.r.t. the measure/distribution ov&" induced by
addingo - M to some poinix € R" is positive (say lower bounded hy> 0 if x’s distance from
the center oB is at mostd[?), the expected number steps umils hit is indeed finite (at most
1/p in our case; formally, the trials are dependent, yet we casider Bernoulli trials to obtain
the upper bound of /Ip). O

Unfortunately, unlike the lower bound in Theoréml4.91p., 38¢ upper bound which we have
just obtained is an asymptotic one, i. e., it tells us notlaibgut the constant hidden in th@(n)”
This constant depends on the actual relation betweandd®, and we only assume that the
initialization results i = ©(d® /n). Yet what is more, in contrast to the lower bound, the upper
bound can be iterated at most a constant times. That is, joz@rstank > 1, the expected num-
ber of steps untitil'l < dl%/2¢ is O(n) by the very same arguments. But what about the number
of steps until, saygl'l < d[®/2"? For this question, considering an adaptation-less (1$1jdes
not make sense. For a fixed the closerc gets tox*, the smaller the expected progress. And thus
—even thoughc would converge (namely almost surely) towasds which is readily seen just
becauser is fixed—the progress towards would become slower and slower. And moreover,
we would like an upper bound which holds with an overwhelnpngpability rather than only in
expectation.

This is the point where the 1/5-rule comes into play. We mhetsthat it keeps = ©(d/n)
as the optimization proceeds, i.e., that the mutation gthreremains in thesvolution window
(this notion, in fact the German tervolutionsfenstewas coined by Rechenbeig (1973, p. 139),
cf.Beyer (2001, pp. 17, 69) for instance).

Interestingly, we can show that the 1/5-rule works feH&RElike functions using the lower-
bound result from Theorein"4J11 [pl42); namely, we will mélithat afterO(n) steps of the
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5.2 SPHERElike Functions

(1+1) ES the approximation error in the search space is(atilleast) a constant fraction of the
initial one (at least with probability & e=%M),

Theorem 5.8. Let a (1+1) ES using Gaussian mutations adapted by a 1/5mubdémize a
SPHEREIlike function f : R" — R. If the initialization is such that = ®(d/n), then the 1/5-rule
maintains this property for an arbitrary polynomial numbgsteps with probability - e )

Proof. The run of a (1+1) ES is virtually partitioned inphhasesn each of whichr not changed.
Recall from Lemma&3&l5 (p.63) that= ®(d/n) is equivalent to the probability of generating a
better mutant being bounded B(1) as well as by 12 — ©(1). This is crucial since this enables
us to switch back and forth between considering the relativeation strengtla/d in a step, on
the one hand, and the mutation’s success probability irstiegt on the other hand. Namely, for a
given mutation strengt, we letp. ;= P{ f(c+ o - M) < f(c)} denote the success probability (of
the mutation). Thea = ©(|c| /n) if and only if there is a constaat> 0 such thap. € [¢,1/2—¢]

for n large enough; we may drop the subscript in unambiguous situations. Note that for two
search pointx, y € R" we havepx > py <= |x| > |y| (cf. Propositio’ 413 (..33)). Sinde|

iS non-increasing in our scenario, by a trivial scaling anguat, doublingr after a phase surely
results in a smaller success probability compared to anye$ticcess probabilities in that phase.
Halving o at the end of a phase, however, results in a larger succesalplioy compared to the
success probability of the first mutation in that phase diilya approximation error has not been
halved within this phase. As it is harder to tackle, we startamalysis with the latter situation.

Since in our scenario the distance from the optimum is neregsing p is also non-increasing
during a phase. Lep) denote the success probability of tiirst mutation within the th phase.
Assume that is large such that at the beginning of il phase the success probability is small,
say, pi) < ¢ < 0.1 yet still p;) = (1). (The positive constant will be chosen appropriately
small later.) To show that the 1/5-rule works, we have to stiwato will be halved after theth
phase, and that this does resultgn,1) > p;), i. €. in an increase in the success probability. If
this is the case, then the success probability of the lashtioatin thei th phase is a lower bound
on the success probabilities that occur. To see that theshiotd, namely the success probability
of the last mutation in theth phase, is indeef(1) if p;) is €2(1), recall the lower bound from
Theoreni 4211 (.-42). It tells us (by choosimgs a constant large enough) that afteri thephase,
which lasts®(n) mutations, the distance from the optimum is a constantitmof the one at the
beginning of the phase with probability-1e~(, Given that this is the case, also the ratjt
at the end of théth phase is of the same order as at the beginning of the phapjing that
p = (1) at the end of theth phase (given thap;) = (1), of course). In the following, we
assume that this is the case (and keep in mind that we err witblability of e M),

Thus, in each mutation within thieh phases > p = (1), and hence, we expect at most an
e-fraction of the mutations in this phase to be successfulCBgrnoff's bound, with probability
1—e " (since we expec®(n) successful mutations) at most &Raction of the mutations are
actually successful . Again we assume that this is the caska@ain we keep in mind that we err
with a probability of &%),

Since 2 < 1/5, less than 20% of the mutations are successful so thatthé&eth phase the
scaling factor is halved, resulting in an increase of the success probabiivhen comparing
P(i+1) With the success probability of the last mutation in ittlephase. The crucial question is,
however, whethep( 1) > p).
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5 Bounds for Concrete Scenarios

Here is the point where the choice ofcomes into play. Not only the upper bound on the
(expected) number of successful mutations in the phaseopronal toe, yet also the total gain
of theith phase; in particular, we can choesamall enough (i. eq = O(d/n) large enough) such
that the distance from the optimum is not halved withinitigphase with probability e~
(LemmdX&.l (d81)), i. e., the increase of the success pildigatue to the halving ot after the
i th phase overbalances the decrease of the success prigbhabith is due to the reduction of the
approximation error within theth phase. Then, as already noted above, the success pityaztbil
the last mutation in theth phase (which i§2(1) under our assumptions) is the lower bound on the
success probabilities which occur. THX1)-threshold on the mutations’ success probabilities
corresponds te being bounded by (d/n).

Since things may go wrong (i. e., our assumptions are not wittt)a probability of e X
our reasoning does not show tlat O(d/n), i.e. p = (1), “forever with probability one”, yet
“for any polynomial number of phases with probabilityb—ﬂ(”m)” because adding up a poly-
nomial number of error probabilities each of which i) results in a total error probability
which is bounded by ™ (using the union bound).

Fortunately, the upper threshold of2l— ©2(1) on the mutations’ success probabilities, i.e.,
thato remains2(d/n), is easier to show (as already noted at the very beginningi®froof).
Therefore, assume that the mutation strergth small such that in the last step of thiéh phase
the success probability is large, sgye [0.3,0.4]. Since during a phageis non-increasing,
we expect at least 30% of the mutations in itk phase to be successful, i.@(n) many. By
Chernoff’s bound, with probability & e~*™ more than 20% of the mutations in tfjgh phase
are actually successful, so thais doubled. This results in a smallpyj1) compared to the last
mutation of thej th phase—yet also comparedpg), the success probability of the first mutation
in the jth phase (cf. above). To see that afgp (our upper threshold on the mutations’ success
probabilities) is bounded above byZ2— (1) if the success probability in the last mutation of
the jth phase is at most 0.4, recall that we hayg = 1/2 — (1) if the distance at the end of
the phase is at least a constant fraction of the one at thariagi which is the case with prob-
ability 1 — e " (by choosingb as a constant large enough in Theolem4.1L{p. 42) such that
“b-0.6M/In(1+ 31)" is at least the number of iterations in théh phase). Thus, for any poly-
nomial number of phases, with probability-le=(" the success probability remains bounded
from above by 12 — (1), i.e.,oc remains bounded b§2(d/n).

Altogether we have shown that,df%! = ©(dl% /n) after initialization, therr = ©(d/n) for an
arbitrary polynomial number of steps—at least with probighl — e~%0"®) O

n1/3)
k)

Note that in this proof of that the 1/5-rule works for the (JEE on a $HEREIike function,
we merely used that the observation period (a phase)@gsismutations, rather than exactins
Moreover, increasing by 10%, say, rather than by 100% (doubling) surely resultsdiecrease
in the success probability. Moreover, reducin@y 30%, say, rather than by 50% (halving) after
a phase results in a larger success probability unless grex@mation error has been reduced by
at least 30% within that phase, which is also just a constantibn. Finally, we could consider a
1/6-rule or a 1/3-rule, for instance. In the case of a 1/&;rim the reasoning for the upper thresh-
old of 1/2— (1) on the success probabilities, we would consider thenat§l/3+¢/2, 1/3+¢]
for some positive constant< 1/2—1/3, rather than “[0.3,0.4],” of course.
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Corollary 5.9. Theoreni5.B (f1._.85) does not only hold for the 1/5-rule thaeobes & mutations

and doubles/halves the mutation strength, but for any diébwhich observe®(n) mutations and

up-/down-scales using two predefined positive constants which are larger. sesaller than one.
Moreover, the theorem holds for analogausiles, where: € (0,1/2) is a fixed constant.

Naturally, an observation period of would result forn = 1 in a o-adaptation that would
presumably fail because after each mutation/stepould be up-/down-scaled, depending on
whether this single step has been successful or not. This contradiction, however, since in
that case the error probability “€™” may be very very close to one.

Now that we have proved that the 1/5-rule works—in the cargid scenario—, we can easily
show an upper bound on the runtime:

Theorem 5.10. Let a (1+1) ES using Gaussian mutations adapted by a 1/5mnu@nize a
SPHEREIlike function inIR", and letb: IN — IN such thatb = poly(n). If the initialization is
such thato[%1 = ©(d[® /n), then the number of stepsuntil dl'l < dl®/2°M is (b - n) with
probability 1— e~

Proof. The(bn)-bound has already been shown in Theokeml4.11(p. 42), swéeoncentrate
on theO(b- n)-bound here.

Recall that the 1/5-rule ensures= ®(d/n) for any polynomial number of steps (at least with
probability 1— e~%(""*) in particular for any number of steps whichGb - n).

Let « denote a constant, which will be chosen large enough a pasteyithin «bn steps,
in each of whicho = ®(d/n), each step reduces the approximation error at least/bywith
an Q(1)-probability (cf. Lemma&?’l5 (p.63)). Thus, the expeatednber of steps each of which
reduces the approximation error by (at least) amfraction isQ(kbn). Since (1-1/n)""2<1/2
for n > 2 (and since the approximation error is non-increasinggy @t most 0.i such steps the
approximation error is halved, and after Brizsuch steps the approximation is less tiith,/2°.
Now, by choosinge large enough, the expected number of such steps is atbeastnd by
Chernoff’s bound, the probability that less thanth&uch steps occur within thebn steps is
bounded by g®n),

Allin all, we have shown that withikbn = O(bn) steps with probability + 0" at |east
0.7bn of them reduce the approximation error by at ledhst, respectively, and that this implies
that the approximation error has become smaller tharPetr2ction of the initial one—under the
assumption that the 1/5-rule works (i.e.= ©(d/n) in all kb n steps). As this is the case with
probability 1— e~ 2" (as shown above), the total error probability is also bodrigjee (™).

O

The proof has been apparently simple. This is because mtis effort has gone into the proof
of that the 1/5-rule works (in the considered scenario).iAga have to keep in mind the asymp-
totic nature of the result. For low-dimensional search epaéine-tuning the 1/5-rule (namely
its parameters) may well make sense. Such a tuning, howasenot change how the runtime
scales with the dimension of the search space, that is tim. pthie concrete implementation of
the 1/5-rule influences only the constant (b - n)”—it cannot do anything against th&t(b- n)
mutations are necessary (with an overwhelming probabhility

This can also be interpreted as some kind of robustnesg:ré&udn if the parameters of the
1/5-rule are not fine-tuned)(b - n) steps suffice with an overwhelming probability.
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We stick with the function scenario, namely we stick withHERElike functions, yet switch
to the (1+A) ES now.

5.2.2 SPHERE-like Functions and the (1+4X) ES with 1/5-Rule

An observation period of the 1/5-rule lagign) mutations, i.e®([n/A]) steps. Yet the number
of steps which are necessary to halve the approximation isréa(n/In(1+ 1)) with probability
1—e " as we have shown in Theorém4.11[{d. 42). In other words, §ineach step. samples
are drawn at the same location in the search space, the |&/San adapt: more accurately,
because the total number of samples between two sequadaptations is still & (or ®(n) for
the generalized 1/5-rule). In particular, the largethe smaller the chance that halviagafter a
phase does not result in an increase of the success praabili

As a consequence, far= O(n), each and every argument within the reasoning in the proof
of Theorem 5B (1.85) (in which we have shown that the 1/B-mbrks for the (1+1) ES on
a SPHERElike function) carries over because a phase consis&(nf mutations. This fact was
used in the two applications of the Chernoff bound to obtairr@or probability of e¥" because
of an expectation that i®(n), respectively. Now, if. is such that is adapted after every step,
which implies that. = (n), then the two expectatlcﬁlare of order®(1), respectively, so that
the error probabilities are of order®®), i.e., they are still 8" sincex = ©(n). Thus, the
proof carries over not only fox that areO(n) but for anyx = poly(n).

Corollary 5.11. Let a (14+1) ES using Gaussian mutations adapted by a 1/5-rule miniaize
SPHEREIlike function f : R" — R. If the initialization is such that = ®(d/n), then the 1/5-rule
maintains this property for an arbitrary polynomial numbgsteps with probability - e,

This is also true when considering the more general noti@anldb-rule as described in Corol-
lary2.9 (p[EF).

To obtain an upper bound on the runtime, however, we needdw kine gain that the muta-
tions in a step of the (1) ES yield. For the (1+1) ES, this gain is given by the randoniagde
Za,d. Since in the (31) ES ther mutants in a step are generated using the sajmee havel in-
dependent samples w.r. t. the same distribution. Hencendxéamum ofA independent instances
of Za,d corresponds to the gain of the mutants, namely to the gaiheobést of them. This is
commonly called the.th order statistic (of. copies) on(,,d, denoted here bgif,%;,“.

The proof of Theoreri’ 510 ()167) is mainly due to the obs@wmahat—given that the mu-
tation strengtly is ®(d/n)—a mutation reduces the approximation errordgy with probabil-
ity (1), i. e., we utilize thaP{A, ¢ > d/n)} = (1) foro = ©(d/n). When we want to adopt this
approach, we merely need to know for which (functianje haveP{foy;j> >a-d/n)} =Q(1)
for o = ®(d/n). Obviously,x = (1) because the best of the mutants is considered. (Betiges,
lower-bound result from Theor-ll- 42) tellsus thatO(In(1+A)).) Leta > 2 in the fol-
lowing. If o is such thaP{A, 4 > « -d/n)} > 1/, thenP{AUd> >a-d/nN}>1-1-1/1)" >
1-1/e>0.63,i.e., astep of the {11.) ES realizes a gain of at leastd/n with probability 2(1).

Inamely the expected number of successful steps and thetedpammber of steps each of which yields a gain
of atleastd/n
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Now, recall Lemm&3.12 (p.25) (in particular Item 1) whiclatiewith unit isotropic mutations
and their signed distance from a fixed hyper-plane. S{ficeg- e 0™ > 1/ for some function
01 which is®(y/Inx/n), we haveP{G > g1} > 1/A. Thus, for an isotropic mutation of length

P{G, > g/} > 1/x for someg, which is®(¢-/InA/n), (5.3)

and consequently, farwhich are®(d/./n), thisg, is ©(v/Inx -d/n). Since the length of a Gaus-
sian mutation is in{/n/2,2,/n] with probability 1— O(1/n), we obtain that foo = &(d/n),
with probability (1/1) - (1— O(1/n)) > 0.5/ for n large enoughCNEU = Q(+/Inx-d/n). Recalling
the interrelation between the gaip towards a fixed point (at distana@d and the signed dis-
tanceg, given in Equation[{4]2) on padel33, we see that g, — £2/(2d) = g, — ©(d/n) for

¢ =©(d//n). Hence, with a probability of at least §5also A, g is (+v/Inx-d/n). Finally
using (1- 0.5/A)* < e %% < 0.61, we have shown

Lemma 5.12. Let 0 = ©(d/n). Then there is @ which isQ(+/Inx -d/n) such that fom large
enoughP{A%%) > 5} > 0.39.

With the help of this lemma we can now prove an upper bound emuhtime of the (1) ES
for the considered scenario.

Theorem 5.13.Let a (1+1) ES, A > 2, using Gaussian mutations adapted by a 1/5-rule minimize
a SPHERElike function inR". Letb: IN — IN such thab = poly(n). If the initialization is such
thato® = ©(dl® /n), then the number of stepsuntil dlil < d°/2°() is O(b(n) - n/+/IN 1) with
probability 1— e=2("),

Proof. The proof follows the one of Theordm5l10[{pl 67).

Recall that the 1/5-rule ensures= ®(d/n) for any polynomial number of steps (at least with
probability 1— e—Q(”l/3)), in particular, for any number of steps thagb-n/+/In2).

Let « denote a constant which will be chosen large enough latethiiVibn/+/In 1 steps, in
each of whichr = ©(d/n), each step reduces the approximation errof4y/In - d/n) with an
Q(1)-probability (cf. the preceding lemma). Thus, the expdmumber of steps each of which
reduces the approximation error B(+/Inx - d/n) is Q(kbn). Since (1- Q(+v/Inx)/n) < 1/2
for n large enough for some which is O(n/+/In1), after at moss such steps the approxima-
tion error is halved; and aftdy- s such steps the approximation is less tiafti/2°. Now, by
choosingk large enough, the expected number of such steps is at legsa@d by Chernoff’s
bound, the probability that less thas such steps actually occur within thén steps is 8209,
i.e. e n/Vind) which is eV~ pecause. = poly(n).

Allin all, we have shown that withirbn/+/Inx = O(bn/+/In1) steps with a probability of
at least - e=0CvInN) the approximation error has become smaller t&ly2°MW —under the
assumption that the 1/5-rule works, i. e., that ©(d/n) in all kbn/+/In 1 steps. Since this is the
case with probability - =" the total error probability is also bounded by, O

So, the proof is again simple, yet—unlike for the (1+1) ES-e-tbsult is not completely sat-
isfying: The lower bound from Theorem 4111 [pl 42) tells uattv. 0. p. 2(n/In}) steps are
necessary to halve the approximation error. The upper bthatdve have just proved, however,
says that w. 0. pO(n/+/In 1) steps suffice, i. e., the bounds are not asymptotically,thgit off by
a factor of order/In . There are three potential reasons for this:
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5 Bounds for Concrete Scenarios

1. The lower bound is weak.
2. The upper bound is weak.

3. The 1/5-rule just fails to make the{Lk) ES get along with a number of steps that is at most
by a constant larger than the optimal number of steps (wourt(1+1) ES framework).

The gap between the bounds is solely due to the failure of feule —it will turn out that our
lower bound is indeed sharp (w.r.t. the asymptotic ordeo) w8y does the 1/5-rule fail for the
(14+A) ES? The intuition behind the reason is simple: When you ktiat you have several
trials, you should go a higher risk in a trial. Recall: Thead®hind the 1/5-rule is to maximize
the expected gain in a step of the (1+1) ES (®HBRE). So, how can a simple rule maximize
the expected gain of a step consisting.dfials/mutations? Interestingly, also a 1/5-rule can—at
least for the (#1) ES a “proper” 1/5-rule can.

5.2.3 SPHERE-like Functions and a Modified 1/5-Rule for the (1+X) ES

We modify the 1/5-rule as follows: Rather than trying to adapuch that each mutation succeeds
with a probability of (close to) 1/57 should be such thaach stef the (14+1) ES succeeds with
a probability of (close to) 1/5. This results in the followi(il+2) ES withmodified 1/5-rule based
on the steps’ success probabilitiegher than on the mutations’ success probabilities:

With b:= 0 andg := 0 and a given initialization of the evolving search pait R" and the mu-
tation strengtly € R. o, the following evolution loop is performed (the instrugtgimplementing
the modified 1/5-rule are marked gray):

1. FORi :=1TOx DO
Create a new search poini] := c+ m e R" with m := o - M, where each of the compo-
nents off is independently standard-normally distributed.

2. IFmingg,. uf f(yiin)} < f(c) THEN BEGIN

a) c:=argming, ,{f(yi1)} (when there are more than one mutant with minimum
fitness, one of them is chosen uniformly at random)

b) g:=g+1 END
ELSEb:=b+1.
3. IFb+g>5n/log,(1+A) THEN BEGIN

a) IFg<(g+b)-(1/5) THENG :=0/2 ELSEs =0 - 2.
b) g:=0.b:=0. END
4. GOTO 1.

Note thato is adapted everyon/log,(1+ A)] steps (rather thafbn/A] as in the 1/5-rule that is
based on the number of successful mutationsafer1 the two rules do not differ). The reason
for this choice is due to the general lower bound that we hagegal. Q2(n/In(1+ 1)) steps are
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5.2 SPHERElike Functions

necessary w.o.p. to halve the approximation error. Thergh8en phase—after which is
halved (or doubled)—does not last longer (by more than ataah$actor) than the number of
steps necessary to halve the approximation error. Thusingads after a phase should indeed
result in an increase of the success probability by the saasoning that we have followed in
the proof of that the 1/5-rule works for the (1+1) ES. (As wefaoublinge surely results in a
decrease in the success probability anyway.)

Interestingly, we have almost already shown that the matfi®-rule adapts such that it
is ®(v/Inx -d/n), which is by a factor of ordex/Inx larger than with the original 1/5-rule.
Therefore, recall that we looked gtff’a” and, in particular, aGé“). Since the best of in-
dependent identical trials succeeds with probabil¥l) if one trial succeeds with probability
Q(1/1), and sincd?{G, > g,} = (1/A) for gainsg, that areO(¢+/InA/n) (cf. the reasoning that
has led to Inequality({5l3) on paf€l 69), we obtain—using EogndZ4.2) on pagE=33 with :=0
and solvingg, = ¢2/(2d) for ¢—that P{Aq, > 0} = Q(1/1), i.e., P{AJ = 0} = Q(1), for
£=0(d-+Inr/n).

Starting with the question for whialy the probabilityP{G, > g,} isat mostl/A (instead of “at
least”), by the symmetric reasoning we obtain fhgn ;' > 0} is bounded above by/2— (1)

for ¢ = Q(d-+/InA/n). Then, again utilizing that the length of a scaled Gaussiatation deviates
only very little from its expectatiok[|o - M|] < o /N, we obtain

P{Zéﬁm = 0} is bounde below by<2(1) =— o =0O(VInx-d/n)
, above by 12—9(1) = o :Q(md/n)

Assumes was such tha@{A{" > 0} = 1/5, implying thats = ©(v/Inx-d/n). As the length
of the mutation vector is in the intervad[/n/2, 2o ,/n] with probability 1— O(1/n), consider
an¢ that is®(d+/InA/n) in the following. Then, by choosing):=Inx -d/n in Equation [4R) on
page 3B, we obtain an correspondimpgwhich is®(InA -d/n). Thus,gs is of the same order as
go = £2/(2d), the signed distance (from the hyper-plane containingptirent) that corresponds
to a zero gain towards the optimum. As each of theautants yields a gain of that order with
probability2(1/1) (as shown above), we obtain that each mutant yields a ganleast Irk.-d/n
with probability 2(1/1). Hence, the best of them yields a gain towards the optimuat tdast
InA-d/n with probability 1— (1 — Q(1/1))* = ©(1). As our assumption o holds true with
probability 1— O(1/n), we have indeed shown the following:

Lemma 5.14.Let A > 2 ando = O(+/InA-d/n). ThenP{ZC@,j}) >Inix-d/n} = Q(1).

Using this lemma we can show the upper bound on the runtiméef{-1) ES with the
modified 1/5-rule—once we have shown that this rule keeps ®(+/Inix -d/n). Yet this can
again be shown analogously to the proof of Thedret 587p. 65)

Theorem 5.15. Let a (14+-1)ES, 2< A = poly(n), using Gaussian mutations adapted by the
modified 1/5-rule minimize a BHEREIike function in R". If the initialization is such that

o = 0(+/Inx-d/n), then the modified 1/5-rule maintains this property for eniteary polynomial
number of steps with probability-1 e~
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5 Bounds for Concrete Scenarios

Proof. The run of an () ES is virtually partitioned into phases of leng#i{n/In1) (in each

of which o is not changed). Recall that= ©(+/Inx-d/n) is equivalent to the probability of
generating a better mutant in a step (which consists wiutations) being bounded k(1) as
well as by ¥2— Q(1). This is crucial since it enables us to switch back anthftwetween
considering the relative mutation strength in a step, orotteehand, and the success probability
of that step, on the other hand. So, this time, wepleenote thestep’s success probabilitfhen

o =0(v/Inx-d/n) if and only if there is ar € R such thatp € [e,1/2— ¢] for n large enough.

Assume that is small such that in the last step of a phase [0.3,0.4]. Sincep is non-
increasing, each of th@(n/In ) steps in the phase succeeds with a probability of at le8st 0.
Thus, we expected at least 30% of the steps, ®@/InA) many, to succeed. By Chernoff’s
bound, more than 20% of them are actually successful witlobatility of 1— e~ X"/In%) which
is 1— e (/NN hecause. = poly(n). Thus,o is doubled, which surely results in a smaller
(since the approximation error cannot increase). oAis such that in the last step of a phase
p < 0.4, then also in the first step of the phgse- 1/2 — (1) unless the approximation error
has been reduced by more than a constant fraction in thissphadich happens only with a
probability of at most @™ according to the lower bound in Theorém 2.11[(p. 42). Henmce,
remains upper bounded by2— Q(1), i. e.,o remainsQ(+/Inx-d/n).

Now assume that is large such that in the first step of tith phasep < ¢ < 0.1 yetp = (1),
implying o = Q(v/In -d/n). Sincep is non-increasing, we expect at most 10% of the steps
(namely®(n/Ini) many) to be successful, and again by Chernoff’s bound, wigtobability
of 1— e (/In4) |ess than 20% are actually successful, so thas halved. By choosing the
constantse small enough, not only the number of successful steps candake small enough,
but the total gain of the phase can be made so small that thexaption is halved in this
phase only with probabilityEQ(”m) (Lemmd®l (d81)). Hence, with this error probability the
halving of o results inpi11) > pg). Thus, the success probability of the last step initine
phase is the lower threshold on the steps’ success prdiediland this threshold (1) since
the approximation error has at most been halved ini thghase. Finally, recall that = (1)
implieso = O(+/Inx-d/n).

As we have a polynomial number of error probabilities whigh e 2™ each, the total error
probability is also/still bounded by &), O

Now the upper-bound result:

Theorem 5.16.Leta (14-1) ES,A > 2, using Gaussian mutations adapted by the modified 1/5-rule
minimize a $HEREIike function inR". Letb: IN — IN such thab = poly(n). If the initialization

is such thaio[® = @(+/Inx - d%/n), then the number of iteratiorisuntil diil < dl% /250 js
O(bm - n/In ) with probability 1— e=20"*),

Proof. This proof follows the one of Theorem5110[pl 67).

Recall that our modified version of the 1/5-rule ensures ©(v/Inx - d/n) for any polynomial
number of steps (at least with probabilityLb—Q(”l/s)), in particular, for any number of steps that
isO(b-n/Ink).

Let ¥ denote a constant, which will be chosen large enough latéhiMibn/Inx steps, in
each of whicho = ®(v/Inx-d/n), each step reduces the approximation error by- /n with
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5.2 SPHERElike Functions

probability 2(1). Thus, we expe®(xbn) steps each of which actually reduces the approxima-
tion error by at least In-d/n. Since (1-Ini/n)® < 1/2 for n large enough for somethat is
O(n/In ), after at moss such steps the approximation error is halved; and aftsrsuch steps
the approximation is less thatt® /2°. Now, by choosingc large enough, the expected number
of such steps is at leasb® and by Chernoff’s bound, the probability that less thars such
steps actually occur within theb n steps is 849 j. e, e 2b1/IN4) \which is e/ INM pecause
A = poly(n).

Allin all, we have shown that ikbn/Ini = O(bn/In 1) steps with probability - e~ (n/Inn)
the approximation error becomes smaller thfth/2°—under the assumption that the 1/5-rule
works, i.e., thatb = ©(d/n) in all « -b-n/InA steps. Since this is the case with probability
1— e also the total error probability is bounded by#"). O

As already noted above, this upper bound on the runtime sttev®llowing:

Conclusion 5.17.For (1+1) ESs the general lower bound from TheordemM#.11b. 42) is psym
totically sharp.

As our lower bound, namely th&(n/In(1+ 1)) steps are necessary to halve the approxima-
tion error with probability - e=%(™ holds for any (£1) ES and any (1) 0 SA-ES (which fit
our framework), the upper bound for the modified 1/5-ruléstas: When observing the reduc-
tion of the approximation error on aP8EREIike function obtained by any other {1) ES or
(1,1) 0 SA-ES within a polynomial number of steps, then the {1ES using Gaussian mutations
adapted by the modified 1/5-rule realizes such a reductidhiva number of steps that is at
most by a constant factor larger than the number of stepsheir &S (at least with probability
1—e20") To put it more concise:

Conclusion 5.18.For any givem. (which may depend on the dimensionality of the search space)
no (IfA) ES and no (1)) 0 SA-ES can minimize a BHERElike function “considerably” faster
than the (#1) ES using Gaussian mutations adapted by the modified 1é5¢given a proper
initialization of the mutation strength).

Naturally, one might ask whether our general lower boundss aharp for (1) ES, i.e.,
whether there is @ -adaptation mechanism that makes ther\JES get along (at least for a
SPHERElIike function) with a number of steps that is of the same pedefor the (#1) ES with
the modified 1/5-rule.

5.2.4 SPHERE-like Functions and the (1,A) ES with 1/5-Rule

Unfortunately, the modified 1/5-rule does not make (muchgedor the (1}) ES. There would
be a strong drift away from the optimum, similar to the siiatwith the original 1/5-rule and
the (1,1) ES. The original 1/5-rule, however, does makees@érsthe (10) ES—at least whei
is “large enough” as we shall see. The case when(n®) is especially simple to tackle. Let
“1/5-rule” denote the original version (as described int®edS. 1.1 (p[EB)) in the following.
Recall that the 1/5-rule is supposed to keepuch that each mutation is successful with a
probability of roughly 1/5. Now, assume the initializatisnsuch that the success probability in
the first mutation of the first phase is at legst R.o. Then—fori = Q(n®)—with probability

73



5 Bounds for Concrete Scenarios

1—(1—B)* = 1—e ") at least one of thé mutants is closer to the optimum than its parent.
Thus, the IF-condition in the (1) ES that makes it different from the ¢1),ES would evaluate
to “true,” and hence, in such a case there is no differencedmt the (1)) ES and (%) ES.
As our lower-bound result tells us that during an observaperiod (which lasts9([n/A1),
i.e.O([n1¢7), steps) the approximation error is not halved with proligti — e~ with this
probability the success probabilities of all mutations@(#) in the first phase. As a consequence,
the approximation error isot monotone decreasing during the phase only with a probgaklét
is bounded above b@([n1~47)- e (™) which is € %(™), In other words, if the elitist (+1) ES
was run (with the same initialization) rather than the\JES, with probability 1— e~ %) the
IF-condition that implements elitist selection would negealuate to “false” in the phase. In less
formal words, w. 0. p. the mutations in a phase are such tleaé tis no difference between the
(1,2) ES and the (31) ES—given that = Q(n®).

Since the probability that there is a step in which none ofitheutants is better than the parent
is e (™) even for any polynomial number of steps, the results thatbtaioed for the (31) ES
carry over for the (1)) ES. Namely, the 1/5-rule works (cf. Corolldry 5. 11[{pl. 68))

Lemma 5.19.Leta (1) ES withA = Q(n?) for a constant > 0 minimize a $HEREIike func-
tion in R" using Gaussian mutations adapted by a 1/5-rule. If thealigtition is such that

o = ©(d/n), then the 1/5-rule maintains this property for an arbytrpolynomial number of
steps with probability + exp(—$(n™n¥3-¢}). This is also true when considering the more gen-
eral notion of a 1/5-rule as described in Corollard 5.90). 67

And also the upper-bound result carries over directly (bedreni 5.3 (j1.69)):

Theorem 5.20. Let a (1A) ES withx = Q(n®) for a constant > 0 minimize a $HERElike
function inR" using Gaussian mutations adapted by a 1/5-rule. If thealigttion is such that
o0 = (d® /n), then the number of stepsuntil dl'l < dl% /25" whereb: IN — IN such that
b = poly(n), is O(b) - n/~/In1) with probability 1— exp(—(n™MY3.¢}),

So, if A is so large that there is w. 0. p. not a single step (within gmahial number of steps)
which results in an increase of the approximation errom tlie can simply recycle the proofs for
the (+1) ES. Yet what about smaller? In fact, we can show that for any fixed implementation
of the 1/5-rule there is eonstant.* such that the (2,*) ES using Gaussian mutations adapted by
this specific 1/5-rule results in an asymptotically optimedtime (for a $HEREIlike function and
given that initiallyo™® = ®(d[® /n), of course). To show this, we have to deal with the situation
that steps do occur in which the approximation error ina@sashe first step in our analysis is to
bound the maximum loss in approximation quality which a krsgep may cause.

Therefore consider an isotropic mutationof length¢ and recall the so-called signed distance
g € [—¢,¢] of the mutant from the hyperplane that contamand lies perpendicular to the line
passing througlt and x*. Note: We consider the cage< 0. Then (given that the length of
the mutation vectom is ¢£) the mutant’s distance from* is at most,/(d — g)2 + ¢2 (by applying
Pythagoras using that the mutant’s distance from the lissipg throughc andx* is at mostt).
ltem 1 of Lemma&32 (25) tells us tHa{G, < —¢/nY3} = e=¥1/3) (because of the symmetry

of the random variabl&,). Hence, with probability + e=%"*)
distc+m,x*) < /(d+¢/n¥/3)2 4 ¢2
= Jd242de/nl/3 4 ¢2/n2/3 4 g2,
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For¢ :=d/n%3, we obtain
distc+m,x*) < +/d242d2/n2/3+d2/n4/3 +d2/n?/3
= d-y/1+3/n234+1/n%3
< d-V/(1+2/n%3)?

= d+2d/n?3,

and it is readily seen that for arfywhich is O(d/n'/3) (rather than exactlg/n/3) we obtain
d+ O(d/n?%3) as an upper bound on the mutant’s distance fkmThus, for any constamr > 0
there is a constanrp such that

P{diSt(C+ m,x*) >d +K2.d/n2/3 | M| < Ky - d/n1/3)} _ e_Q(nl/3)-

In particular, for Gaussian mutations,dfis such thaP{|o - M| = O(d/n*3)} = 1— e '),
then the absolute loss in approximation qualit%/ (the aliedhcrease in distance fromi) of a
mutation isO(d/n?%/3) with probability 1— e~ 20",

Thus, when the mutation strengthis ©(d/n), we need?{|| > ¢ -n?/3)} = e ") for any
constant: > O for our line of reasoning to work. Therefore, recall froncgen[3.2 (p[IP) that
1| is x-distributed so that the density for a lengthfequalsx"t.e>*/2. 2112/ (n/2).
The interesting part (namely the factors that depeng)da X"~ . e**/2 = e=DINx-x*/2 \Nhen
X := ¢ -n?/3 for some constant > 0, this is bounded above by &), and so is the integral
over the intervalX, 0c0). Altogether, we have shown the following: Given that ©(d/n), then
dist(c+ o - M, x*) = d + O(d/n?3) with probability 1— e~ i e., there is a constart> 0
such thaP{Aq, < —« -d/n?/3)} = g 2n'?)

This upper bound on the loss which a single mutation (andsexquently, also the best of
A mutations) may yield, can now be used in an application offtdo®’s bound to obtain the
following result:

Lemma 5.21. Let the (1)) ES using Gaussian mutations minimize eH&RElike function in
R". Consider a phase @#(n) steps in whicly is not changed. Led denote the distance froxi

at the beginning of this phase and assumedhat®(d/n). Then, if is large enough such that
E[A%;’] = (d/n), the total gain of this phase f&(d) with probability 1— e~

Proof. Assume that the total gain is smaller thdy® (otherwise there is nothing to show). Let

k denote the number of steps, i. k= ©(n), and letAll, ... A denote the random variables
which correspond to the spatial gains in khgteps. Due to our assumption, each of them stochas-
tically dominates the random variab&g,d/z. So we letAs,..., Ak denotek independent in-
stances ofA, 4,2 and defineS:= Aj +--- 4 Ax. Then the total gaimM 4 ... + Al of the
phase stochastically dominates the random varigbl&inceE[A"}'] = @(d/n) by precondi-
tion, we haveE[A!"],] = 2(d/n), and henceE[S] = Q(d). Using Hoeffding’s bound, namely
TheoreniZB (1.23), we obtain

—2-(E[9]/2)? _o(d? Y
P{S<E[S]/2) < exp| — 77 ) — g d/n)/(b-a)7
where R, b] is the range of the random variablas. We already know (from Lemnia3.5 (pl35))
that we can choose:= d/n%?3 because with probability + e~ none of thek - A mutations
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yields a spatial gain towards' of more thard/n%23. For the (1-1) ES, we could choosa := 0
because a step’s gain is non-negative when using elitistseh. In the reasoning preceding this
lemma, we have shown for the ¢J,ES that with probability 1 e ") the gains are such that
we can choosb := —« - d/n%2 with some constant > 0. Thus,b—a = O(d/n%3), and hence,
the exponent-Q(d?/n)/(b — a)?> becomes-(d?/n)/0(d?/n*3), which is—Q(n*/3). In other
words, for a constant > 0

P{S<E[SI/2] —«-d/n?3 < Ay,..., Ak <d/n?3) = %),

and moreover, we already know that the condition on the raftfee A;s is met with probability
1— e Allin all, with probability 1— e~ the total gain is at lea&[S] /2 = Q(d). O

As one may already guess, if we can show thais'large enough such that in the first step
E[A%"] = @(d/n)” can be replaced byx > A* for some constart* (which depends on the
relative mutation strengtt/d),” then obtaining a bound on the runtime is straight forwg@ndhe
same way as we did for the (1+1) ES).

Therefore, recall the random varial@iewhich corresponds to the signed distance of a Gaussian
mutation from a fixed hyperplane. Due to the isotropy of a GausmutationG is symmetric,
i.e.,—G ~ G. Symmetric random variables bear the following property:

Proposition 5.22. Let the random variabl¥ be symmetric, i. eR{X > g} = P{X < —qg} for any
g € R. ThenE[X(%2] > E[X - 1{x=0)] (= E[X | X > 0]/2).

Proof. Note thatP{X > 0} = P{X <0} > 1/2 due to the symmetry. AX (%2 = max{X1, X2},
whereX;j, X, are independent copies X,
E[X#2] = E[X%? . 1{xyx20] + E[ X2 - 1(x120=5)]
+E[ X2 1%y, %220 + E[ X2 - Lxg20= %51 ].
The first summand can be bounded from below as follows:
E[X#2 . 1xy%220]] > E[X1-L{X1.%>0]]
= E[X1-1{x=0]-P{X2> 0}
> E[X1-1ix:=0] - 1/2.
Analogously, we obtaifie[ X %2 - 1x;,x,<0)] > E[X1- Lix1<0)]/2 andE[ X% - 1x;20=X5_1}] >
E[X; - 1ixi=0]/2 fori € {1,2}. Altogether,
E[X#?] > 3-E[X-1(x=0]/2+E[X 1{x=0]]/2 = E[X1{x=0]]
sinceE[ X - 1{x<0]] = —E[X - 1{x>0j] because of the symmetryX ~ X. O
This implies the following: When the (1+1) ES and the (1,2)r&i®imize the linear function
SuMp, (defined in Equatiori{3l1) on pafel 20) using plain Gaussiatations (noo-adaptation,
i. e.,o fixed to one), then aftarsteps the expected distance of the evolving search poimt tie
hyperplane given by the level set of the initial search pisiait least as large for the (1,2) ES as it

is for the (1+1) ES—for any number of stejpClearly, when we increase the drift away from
the hyperplane becomes stronger and stronger.
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Therefore, recall that for any € [0, £] (due to the symmetnyP{G, > g} = P{G, < —qg}; let p
denote this probability. For the random variagz”, howeverP{G((f:*> >g}=1-(1-p)* as
apposed t®{G/"" < —g} = p*.

In the following we prove “1- (1— p)* > 3. p* for A > 2 andp < [0, 1/2]" and start off with
A=2.Then

1-(1-p? = 3p
— 2p-p?* > 3p°
= 2p > (2p)%

which holds since @ € [0, 1].

This shows that fo. = 2 a positive spatial gain of at leagt> 0 is at least thrice as probable
as a negative gain of at mostg < 0, for any g> 0. Interestingly, this implies the preceding

proposition, so that we have found an alternative prE([)szZ:z)] = E[Gf:zﬁ] + E[Gf:z)_] and

For A > 3, on the one hand@ = p*~2-3p?, and on the other hand
1-(1-p)* = Q-p*(Q-p**-1-p)?)
Q-p* 2 1 -@1-py)

Hence, we merely have to show that{p)*~2 > p*~2, which in fact holds since € [0, 1/2] (so
that 1— p > p). Moreover, if 0< p < 1/2— ¢ for a constant > 0, then for any constant, we
can choose. large enough such that

v

A-p)2 = (1/24¢) 2 = k-(1/2—¢e)*2 > k-p*2,

and consequently,1 (1— p)* > 3« - p*) in such a case.

Thus, if g is such thatP{G, > g} < 1/2— ¢, namelyg = Q(¢/+/n), then P{GéM> > g} >
3.k- P{Gé“) < —gj} for 1 large enough, where grows when the constantis increased as well
as when the constantis decreased).

Now, note that the random variab‘lxeéﬁ;A> + £2/(2d) stochastically dominate@fzM> because
Equation [Z2) on padeB3 impliés> g— ¢2/(2d). Thus, if we choose large enough such that
E[G,"*] > ¢2/d, thenE[A ;"] > €2/(2d).

Recall that the 1/5-rule tries to adapt the lengtbf the mutations such th&{Aq, > 0} =
P{G, > ¢2/(2d)} ~ 1/5, which impliest = ®(d/,/n), so thatt?/(2d) = ®(d/n). By choosing. a
constant large enough, we can ensure—fsuch that?/d = @(d/n)—thatP{G((f:k> > ¢2/d} =
(1—(1))* = 1— & for any constant > 0. As a consequenc®{—¢2/d < G/ < ¢2/d} <,
and thus, we have[G}"™ - 1{-?/d<c/*" <¢?/a)] > —¢ - £2/d. Since, as we have proved above,
E[GI™ - 160 >e2/d)] > —3-E[G™" - 1(c%* <—¢?/a)], we can indeed choosé as a large enough
constant such thaE[G!* '] > ¢2/d. As we have seen, this impli&{A ;"] > ¢2/(2d) =
®(d/n). Summing up, we have obtained the following result:

Lemma 5.23. Let¢ = ©(d//N). There is a constant* such thaE[ A} *" ] = (d/n).
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5 Bounds for Concrete Scenarios

Recall that for a Gaussian mutatiqyin/2 < |M| < 2,/n with probability 1— O(1/n) and
that the tail of the underlying -distribution drops exponentially (cf. the reasoning aiog
LemmaB2Zll (145)). With this it is readily checked that theve lemma also holds for scaled
Gaussian mutations:

Corollary 5.24. Leto = ©(d/n). Then there is a constant such tha€[A%;*")] = @(d/n).

The next step in our way to the analysis of the runtime of th&)®S: We have to check that
the 1/5-rule works. Therefore recall the proof of Theofeg (p.[6%) in which we showed that
the 1/5-rule works for the (1+1) ES. In particular, we haveveh thato remains bounded from
below by(d/n), where the actual constant hidden by taenotation depends on the choice of
the parameters of the 1/5-rule. As we have just shown, weltaose a constant* large enough
such that the expected one-step gain of th@*(IES is at least as large as the one of the (1+1) ES
—ijust given thab is (and remains) bounded I8y(d/n). In particular, since.* is a constant, an
observation period last8(n) steps—just as for the (1+1) ES with the more general 1/84roim
Corollary[5® (pl&l7). Finally, it is readily checked thatalguments carry over so that we obtain
the following result:

Lemma 5.25. Given an implementation of a 1/5-rule according to Corgla8 (p[6T), there ex-
ists a constant* such that, when the (17) ES using Gaussian mutations adapted by this 1/5-rule
minimizes a $HERElike function inR", the following holds: Given that the initialization is such
thato = ®(d/n), then the 1/5-rule maintains this property for an arbytiaolynomial number of
steps with probability - =0,

Finally, also the proof of the runtime bound carries over aedbtain the following result.

Theorem 5.26. Let a (1A*) ES using Gaussian mutations adapted by a 1/5-rule minimize
SPHEREIlike function in R". Letb: IN — IN such thatb = poly(n). Given that the constant
A* is chosen large enough, if the initialization is such %t = ©(d®! /n), then the number of
steps until dll < dl° /250 js O(bm) - n) with probability 1— e~%0"),

Since)r* is a constant, the number dfevaluations is of the same order as the number steps.
As a consequence, this upper bound asymptotically meetlower bound from Theorefn 2111
(p.[42), i. e., the runtime is off by a factor which is boundéxwe by a constant. Here we see
again the limits of asymptotic results: In practice, one ldike to choser* as small as possible,
and thus, we are again at the point where fine-tuning theulésdloes well make sense. Although
it is possible (in principle) to calculate the smallestin dependence on the implementation
of the 1/5-rule, we refrain from this calculation as it wouldt yield any new insights._Beyer
(2001, p. 73) claims (based on the model-based progresseasiilts) that “the largest progress
rate per descendant can be attained at5.” This means that—given perfectadaptation—
the expected one-step gain divided bys maximum forA =5, which indicates—yet does not
directly imply—that the expected number of function evéias to halve the distance fromt
is minimum for the (1,5) ES—under the assumption of peréeaidaptation. Experiments seem
to show that a (1,8) ES seems to work even when using an implatien of the 1/5-rule which
is not fine-tuned (like the one that doubles/halygs
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5.2 SPHERElike Functions

(1,1) ES with 1 a constant as small as possible are especially interesithgr@spect to the
optimization in fitness landscapes with “cliffs” or “gaps’hieh must be overcome to enable a

Storch (2006), yet it will not be discussed in this disséotat

5.2.5 SPHERE-like Functions and the (u+1) ES with 1/5-Rule

Recall the f¢1+1) ES with 1/5-rule as described in Section 3.1.Z(p. 59). gameral lower bound
from Theorenii4.14 (jp-26) tells us that the number of stepalteetthe approximation error must
grow linearly in the dimension of the search spateas well as in the size of the populatiqm)(
Namely, less than 0.115 steps suffice only with probability &M, and hence, the question is
whether the 1/5-rule makes the{1) ES get along witlD(wn) steps. Naturally, one would guess
that this should be the case. However, a proof seems to béinai-

PlI denotes the populatioafter theith step. Recall that a-adaptation takes place in step
in which an individualX = (x,o,b,g) € Pl'~1 is selected for reproduction for whidi+ g =
5n—1, i. e., thel/5-rule-countof the chosen individuakl must equal B — 1. Consider the first
w~/n steps in a run of theu(+1) ES with 1/5-rule. In thesg./n steps, the depth of each family
tree (rooted at an initial individual) induced by the+1) ES is at most .3n with probability
1— e M according to Theoref 413 {@l44). Assume that there is adwidhhl 5 in PV
whose 1/5-rule-count is at leash.4 SinceX:’s lineage has a length of at mos{/8 ancestors,
from one ancestor to the next, the 1/5-rule-count increasesverage by at leash4(3./n) =
/n4/3, respectively. Thus, there is at least one ancégiorX's lineage that has at leagin4,/3
offspring. This implies that/ was selected for reproduction at leagh4/3 times. Since an
individual is selected for reproduction only with probatyifl / i, the probability thay/ is selected
for reproduction at leasy/n4/3 times withinu./n steps is 2" by Chernoff’s bound (even
despite the chance thiitmay be removed from the population before it is mutagédt/3 times
at all). Thus, we have proved the following.

Lemma 5.27. Let the (w+1) ES with 1/5-rule (observation period oh Steps) optimize some
function inR". Then, with probability -e~2(M | in the firstu/n steps there is n@-adaptation.

In fact, our reasoning shows that between any two adaptaiioa fixed lineage at leagt,/n
steps take place with probability-1e~(/". Since a polynomial number of error probabilities
each of which is @2(/" results in a total error probability which is also boundedeb§v™, we
directly obtain

Corollary 5.28. Let the («+1) ES with 1/5-rule (observation period of Steps) optimize some
function inRR". Consider the population after a polynomial number of stépgn, with probabil-

ity 1 — =M for each individuabX in the population, between any two sequeradaptations
in the history ofX at leastu/n steps take place.

(This doeshotimply that betweemnytwo sequent adaptations in a run of therQ) ES at least
w+/n steps take place—the two adaptations may affect diffeneaages.)

We concentrate onHEREIike functions in the following. Note—and keep in mind—shi
trivial but crucial observation: When th@£1) ES minimizes a SHEREIlike function, not only
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5 Bounds for Concrete Scenarios

the distance of the respectively best individual freins non-increasing, also the distance of the
respectivelyworstindividual fromx* cannot increase.

For an individualX = (x,o0,b,g) we let|X| := dist(x, x*). Given that there is no optimum in
the populationP, the bandwidth of the populatiois given by max yep | X|/ |y\ The popula-
tion’s bandwidth can be considered as one measure of thesiivef a population (in particular
for SPHEREIike functions). We will now show that the population’s digity w.r. t. this measure
collapses within a few steps of the<€1) ES.

Letd!'l := minypn1 | X| denote the population’s distance frorhafter thei th step. Depending
on their location in the search space w.r.t. the initial agpnation errord® > 0, the set of
individuals is partitioned into four regions, wherés an arbitrary small but positive constant:

Ro:={X | X < (1-¢g)d
Ri:={X| (Q1-&)d < |x] < dion
Rpi={X | d9 < x| < (1-¢)1d
Re:={X|(1—¢) M < |x] }

Hence, for the initial populationP® ¢ R, U R, i.e., there is neither &y-individual nor a
Ri-individual in the initial population. We do not put any asgtion on the bandwidth of the
initial population. We know, however, th&®l N R, contains at least one individual, namely the
individual that determineg!®, the population’s initial distance from the optimuth.

Lemma 5.29. Let a (u+1) ES using Gaussian mutations adapted by the 1/5-rulemizaia
SpHEREIike function. Assume that the initialization is such tit! > 0 as well as for any
X =(x,0,...) e PO ¢ =@(X|/n).

Then, for any constarnt € (0, 1/2), after a number of stepghat isO(n“w logw), with proba-
bility e~ for all X € Pll: (1—¢)dl¥ < |X| < d¥ for an arbitrary small constant> 0, i.e.,
the population’s bandwidth has dropped belowd (> (1—¢)™1).

Proof. First of all note that the lower-bound result in Corollant® (p[4T) tells us that, for any
number of stepsthat iso(in), the probability thaP!='1 := Pl y...u Pl contains an individual
from Ry is e % and that, for the same reason, the probability that thene isdividual in PL=']
that descends from aRs-individual is also e,

Let Sl := Pl n(RyU Ry) denote the subpopulation (aftersteps) which contains exactly
those individuals fronPl] with a distance of less thati® from x*. As already discussed above,
with probability 1— e~%M for any number of steps that@g..n), the subpopulatiot$ does never
contain anRp-individual nor an individual that descends from Bgtindividual. In the following
we assume that this is the case—and keep in mind the erraalpititp e~ ™ and that the number
of steps must be bounded from abovedjyn).

Assume for a moment that no-adaptation takes place. By definition 8f initially S is
empty, i.e., % = 0. Then we are interested in the number of siepstil #5'1 = ;.. Note that
#Sis non-decreasing because of the elitist selection. Theatgd number of steps untib#= 1
is O(u) since a mutation results with probabilify(1) in a search point which is closer &
than its parent, and we pessimistically assume that tharmigidual (namely the one at distance
dl from x*) must be selected for reproduction. (The other 1 individuals may be arbitrarily
far away fromx*.) Subsequently, whenever an individual frdns selected for reproduction,
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5.2 SPHERElike Functions

then the mutation is successful with probabilizy1) (since for anyXt € Swe haveX € R; and
moreoverr = A(d% /n) becauseX cannot descend from aRs-individual). In case of a success,
#S increases (unless$s alreadyu, of course). Thus, the expected number of steps uiil #
increases is &/u)/ (1), i.e.O#S/u). As a consequence, the expected number of stapsl
#9l = ;1 is O(ulogp). Assume thak is a constant such thatwlogu is an upper bound on
this expected number of steps (fotarge enough). Then (using Markov’s inequality) more than
2« logu steps are necessary only with a probability of at mg&t Thus,n®2« logu steps are
necessary only with a probability which is bounded from abby 2™ = e~4"), Finally, since
this number of steps &(1.4/n), by the time when 8 = u there has actually been neadaptation
with probability 1— e cf. Lemmd5.27 (129).

As all error probabilities are bounded by*¢"™), respectively, the total error probability is also
bounded by (™), O

In this proof we have implicitly shown a bound on ttakeover timewhich we define as the
number of steps until all individuals in Pl'l are better (i. e. closer to*) thanthe besindividual
in the initial population (where “initial” may also refer #point in time when we (re)start our
observation of they(+1) ES)E Namely, we have shown that this takeover time&ig« logu) in
expectation, and that it i©(n?ulogu) with probability 1— e=(™)_ In other words, after this
time all initial individuals have been removed from the plapion. (Besides, this implies that, in
our scenario, the number of offspring that an individualduaes before it is removed from the
population isO(log ) in expectation, an@(n® logu) w. 0. p.)

Our assumption that ne-adaptation takes place until (the first) takeover is swfitifor the
proof. Taking a closer look at the proof, we see that it is hyenecessary that each mutation
results with probability©2(1) in a search point that is closer ¥§. And this is just what the
1/5-rule is supposed to do. Before we come to this point, eweve consider a hypothetically
situation to become acquainted with what is going on in a futh@(x+1) ES on a 8HERElike
function.

Proposition. Let a (u+1) ES using Gaussian mutations minimizerH8RElike function inIR".
Hypothetically assume that in each step the mutant is ge@teusing the mutation strengdhi n,
whered denotes the parents distance frorfy implying that each mutation succeeds with an
2(1)-probability. Lets denote an arbitrary small but positive constant.

Then, for any constant € (0,1/2), after a number of steps that@n“wlogu), with proba-
bility 1 —e~¥")| the population’s bandwidth has dropped belowd.

Subsequently, the population’s bandwidth remains boubgelt ¢ for any polynomial num-
ber of steps with probability & e=("),

Proof. So, let us consider the situation after the first takeover asglime that this takeover
happens in stepy, i.e., Pl is the first population containing none of the initial indiuals.

Recall that with probability - e=X"™) we havePll ¢ R; (which we assume as a fact in the
following), and thatd(®! is Pll's distance fromx*. Now we redefine our four regions (our

20ur notion of “takeover time” differs slightly from the oiiigal one. Originally, the takeover time denotes the
number of iterations of a loop in which solely selection isfpamed until the complete population consists
of copies of the best individual, ¢f. Goldberg and Deb (1990)
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partition of the set of individuals) as follows:

Ry :={X] 1X| < (1-g)dt
R:=({X| (1-g)dtl < |% < dtuly
R, :={X| ditl < X < (1—¢) tdltl}
Ry:i={X|(1—¢) dltl < |x }

(Note thatR, € Ri{UR,.) Then plul R;, and by the very same reasoning as for the first
takeover, the second takeover happens in stegiter anotherO(logu) steps in expectation,
and after anothe®©(n®.log) steps with probability + e, Then Pt c (R)NR}), and
in particular,Pl ¢ R} with probability 1— e~%(") as before. Now we could again redefine our
four regions w. r. tdl! to investigate the third takeover, and so on.

Since the sum of a polynomial number of error probabilitesreof which is €%(™) is bounded
by e %) and since the bandwidth d& U Ry is 1/(1 — ¢)?, with probability 1— e~ %) the
population’s bandwidth does not exceed«d)~2 (which is smaller than % ¢’ for some constant
¢’ > 0) for any polynomial number of steps (subsequent to the fiestytakeover, of course). ]

Consequently, the population’s diversity, which collapsethe very first few steps, becomes
steady-state w. r. t. a bandwidth very close to one. This st the population moves somewhat
homogeneously towards the optimum. And this is the reasgntiMdiruntime must grow linearly
in the population size. In particular, just because it tatkes+1) ES Q(un) steps to halve
the approximation error, the 1/5-rule should be able to tepttee mutation strengths frequently
enough to keep them in the range that ensures success pitodsbf 2(1). It will be even easier
to show the upper bound of/2 — (1) on the mutations’ success probabilities, i.e., that the
mutation strengths do not get too small, but remain bounged(kX| /n).

Theorem 5.30. Let a (u+1) ES using Gaussian mutations adapted by the 1/5-rulemizaia
SpHEREIike function. Assume that the initialization is such tit! > 0 as well as for any

X =(x,0,...)e PO: ¢ = @(|%|/n). Then, with probability - e, for anyi = poly(n),
foranyX = (x,0,...) € Plll: ¢ = ®(1%X]|/n), i. e., the 1/5-rule keeps the mutation strengths such
that any mutation is successful with a probability tha®id) as well as bounded from above by
1/2— Q(1).

Proof. We choosex := 0.4 in the lemmas above. With probability-1e~20"9 by the time
when the first adaptation happens there has already beemdth@iieover (i. e., the population’s
bandwidth collapsed already), so that all individuals hadistance of less thaii® from x* and
no individual has an ancestor with a distance8f/(1 — ) or more fromx*. We assume this as
a fact in the following (and keep in mind the error probap)lit

Assume thatX = (x,0,9,b) € Pl is chosen for reproduction with+ g = 5n — 1 (so that
adaptation takes place) and tlais doubled aftetX is mutated. Then the number of steps of
the (u+1) ES between this adaptation and the previous oné&(glineage, of course) is larger
than./n with probability 1— e~ (Corollary[5.28 (p79)). Since a number of steps which is
O(n%4x log ) is o(w+/N), with probability 1— e~ there is a takeover between the two adap-
tations. Thus, with probability + e~ | %¢’s distance fromx* has become smaller between
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the two sequent adaptations. Consequently, assuminghibas in fact the case (and again keep-
ing in mind the error probability) the doubling of the mutatistrength does result in a smaller
success probability. Analogously to the proof of that tHe e works for the (1+1) ES (at least
for SPHEREIike functions; Theoreri 818 (R b5)), this implies thatréhés a lower threshold of
Q(]X]/n) on the mutation strengths, i.e., that the success pratiebifemain bounded from
above by ¥2 — ©(1)—for any polynomial number of steps with probability-E-2*9 (by the
union bound).

It remains to show th&(1)-threshold on the mutations’ success probabilities,, ithat the
mutation strengths remain bounded®y] X| /n). Therefore, assume that in stephe individual
X = (x,0%g,b) with g+ b =5n—1 is selected for reproduction. Assume that the previous
adaptation ofX’s mutation strength took place in thth step in the run of the+1) ES. Note
that during the “phase” from stapto stepj, in all mutations ofX the mutation strength* is
used. X has been chosen for reproduction overalltBnes in this phase, so that the number of
mutations in the considered lineage is at mastI&t k denote the number of mutations ¥'s
lineage in this phase. Then we have to show thatifs large enough bud(|x!"l| /n) (such that
the first mutation in the phase succeeds with a small prabatshich is yet$2(1)), then not only
o* is halved w. 0. p., yet alspxll1| > [x['1] /2 w. 0. p., so that the halving of the mutation strength
actually results in an increase in the success probabilithe mutations. This can be shown
analogously to the proof of that the 1/5-rule works for thel(IES (the proof of Theorefin 3.8
(p.[68))—if we can deal with the following issuéX;| need not necessarily be non-increasing
during the phase. However, because of the bound on the gmpigabandwidth, we know that
after the th step|X| can never rise aboye!'l| /(1—¢). Letd* denote the largest distance between
X andx* during the phase. Recall the reasoning (using Hoeffdingtsd) that has finally lead to
Equation[[5.R) on padek0. Also here the total gain (alXrglinage) is stochastically dominated
by a random variabl&, namely by the random variab®defined as the sum & independent
instances of the random variabﬁf*’g*; let those be denoted b¥1,...,Ax. Then analogously
to the derivation of Equatioi {3.2) on pdgéd 60 (uskng 5n), we obtain that, i * is large such
thatE[A . ,.] < d*/(30n) (< (d*/6)/K), thenP{S=> d*/3| Ay,..., Ak < d*/n?/3} = e &™),
Moreover, we already know that the condition{:..., Ax < d*/n%3" is met with probability
1— e ™) Sinced* < x| /(1— ), we obtain fors small enoughi*/3 < |x!l| /2, so that the
probability thatX's distance fromx* is halved in the phase (i. dx[!l| < |x[1] /2) is bounded
above by €20 In other words, with probability + e~ ") the halving ofo* after the
phase results in an increase in the success probability oftation of X. Finally,o* = ©(d*/n)
because an expected gain which is small enough but of @@#t/n) is used in the reasoning,
and thus, the success probabilities ofddHmutations within the phase afg1). In particular, the
smallest success probability in this phase—which detezmihe lower threshold we are aiming
at—is(1). O

And again, once we have shown that the 1/5-rule works, themppund result is easy to
obtain.

Theorem 5.31.Let a (u+1) ES using Gaussian mutations adapted by the 1/5-rulemizaia
SpHEREIike function. Assume that the initialization is such t## > 0 as well as for each
initial individual % = (x,o,...) € PO & = ©(|%| /n). Then, with probability - e~ ") the
number of steps until dl'l < d[® /2°M js O(w - biny - n), whereb: IN — IN such thab = poly(n).
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Proof. In each step the best individual in the population is selected for repicizbn with proba-
bility 1 /. Since the mutation strength@(dl'! /n)—given that the 1/5-rule works—, the mutant
is by at leastllll /n closer tox* than its parent with ag(1)-probability, cf. Lemm&35l5 (£63).
Thus, withinkun steps we expe®(«n) steps each of which reduces the approximation error
by an 1/ n-fraction. By choosing a constant large enough, using Chernoff’s bound, with prob-
ability 1 —e4" at least 0.7 of the xun steps actually reduce the approximation error by an
1/n-fraction, respectively. Finally, (+ 1/n)°™ < e~"2=1/2 i.e., with probability 1- e~M
thex un steps suffice to halve the approximation error.

Since our bound on the error probability that the 1/5-ruleksas €9(”1/3), however, the total
error probability (for any polynomial number of steps) i$%"°). O

The upper bound asymptotically meets the lower bound froeofénT4. T4 (1-46). This tells
us, on the one hand, that the 1/5-rule indeed makes.th&)ES get along with a number steps
which is only by anO(1)-factor larger than the optimum number of steps (w. sdtriopic muta-
tions, of course). On the other hand, this shows the follgwin

Conclusion 5.32.The general lower bound fouf1) ESs from Theorefn 4114 (p.J46) is asymp-
totically sharp.

5.3 The (1+1) ES on Positive Definite Quadratic Forms

The SPHEREfunction given by $HERE: R" — R with x — x'Ix (wherel € R™" is the
identity matrix) belongs to the class of positive definiteadratic forms which consists of all
f: R" — R with x — x" Qx, where the matrixQ € R™" is positive definite, i.e.f(x) > 0
for all x e R"\ {0}. Such a positive definite quadratic form (PDQF) induces kpselidal fithess
landscape and the minimum is located at the origin. Sinceptienum function value is 0, the
current approximation error is defined &), the f -value of the current individual. It will shortly
become clear why this makes sense in this scenario. Eveghhee consider the approximation
error w. r. t. thef -value from now on, the spatial gain of a mutation/step ingbarch space will
still be of great importance to the analysis.

At first glance, one might guess that mixed terms (e>gxg® may crucially affect the fit-
ness landscape induced by a PDQFQx. However, this is not the case: First note that we
can assumé to be symmetric (by balancin@;; with Qj; for i # j since they affect only the
term (Qi; +Qji) Xij X;i in the quadratic function to be black-box-optimized). Rerimore, any
symmetric matrix can by diagonalized since it mesigenvectors. Namely, eigen-decomposition
yields Q = RDR™! for a diagonal matriD and an orthogonal matfxR.

Thus, the PDQF equals’ RDR™x, and sincex"'R = (R"x) T, the PDQF actually equals
(R"x)T D(R™*x). As RT = R~ for an orthogonal matrix, the PDQF equaR{x)" D(R™1x).
Thus, investigating " Qx using the standard basis faf' (given byl ) is the same as investigating
x T Dx using the orthonormal basis given R Finally, the inner product is independent of the
orthonormal basis that we use (becauBe)' (Rx) =x"RTRx = x"R™1Rx = x| x = x "x).

In short, we can assume the basis to coincide @tk principal axes, cl. Lanczo5s (1956, p. 95).

3An orthogonal matrixR corresponds to an orthonormal transformation, i.e. a {plysenproper) rotation;
thenR~1 is the corresponding “anti-rotation”
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Consequently, in the following we assume ti@tis a diagonal matrix each entry of which is
positive (Q’s canonical form). In other words, when talking about PD@/esare talking about
functions of the formf,(x) = Zi”:lgi -x;2 with & > 0, and we can even assurfge> --- > &.

In fact, &1,...,&, are then eigenvalues ofQ (which need not necessarily be distinct). Th@is
condition number equalsg /&n.

Recall that for a giverf -value of¢, the corresponding level setfg € R" | f(x) = ¢}, The
lower level sefs given by{x € R" | f(x) < ¢}. The level set induced byFBiERE= ¢?, for in-
stance, forms the hyper-sphere with radiusentered at the origin, and the corresponding lower
level set forms the corresponding open hyper-ball. Funtioee, for a non-empty séd < R"\ {0},
the bandwidth of the se¥l equals sup,.\{IX|/|yl}. Note that 1 is the smallest possible band-
width; then all vectors iM are of the same length. The level sets eH&ERE have bandwidth 1,
for instance.

The level setE ;. defined by> ", & - %2 = ¢? > 0 forms a hypersurface, namely a hyper-
ellipsoid, and sincé; > --- > &y, we have mifi|x| | X € Ej2} = ¢//E1and max|x| | x € By} =
¢ //€n, SO that the level sets of a PDQF have bandwig#i/€,. (All level sets but the 0-level
set, of course.) Note the relationship between this bartivadd Q’s condition number: The
condition number equals the square of the bandwidth.

We may call the fitness landscape induced by a sequénc®" — R of PDQFsclose to
being spherically symmetri€ the bandwidth (and with it the condition number) @(1) asn
grows, more precisely, if the eigenvalues are irg[« - a] for somea > 0 (which may depend
onn) and a constant > 1. We may also use the notid®DQF of/with bounded bandwidtin
such cases.

Besides of PDQFs with bounded bandwidth, we will exemplarinsider the following class
of (sequences of) quadratic forms, whare 2IN andé : IN — R such thag = poly(n) as well
asé = w(1) asn grows:

fn(x) = & (X12+ T +Xn/22) +Xn/2+12—{— cee —{—an

Sincen/2 of the eigenvalues equal 1, respectively, and the atf2eigenvalues equél respec-
tively, the corresponding ellipsoidal fitness landscapléeel sets of bandwidtlys = w(1), i. e.,
the condition number (which equai$is unbounded.

Before we look at this specific subclass of PDQFs with unbedrwbndition number, however,
we investigate the complete class of PDQFs with boundedittonchumber.

5.3.1 Positive Definite Quadratic Forms with Bounded Condition Number

In this section we will formally prove that “slightly defoiimg” SPHERE does not affect the order
of the algorithmic runtime of the (1+1) ES using Gaussianatiohs adapted by the 1/5-rule.
More important than this (maybe unsurprising) result fisewever, the line of reasoning will be
made clear, so that we can concentrate on the crucial differthat “an unbounded deformation”
of SPHEREmakes which we will focus on later.

Therefore, letf : R" — R denote a PDQF. Then, as we have already seen above, thedevel s
Egs2 = {x € R"| f(x) = ¢?} (with ¢ > 0) forms a hyper-ellipsoid and has bandwidf: /&.
As we want to utilize our results forFHERE, we need to know the maximum and the minimum
curvature at points irE¢2. Sinceg; > --- > &, it is sufficient to consider the plane curve defined

85



5 Bounds for Concrete Scenarios

by the intersection ok 2 with thex;-xn-plane. Letl denote this intersection, which forms a plane

curve (in thex;-xy-plane). All points inl satisfy£1x2 +&nx2 = ¢2, i. €., %y = V(% — £1- X3) /&q
as a function ok, € [—¢//€1,¢/+/€1]. Since the curvature at a point In(as a function ok;)
equals

d?xq

(dxy)? _ £1-&n- @

dx\2\ 2 G (E—En) 1 X))
(H(d_xl))

the maximum curvature of the plane curveequalsé/(+/&n - ¢) at the point (0p/+/€,) in the

X1-Xp-plane, which has maximum distance from the origin w. rltpaints in E 2. Analogously,
the minimum curvature equads/( /€1 - ¢) at the point ¢ /./£1,0) in thex;-x,-plane, which has
minimum distance from the optimum w.r. t. all pointsk..

In particular, this result on the curvature tells us thatdoy c € E 2, there is a hyper-sphere
S* > c with radiusr * = ¢ - /&1/&, such that the lower level s&_,. lies completely inside
this hyper-spher&*, i.e.,STNE_j2 =¥ andE_,2 is a subset of the open hyper-bBit whose
missing boundary iS§*. Moreover, it tells us that there is another hyper-spl&re cwith radius
r— =¢-/En/€1 such that the open bal~ whose missing boundary & is a subset of the lower
level setE_ 2.

For PDQFs with level sets of bounded bandwidth, the radBoandS~ are of the same order,
namely of orde®(|c|). This will be crucial in the following.

Now consider a mutart := c+m. This mutantc’ is as good as iff ¢’ € E,2 and better than
ciff ¢ € E_,2. Hence, the mutation is accepteddffe E_j. 1= E,2 U E_,2. Recall that so far
“A” has denoted the random variable corresponding to a matatspatial gain towards a fixed
point x*. Equivalently,A corresponds to the mutant’s (random) signed distance fneniyper-
sphere which is centered at and contains the parewt As here the level-sets are no longer
spherically symmetric (but ellipsoidal), these two pecdpes are no longer consistent. Hence,
in the following we letA denote the mutant’s signed distance from its parent’s Isee(rather
than the gain towards the center of the ellipsoid).

As we have just seer, € E_,2 = ¢’ € BT US", so that we obtain

E[AF-Lif()<f)] = E[AF ~]1{c’eE§¢2}] < E[Af-1{ceBtUSH)]
for the expected distance froBL 42 := R"\ E_,2 after a step—for any isotropic distributidh
overR" according to which the mutation vector is sampled in a stepe{1+1) ES. In particular,
we obtain that for a scaled Gaussian mutatE{rﬁ;r+] is an upper bound on this expected spatial
gain away frome_ 2.

However, here we are interested in how fast fhealue reduces during a run of the (1+1) ES.
We obtain an upper bound on tHegain if we assume that the spatial gain is realized conlylete
along the component with the heaviest weightTherefore, for anf -value of$?, we optimisti-
cally assume that the search were located-at(¢/+/£1,0,...,0) € R" and that the mutant were
located atc’ = (¢/+/&1 —a -r™1,0,...,0) € R" for somea: N — Rso; “o” abbreviates &(n).”
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5.3 The (1+1) ES on Positive Definite Quadratic Forms

Then, asx-r* =« - ¢/€1/&n, We obtain

2 1 2 2,
f(d) = sl-(i—om) - sl-¢2-(§—g—:‘+“?§1) (5.4)

e (2 - o o2

2081
— £ (1- .
© <1 & )

Obviously, this upper bound on thegain of f (¢) - 2a&1/&n is not very useful unless it ig( f (c)),
i.e., unlessy - &1/&, = 0(1). One reason for this is that the maximum radius of cureatwhich
we have just used for the upper boundy 5= ¢ - \/£€1/&,, Whereas maXx| | X € Ep2} is only
¢/+/En, i.€., the diameter 08" is by a factor ofy/&1 /&, larger that the diameter d&,2. (This
factor equals the bandwidth of the level &&.)

As we have seen before in Leminal4.4(g. EDZ;H] <0.52.r*/(n—1) for any mutation
strengtho . In fact, the lemma tells us that the expected distance fEamp is bounded above by
0.52.rt/(n—1) = 0.52- (¢/£1/£n)/(n— 1) anyhow the distribution gim| is chosen in a step of
the (1+1) ES.

For PDQFs with bounded bandwidth/condition number we hbyedéfinition)&; /&, = O(1),
so that substituting := 0.52/(n — 1) in Inequality [5%) on padeB7 results in an upper bound on
a step’s expected-gain of f (¢) - (£1/&n) - 1.04/(n— 1) = O(f (c)/n)—which is the same order as
for SPHERE Consequently, we obtain the same asymptotic lower bourideoexpected runtime.
This maybe rather unsurprising. Nevertheless, it is istarg that our lower bound is inversely
proportional to the condition number—and not to the banthyid/hich intuition might tell us.
(This might indicate that our lower bound is not necessadysharp as possible. For a bounded
condition number, however, this does not make much of ardifiee.)

Theorem 5.33. Let a (1+1) ES using isotropic mutations minimize a positiedinite quadratic
form f,: R" — R, n > 4, with bounded condition numbdi,. Then the expected number of
stepst until f(d) < f(d%)/2 is larger thanr{— 1)-0.48/¢,, = Q(n); the expected number of
steps untilf (ctl) < f(d%)/2°M is larger tharb) - (n— 1)-0.48/C,, — bm) + 1 = Q(b()- n), where
b: N — IN.

Proof. Let*“fll” abbreviate “f (c')” and recall that,, = &; /&, for the condition number, where
&1 andé&, are the largest resp. the smallest eigenvalue associatieth@iPDQF to be minimized.
For the application of Lemnia4.6 {pl36), this time weXgtdenote the random variable corre-
sponding to thef -gain ini th step. Due to the elitist selection, negative gains araydwliscarded.
Consequently, thd -value will never exceed[? (the initial approximation error). As a further
consequence, th¥; are bounded, namely9 X; < {9,

Naturally, for the application of Lemnia2.6 [p136) we chogse= f[%/2 and note that the
random variablés (as defined in the lemma) is a stopping time in our case. As we joat seen,
E[Xi] < f0.¢.1.02/(n— 1) =: u. Then the lower bound/u (from LemmdZb (136)) on the
expected number of steps which are necessary to halve thexapgation error finally solves to
(f19/2)/(f10.¢.1.02/(n—1) > 0.48 (n—1)/C.
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Due to the linearity of expectation, the expected numbetegssto halve the approximation
error b times is lower bounded by 0.48n —1)/€+ (b—1)-(0.48- (n — 1)/&€ — 1), where the
rightmost “~1” emerges because the last step within a halving-phaseideswith the first step
of the subsequent halving-phase. O

Now that we know that a (1+1) ES nee@¢n) steps in expectation to halve the approximation
error, naturally, we would like to obtain a lower bound whiatids with an overwhelming prob-
ability. Before we come to this, however, note that therenisléernative, simpler way of proving
an(n)-bound:

Recall that thef -value is non-increasing during the optimization (due itistkelection). Then
even whenim| is chosen optimally, the expectddgain of a step i€O(f(c)/n) as we have just
seen. Hence, there is a constant 0 such that the total expectddgain ink := « - n steps is
greater tharf (%! /5 but smaller tharf [°! /4. By Markov’s inequality, with a probability of at least
1/2, the total gain of thesesteps is smaller than-Z %1 /4. In other words, with a probability of
at least Y2 more thark steps are necessary to halve the approximation error, arggqaently,
the expected number of steps to halve the approximatiom erfarger thark - 1/2 = Q(n). By
iterating this argument using the linearity of expectatiwe obtain a lower bound @2(b-n) on
the expected number of steps to halve the approximation letrmes.

This proof is apparently simple. It results in worse loweubd, though. If we did an esti-
mation for the constant/2, we would end up with a constant that is much smaller tha8.0.4
Nevertheless, not the bound, but its proof is useful: If we show that the total gain of the
steps exceeds the double of its expectation not only witlolbadility which is bounded above by
1/2, but which is exponentially small, then we end up withvadobound on the number of steps
which holds with an overwhelming probability.

Therefore, the next step is to apply Hoeffding’s bound tottital gain which a sequence of
steps yields. Unfortunately, the random variables whialespond to the single-step gains are
not independent—which has not been an issue above becatise lnfiearity of expectation.
However, also part of our best-case assumption is that in s@pc is located at a point (in the
respective level set) where the curvature is minimum (sottieradius of the hyper-sphe&
which we use in the estimate is maximum, which again resalteaximum expected best-case
gain). As thef -value is non-increasing, we thus obtain an upper boundé@rsénse of stochastic
dominance) on the total gain &fsequent steps by adding up the gairk @idependent instances
of the first step. Therefore, I1&;,..., Xx denotek independent instances of the random variable
which corresponds to the best-calsgain in the first step, and 1&:= X3+ --- + X.

Now, if 0 < Xj < z> 0, then Hoeffding!(1963, Theorem 2) (cf. Theorem 2.3 {p. 1&)% us
thatP{S> E[S] + X} < exp(=2-(x/2)?/Kk) for x > 0. With x := E[S] this inequality becomes

P{S>2-E[S]} =< exp(—2-(E[SI/2)?/k) = p,

and hence, the probability thiasteps suffice to halve the approximation error is not onlynoieal
by 1/2 (as Markov’s inequality tells us) but also gy Now, if we can show thatH[X]/2)? =
Q(n*+¢) for some constant > 0, thenp is bounded above by €(™) sincek = ©(n), so that
the reasoning used above (for the simple bound on the expect®ber of steps) yields that
b-k = Q(b-n) steps are necessary (to halve the approximation brsopoly(n) times) not only
in expectation but also with probability-1e=%M").
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5.3 The (1+1) ES on Positive Definite Quadratic Forms

As shown in Lemm&Z15 (BB5P{Ar+, >rt-n*"1} = e~ for any constant € (0,1)
whatever the lengti. Thus, substituting := n~1 in the estimation off (¢') in Inequality [5.%)
on pagd 87 yields that a stepfsgain is smaller than 2f(c)- ¢ -n*~1 = O(f(c)-n*~1) with
probability 1— e~"), Thus, when considering a polynomial number of steps, widtbability
1—e %) in all these steps thé-gain isO( f (c) - n~1), respectively. We assume that this is the
case (and keep in mind the error probability of€")). Then we obtain

2

E[S]\° f101/5 N
(T> = <2.f[0].¢.ne—1> = Qn*%),

so thatp = e 20" /K j e, p=e ") sincek = ®(n). Choosings := 1/3, we obtain

p = e~"")_ Since for this choice also our upper bound 6f. n=2/3 on the maximum single-
step gain holds with probability 2 g ') (even for any polynomial number of steps), all in all
the probability to halve the approximation error within thsteps is bounded above by‘?é”l/s).
So we have proved the following:

Theorem 5.34.Let a (1+1) ES using isotropic mutations minimize a positiedinite quadratic
form f,: R" — R with bounded condition numbe¥,. Let c!! denote the evolving search point
aftert steps. Then the number of stepsntil f(c!) < ()25 is Q(ben) - n) with probability
1—e 2" whereb: IN — IN such thab = poly(n).

In the preceding lower-bound proofs we implicitly assuméropl adaptation of the length
of the isotropic mutations. Consequently, the concretgiatian mechanism is irrelevant, and
moreover, the arguments for halving the approximationreram simply be iteratéto obtain a
lower bound on the number of steps which are necessary taedtie approximation error to a
predefined fraction. For an upper bound on the runtime, hewgvecisely these two aspects are
the crucial points in an analysis.

We consider Gaussian mutations adapted by the 1/5-rulaéaupper bound. Firstly, we have
to check that the 1/5-rule still works.

Theorem 5.35.Let a (1+1) ES using Gaussian mutations adapted by a 1/5ninienize a PDQF
with bounded bandwidth/condition numberIRY. If the initialization is such thas = ©(|c|/n),
i. e., the success probability of the mutation in the firgb $8&2(1) as well as 12— (1), then with
probability 1— &) the 1/5-rule maintains this property for an arbitrary palgmal number
of steps.

Proof. The crucial property that will help us with the analysis ig thounded bandwidth, of
course. It implies that, for a giveh-value of¢?, eithers is ©(|c| /n) or it is not, independently
of where the current search pomnis located in the ellipsoidal level s&f;.. Thus, we can switch
back and forth between the assumptions that located at minimum or at maximum distance
from the minimum/origin within its level set. In other wotdser a givenf -value of¢?, either the
mutation strengtla is such that the probability of generating a better mutasi(ik) as well as
1/2— (1), or it is not—wherevec is located inE 2.

“pecause of the linearity of expectation/the exponentiatigll error probability
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5 Bounds for Concrete Scenarios

For a fixed mutation strength, we letp. := P{f(c+o - M) < f(c)} denote the success prob-
ability (of the step), and we let

max .

P = max P{f(x+o-M)< f(x)} and plN:= m|n P{f(x+o-M) < f(x)}

xeE f(c) XeE f(0)

(we may drop the subscript™in unambiguous situations). Thup,e [¢,1/2 — ¢] for a constant
e > 0impliese’ < p™" < p < pM™ < 1/2—¢’ for a constant’ > 0 (because of the boundedness).
During a phase in a run of the (1+1) ES the mutation streagthkept unchanged, and since
elitist selection is used, i. e., tHevalue is non-increasingy™® as well asp™" are non-increasing
during a phase—although may increase from one step to another within a phase. Thidesna
us to apply the same reasoningd®® as well as top™" that was applied to the success probabil-
ity “ p” in the analysis for 8HEREIike functions. This reasoning from the proof of Theorle® 5.
(p.[68) will be shortly recapitulated in the following.

We will show that (w. 0. p. for an arbitrary polynomial numlwdrsteps)p™n = ©(1) on the one
hand, and thap™® = 1/2 — (1) on the other hand.

Let p() denote the success probability in the first step of th@hase. Assume that the mutation
strengthy is large such that > P maX— (1) for a constant (which we will choose appropriately
small later) anch large enough Smcpma" is non-increasing ang < p™® during a phase, in
each step of this phage< ¢, and hence, we expect at mostafraction of the steps in this phase
to be successful. By Chernoff’s bound, w. 0. p. less than-&&ttion of the steps are successful
so that the mutation strengthis halved (we chooses2< 1/5). This results in a larger success
probability—when comparingyi ;1) with the success probability in the last step of tttephase.
The crucial question is, however, whethnis}‘ ) is at Ieastpmax If this is the case, thep™" in
the last step of theth phase is the (lower) threshold for t‘\e success probiasilite are aiming
at (sincep™™ = Q(1) = p™" = Q(1) because of the boundedness). Here is the point where the
choice ofe comes into play. The (upper bound on the) (expected) nunftarazessful steps in
the phase is proportional g and since only successful steps can result in a gain, bysioiga
smallere we can make the phase’s total gain smaller. All in all, we dasose: small enough such
that the increase of the success probability due to therdgbic (over)balances the (potential)
decrease due to the phase’s (potential) spatial gain tewthedoptimum. It remains to show that
our choice satisfies = ©2(1). To this end we can use the lower bound on the runtime wiieh
have shown. Namely, the spatial gain of a phase@f) steps) is w. 0. p. such that after the
phase the distance is at least a constant fraction of thalinite. This implies that the success
probability at the end of the phase is also at least a confstantion of the initial one, i.e., if it is
(1) in the first step, then it iR(1) also in the last step of the phase. This observation fsishe
Q(1)-threshold on the steps’ success probabilities.

The upper threshold of/2 — (1) on the steps’ success probabilities is easer to showness
that the mutation strengh is small such that in the last step of thth phase the success proba-
bility is large, say,p™" € [0.3,0.4]. Sincep > p™" > 0.3 and since during a phase (in which
is kept unchangedd™" is non-increasing, we expect at least 30% of the steps intthphase to
be successful. By Chernoff’s bound, w. 0. p. more than 20%e8teps are actually successful so
thato is doubled, resulting in a larger mutation strength and, esnsequence, in a smallpf""
in the first step of the j+1)th phase—compared to the last step of jtiephase, yet also com-
pared topm'n the success probability in the first stepjaii phase (becaugg™" is non-increasing

during a phase) Thep(”J‘f‘X is the upper threshold we are aiming at. To see ﬂj‘f;ﬁx is at most

1/2—Q(1), recall that due to the boundedn@8¥d" = 1/2 — Q(1) = p™*=1/2— (1), and that
due to the upper bound on the gain of a phase, we Ip%\{é 1/2—Q(1) if in the last step of

the jth phasep™n = 1/2 — Q(1) (because the distance at the end of the phase is at leasstmot
fraction of the distance at the beginning).
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Since all the error probabilities in our “w. 0. p.”-statenteare bounded by—éz(”m), altogether
we have shown that with probability—le—Q(”l/s) in each of an arbitrary polynomial number of
stepso is such that the success probability3¢l) as well as 12 — Q(1). O

Now, having checked that the 1/5-rule also works for PDQRk Wwounded condition number,
we can show that the gain of a phase is large enough to obtaip@er bound on the runtime
which asymptotically matches the more general (w.r.t. tih@pgation of the mutation vectors’
lengths) lower bound given in Theordm3.34[(d. 89).

Theorem 5.36.Let a (1+1) ES using Gaussian mutations adapted by a 1/5ninienize a PDQF
f: R" — R with bounded bandwidth, i. e., the corresponding conditiomber isO(1). If the

initialization is such that% = ©(|c®| /n), then with probability 1- &) the number of
stepst until () < f(c%)/2°M s O(bm) - n), whereb: IN — IN such thab = poly(n).

Proof. First note that the assumption on the initialization implteat p;) is ©2(1) as well as
1/2 — (1) and that Theorema 5.B85 (p.189) tells us that this also h(@dtiseast w.o.p.) for an
arbitrary polynomial number of steps. Thus= ©(|c| /ng in all these steps, and we assume this
as a fact (and keep in mind the error probability o&™).

Analogously to the reasoning that precedes (and has leahéguhlity [(5.4) on pageB7, we
have for the mutant’

f(c)<f(c) & CeE_p « ceBUS,

so that we obtain

E[AF - 1(f@)<f()] = E[AF-]l{deEsz}] > E[AfF-1{ceB-UST}]

for the expected distance frof. ;. for any isotropic distributiorF overR" according to which
the mutation vector is sampled in a step of the (1+1) ES. Itiqudar, for a scaled Gaussian muta-
tion, P{A, - >r~/n} = Q(1) wheno = ©(r ~/n) by Lemm&&.b (f83). Since, fdi(c) = ¢2,
we have ~ = ¢./&,/&1 = ©(|c|), each step yields a spatial gain of at leastn = (¢/Nn)+/&n/E1
with probability 2(1).

Now, even when such a spatial gain is realized completehggtioe component with the lightest
weight&,, it corresponds to arf-gain of an2(1/n)-fraction. Therefore, for arf -value of¢?,
we assume that the search were located=at(0,...,0,¢/+/&,) € R" and that the mutant were

located att’ = (0,...,0,¢//En—1~/n) € R". Then, as ~ = ¢/&n /&1,

_ o VB ., L (1 2 &
f(d) = sn-<£— n‘&) = &6 '(sn‘n.gﬁnz.glz) 5.5)

< & -¢> (éi - 15 (2— néré )) (note that, /&1 < 1 by definition)
n 'Sl 'Sl

<o) - 0 ()

where¢ = &1 /&, is the condition number associated with the PDQF.
Thus, each step reduces the approximation error b (@yin)-fraction with probability2(1).
By Chernoff’s bound, in a phase 6f(n) steps, the number of steps each of which does actually

A
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reduce thef -value by an2(1/n)-fraction is ©2(n) with probability 1— e (. Consequently,
with this probability, thef -value is reduced by a constant fraction within a phase (aemation
period of the 1/5-rule). In particular, a constant numbehi@v is nevertheless proportional to
the condition number) of such phases, I0€n) steps, suffice to halve the approximation error, so
that finally inO(b) phases, i. €O(b- n) steps, the approximation error is reduced to & Raction
of the initial f -value.

As the error probability that the 1/5-rule fails is the (agtotically) largest one, our reasoning
holds for any polynomial number of steps with probability & (™). O

Now that we have seen how and why the 1/5-rule works for PDQ#sbounded bandwidth,
we are ready to consider PDQFs which result in ellipsoidadlieets with unbounded bandwidth.
Up to now it has not been necessary to care about the actuaidocof the search point in
it's respective level set. Note, however, that our lowerrxbis inversely proportional to the
condition number, whereas our upper bound grows propaititmthe condition number. And
precisely the answer to the question where the trajectotii@evolving search point is located
in the fitness landscape, whether in a region of high or of lowature, will be the crucial point
in the analysis of how the (1+1) ES using Gaussian mutatidapted by a 1/5-rule minimizes an
“ill-conditioned” PDQF with an unbounded condition number

5.3.2 Positive Definite Quadratic Forms with Unbounded Condition Number

In this section, we concentrate on the (1+1) ES using Gaussidations adapted by the 1/5-rule,
and we consider the following class of (sequences of) PD@Rsren € 2IN andé : IN — R.;
such that = w(1) asn grows (‘¢” abbreviates & (n)” for better legibility):

fa(X) = &-(Xa®4- - +Xn2%) + Xnj241+ o+ Xn (5.6)

All results in this section will be obtained w.r. t. this segio.

fn(X) = &€ - SPHEREy2(Y) + SPHERE,/2(2) Wherey := (Xg,...,Xn/2) @nd z := (Xn/241, - - -, Xn),
and hence, the aim is to minimize the sum of two separatee&Efunctions, one irs, = R"/?
and one inS; = R™2, one of which has weight > 1. For short:f (x) = & - | y|?>+ |z|2.

Recall that for a scaled Gaussian mutation veotor o -  each component dh is indepen-
dently standard-normally distributed. Thus; := (my,...,My/2) andmy := (Mp/241,...,Mp) are
two independentr(/2)-dimensional Gaussian mutations which are scaled byaime snutation
strengtho. As m; only affectsy, whereasm, only affectsz, the f-value of the mutant is given
by & - |y+ mi|?+ |z+ my|?. Thoughmy ~ my, the changes caused by, are in a sense “more
important” than the ones caused oy because of the weighting.
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Letd; :=|y| andd, := |z| denote the distance from the origin/optimum in
S resp.S. Since Gaussian mutations as well @H8REare invariant with
respect to rotations of the coordinate system, we may r@aaed S, such
that the search point is located d{,0,...,0) € S resp. (0,..,0,dp) € S.

Or as Lanczod (1956, p. 95) puts it: “If in the genemadimensional case
m eigenvalues [which are associated with the PDQF] collap®edne, this
means that in a certam-dimensional ‘subspace’ spherical conditions pre-
vail. Any m mutually orthogonal axes can be chosen within that subspace
as principal axes of the quadratic surface.” In other wondgsmay assume
w. l.0.g. that the current search point is locateddat@,...,0,d>) € R",
i.e., that it lies in thex;-x,-plane. In fact, we have just described a pro-
jection = : R" — R2. Note that, due to the properties of the function cléssind the isotropy
of Gaussian mutations, this projection only concealsexaht information—all information rel-
evant to the analysis is preserved. Thus, we can concemtnatiee 2D-projection as depicted
in the figure. For some arguments, however, it is crucial &pk@ mind that this projection is
based on the fact that the current search point (and alsauitant) can be assumed to lie in the
X1-Xn-plane w. I. 0. g. (obviously, for the mutant to lie in this paS; and S must almost surely
be re-rotated).

m

Gain in a Single Step

In this section we have a closer look at the properties ofglsimutation in our ellipsoidal fithess
landscape. f ” will be used as an abbreviation of thfevalue of the current individual andf*”
stands for the mutant’é-value.

Recall thatf = & - dy?+d,? (for the current search point) arfd = & -d12+d§2 (for its mutant),
whered; := |y+m| andd; := |z+ mp|. The crucial point to the analysis is the answer to the
guestion howd;, dy, and the mutation strenglh—and with it E[|m|]—interrelate when the
success probability of a step (i. e. the probability thattheant is accepted) is about 1/5. In other
words: How does the length of the mutation vector depend;camd ond,, and how dad; and
d, interrelate?

“Obviously; the heavier weightedrHERE, 2 in Sy is minimized “first” Once the distance from
the origin inS; becomes smaller and smaller, however, the chang8shiecome more and more
important. Finally, we “expect” some kind of equilibrium mt. the interrelation ofl; andd,.
SinceV ﬂdl,dz) = (£2dy,2d) T, we know that for a search point which satisfihgd, = 1/
an infinitesimal change af; has the same effect on tHevalue as an infinitesimal change a.
Though the length of a mutation is not infinitesimal, thismsiadicator that the ratid; /d, will
stabilize when using isotropic mutations. And indeed, it wirn out that the process stabilizes
w.r.t. di/do = ©(1/§).

In this section we shall see that in the region near the gardkescent in our ellipsoidal fithess
landscape, namely fat; /d; = O(1/£), a mutation succeeds with a probability thatigl) as
well as Y2 — Q(1) if and only if o = ®((y/f/n)/€), i.e., the mutation strength is inversely
proportional toé. Furthermore, asymptotically tight bounds on the expedtaghin of a single
step in such a situation will be obtained. Therefore, we glilbw that a mutation of a search
point ¢ for whichd;/d, = O(1/&) with a mutation strengtlh = ©((y/f /n)/&) in the ellipsoidal
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fithess landscape is “similar” to the mutation of a searcimipriin the SPHERE scenario with
SPHEREX) = O( f/£2) (when using the same mutation strength).

We start our analysis at a poioe R" with €= (0,¢), i.e.,d; = 0 andd, = ¢, so thatf = ¢°.
That is, T is located at a point with gentlest descent (w.r.t. its leatl of course), and as a
consequence, the curvature of the 2D-curve which is giveth@yrojectionE of the n-ellipsoid
Egse = {x e R"| f(x) = ¢?}, is maximum at.

We show by a simple application of differential geometryraSection 5,311 (h.85) that the curva-
ture atC € E 2 is Q(£/¢) if clies in its level set such thak = O(dz/§). Therefore, consider the

ellipse given by - d? 4+ d3 = ¢2. Thus,d> = ,/¢2 — & - d? as a function ofiy, and furthermore,

dd,  —&-ds d°dp —£2.d2 —&

e R - | = = + .
doh Jpz—g -2 (A (p2-5-d0)”"Jp2—g.2

As the curvature (of a plane curve givendhyas a function ofl;) equals

d?d,
(dd)2 _ ¢%
. (ddz)z 2 (924 (52-8)-d2)*?
*\dag
&

ford1 = « - ¢/& the curvature equals .
¢ (1+(1—1/8)-02)*?

Finally, (1+(1— 1/5)-042)3/2 = 0(1) for « = O(1), namely ford; = O(¢/&). Furthermore, for
a =0, i.e.ford; =0, the curvature equaty ¢.

The curvature of the 2D- curvE¢z atT= (0,¢) equalst /¢, and consequently, the radius of the
osculating C|rcle$ in the figure on the preceding page) equglg. As this circleS actually lies

in the X1-Xy-plane, it is an equator of amsphereS with radiuse /¢ (the center of which lies on
the xn-axis, just like the current search pou)t In particular,S C E_ 2 such thatSN E 2 = {c}.
Thus, the probability that a mutation hits insiiés a lower bound 0|ﬁ>{ fr<f } For the success
probability of a scaled Gaussian mutation~ o - M we have

P{f < f}

P{c+ m lies insideE}

P{c+ mlies insideS}

= P{|x+m| < |x| for somex with |x| = radius ofS= ¢ /&}
= P{Ay0 20}

v

For an upper bound on the probability that a mutation hitgdan&, consider an isotropic
mutation with a length of < 2¢ (since for¢ > 2¢, E lies insideM, so that the mutant is rejected
by the elitist selection anyway). Léfl = {x € R" | dist(c,x) = ¢} denote the mutation sphere

SIn fact, the (in)equalities hold for any isotropic mutatieector of a fixed lengtlt, i. e., if each of the proba-
bilities is conditioned on the evefim| = ¢}. Sincel is arbitrary here and the radius 8fs independent of,
they are valid not only for scaled Gaussian mutations buafgrisotropic mutation.
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consisting of all potential mutants (at distancérom c). ThenM is a circle (cf. the figure on
page9B) with radiug centered at. Now consider the curvature at a pointEE\m M = {z1, 25}
(there are exactly two points of intersection since @ < 2¢). As we have seen on pagd 94, the
curvature aty is«x, = O(§/¢) if £ = O(¢/&). Since the curvature at any point of the 2D-cubve
that lies insideM is greater thar, (since¢ > 1), €as well asz lie inside the osculating circle at
z3_i fori € {1,2}. This osculating circle has radius:= 1/«,, and hence, we have = O(¢ /&)

for £ = O(¢/&). Thus, there is also a circle with radius passing througft such thatzy; and

2, lie inside this circle. (Consequently, the radius of theleipassing through;, z,, andt is
smaller tharr,.) And again, this circle actually lies in the-x,-plane of the search space and is
the image of the-sphere having this circle as an equator. Hence,

P{f'<f|Im=¢} < P{A,.>0}

wherer, = O(¢ /&) if £ = O(¢p/&). (Besidesr,\ ¢ /& ast~\0.)

Recall that in the above reasoning we have assumed the tgegarch point to lie in the
search spacB" such that = (0,¢) € R?, i.e.,d; = 0 andd, = ¢. The estimates we have made
to bound the probability that a mutation hits inside thellipsoid E, however, remain valid as
long asd;/d> = O(1/&) as we shall see: Sln(ga/qb is the maximum curvature o, there is
always a circleéS with radiusg /£ lying inside E such thaiSN E = {€}. And sinceSis in fact an
equator of am-sphereS, we haveS C E_,2 such thatSN E = {c}. For the upper bound, we must
merely consider the; at which the curvature is smaller. The result on the cureafabtained on
pagd9¥) shows that as longégd, = O(1/¢) and¢ = O(¢/€), the curvature, is O(¢/¢) (and
ke > £/¢ anyway).

Hence, whenf (¢) = ¢? such thatc satisfiesd; /d» = O(1/£), we are in a situation resembling
(w.r.t. the success probability of a scaled Gaussian nwiathe minimization of BHERE at a
point with distanced(¢ /&) from the optimum point. Concerning the 1/5-rule, we thenowrthat

P{f < f}isQ(1) as well as 12— (1)
— o =0(¢/§)/n)
& E[lo-M]=0(¢/£)/Vn).

Thus, we are now going to investigate the gain of a step when¢? ando = O((¢/£)/n).
As we have seen above, there existsasphereS with radiusr := ¢ /¢ lying completely inE
such thatSN E = {c¢}. Since in such a situatid?’n{Ar o> r/n} (1), with probability$2(1) the
mutant lies inE_,2 such that its distance frof. ;2 is at least /n. If we pessimistically assume

that this spatial galn were realized along the gentlestei&sm‘ f, namely thad; = 0 as well as
d; =0, so thad), = d, —r /n = d, — (¢/£)/n, we obtain that with probabilit§2(1)

' = g-d’+dy°
< 0 +(p—(¢/8)/n)?
= ¢%—2¢%/(EN)+¢%/(EN)?
—(2—1/(&n)) $*/(£N)

< ¢°— 1 ¢%/(n)
= f—f/(&n).
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Let ¢’ :=argmir{ f (c), f(c)} denote the search point that is selected by elitist selectince
mutants with a largef -value are rejected (i. ef,” < f), this implies for the expectefl-gain of
a step in our scenario

E[f - "o =0((J/T/n)/E)] = Q(f/En)).

Due to the pessimistic assumption on where in the fitnesstamed the spatial gain is realized,
this lower bound on thé -gain is valid only foro = ®((/f/n)/£)), yet it holds independently of
the ratiod; /dy, i. e. independently of whereis located inE 2. A spatial gain of /n = (¢/£)/n
could result in a much largefr-gain, of course. I8;/d, = O(1/€), however, the expecteftgain
is O(f/(&n)) in the best case (w.r.t. the length of the mutation) as ved ske.

Therefore, letd; = ¢ - ¢/& with ¢ = O(1) and still f = £ -di? + dp? = ¢2. Owing to the
reasoning for the upper bound 6?{ fr< f}, we know that there is an-sphereS with radius
r = ©(¢/§) which contains as well asl := M N E,2. The setl consists of all potential mutants
that have the samé-value asc (namely¢?), and| is the boundary of the hyper-spherical cap
C = MNE_,. Owing to the results for ®HERElike functions, we know from Lemm@a4.4
(p.[32) thatE[dist(c’, [)- ]l{c’eC}] <0.52r/(n—1) = O((¢/&)/n) even for an isotropic mutation
of optimum length. In other words, we know that, if an isofromutation hitsE_,2, then its
expected distance fror&. ,2 is O((¢/&)/n) whatever the length of this mutation. Thus, if we
optimistically assume that the spatial gain were realizzdmetely inS, i. e. completely on the
£-weighted $HERE, 2, (so thatd;, = d, implying thatd; = d), we obtain

E[1"] di/dy = O(1/8)] = E[§-di”+05%| dy/dy = O(1/6)]

> £.( dn —O((¢/8)/n)° +0,°
= &-(ep/E—O((¢/5)/N))* +0,°
> & ((ep/E)"—20(p/€)- O((¢/£)/N)) +d”

£-di®>  —O(¢%/(&n)) +d,?

¢*— O(¢?/(& M)
f —O(f/(&n)).

This upper bound on the expectéehain of a step holds fai; /d, = O(1/£) only, yet it holds for
any length of an isotropic mutation, which is converse tolteer bound. However, altogether
we have proved the following lemma on the spatial gain of p stieen the evolving search point
is located in the region of the search spd'® which consists of all search points for which
di/d> = O(1/¢). (Recall the initial guess that the search stabilizesigmnggion.)

Lemma 5.37.Consider the scenario that is described at the beginningo$ectioh5.312 (p.92).
If the current search point is located in the search spack thatd;/d, = O(1/¢€), then
P{f’ < f}isQ(1) aswell as 12— Q(1) if and only ifo = O((+/T/n)/&).
If di/d2 = O(1/£) ando = ©((v/T/n)/¢), thenE[ f — £”] = ©((f/n)/£), and furthermore,
f — 7 =Q((f/n)/&) with probability 2(1).
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Multi-Step Behavior

The preceding lemma on the single-step behavior enables alstain theorems on the runtime
of the (1+1) ES for the “unbounded” scenario considered lethe same way as we did in
Sectiof5.311 for PDQFs with bounded bandwidth. Namelg; itl, = O(1/&) during a phase of
5n steps (an observation phase of the 1/5-rule) ard O((/f/n)/&), i.e., P{ fr< f} is (1)
as well as 12— Q(1), at the beginning of this phase, then we expgt) steps each of which
reduces thef -value by®( /(& n)). By Chernoff’'s bound, there a&(n) such steps w. o. p., and
thus, thef-value (and with it the approximation error) is reduced vp.ddy a®(1/£)-fraction

in this phase. Then w. 0. p. aft@(¢) consecutive phases the approximation error is halvéd—
during all these phases the evolving search point is suchdfyal, = O(1/&). Since, up to now,
the arguments follow the ones for PDQFs with bounded camdiiumber in Sectidn’5.3.1 (p.J85),
in particular the reasoning on the 1/5-rule can be adoptediwae directly obtain the following
result:

Proposition 5.38. Consider the scenario as described at the beginning ofd®&iE.2 (p9R).
Assume thatl”! /d?! = O(1/¢) ando!® = ©((|d%| /n)/¢) after initialization. If the course
of the optimization is such thak /d, = O(1/£) during the complete optimization process, then
w. 0. p. the number of steps to reduce the inifiavalue/approximation error to a X" -fraction

is ©(b(n) - & - n), whereb : IN — IN such thab = poly(n).

Obviously, the assumption/conditiod;/d, = O(1/&) during the complete optimization pro-
cess” lacks any justification and is, therefore, objectd@a Rather we have to show that the
stochastic process bears this property. Thus, the crucial pm the analysis is the question why
should the ratia; /d; remainO(1/£) (once this is the case). This crucial question will be tadkl
by a rigorous analysis in the remainder of this section.

In the following letA; :=d; —d; and A := d» — d denote the spatial gain of the mutant
towards the origin inS; resp. inS. Thend;/d; for the mutant is smaller thad,/d, for its
parent if and only ifA;/d; > Az/dz. Unfortunately,A; and A, correlate because; and m;
are adapted using the same mutation streagtMoreover, we must take selection into account
because only certain combinations ®f and A, are accepted. To see which combinations are
actually accepted, note that

f' = £.(d1— A% 4 (da— A2)? = £dZ—£201A1+EAT+d5—20A0+ A3,
————™

and hence,

f'<f <= f—f <0 <= —£201A1+EA -2bA2+A5 < 0.

We assumel;,dz> > 0 in the following. Letw be defined byt /& = d1/do, i. e.,a changes with the
current search poirtjust like d; andd,. Then the latter inequality is equivalent to

—20(d2A1+§A% —2doA0 + Ag <0

— A +§A% < A A%
*o1 2d, — 2 2d>
A A
— —ozA1<1—2—d11> < Az(l_z_dz) (usingdz = & - d1 /).
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Thus, when using elitist selection, the mutant is accegtadd only if the last inequality holds.
Whenever a mutation satisfyinge A1 > A, is accepted, then necessarily

A1 Ao A1 Ao A dlA A o A
< = —> = = > — = > —Ao,
2d; 20, & 174,72 TR

implying thatA1 > 0 > A,. Consequently, such a step surely resultd iid; < di/dy, i.e. in
«” < a. Hence, in the following we concentrate on the acceptedtivatafor which—a A1 < As.

We assume for a moment that the selection mechanism was lsacthé mutant
replaces (and becomes) the current individual if and onbyifA1 < As.

Leti € {1,2}. As Az_j israndomE[A; - 1{-xa1<A,}] IS a random variable. For instance, the ran-
dom variableE[ A1 - T{-xa1<A,)] takes the valu&[ A1 - T{—aa;<x}] whenever the random variable
Az happens to take the value We are interested iE[E[A; - 1{-«a1<42)]| = di — E[d], the
expected reduction of the distance from the optimur§ im a step of the (1+1) ES. In particular,
E[d/l/]/E[dg] < dl/dz if and only if the expected relative gain B is at least as large as the one
in S, i.e., ifand only if

E[E[A1- T(-eai<an]]/d1
< E[E[A1-L{-ani=a2)]] - &

E[E[Az . ]].{—O(AlfAz}]]/dz
E[E[Az . ]].{—O(AlfAz}]] ‘.

=
=

In order to prove that there is a constafsitsuch that this inequality holds for > o*, we aim at
alower bound onE[E[A; - 1{-ea1<a2)]] and at arupperbound onE[E[A; - 1{-ea1<a5)]] in the
following.

Therefore, note that

E[E[Ai - Li—eai=aa]] = E[E[Ai-Li—eai=az)- Liai<0] - Liasi<0}] +
[E[Ai - L—ani=az)- 1(ai<0)] - L{asi20)] +

E[E[Ai - Li—aa1=az) - 1{Ai=0)] - L{ag <0} +

E[E[A| - Li—aar=az) - L(ai=0)] - L{as20)]

and thatE[E[A; - L(-aa;<a,) - 1{ai<0)] - 1{a5;<0}] = O since the three indicator inequalities de-
scribe the empty set. Sine;, A >0 = —aA; < Ay,

E[E[Ai - Li-adi<ag)- 1(ai20)] - L{As 0]
= E[E[A| Laiz0)] - T{as 0]
= E[A|-1{ai=0] - P{A3_; > 0}.

Thus, for the expected gain of a stepSrwe obtain

E[E[A; - L{-an1<a]] = E[A;i-1{ai=0]-P{A3_i >0}
+E[E[A| - L{-an1<az) - 1{ai=0)] - 1{az;<0)]
+E[E[A] - L{-an1<az) - 1(ai<0)] - L(as20}].
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Since we are aiming at a lower bound E[E[Al . ]1{—01A1§A2}]], we may ignore the summand
E[E[Al-]l{—aAlgAz}-]l{Ale}] -]l{A2<O}] because it is non-negative anyway. Moreover, we may
pessimistically assume thal; = —x/a wheneverA, happens to equal > 0, which implies that

E[E[A1- T(-aai<az) - 1{a1<0)] - 1{Az20}]
> —E[E[Az A{—anr<Az)- 1{a>0}] ~]1{A1<0}]/a.

Since furthermore

E[E[A2- Li—ani=ag)- 11a,20] - 1{a1<0]]
< E[E[A; 1(a220] - L{ar<0)] = E[Az-1{a220]-P{A1 <O},

we obtain the following lower bound for the expected gain efep inS;:

E[E[A1-L(-ea1<an]] >  E[A1-1{a;=0)] -P{A2 >0} (5.7)
—E[A2-1{a220] - P{A; < 0} /ax.

For the expected gain of a step$, however, we will use the trivial upper bound
E[E[A2-T(-eai<an]] =< E[A2-T1{az=0]. (5.8)

With the help of these two bounds we can now prove that theivelgain of a step inS
becomes larger than the oneSxswhend; /d, exceeds:* /& for some constant™.

Lemma 5.39. In the considered scenario, given thais such thaP{A1 > 0} andP{A, > 0} are
Q(1), there exists a constasmt such that fod; /d, > a* /& yetd;/d> = 0(1)

E[E[A1~]1{f’§f}]]/d1 > K~E[E[A2~]1{f’§f}]]/d2
for any constant for n large enough.

Proof. Recall thatf’ < f A —aA; > Az impliesA; > 0> Ay. Thus, all A1, A)-tuples that
are zeroed out b¥{-«a;<a,} (our temporarily modified selection) but kept byt'<f} (true elitist
selection) are iR~ g x R-g. Analogously,f’ > f A —aA1 < Ay impliesA; < 0 < Ay, so that
all (A1, Ap)-tuples kept byl {(—aa;<A,) but zeroed out byl {f'<f} are inR g x R~o. Hence,

E[E[A1-L(r<t]]
E[E[A2-1('<1)]]

E[E[Al‘]l{—aAlfAz}]] and

=
< E[E[AZ']].{—O(AlfAz}]].

As d;-& = dy- o by definition ofa, we have to show that, P{A1 > 0} andP{A, > 0} are2(1),
there exists a constaat such that fowr > o* yeta = 0(¢) andn large enough

£ E[E[A1-1(t<n]] = «-o-E[E[A2-L(1<]].

Using the lower/upper bound on the expected gain of a st€priesp. S, namely Inequality[{517)
on pagd 99 and Inequality (5.8) on p&gé 99, it is sufficienhtmsthat
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E[A1-1{a120)] - P{A2 > 0} —E[A2- L{azz0)] /@ > E[A2-1{az20] -k -a/§

in such situations. Sinde{A; > 0} andP{A, > 0} are2(1) (by precondition)E[A1 - 1{a;>0}]
andE[A3 - 1{a,>0)] are of the same order, name®(E[|m|]/+/n). Thus, we can choose a con-
stanta® such that the LHS of the inequality above—and witEJE[A1 - 1{f'<f}]]—is at least
E[A1-T1{a:>0)] - P{A2 > 0}/2 for « > «* (andn large enough). Thus, fax > o* the LHS is
Q(E[Im|]/+/N), whereas the RHS ig(E[|m|]/+/Nn) sincek -« /& = o(1) due to the precondition
thata = 0o(&). This directly implies that the inequality holds fodarge enough. O

Now, the preceding lemma tells us that, when the currentbgauint is located at a point for
which o > o*, then the expected relative gain (of the next step) towdrdptimum inS; (on
the £-weighted $HERE, ) is, for instance, twice as large as the onesjr(for n large enough).
Having in mind that the variations of those gains are smiablecomes apparent thatis more
likely to decrease than to increase in such a step. Formedlygbtain that the probability that
does not decrease in a small number of such steps is expalhesthall:

Lemma 5.40. Let the mutation strength be fixed in the considered scenario. If in ttik step
oll > o* yetalll = o(§) andP{A; > 0} as well aP{A, > 0} areQ(1), then (fom large enough)
w.0.p. after at mosmo-_3 steps the search is located at a point for which «['!, and furthermore,
w. 0. p.a < all + O(al'l/n%®) in all intermediate steps.

Proof. We begin by proving the second claim. Let us assume thatjrgjawith theith step,
a > olll for k < n%3 steps. Recall that, due to elitist selection, thevalue is non-increasing.
Sinced; > di! A f < fllimpliesd; < dl'!, which again implies/& = dy/d < dl'/dl? = ol /¢,
we have just proved that necessadly< dg] during thesek steps. Since (for any choice of the
length of an isotropic mutation) in a step w. 0.4, = O(dz/n%?), in all k < n®3 steps w. 0. p.
dp > dl1 — k. Ol /n%9) > dll — O(dl!/n9), i.e., d, = dl(1— ) for somey = O(n~09),
respectively.

Concerning an upper bound dg, we have

. N . . .
f=ed?+d? = ed?+ () —ydf!)" < 100 = edl”® 4"

and hence, during thesteps

gd? < ed 4 (2g —y2dll
> glin? - gl
— d? < dl! +(21/f—1/12)2? = dj +(21/’—1”2)ﬁ =
[i]2 v(2—1v)

Sincey (2 —v)/al'l is bounded byO(n=%9) just like v, we finally obtain that in alk steps

glil ./ —06 i1
@« _ G < #‘—1+O(n_ ) _ Y (1+0(n°%).
§ do dg] 1-0(n"99) §

Now we are ready for the proof of the lemma'’s first claim. Theme, assume that > o'l > o*
for %341 steps. We will show that the probability of observing suckeguence of steps is
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exponentially small. Therefore, note that, since w. ap= dg](l— ) as we have seen, this
assumption implies that also w. o. g > dE](l— ¥), i.e., w.0.p.dy = df] — O(df]/no-e) in all
n%3 steps.

Let Xj[k], j € {1,2, denote the random variablg; - 1{f'<f} in the (—1+Kk)th step. (In par-
ticular, we haveE[X;] = E[E[A; - 1{#'<f}]].) Then, by choosing = 2 in Lemm&5.39 (1.99),
ElxM1/dM > 2. g[xM]/dl for 1 <k <n%3i.e,,

g E[XM] > 2.4M.E[xH] > 2.0 E[x]),

Forje{1,2 IetT[k] Xj[l] +-- +Xj[k] denote the total gain of tHesteps w.r. td;. By linearity

of expectatlonE[T[k]]/d['] > 2.E[TM]/dl! for 1 < k < n%3, however, the goal is to show that
P(TM/dl < T /dll for 1 <k < n03} is exponentially small.

Therefore, we will assume the worst case w.r.t. to the amsa(y%. the best case w.r.t. the
chance of observing such a sequence) Eﬁm[lk]]/d['] =2 E[X[zk]]/dg] in each step.

To see that this is in fact the worst case, consider a seatioh pdor which o > «l'l, i.e.,
di/d> > dm/d“], such that -E[X1] > 2« - E[Xz] Now consider another search pokiith
f(X) = f(x) bute < . Since this implies thal; < d; andd, > dy, PropositiofiZ13 (j.33) tells us
thatA; is stochastlcally dominated hy1, WhereasAZ stochastically dominates,. This |mpI|es
thatX; dominatesX, whereasX, is dominated byX», and in particular, we havg[ X1] < E[X4]
andE[X»] > E[X2].

As we have just seen, we may pessimistically assume thatmstap the search is located at a
point for whiché -E[X1] = 2 -« - E[X2]. Hence,E[Tl[k]]/d['] =2 E[TZ[k]]/dg]. LetT; abbreviate
Tj[”o's] for j € {1,2). Since 1.20.8=1.5< 2, it is sufficient to show that w. 0. p[; > 0.8- E[T1]
and that also w. 0. pl, < 1.2-E[T,].

By Hoeffding’s bound (cf. Theorein2.3 (p113)), fks(lj-[k] € [a;,bj] andtj > 0,

—2.1;2
P{Ti—E[Ti] < -t} < exp(m) e

—2.1,2
P{To—E[T2] > t} < exp 02 (by—a5)2)

Choosingtj := 0.2 E[T;] for j € {1,2}, each of the two exponents solves to
—0.08 n7%%. E[Tj]%/(bj —g)* = —Q(n*d). (7

Thus, it remains to show th&[T;]/(bj — a;) = 2(n%?) because this would result in an exponent
of —Q(n~°3.(n%??), which is—Q(n%Y).

First we concentrate oB[T1]/(b1 — a;). SinceT; is the sum on®3 random variableé([l"], it
suffices to show tha[X!]/(b; —a;) = 2(n~01) for 1 < k < n®3, In the following we assume
as a fact thath, = dl'! + O(d!"!/n®®) andd, € [d! — O(dl1/n%6),dl] since this happens w. o. p.
(as we have already seen above in the proof of the lemma’sidextaim).

Recall that the mutation vector is split into two indepertd@r2)-dimensional Gaussian mu-
tations (one forS, and one forS;) which are scaled by the same mutation strergthin par-
ticular, both mutation vectors have the same expectedheteft¢ denote this expected length
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and recall from Lemm@&310 (@19) that< o - /n/2. Owing to the results for SHERElike
functions, we know thaP{A; > 0} = (1) implies thato = O(d;/n), i.e.,£ = O(dj//n), and
that, under these conditions, w. o]pj | = O(¢;/n°®4). Also recall thaE[A1 - 1(t'<t)] is at least
E[A1-1{a;20] - P{A; > 0}/2. SinceP{A; > 0} = (1) inith step and, > di’(1— O(n—09))
in all n°3 steps, in each of these stePsA, > 0} = Q(1). Hence E[X1] = Q(E[A1- 1{a:>0)])
in each of then®3 steps. Owing to the results forr8ERElike functions, we know (since
¢ = 0(dy/+/n) as we have seen) thBfA1 - 1{a;>0]] = ©(¢/4/n) so thatE[ X1] = Q(¢//N).

Altogether, we have shown th&{T;] = n%3. Q(¢//n) = Q(¢/n%?) andb; — a; = O(¢/n%4),
implying E[T1] /(b1 — a1) = Q(n%2). _ _

Concerning a lower bound dg&[T>], recall thatE[Tl]/dg'] =2 E[Tz]/dg]. As a consequence,
E[T2] = E[Ta] - d}?/2- dll) = @(n®3. ¢//n) - (& /al). Sinceall = O(¢) (by precondition),
we haveE[T,] = Q(¢/n°?), and sinced, — a; = O(¢/n°4) (cf. the reasoning fob; — a; above),
E[T2]/(b2 — ap) = (¢/n%?)/0(¢/n°4), which is alsa2(n®?).

All'in all, we have shown thaP{T; < 0.8-E[T1]} as well asP{T, > 1.2-E[T,]} are bounded
above by e, Thus, our initial assumption that> &l > o* for n%3+ 1 steps implies that
w. 0. p. for the firsn®3 stepsT,/ T, > al'l /& (cf. above), i. e., that w. 0. p. after at madt steps
o does drop below!'l—a contradiction to our initial assumption. Thus, the segeeof steps
we assumed to be observed happens only with an exponerstiadlif probability. O

Since the 1/5-rule keeps the mutation strength unchangéad &ieps, we can virtually partition
each such observation phase iy 522 = 5n°7 sub-phases to each of which this lemma applies.
SinceO(«!1/n%6) < «l1l for n large enough, the preceding lemma shows the following:

When starting at a point® for which ! = O(1), i.e.,d” /d¥ = O(1/¢), thena remains
smaller than 2max{«[®, «*} = O(1) w. 0. p. for any polynomial number of steps.

Incorporating these new insights into the reasoning forlifterule known from our analy-
sis for SPHEREIike functions finally enables us to drop the objectionaddsumption/condition
“dy/dr = O(1/¢) in the complete optimization process” in Proposition 5(8%1), so that we
obtain the following result:

Theorem 5.41. Let the (1+1) ES using Gaussian mutations adapted by theuléninimize the
PDQF f,: R" — R given in Equation[(5]6) on pa§el92.

Given that the initialization is such that® = @(|d%| /(n&)) andd® /dl! = O(1/¢), then
w. 0. p. the number of steps to reduce the initial approxiomegirror/f -value to a 2°M-fraction
is ®(bm) - & -n), whereb: IN — IN such thab = poly(n).

Knowing thatx does never (w. o. p. for any polynomial number of steps) ex2emax{«!, o*}
is sufficient to obtain this theorem. If the initializatios such thaw!? is considerably larger
thana™, however, we would like to know that there is a drift towardsafler«. And in fact, a
closer look at the arguments in the proof of Lenimalk.40(p) t®@als that the same arguments
show that the drift towards smalleris so strong whea > 2-«* thata drops w. 0. p. by a constant
fraction within at mosh steps:

Proposition 5.42. Let the mutation strength be fixed in the considered scenarioPI{I‘Al > 0},
1/2—P{A1 > 0}, P{A2 > 0} are2(1), then forn large enough: If in théth stepa!'] >2-a" yet
all = o(¢), then w. 0. p. after at moststeps the search is located at a point with [l — Q(«l).
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Proof. Choosingx = 3 in Lemmal5.3P (1..99), we obtain that (at least fotarge enough)
£-E[E[A1-1i1'=1)]] = 3-a-E[E[A2- 1if'<1}]]. Assume thatl!! > 2¢* anda > o* for n steps
(if « drops belowx™ within thesen steps, there is nothing to show sincbas been at least halved).
Following the same arguments used in the proof of Lerimd $4000)—except foil; now be-
ing the sum of instead oin® 2 random variables—we obtain thatw. 0./ T> > 2-«l'l /¢, and
hence, after thesesteps w. o. p.

d*  dl-n dl-m
ol = AT, = a1y -£/(2-all)
! ~T1
—dlg/ell - Ty g /(2- ol
dl T, off
T dlme e

- [1- _ N2 ), £
dT_T/2) dll
Thus, we must finally show thdi, the total gain of the steps inS,, is Q(dE]) w. 0. p. Therefore,
recall thatTy is the sum of random variableX! (namelyA; - 1(+'<f) in the {—1+k)th step,
respectively). In the following we consider a single step.

As shown in the proof of LemnfaS K0 [ 0@ A1 - 1(f'<f}] = Q(E[A1-1{a;:>0)]) due to the
lemma’s preconditions. Siné&A; > 0} is (1) as well as 12— 22(1) (also by precondition), the
mutation strengtlr is such thaE[A1 - 1{a;>0] = ©(dy/n). Allin all, the lemma’s preconditions
ensure thaE[A1 - 1{f'<f}] = Q(dy/n) in a step.

Hence E[T1] = n-Q(d1/n) = ©(d1), and by applying Hoeffding’s bound just like in the proof
of Lemmal5.4D (£_100), we finally obtain thBtis Q(E[T1]), i. e. (d!'), also w. 0. p. O

This lemma shows that drops very quickly—if the lemma’s conditions are met. Wiitig the
results that we obtained forr8ERElike functions just as we have done in Secfion3.3.1(b. 85)
for PDQFs with bounded bandwidth, it is readily checked tiha&t condition P{A; > 0} and
1/2—P{A1 > 0} are2(1)"is in fact ensured by the 1/5-rule fdi/d, > «* /& (recall that the case
di/d> = O(1/¢) is covered by the arguments and proofs for PDQFs with badim@dadwidth
in Section(&. 311 (185)). The two conditiong = o(¢)” and “P{A, > 0} = (1)", however,
originate from Lemm&5.39 (R P9) where they enable a shatsanple proof.

Naturally, fora > o* the drift towards smallex increases whea increases, and the statement
of the preceding lemma is true without these two conditi@swhy does our proof rely on them?
The answer is simple: In the very beginning of the reasoniegdecided to focus on smat,
namely ona that areO(1). As a consequence, we decided on dage 99 to disreggrd“0.”

It appears neither in the lower bound on the expected gai ithamely Inequality[[5]7) on
pagd9P), nor in the upper bound on the expected gaa (namely Inequalityl(518) on pa§el99);
neither in an indicator variable, nor in a probability. Yiefact, for a fixed positivef -value and a
fixed positive mutation strengtR{A> < 0} — 1 asa — oo, since the mutation of a search point
with d = 0 results ind; = |my| > 0 with probability one.
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Formally, we would show the[A» - 1{-«A1<A,}] actually becomes negative wharexceeds
a particulare™*. For the lower bound on a step’s expected gailsinwe would show that the
term E[E[A1- L{-aa1=a2) - 1(a120)] - 1{a2<0}], Which we decided to ignore on pagd 99, is actu-
ally Q(E[A1-1{a;,>0]) for large«. However, since it is evident that the drift towards smadler
becomes larger and larger@agrows, we refrain from a full formal treatment.

5.3.3 Remarks

Based on the results on how the (1+1) ES minimizes the wellxknS~HEREfunction, we have
extended these results to a broader class of functions. NMaorethe one hand, all positive
definite quadratic forms with bounded bandwidth/conditiamber are covered, and on the other
hand, we tackled the algorithmic analysis of the (1+1) E®gi§aussian mutations adapted by
a 1/5-rule for a certain subclass of positive definite quiadfarms with unbounded bandwidth,
which are also sometimes called “ill-conditioned”

The main insight of these results is that Gaussian mutatidapted by the 1/5-rule make the
optimization process stabilize such that the trajectorthefevolving search point takes course
very close to the gentlest descent of the ellipsoidal fittesdscape, i. €., in the region of (almost)
maximum curvature, which leads to a poor performance (lscatia small mutation strength).

Naturally, the results carry over to functions that are gtations (w.r.t. the search spaBé)
of a considered PDQF, namely to functiongy(x) = f(x — x*) for a fixed translation vector
x* € R". Rather than considering the distance from the origin, weelwemust consider the
distance from the optimum point* in all arguments. The implications for functions that are
translations w.r. t. the objective space, nantgly) = f (x) 4+« for some constant € R, are also
straightforward. Since the minimum value equals that case, however, we can no longer use
the current function value as the measure of the approxomatiror. Either we usg(x) —«, or
we restrict ourselves to the approximation error w. r. t. 4barch space, i. e., to the distance from
the optimum search point.

Just like all other results in this chapter, also the redutihimed for the (1+1) ES in the previous
section is valid not only for Gaussian mutations (which araed by the mutation strength,
which is deterministically adapted). We merely utilizectttior a Gaussian mutation vector
m overR" we haveP{|f| € [/n/2,2,/n} = 1— O(1/n), cf. Lemmal3ID0 (1£39). In fact, all
proofs carry over when substituting any isotropically dlistted vectorm™ for M that satisfies
P{|ﬁ‘1*| € [aﬁ,bﬁ} = 1-0(1) (asn grows) for two positive constants andb. (Note that
under these conditiors[|M*|] might not be finite.)
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Kenneth A. De Jong once asked me the question (w.r. t. a tesitfs not part of this dissertation)
“So you proved the obvious?” And this question does makeeserisere are at least two different
answers: “Yes, | provethe obvious and “Yes, | provedthe obvious.” The difference is—as
it is often the case—the point of view. As discussed in theoghiction, the dynamical-system
approach has borne a bunch of results on the so-called pogage for the BHERE scenario,
the expected spatial gain towards a fixed point in the segrabes Despite the fact that they
were obtained using the central/lateral component decsitipo of the mutation vector (which
we discussed in Sectidn 8.4 [pl 28)) and the assumption hieaateral component would not
deviate from its expectation, those results can be taken(amee or less) strong indicator that
the expectechumber of steps that a{1) ES needs to halve the distance from the optimum is
Q(n/In(14+1)). Yet as we have seen in Sectionl4.2((p. 35), formally cafioly a lower bound
on the expected number of steps from an upper bound on thetexbene-step gain is anything
but trivial. The aim of this work, however, was to prove lowand upper) bounds on the number
of steps/mutations. And in fact, we did prove a lower boun&i/ In(1+1))—and this bound
holds with an overwhelming probability of -1 e, Such types of results can definitely be
considered as not obvious—as they provide much deepehinsidevertheless, one may feel
comfortable with strong indications, of course. The intimas of the progress-rate results on the
runtime of concrete ES, however, are not at all as strong rathégeneral lower bound. The
reason is that they usually aim at the maximum possible pesgrAnd obviously, an adaptation
mechanism cannot ensure the optimal adaptation of the imuitsttength in each step. Neverthe-
less, the result that the (1+1) ES using Gaussian mutatatagged by the 1/5-rule gets along with
a linear number (im) of steps to halve the approximation error when minimizimg BRE may
appear obvious—since each of thousands of simulationso$tienario has shown this behavior.
Yet in fact, here we have proved why: The results presentéusrdissertation prove that the pa-
rameters of the 1/5-rule can be varied in a large range wittloanging the order of step&,(n).
Moreover, failures of the 1/5-rule in this scenario areuatly not observed because the stochastic
process is such that tt@(n)-bound holds with an overwhelming probability of-E=%""*) And
again, this result can well be considered as not obvious.

Clearly, the 1/5-rule is not used in today’s practical ofiation with evolution strategies.
Thus, the results obtained here are just a first startingtp@in the other hand, we have proved
why the 1/5-rule is not used in practice (anymore): For thig gample fithness landscapes induced
by positive definite quadratic forms, the 1/5-rule makese@ving search point move into the
region close to the gentlest descent, which results in alsmahtion strength and, finally, in
a slow progression of the optimization. This has alreadyhbesed in experimental research,
of course. With thecovariance matrix adaptation (CMAMHansen and Ostermeier (1996) came
up with an adaptation mechanism which is able to cope witaliditioned quadratic functions.
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In fact, CMA with cumulative step-length adaptation (CS#&n be considerethe state-of-the-
art adaptation in evolution strategies. As progress-raselts for CMA/CSA-ES indicate, we
can still not hope to analyze this very sophisticated adimptan the same way as we did here
for the 1/5-rule. However, a first step within reach may beahalysis of a (11) ES using a
simplified version of CMA (and no CSA, but a 1/5-rule-like atition of the mutation strength).
Another interesting extension would be to consider &, ,A) ES where in each stepmutants
are independently generated by adding a scaled Gaussiationub the centroid of the parent
individuals. This allows for larger mutation strengths adlas for larger progress rates because
of the so-calledyenetic repaircf. Beyer (2001, Section 6.1.3.2). A runtime analysis ofhsan
algorithm seems possible with the methods developed intthi&. Various other modifications
of the ESs that are covered by the results of this dissentatiould also be analyzable.

Though we have to accept that (in evolutionary optimizatidreory will not catch up with
practice soon, we see that in this field there are lot of chgs and interesting questions to
tackle with a probabilistic analysis. So let’s catch up.

106



Bibliography

Arfken, G. B. (1990):Mathematical Methods for Physicis&cademic Press, San Diego, 3rd edn.
Arnold, D. (2002):Noisy Optimization with Evolution Strategie3pringer.

Auger, A. (2005): Convergence results for the [3;SA-ES using the theory gf-irreducible
Markov chains Theoretical Computer Science, 334(1-3):35-69.

Beyer, H.-G. (2001)The Theory of Evolution StrategieSpringer.

Beyer, H.-G., Meyer-Nieberg, S. (2005pn the prediction of the solution quality in noisy opti-
mization In Foundations of Genetic Algorithms: 8th Int'l Workshop, Red Selected Papers
(FOGA) vol. 3469 ofLNCS 238-259, Springer.

Beyer, H.-G., Schwefel, H.-P. (2002ZEvolution strategies — a comprehensive introductidat-
ural Computing, 1:3-52.

Beyer, H.-G., Schwefel, H.-P., Wegener, |. (200@pw to analyse evolutionary algorithmhe-
oretical Computer Science, 287(1):101-130.

Bienvenue, A., Francois, O. (2003)Global convergence for evolution strategies in spher-
ical problems: Some simple proofs and difficultieBheoretical Computer Science,
306(1-3):269-289.

de Bruijn, N. G. (1970):Asymptotic Methods in Analysislorth-Holland Publishing Company,
Amsterdam, 3rd edn.

Droste, S., Jansen, T., Tinnefeld, K., Wegener, I. (2002a)ew framework for the valuation of
algorithms for black-box optimizatiomn Foundations of Genetic Algorithms 7 (FOGA 2002)
253-270, Morgan Kaufmann, San Francisco.

Droste, S., Jansen, T., Wegener, |. (1998n the optimization of unimodal functions with the
(1+1) evolutionary algorithmIn Parallel Problem Solving from Nature — PPSNwb6l. 1498
of LNCS 13-22.

Droste, S., Jansen, T., Wegener, |. (20@ynamic parameter control in simple evolutionary al-
gorithms In Foundations of Genetic Algorithms 6 (FOGA 20®§5-294, Morgan Kaufmann,
San Francisco.

Droste, S., Jansen, T., Wegener, |. (200Zbi): the analysis of the (1+1) evolutionary algorithm
Theoretical Computer Science, 276(1-2):51-82.

107



Bibliography
Droste, S., Jansen, T., Wegener, |. (200#)per and lower bounds for randomized search heuris-

tics in black-box optimizatianTheory of Computing Systems, 39(4):525-544.

Fang, K.-T., Kotz, S., Ng, K.-W. (1990Bymmetric multivariate and related distribution®l. 36
of Monographs on statistics and applied probabili§hapman & Hall, London.

Feller, W. (1971):An Introduction to Probability Theory and Its Applicatign®l. 2. Wiley, 2nd
edn.

Fogel, D. B. (editor) (1998)Evolutionary Computation: The Fossil RecoWiley-IEEE Press.

Garnier, J., Kallel, L., Schoenauer, M. (199®igorous hitting times for binary mutationg&vo-
lutionary Computation, 7(2):173-203.

Giel, O., Wegener, I. (2003)Evolutionary algorithms and the maximum matching problém
Proc. 20th Int’l Symposium on Theoretical Aspects of Compbtience (STACS)ol. 2607 of
LNCS 415-426, Springer.

Goldberg, D. E., Deb, K. (1990)A comparative analysis of selection schemes used in genetic
algorithms.In Proc. 1st Workshop on Foundations of Genetic AlgorithmsGA) 69-93.

Gradshteyn, I. S., Ryzhik, I. M. (1994Jable of Integrals, Series, and Producéscademic Press,
San Diego, 5th edn.

Grinstead, C. M., Snell, J. L. (1997ntroduction to Probability American Mathematical Society,
2nd edn.

Haagerup, U. (1982):The best constants in the Khintchine inequal®iudia Mathematika,
70:231-283.

Hansen, N., Ostermeier, A. (199&dapting arbitrary normal mutation distributions in evailbn
strategies: The covariance matrix adaptation Proc. IEEE Int'| Conference on Evolutionary
Computation (ICEC)312-317.

Hoeffding, W. (1963):Probability inequalities for sums of bounded random valésbAmerican
Statistical Association Journal, 58(301):13-30.

Hofri, M. (1987): Probabilistic Analysis of AlgorithmsSpringer.

Jagerskupper, J., Storch, T. (2008pw comma selection helps with the escape from local optima
In Proc. 9th Int'l Conference on Parallel Problem Solving Frovature (PPSN IX)vol. 4193
of LNCS 52-61, Springer.

Kendall, M. G. (1961):A Course in the Geometry of n Dimensio@harles Griffin & Co. Ltd.,
London.

Lanczos, C. (1956)Applied AnalysisDover Publications, New York, republication.

108



Bibliography
Mitzenmacher, M., Upfal, E. (2005robability and Computing: Randomized Algorithms and
Probabilistic AnalysisCambridge University Press.
Motwani, R., Raghavan, P. (1993andomized Algorithm€&€ambridge University Press.

Muhlenbein, H. (1992):How genetic algorithmis really work: Mutation and hillcllbimg. In
Parallel Problem Solving from Nature 2 (PPSNB—-25, North-Holland, Amsterdam.

Nemirovsky, A. S., Yudin, D. B. (1983Problem Complexity and Method Efficiency in Optimiza-
tion. Wiley, New York.

Neumann, F., Wegener, |. (2004Randomized local search, evolutionary algorithms, and the
minimum spanning tree problerm Proc. Genetic and Evolutionary Computation Conference
(GECCO) vol. 3102 ofLNCS 713-724, Springetr.

Rappl, G. (1989)0n linear convergence of a class of random search algoritt#egschrift fur
angewandte Mathematik und Mechanik (ZAMM), 69(1):37-45.

Rechenberg, 1. (1965)Cybernetic solution path of an experimental problétoyal Aircraft Es-
tablishment, in_Fogel (1998).

Rechenberg, I. (1973EvolutionsstrategieFrommann-Holzboog, Stuttgart, Germany.
Rechenberg, I. (1994Evolutionsstrategie '94Frommann-Holzboog, Stuttgart, Germany.

Rudolph, G. (1997):Convergence Properties of Evolutionary Algorithnverlag Dr. Kov&,
Hamburg.

Scharnow, J., Tinnefeld, K., Wegener, |. (200Rness landscapes based on sorting and shortest
paths problemdn Parallel Problem Solving from Nature 7 (PPSN®dI. 2439 ofLNCS 54-63,
Springer.

Schwefel, H.-P. (1981)Numerical Optimization of Computer ModeWiley, New York.
Schwefel, H.-P. (1995)Evolution and Optimum Seeking/iley, New York.

Teytaud, O., Gelly, S. (2006)General lower bounds for evolutionary algorithma Proc. 9th
Int'l Conference on Parallel Problem Solving From NatureP@N 1X) vol. 4193 of LNCS
21-31, Springer.

Teytaud, O., Gelly, S., Mary, J. (2008pn the ultimate convergence rates for isotropic algorithms
and the best choices among various forms of isotrapfProc. 9th Int’'l Conference on Parallel
Problem Solving From Nature (PPSN IXpl. 4193 ofLNCS 32-41, Springer.

Wegener, |. (2001):Theoretical aspects of evolutionary algorithma Proc. 28th Int’l Col-
loquium on Automata, Languages and Programming (ICAM®). 2076 of LNCS 64-78,
Springer.

109



Bibliography

Wegener, |. (2003)Towards a theory of randomized search heuristlosProc. 28th Int’l Sym-
posium on Mathematical Foundations of Computer ScienceG8&)Fvol. 2747 of LNCS
125-141, Springer.

Witt, C. (2005a):Runtime analysis of thew+1) EA on simple pseudo-Boolean functioEsolu-
tionary Computation, 14(1):65-86.

Witt, C. (2005b): Worst-case and average-case approximations by simpleoraimbd search
heuristics In Proc. 22nd Annual Symposium on Theoretical Aspects of Camm@gcience
(STACS)vol. 3404 ofLNCS 44-56, Springer.

110






	Introduction
	Overview
	The Evolution Strategies under Consideration
	(1+) Evolution Strategy
	(1,) Evolution Strategy
	(+1) Evolution Strategy
	Additional Notes, Notions, and Notations

	Underlying Publications

	Preliminaries
	Isotropic Mutations
	Isotropic Probability Distributions
	Gaussian Mutations
	Spatial Gain of an Isotropic Mutation
	Spatial Gain of a Unit Isotropic Mutation
	Spatial Gain of a Gaussian Mutation

	Additional Notes

	General Lower Bounds 
	Spatial Gain Towards a Fixed Search Point
	Lower Bound on the Expected Number of Steps of (1+1)ESs
	Lower Bound for (1,+- .4 )ESs which Holds with Overwhelming Probability
	Lower Bound for (+1)ES s which Holds with Overwhelming Probability
	Overcoming Gaps with Elitist Selection
	Linearly Separated Gaps
	Spherically Separated Gaps
	Exemplary Application to Concrete Functions
	Additional Notes on Overcoming Gaps

	 Remarks on the Lower-Bound Results

	Bounds for Concrete Scenarios
	Gaussian Mutations and 1/5-Rule
	Gaussian Mutations and 1/5-Rule for the (10mu mumu ,,--@汥瑀瑯步渠-,+)Evolution Strategy
	Gaussian Mutations and 1/5-Rule for the (+1) Evolution Strategy
	Gaussian Mutations and 1/5-Rule and the Spatial Gain

	-like Functions
	-like Functions and the (1+1)ES with 1/5-Rule
	-like Functions and the (1+)ES with 1/5-Rule
	-like Functions and a Modified 1/5-Rule for the (1+)ES
	-like Functions and the (1,)ES with 1/5-Rule
	-like Functions and the (+1)ES with 1/5-Rule

	The (1+1)ES on Positive Definite Quadratic Forms
	Positive Definite Quadratic Forms with Bounded Condition Number
	Positive Definite Quadratic Forms with Unbounded Condition Number
	Remarks


	Conclusion and Outlook

