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Summary
This dissertation deals with optimization in high-dimensional Euclidean spaceRn. Namely, a
particular type of direct-search methods known as Evolution Strategies (ESs) are investigated.
Evolution Strategies mimic natural evolution, in particular mutation, in order to “evolve” an ap-
proximate solution.

As this dissertation focuses on theoretical investigationof ESs in the way randomized approx-
imation algorithms are analyzed in theoretical computer science (rather than by means of conver-
gence theory or dynamical-system theory), very basic and simple ESs are considered. Namely,
the only search operator that is applied are so-called isotropic mutations. That is, a new candidate
solution is obtained by adding a random vector to the currentcandidate solution the distribution
of which is spherically symmetric.

General lower bounds on the number of steps/isotropic mutations which are necessary to reduce
the approximation error in the search space are proved, where the focus is on how the number of
optimization steps depends on (and scales with) the dimensionality of the search space. These
lower bounds hold independently of the function to be optimized and for large classes of ESs.
Moreover, for several concrete optimization scenarios where certain ESs optimize a unimodal
function, upper bounds on the number of optimization steps are proved.
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Symbols and Abbreviations
i. i. d. independently identically distributed
a. s. almost sure, i. e. with probability one
w. o. p. with overwhelming probability (page 15)
PDQF positive definite quadratic form
1 indicator variable (page 14)
X ≻ Y the random variableX stochastically dominates the random variableY (page 13)
X ∼ Y X ≻ Y andX ≺ Y, i. e., the random variablesX andY are equidistributed
x bold small letters usually denote vectors/search points
Q bold capital letters usually denote matrices;I denotes the identity matrix
|x| Euclidean norm of the vectorx ∈ R

n, i. e.,
√

x1
2 +·· ·+ xn

2

P{E} probability of the eventE
E[X] expectation of the random variableX
Var[X] variance of the random variableX
X〈i : j 〉 i th order statistic (ofj ) of the random variableX
X+, X− X ·1{X≥0} resp.X ·1{X≤0} (whereX is a random variable)
Ŵ the (complete) Gamma function
G the random variable defined in Equation (3.2) on page 21
1 x∗,ℓ the random variable defined in Equation (4.1) on page 32
G̃, 1̃, etc. random variables that relate to a so-called Gaussian mutation
X an individual, where an individual is more than just a searchpoint
O,�,2,o,ω asymptotic notations (page 15)
poly(n) O(nc) for some constantc
≍ asymptotically equal (page 15)
e Euler’s constant 2.7182. . . (base of the natural logarithm, i. e., lne= 1)
R the reals
R>0 the positive reals
N the set{1,2,3,. . .} of natural numbers
N0 N∪{0}
9 the value of

∫ 1
−1(1− x2)(n−3)/2dx, cf. Inequality (3.6) on page 24
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1 Introdu
tion
Finding an optimum of a given functionf : S→ R is one of the fundamental problems—in the-
ory as well as in practice. The search spaceS can be discrete or continuous, likeN or R. If S
has more than one dimension, it may also be a mixture, like it is the case for optimization tasks
that are so-called mixed-integer programs where, for instance,{0,1}× [0,1] might be the search
space, i. e., one of thedecision variablesis discrete (here 0-1-valued) and another one is continu-
ous (here non-negative yet at most 1). In this dissertation,the optimization in “high-dimensional”
Euclidean space is considered, i. e., the search space isR

n. What “high-dimensional” means is
usually anything but well-defined. A particular 10-dimensional problem in practice may already
be considered “high-dimensional” by the ones who try to solve it. In this dissertation, the cru-
cial aspect of the optimization is how the optimization timescales with the dimensionality of
the search spaceRn, i. e., we consider the optimization time as a function ofn. In other words,
here we are interested in what happens when the dimensionality of the search space gets higher
and higher. This viewpoint is typical for analyses in computer science. Unfortunately, it seems
that the optimization in continuous search spaces is not oneof the core topics in computer sci-
ence. Rather it lies in the domain of operations research andmathematical programming. There,
however, focusing on how the optimization time scales with the search space’s dimension seems
rather uncommon. Rather, the performance of an optimization method is described by means of
convergence theory. As an example, let us take a closer look at “linear convergence.” Letx∗

denote the optimum search point of a unimodal function andx[k] the approximate solution afterk
optimization steps. Then we have

dist(x∗,x [k+1])

dist(x∗,x [k] )
→ c ∈ R<1 as k → ∞

where dist(·, ·) denotes some distance measure, most commonly the Euclidean distance between
two points (when considering convergence towardsx∗ in the search spaceRn), or the absolute
difference in function value (when considering convergence towards the optimum function value
in the objective space). From a computer scientist’s point of view, the first issue with such a result
is that we do not know whenk is large enough to actually ensure dist(x∗,x [k+1]) ≤ c′ ·dist(x∗,x[k] )
for some constantc′ < 1, i. e., to ensure progress of the optimization. The second issue is that
there seems to be no connection ton, the dimension of the search space. Only ifc is an absolute
constant, there is actual independence ofn; yet in general, theconvergence rate cdepends onn.
When we are interested in, say, the number of steps necessaryto halve the approximation error
(given by the distance fromx∗), the order of this number with respect ton precisely depends on
how c depends onn. For instance, ifc = 1−0.5/n, we need2(n) steps; ifc = 1−0.5/n2, how-
ever, we need2(n2) steps—whenk is large enough, of course. Thus, the order of convergence
(“linear” in the example above) tells us something about the“final speed” of the optimization, but
in general nothing about then-dependence of the number of steps necessary to ensure a certain
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tion
approximation error (unlessc is an absolute constant; then it takes a constant number of steps to
halve the distance fromx∗ independently ofn).

Regarding the approximation error, for unconstrained optimization inRn it is generally not
clear how the optimization time can be measured solely with respect to the absolute error of
the approximation. In contrast to discrete and finite problems (like CLIQUE), the initial error
is generally not bounded (for CLIQUE the trivial solution consisting of a single vertex is an
approximation with bounded error). Hence, the question howmany steps it takes to get into the
ε-ball aroundx∗ does not make sense without specifying the starting conditions. Rather we must
consider the optimization time with respect the relative improvement of the approximation.

The simple optimization problems that we will consider result in a somehow homogeneous
optimization process which enables us to measure the performance of the algorithm by the number
of steps which are necessary to halve the approximation error, i. e. the distance fromx∗. Starting
at distance 2b ·ε for someb ∈N, i. e., dist(x∗,x[0]) = 2b ·ε, then gives an additional factor ofb for
the number of stepsk which are necessary to obtain anε-approximation, i. e., dist(x∗,x [k]) ≤ ε.

Methods for solving optimization problems in continuous domains, essentiallyS = R
n, are

usually classified into first-order, second-order, and zeroth-order methods, depending on whether
they utilize the gradient (the first derivative) of the objective function, the gradient and the Hessian
(the second derivative), or neither of both. A zeroth-ordermethod is also calledderivative-free
or direct search method.Newton’s method is a classical second-order method; first-order meth-
ods can be (sub)classified into Quasi-Newton, steepest descent, and conjugate gradient methods.
Classical zeroth-order methods try to approximate the gradient and to then plug this estimate
into a first-order method. Finally, amongst the modern zeroth-order methods, evolutionary al-
gorithms (EAs) come into play, which are (often general-purpose) search heuristics that mimic
natural evolution—sometimes in a very broad sense. EAs for continuous optimization, however,
are commonly subsumed under the termevolution(ary) strategies (ESs).1

When information about the gradient is not available, for instance if f relates to a property
of some workpiece and is given by computer simulations or even by real-world experiments,
first-order (and also second-order) methods just cannot by applied. As the approximation of
the gradient usually involves�(n) f -evaluations, a single optimization step of a classical zeroth
order-method is computationally expensive, in particularif f is given implicitly by simulations.
In practical optimization, especially in mechanical engineering, this is often the case, and particu-
larly in this field EAs are becoming more and more popular. However, the enthusiasm in practical
EAs has led to an unclear variety of very sophisticated and problem-specific EAs. Unfortunately,
from a theoretical point of view, the development of such EAsis solely driven by practical suc-
cess, whereas the aspect of a theoretical analysis is left aside. Particularly “[i]n the early phase
of ES[s], these EA[s] were mainly developed and analyzed by engineers. A more or less system-
theoretic approach aiming at the prediction of the EA[s’] behavior as a dynamical system served
as the central paradigm. That is, the usual way of thinking about a theory of EA[s] is considering
the EA and the objective functionf : Rn → R [. . . ] in terms of a dynamical (or evolutionary)
system” as noted by Beyer, Schwefel, and Wegener in their article “How to analyze evolutionary

1Beyer, Schwefel, and Wegener (2002, p. 107) point out: “It iscommon belief that evolutionary optimization
of real-valued objective functions inRn search spaces is a specialty of evolution strategies (ES). While there
are indeed state-of-the-art ES versions specially tailored for Rn supporting this belief, it is historically not
correct (for the history see Beyer and Schwefel (2002)).”

2



algorithms” inTheoretical Computer Science(2002, p. 107). On page 108 the authors further
note that even when the stochastic process which is induced by an ES is a Markov process, so
that the Markov kernel “describes the dynamics of the EA system completely, its usefulness is
rather limited: the analytical determination of the dynamics is almost always excluded. Even in
the simplest cases the analytical determination of the Markov kernel is excluded. [. . . ] When
thinking of EA practice, the user often monitors the dynamics of the fitness values, e. g., expected
average population fitness and expected best-so-far fitnesscome into mind. From a theoretical
viewpoint also the expected distance to the optimum state (if there is a single one) is of interest.
It should be the aim of theory to predict these mean-value dynamics for a given EA system an-
alytically. However, up until now, even this task can only beaccomplished for the simplest EA
systems using asymptotic (n → ∞) considerations or by relying on approximations.”

To summarize, concerning EAs, theory has not kept up with practice, and thus, we should
not try to analyze the most sophisticated EA en vogue, but concentrate on very basic, or call
them “simple”, EAs to build a sound and solid basis for EA-theory within the field of theoretical
computer science.

For discrete search spaces, essentially{0,1}n, such a theory has been started successfully in the
1990s, for instance Mühlenbein (1992), Rudolph (1997), Droste, Jansen, and Wegener (1998),
and Garnier, Kallel, and Schoenauer (1999); cf. Wegener (2001) and Droste, Jansen, and Wegener
(2002b). Meanwhile first results for non-artificial, but well-known problems have been obtained,
e. g., for sorting and the shortest path problem by Scharnow,Tinnefeld, and Wegener (2002), for
the maximum matching problem by Giel and Wegener (2003), forthe minimum spanning tree
problem by Neumann and Wegener (2004), and for a simple scheduling problem by Witt (2005b).
Such results deal with the efficiency of concrete EAs for a concrete class of problems. Also
complexity theoretical aspects have already been investigated:

When f is given to the optimization algorithm as an oracle forf -evaluations (zeroth-order or-
acle) and the cost of the optimization (the runtime) is defined as the number of queries to this ora-
cle, we are in the so-calledblack-box optimizationscenario. Nemirovsky and Yudin (1983, p. 333)
state (w. r. t. the optimization in continuous search spaces) in their bookProblem Complexity and
Method Efficiency in Optimization:“From a practical point of view this situation would seem to
be more typical. At the same time it is objectively more complicated and it has been studied in
a far less extend than the one [with first-order oracles/methods] considered earlier.” After more
than two decades there still seems to be some truth in their statement—yet to a smaller extent.
For discrete black-box optimization, a complexity theory has been successfully started by Droste,
Jansen, Tinnefeld, and Wegener (2002a), cf. Wegener (2003)and Droste, Jansen, and Wegener
(2006). Lower bounds on the number off -evaluations (theblack-box complexity) are proved
with respect to classes of functions when an arbitrary(!) optimization heuristic (just for instance
an EA) knows about the classF of functions to whichf belongs, but nothing aboutf itself. The
benefits of such results are obvious: They can prove that an allegedly poor performance of an
apparently simple black-box algorithm onf is not due to the algorithm’s simpleness, but due to
the inherent black-box complexity ofF .

As mentioned above, the situation for evolutionary optimization in continuous search spaces is
different. Besides the dynamical-system approach discussed above—Rechenberg (1973, 1994),
Schwefel (1981, 1995), and in particular Beyer (2001)—the vast majority of the results are based
on empiricism, i. e., experiments are performed and their outcomes are interpreted. However,

3
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convergence properties of EAs have been studied to a certainextent, in particular by Rudolph
(1997), by Bienvenue and Francois (2003), and already in 1989 by Rappl. Unfortunately, those
results are “based on the assumption that the EA ‘is able’ to control the mutation strength (i. e. the
expected step size) such that the conditions for the proofs are fulfilled. The mutation control
part of the EA is usually not analyzed. The inclusion of the mutation control part in the analysis
appears in all cases investigated until now as a difficult task” as noted by Beyer et al. (2002,
p. 110). Just recently, Auger (2005) succeeded in proving the convergence of a basic evolution
strategy (namely of the (1,λ) ES using Schwefel’s self-adaptation). As the minimization of the
1-dimensional functionf : R → R with f (x) = x2 is considered, also this very sophisticated
proof does not reveal how the number of steps scales with dimension of the search space.

The starting point of this dissertation was the aim to adopt and to enhance tools,
methods, and techniques, which are known mainly from analyses of randomized ap-
proximation algorithms for discrete problems, in order to enable a probabilistic anal-
ysis of evolutionary algorithms for the continuous search spaceRn, so that theorems
can be obtained—in particular on how the number of steps which an EA needs to
realize a given approximation quality depends onn.

(Textbooks on randomized algorithms and their probabilistic analysis have been published by
Hofri (1987), Motwani and Raghavan (1995), and Mitzenmacher and Upfal (2005), for instance.)
In particular, the initial challenge was that the proofs should cover the adaptation mechanism
that the ES uses. As it might have become clear from the discussion above, it would have been
overconfident to start with a sophisticated adaptation mechanism which works particular well in
today’s practice. Rather the simplest one should be chosen as a starting point. In particular,
it should be a deterministic adaptation mechanism to keep the “degree of randomness”—which
usually makes an analysis hard—as small a possible. Thus, Rechenberg’s 1/5-success-rule (1965)
almost suggested itself as a candidate: it is deterministicand it is simple (as it originated in a time
when computational resources were very limited).

Somewhat surprisingly, it turned out that for proving that the 1/5-rule “works”—at least in
a very simple scenario—a general lower bound on the number ofsteps which are necessary to
obtain a certain reduction of the approximation error wouldbe a great help. As lower bounds (and
complexity considerations; cf. the discussion on black-box complexity above) are of independent
interest anyway, such lower-bound results will be presented in Chapter 4 before the analyses of
concrete scenarios in Chapter 5 in which several ESs with 1/5-rule are considered.

In contrast to the results on the black-box complexity of certain classes of pseudo-Boolean
functions discussed above, however, here the general lowerbounds will be obtained with respect
to particular types of evolution strategies (which are described in Section 1.2 (p. 8)). The restric-
tions can be roughly summarized as follows:

• “Mutation” is the only search operator (in particular, no crossover), where mutation consists
in adding a random vector (sometimes called perturbation) to a search point inRn in order
to obtain a new candidate solution (a mutant).

• The random mutation vector is isotropically distributed, i. e., its distribution overRn is
rotationally/spherically symmetric (more precisely: invariant w. r. t. orthonormal transfor-
mations).
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The rigorous analysis of such an “isotropic mutation” is theheart of the lower bounds (and also
very important to obtain upper bounds for concrete scenarios, of course). In particular, the spa-
tial gain of a mutation towards a fixed search point—usually the (or, a fixed) optimum—will
be of utmost interest. And precisely this measure is coveredby theprogress-rate theoryin the
dynamical-system approach. A large number of results on progress rates exist, and many of them
can be found inThe Theory of Evolution Strategiesby Beyer (2001). Situations in which noise
disturbs the evaluation of the function to be optimized havebeen considered by Beyer and Meyer-
Nieberg (2005, for instance) and particularly by Arnold (2002).

Unfortunately, those results cannot be (re)used to obtain the results we are aiming at here. The
reason for this is the following: These progress rates have been obtained using the asymptotic
simplificationn → ∞ (cf. the discussion above). Although the results that will be obtained in this
dissertation are also asymptotic ones, here a different type of asymptotic will be used. To make
the difference clear, we quote fromAsymptotic Methods in Analysisby de Bruijn (1970, pp. 1–3):

“A typical asymptotic result, and one of the oldest, is Stirling’s formula [. . . ]:

lim
n→∞

n!
/(

e−nnn
√

2πn
)
= 1. (1.1)

For eachn, the numbern! can be evaluated without any theoretical difficulty, and
the largern is, the larger the number of necessary operations becomes. But Stirling’s
formula gives a decent approximation e−nnn

√
2πn, and the largern is, the smaller

its relative error becomes.
[. . . ]
For no single special value ofn can we draw any conclusion from (1.1) aboutn!.

It is a statement about infinitely many values ofn, which, remarkably enough, does
not state anything about any special value ofn.

For the purpose of closer investigation of this feature, we abbreviate (1.1) to

lim
n→∞

f (n) = 1, or f (n) → 1 (n → ∞). (1.2)

This formula expresses the mere existence of a functionN(ε) with the property that:

for eachε > 0: n> N(ε) implies | f (n)−1| < ε. (1.3)

When provingf (n) → 1, one usually produces, hidden or not, information of the
form (1.3) with explicit construction of a suitable function N(ε). It is clear that the
knowledge ofN(ε) actually means numerical information aboutf . However, when
using the notationf (n) → 1, this information is suppressed. So if we write (1.2), the
knowledge of a functionN(ε) with the property (1.3) is replaced by the knowledge
of the existence of such a function.

[. . . ]
A weaker form of suppression of information is given by the Bachmann-Landau

O-notation2. It does not suppress a function, but only a number. That is tosay, it
replaces the knowledge of a number with certain properties by the knowledge that
such a number exists. TheO-notation suppresses much less information than with
the limit notation, and yet it is easy enough to handle.”

2 See E. Landau, Vorlesung über die Zahlentheorie, Leipzig 1927, vol. 2, p. 3–5.
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1 Introdu
tion
Obtaining asymptotic results with the help of theO-notation is common practice in computer
science. Letf denote a function inR andg a function inR>0. Then we say “f (x) = O(g(x)) as
x grows” if (and only if) there exists a constantc such that| f (x)| ≤ c · g(x) for all x ≥ x′ ∈ R>0,
so that the constantc is suppressed.3

The crucial difference that these two notions of “asymptotic” makes for the analysis of ESs
(and in particular for the analysis of a mutation’s spatial gain) is the following: If the variance of a
random variable (which is normalized w. r. t.n) tends to zero asn grows, in the “n → ∞” approach
one may replace this random variable by its expectation, which can simplify the calculations
significantly. When one aims at a probabilistic analysis andasymptotic results in the sense of “O”,
however, such a simplification is precluded. (This will be further discussed in Section 3.4 (p. 28).)1.1 Overview
For the reason that has been discussed above, we have to (re)consider the random variable which
corresponds to the spatial gain of an isotropic mutation in the search spaceRn. Before we come to
this integral part of this dissertation, however, the framework of the evolution strategies considered
in this work will be presented in the following Section 1.2 (p. 8). At the end of this introductory
chapter, the publications that build the basis of this dissertation will be listed in Section 1.3 (p. 11).

Some preliminaries which may help to understand the following chapters are presented in
Chapter 2. A few basic notions from probability theory are recapitulated, some notations are
given, and well-known bounds on tail probabilities of random variables are quoted, namely the
bounds/inequalities by Markov, Chebyshev, and Hoeffding.

Chapter 3 on “Isotropic Mutations” starts in Section 3.1 (p.17) with a formal look at isotropic
probability distributions. A very important type of isotropic mutations, namely so-called Gaussian
mutations, are covered by Section 3.2 (p. 19). Subsequently, we start the analysis of the spatial
gain of an isotropic mutation in Section 3.3 (p. 20). The chapter ends with some additional notes
on isotropic mutations in Section 3.4 (p. 28).

The lower-bound results are presented in Chapter 4. Therefore, we proceed with the analysis of
the spatial gain of an isotropic mutation in Section 4.1 (p. 31). Then the lower bounds are derived:

• In Section 4.2 (p. 35) we prove a lower bound of�(n) for the expected number of steps
which a (1+1) ES needs to halve the approximation error in thesearch space (the Euclidean
distance from a fixed search point inRn). This bound holds for any adaptation mechanism
as long as isotropic mutations are used and for any function scenario.

• In Section 4.3 (p. 39) it is proved that (1+λ) ESs and (1,λ) ESs that use a “global mutation
strength” as well as (1,λ) ES that use self-adaptive mutation strengths need with an over-
whelming probability (of 1−e−�(n)) �(n/ ln(1+λ)) steps to halve the approximation error
in the search spaceRn (independently of the adaptation of isotropic mutations and for any
function scenario).

3TheO-notation is not limited to the case “asx grows”, cf. de Bruijn (1970, Section 1.2: TheO-symbol).
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1.1 Overview
• In Section 4.4 (p. 43) (µ+1) ESs are considered and we prove that they need�(n ·µ)

steps/isotropic mutations with overwhelming probabilityto halve the approximation er-
ror in the search space (independently of the mutation adaptation and the function to be
optimized).

In Section 4.5 (p. 47) we reconsider (1+λ) ESs and address the question how long it takes such
elitist ESs to overcome “gaps” or “cliffs” in the fitness landscape. Lower bounds w. r. t. the size of
a so-called “spherically separated gap” and of a so-called “linearly separated gap” are proved. The
chapter on the lower bounds ends with additional comments and remarks in Section 4.6 (p. 54).

Chapter 5 deals with concrete optimization scenarios. In all scenarios Gaussian mutations
adapted by a 1/5-rule will be considered, which are introduced in Section 5.1 (p. 57). Subse-
quently in Section 5.2 (p. 61) the class of SPHERE-like functions is defined and upper bounds on
the runtimes of various ES are obtained for this scenario (given proper initialization):

• The (1+1) ES performs with overwhelming probabilityO(n) steps to halve the approxima-
tion error in the search space.

• The (1+λ) ES as well as the (1,λ) ES get along withO(n/
√

ln(1+λ) ) steps with over-
whelming probability—when the 1/5-rule bases on the numberof successful mutations.

• The (1+λ) ES using a modified 1/5-rule, which bases on the number of successfulsteps,is
proved to be indeed capable of getting along withO(n/ ln(1+λ)) steps with overwhelming
probability, which is asymptotically optimal.

• The (µ+1) ES using Gaussian mutations adapted by the 1/5-rule performs O(µ · n) steps
with overwhelming probability to halve the approximation error in the search space, which
is also asymptotically optimal.

In Section 5.3 (p. 84) a different function scenario, which can be considered a generalization of
SPHERE-like functions, is investigated: positive definite quadratic forms (PDQFs). We restrict
ourselves to the analysis of the (1+1) ES (using Gaussian mutations adapted by the 1/5-rule) for
this scenario. It turns out that for PDQFs with a bounded condition number the upper bound of
O(n) obtained for SPHERE-like functions carries over. For PDQFs with a condition number that
is not bounded but grows inn, a linear number of steps do not necessarily suffice to halve the
approximation error. To show this, for the class of PDQFsf ξn : Rn → R with

f ξn (x) := ξ ·
(
x1

2 +·· ·+ xn/2
2)+ xn/2+1

2 +·· ·+ xn
2,

wheren ∈ 2N andξ : N → R>1 such thatξ = poly(n) as well as 1/ξ (n) → 0 asn grows, it is
proved that the optimization process stabilizes such that2(ξ · n) steps are necessary with over-
whelming probability to halve the approximation error.

Finally, conclusions are drawn and an outlook is given in Chapter 6.
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1 Introdu
tion1.2 The Evolution Strategies under Consideration1.2.1 (1+λ) Evolution Strategy
Let λ : N → N such thatλ = poly(n). “λ” may also abbreviate “λ(n)” in the following. The
(1+λ) ES for minimization of f : Rn → R that we consider works as follows. A single/global
mutation strengthσ which takes values inR>0 is used for mutation adaptation—for the adapta-
tion of isotropicmutations.

For a given initialization of the evolving search pointc ∈R
n and the mutation strengthσ ∈R>0,

the followingevolution loopis performed:

1. FORi := 1 TOλ DO
Create a new search pointy[i ] := c + m ∈ R

n, where the mutation vectorm is drawn ac-
cording to an isotropic mutation that depends only onσ .

2. IF mini∈{1,...,λ}{ f ( y[i ])} ≤ f (c) THEN c := argmini∈{1,...,λ}{ f ( y[i ])} (when there are more
than one mutant with minimum fitness, one of them is chosen uniformly at random).

3. Decide whether to increase, or to decrease, or to keep the mutation strengthσ unchanged;
adaptσ accordingly. (Details follow below.)

4. GOTO 1.

In practice, obviously, the GOTO is conditioned on a stopping criterion.4 Fortunately, for the
results we are aiming at, we need not define a reasonable stopping criterion. Rather we will
consider a run of a (1+λ) ES as an infinite stochastic process. We are interested in how fast
c evolves. Therefore, we let “c[i ]” denote the current search pointafter the i th iteration of the
evolution loop (so that “c[0]” denotes the initial search point). “σ [i ]” denotes the mutation strength
that is usedin the i th iteration.

Note that the (1+λ) ES is a so-called “hill climber” since mutants with a worsef -value are
always discarded so that the sequence off -values corresponding to the evolving search point is
monotonic, i. e. non-increasing for minimization.

Concerning the generation of mutants in Instruction 1, we formally need a mapping fromR>0

into the set of isotropic distributions which tells us (given a specific mutation strengthσ ) which
isotropic distribution is to be used for the mutation vector. This mapping is fixed.

Concerning the adaptation of the mutation strengthσ in Instruction 3, the decision (whether
to increase, or to decrease, or to keepσ unchanged) may depend on the complete history of the
optimization process, namely, in thekth step on the sequence (c[0], f (c[0])), . . . , (c[k−1], f (c[k−1]))
given by the evolving search pointc and also on the discarded mutants (including theirf -values).
The decision, however, must result in one of the three outcomes: “increase”, “decrease”, or
“keep.” Depending solely on this outcome, the mutation strength σ is updated—possibly in a
randomized manner. For instance, the adaptation may be suchthat, when “increase” is the out-
come,σ is multiplied by a factor that is uniformly chosen over the interval [1,2].

4In fact, since the evolution loop is repeated over and over again (no termination), this outline of a (1+λ) ES
is formally not an algorithm. (Moreover, the concrete initialization is left open.) It seems that in such cases
(when a framework for a class of algorithms is described) often the notion “method” is used (cf., for instance,
“Newton’s method”).
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1.2 The Evolution Strategies under Consideration1.2.2 (1,λ) Evolution Strategy
We obtain the “(1,λ) ES with a global mutation strength” by dropping the IF-condition in In-
struction 2 in the (1+λ) ES above, implying thatc is always replaced by (one of) the best of
the λ mutants. Unlike the elitist (1+λ) ES, the (1,λ) ES may accept mutations that result in a
search point with a worsef -value. Obviously, a (1,1) ES does not make much sense since se-
lection becomes meaningless (in fact, no selection can takeplace). The search of a (1,1) ES is
not completely random, i. e. independent of the function which is to be optimized, though. The
function which is to be optimized does influence the search since it does affect the adaptation of
the mutation strength.

In particular for the (1,λ) ES, the concept of “self adaptation” (“SA”) has been widelystud-
ied. The underlying idea is to evolve the mutation strength (or other parameters) along with the
evolving search point (leading to the notion of “σSA” for self-adaptive mutation-strength control).
Thus, an individualC = (c,σ ) ∈R

n ×R>0 consisting of a search point and an associated mutation
strength is evolved. Self adaptation is sometimes also referred to asmutative strategy-parameter
control.

For a given initialization of the evolving individualC = (c,σ ) ∈ R
n ×R>0, the (1,λ) σSA-ES

(cf. Beyer (2001, p. 261)) performs the following evolutionloop, wheref (C) := f (c):

1. FORi := 1 TOλ DO
Create a new individualY[i ] = ( y[i ],σ [i ]), where
σ [i ] ∈ R>0 depends only onσ (possibly, and usually, in a randomized manner), and where
y[i ] := c+ m ∈ R

n with a mutation vectorm drawn according to an isotropic mutation that
depends only on the previously generatedσ [i ].

2. (c,σ ) := argmini∈{1,...,λ}{ f (Y[i ])} (when there are more than one mutant with minimum
fitness, one of them is chosen uniformly at random).

3. GOTO 1.

For various operators to mutate the mutation strengthσ , see Beyer (2001, Section 7.1.4). Presum-
ably, the one that is most often used is scalingσ by multiplying it with a log-normally distributed
random variable, which is due to Schwefel (1995, p. 143, for instance). For a general lower bound
on the number of iterations which a (1,λ) σSA-ES performs, however, the concreteσSA is not of
interest. Thus, we will not go into further details of self adaptation here.1.2.3 (µ+1) Evolution Strategy
(µ+,λ) Evolution Strategies use a population consisting ofµ individuals. As in our (1,λ) σSA-ES,
an individualX = (x,σ ) ∈ R

n ×R>0 consists of a search point and an associated mutation
strength.

Letµ : N → N such thatµ= poly(n). The (µ+1) ES for minimization off : Rn → R works
as follows: For a given initialization of the population ofµ individuals, the following evolution
loop is performed:

9
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1. Choose one of theµ individuals in the (current) population uniformly at random. Let this

beC = (c,σc).

2. Create a new search pointy := c+m ∈R
n, where the distribution of the isotropic mutation

(vector)m depends only onσc.

3. Evaluatef ( y) and decide whetherσc is to be increased, or decreased, or kept unchanged;
adaptσc accordingly.

4. Create the mutantY := ( y,σc)
(i. e.,Y inherits the possibly updated/adapted mutation strengthσc from its parentC).

5. Discard one of theµ+ 1 individuals by uniformly choosing one of the worst individuals
(maximal f -value when minimizing).

6. GOTO 1.

Again, in practice the GOTO would be conditioned on some termination criterion. Furthermore,
for the generation of the mutant and the adaptation of the mutation strengthσ the same properties
as stated for the (1+λ) ES must be met.

We are interested in how fast the population, namely the bestindividual in the population,
evolves. Which one of the individuals in the population is the best one changes (usually) over
time, of course.

The (µ+1)-selection method is sometimes also referred to assteady-state selection.1.2.4 Additional Notes, Notions, and Notations
We can obtain two (1+1) ES: the (1+λ) ES withλ := 1 and the (µ+1) ES withµ := 1. These
two (1+1) ES differ in one aspect: In the (1+λ) ES with λ := 1, whenever the mutant of the
current search point is at least as good as its parent, the mutant replaces its parent and becomes
the new/next current search point. In the (µ+1) ES withµ := 1, however, if the mutant and its
parent have equalf -values, both have a 50-50 chance to survive and to become thenew current
search point (in fact, the new single-individual population).

If the function to be optimized is such that the probability of hitting the level set of a search
point (the set containing all search points with the same function value) with an isotropic mu-
tation is zero anyway, this difference is meaningless, though. Namely, for such functions and a
mutation adaptation that precludes mutation vectors with zero length, the mutant and its parent
have differentf -values (with probability one), so that the difference in the selection mechanism
could not be observed anyway.

However, in this work, “(1+1) ES” means “(1+λ) ES withλ := 1.” Moreover, “(1,λ) ES” means
“(1,λ) ES with a global mutation strength.” Whenever a self-adaptive variant is considered, we
will explicitly use the term “(1,λ)σSA-ES.” “(1+,λ) ES” stands for “(1+λ) ES and/or (1,λ) ES
with global mutation strength.”

Finally, note that the stochastic process induced by an (1,λ) σSA-ES is necessarily Markovian,
whereas the stochastic process induced by a (1+,λ) ES (with a global mutation strength) is not
necessarily Markovian (and in most cases it is actually not).
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1.3 Underlying Publi
ations1.3 Underlying Publi
ations
This dissertation bases on the following publications:

1. J. J. (2003): Analysis of a Simple Evolutionary Algorithmfor Minimization in Euclidean
Spaces. InProceedings of the 30th International Colloquium on Automata, Languages, and
Programming (ICALP 2003),Springer LNCS 2719, pp. 1068–1079.

2. J. J. (2005): Rigorous Runtime Analysis of the (1+1) ES: 1/5-Rule and Ellipsoidal Fitness
Landscapes. InFoundations of Genetic Algorithms: 8th International Workshop, FOGA
2005, Revised Selected Papers,Springer LNCS 3469, pp. 260–281.

This work has been expanded and extended:

3. J. J. (2006): How the (1+1) ES Using Isotropic Mutations Minimizes Positive Definite
Quadratic Forms.Theoretical Computer Science,361(1):38–56.

4. C. Witt and J. J. (2005): Rigorous Runtime Analysis of a (µ+1) ES for the Sphere Func-
tion. In Proceedings of the 2005 Conference on Genetic and Evolutionary Computation
(GECCO 2005),ACM Press, pp. 849–856.

5. J. J. (2005): On the Complexity of Overcoming Gaps with Isotropic Mutations and Eli-
tist Selection. InProceedings of the 2005 IEEE Congress on Evolutionary Computation
(CEC 2005),IEEE Press, pp. 206–213.

6. J. J. (2006): Probabilistic Runtime Analysis of (1+,λ) Evolution Strategies Using Isotropic
Mutations. InProceedings of the 2006 Conference on Genetic and Evolutionary Computa-
tion (GECCO 2006),ACM Press, pp. 461–468.

The article that has emerged from joint work with Carsten Witt is due to both authors to almost
the same extent in ideas, proofs, and writing.
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2 Preliminaries
We recall some notions concerning probability measures/distributions from Feller (1971).

Definition 2.1. Let F denote a probability distribution overRn. A point inR
n is called anatom

(of F) if it carries positive mass (w. r. t.F). We call the distributionF
concentratedon a setS⊆ R

n if Rn \ Shas zero probability (i. e. zero mass w. r. t.F);
singular if it is concentrated on a set with Lebesgue measure zero;
atomicif it is concentrated on the set of its atoms;
absolutely continuous(w. r. t. Lebesgue’s measure) if there exists a functionDF : Rn → R such
that for any Borel setS⊆ R

n the probability ofS (i. e. the mass ofS w. r. t. F) is given by the
Lebesgue integral

∫
x∈SDF(x)dx. In such a caseDF is called the probability density (function)

corresponding to the probability distributionF .

Note that any probability distribution can be decomposed into a linear combination of three
distributions, one of which is absolutely continuous, one of which is singular without atoms, and
one of which is atomic (Lebesgue/Jordan decomposition; cf.Feller (1971, pp. 138, 142)). (For
distributions overR, “atomic” and “singular” means the same; for distributionsoverRn with
n ≥ 2, however, this is not the case.)

Definition 2.2. Let X andY denote random variables.

• X stochastically dominates Y, in short “X ≻ Y,” if (and only if) P{X ≤ a} ≤ P{Y ≤ a} for
all a ∈ R.

• If X ≻ Y as well asY ≻ X, i. e.,∀a ∈ R : P{X ≤ a} = P{Y ≤ a}, then we write “X ∼ Y.”

• We call a random variableX symmetricif (and only if) −X ∼ X.

It is readily seen that, ifX ≻ Y andE[X] exists, thenE[Y] ≤ E[X]. Obviously, stochastic
dominance is a transitive relation.

Now we come to a very useful tool for probabilistic analyses:Hoeffding’s bound; see also
Hofri (1987, Section 2.6.2).

Theorem 2.3. Hoeffding (1963, Theorem 2): LetX1, . . . , Xk denote independent random vari-
ables, each with bounded range. Fori ∈ {1,. . . ,k} let [ai ,bi ] ⊂ R be the range ofXi , where
ai < bi . Let S := X1 +·· ·+ Xk. Then for anyx > 0

P{S≥ E[S] + x} ≤ exp

(
−2x2

∑k
i=1(bi −ai )2

)
.
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2 Preliminaries
Note that

∑k
i=1(bi −ai )2 ≤ k · (b−a)2 with a := min{ai } andb := max{bi }, i. e., the values of

all Xi lie in [a,b] ⊂ R (with probability one). Furthermore, we directly obtain

P{S≤ E[S] − x} ≤ exp

(
−2x2

k · (b−a)2

)

and, consequently,

P{ |S−E[S] | ≥ x} ≤ 2·exp

(
−2x2

k · (b−a)2

)
.

In particular, if the range ofX1, . . . , Xk is [0,1], for instance when considering the number of
successful Bernoulli or Poisson trials, thenP{S≥ E[S] + x} ≤ e−2x2/k. As an example, the prob-
ability of observing at leastn/2+

√
n heads inn independent (and fair) coin flips is at most

e−2 < 0.14. As another example, the probability that at least 0.6n of the n flips show head is
bounded from above by e−n/50. This might look like a weak bound. Asn grows, however, the
probability drops rapidly (as it is exponentially small).

In some cases, for discrete 0-1-variables the Chernoff bounds yield better estimates for the
tail probability, cf. Motwani and Raghavan (1995, Section 4.1: The Chernoff Bound). However,
when we apply Hoeffding’s bound to discrete random variables, we will use the term “Chernoff’s
bound.”

Another inequality which helps with the estimation of tail probabilities is due to Markov,
cf. Motwani and Raghavan (1995, Theorem 3.2):

Theorem 2.4. (Markov’s Inequality) LetX denote a non-negative random variable. Then for all
t ∈ R>0 : P{X ≥ t} ≤ E[X]/t .

If one knows about the variance of a random variable, then a result by Chebyshev can be useful,
cf. Motwani and Raghavan (1995, Theorem 3.3):

Theorem 2.5. (Chebyshev’s Inequality) LetX denote a random variable. IfE[X] exists and
Var[X] <∞, then for anyt ∈ R>0 : P

{
|X −E[X] | ≥ t ·

√
Var[X]

}
≤ 1/t2.

Note that
√

Var[X] is thestandard deviationof the random variableX.
An indicator variable1S associated with a setS⊆ M is a mapping fromM into {0,1} (i. e. a

0-1-variable) such that∀x ∈ M : 1S(x) = 1 ⇐⇒ x ∈ S. For instance,M may denoteR; then
1R≥0(x) = 1 if x ≥ 0 and1R≥0(x) = 0 if x < 0. Thus, in such cases (whenM is clear from
the context), we may write “1{x≥0}” instead of “1R≥0(x)” for instance. In particular, we may
apply an indicator (variable) to a random variableX, and we letX+ := X ·1{X≥0} as well as
X− := X ·1{X<0}, so thatX+ is a non-negative random variable andX− is a non-positive random
variable. Note that, as a consequence,E[1{X≤a}] = P{X ≤ a} for all a ∈ R. If E[X+] exists, then
E[X+] ≥ E[X ·1{X≥a}] for all a ∈ R, and in particular,E[X+] ≥ E[X].

For a symmetric random variableX, we have−X− ∼ X+ (and in particularE[X] = 0), so that
applying Markov’s inequality toX+ (and−X−) yieldsP{|X| ≥ t} ≤ E[X+]/t for all t > 0.
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Definition 2.6. A probability p(n) is exponentially smallin n if there is a constantε > 0 such
that p(n) = exp(−�(nε)). An eventE (n) happenswith overwhelming probability (w. o. p.)with
respect ton if 1 −P{E (n)} is exponentially small inn.

We say that a statementZ(x), wherex ∈ R, holdsfor x large enoughif (∃x′ ∈ R)(∀ x ≥ x′) Z(x).
Let f andg denote functions inR. Recall the following asymptotic notations (asx → ∞)

wheng(x),h(x)> 0 for x large enough, cf. Motwani and Raghavan (1995, Definition B.1):

• g(x) = O(h(x)) if there exists a constantκ > 0 such thatg(x) ≤ κ ·h(x) for x large enough,

• g(x) =�(h(x)) if h(x) = O(g(x)),

• g(x) =2(h(x)) if g(x) is O(h(x)) as well as�(h(x)),

• g(x) = o(h(x)) if g(x)/h(x) → 0 asx → ∞,

• g(x) = ω(h(x)) if h(x) = o(g(x)),

• g(x) ≍ h(x) if g(x)/h(x) → 1 asx → ∞,

• g(x) = poly(x) if there exists a constantc such thatg(x) = O(xc).

Note thatg ≍ h implies g = 2(h) (as well ash = 2(g), of course), yet thatg = 2(h) does not
even imply the existence of limx→∞ g(x)/h(x) as shown by the exampleg(x) := x · (2+ sinx)
andh(x) := x.
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3 Isotropi
 Mutations3.1 Isotropi
 Probability Distributions
Definition 3.1. Let a vectorx be distributed according to some distributionF overRn. ThenF is
spherically symmetric(or isotropic) if it is invariant w. r. t. orthonormal transformations, i.e., for
any orthogonal matrixM (i. e. M⊤M = I) the distribution ofMx equals the one ofx, namelyF .
Thenx is calledisotropically distributedoverRn.

The nice property of isotropically distributed vectors is that their (possibly) random length is
independent of their random direction and that the direction is “uniformly random.” Formally,
this can be stated as follows:

Proposition 3.2. Let u ∈ R
n be uniformly distributed over the unit hyper-spherea. A vectorx is

isotropically distributed if and only if there exists a non-negative random variableℓ (independent
of u) such that the distribution ofx equals the one ofℓ · u.

aBy “hyper-sphere” we mean thegeometrical n-dimensional sphere (n-sphere) in Euclideann-space. From
a topologist’s point of view, however, our geometricn-sphere is an instance of a topological (n−1)-sphere
(since our geometricn-sphere is an (n−1)-dimensional sub-manifold of ann-space, namely ofRn).

A proof can be found in Fang, Kotz, and Ng (1990, Sec. 2.1). That the direction is “uniformly
random” is intuitive. The main idea why the length of an isotropically distributed vectorx is
independent of its direction reads in short: We pick a direction by picking a half-lineL start-
ing at the origin. Then we obtain a conditional distributionby assuming thatx ∈ L. Since the
mappingx 7→ Mx defined by the multiplication with an orthogonal matrixM (an orthonormal
transformation) is a bijection inRn which preserves the inner product (implying|x| = |Mx|), this
conditional distribution is invariant w. r. t. the choice ofL. Namely, we obtain the same condi-
tional distributionindependentof the choice of “the direction”L. Hence, we have just found the
distribution ofℓ.

Definition 3.3. We call a vectoru which is uniformly distributed upon the unit hyper-sphere
{x ∈ R

n | |x| = 1} a unit isotropic mutation (vector).

If the distribution of an isotropically distributed vectoris singular (like the one of a unit
isotropic mutation), thenℓ’s distribution is atomic (for instance, for a unit isotropic mutation,
ℓ is concentrated on the singleton{1}). If the distribution is absolutely continuous, then also the
distribution of the corresponding random variableℓ is absolutely continuous. There are more
direct consequences of the definition of isotropy:
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 Mutations
Proposition 3.4. An atomic distribution is isotropic if and only if it is concentrated on the origin.

An absolutely continuous probability distributionF overRn is isotropic if (and only if) for all
x, y ∈ R

n : |x| = | y| =⇒ DF(x) = DF ( y).
Let the random vectorm ∈ R

n be distributed according to a distributionFm which is singular
overRn and has no atoms. Thenm is isotropically distributed if and only if there exists a count-
able setL ⊂R>0 such thatFm is concentrated on{x ∈R

n | |x| ∈ L} such that, under the condition
|m| = ℓ ∈ L, the vectorm is uniformly distributed upon the hyper-sphere{x ∈ R

n | |x| = ℓ}.

Lemma 3.5. Let the vectorsx and y be independently (not necessarily identically) isotropically
distributed overRn. Thenz := x + y is also isotropically distributed overRn.

Proof. Sincex and y are isotropically distributed, respectively, for any choice of an orthogonal
matrix M, the distribution ofx equals the oneMx and the one ofy equals the one ofM y.
Because of the independence, the distribution ofx + y equals the one ofMx + M y, and since
Mx + M y = M(x + y), the distribution ofx + y in fact equals the one ofM(x + y)—for any
choice of an orthogonal matrixM, precisely matching the definition of isotropy.

By induction, we directly obtain

Corollary 3.6. Let the vectorsx1, . . . ,xk be independently (not necessarily identically) isotropi-
cally distributed overRn. Then the distribution of the vectory := x1 +·· ·+ xk is also isotropic.

So, we know that adding two independent isotropically distributed vectors results in a vec-
tor that is also isotropically distributed. Hence, we know that all directions are “equiproba-
ble” (actually “equidense”). However, the result tells us nothing about the distribution of the
length. And in fact, isotropy is preserved already when the directions of the isotropically dis-
tributed vectors that we add are independent, i. e., the length distributions need not necessarily
be independent. Therefore, letx be isotropically distributed overRn, and let y be distributed
according to an isotropic mutation that may depend on|x| but that is independent ofx’s direc-
tion, i. e., y’s distribution is parameterized and we use the notation “yx” to indicate this. Then,
given an orthogonal matrixM, we haveMx ∼ x and, in particular,|Mx| ∼ |x|. Consequently,
due to our assumptions on howy’s distribution may depend onx, we haveyx ∼ yMx . Thus,
x + yx ∼ M x + yM x ∼ Mx + yx . Since moreoveryx ∼ M yx whatever the value ofx, we have
x + yx ∼ Mx + M yx , i. e.x + yx ∼ M(x + yx). Since this holds for any choice of the orthogonal
matrix M, we have just shown thatx + yx is isotropically distributed. By induction, we obtain

Lemma 3.7. Consider a sequencex1, . . . ,xk of isotropically distributed vectors, where the distri-
bution of x i may depend on|x i−1| (but not on the direction ofx i−1) for i ∈ {2,. . . ,k}. Then the
vector obtained by subsequently adding these vectors is isotropically distributed.

This property will be very useful in the reasoning for the lower bounds on the number of
isotropic mutations which are necessary to obtain a reduction of the approximation error.
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3.2 Gaussian Mutations3.2 Gaussian Mutations
Gaussian mutations date back to the very first application ofevolutionary strategies. Namely, they
were used in the original (1+1) ES by Rechenberg and Schwefel.

Definition 3.8. Let each of then components of the random vectorm̃ overRn be independently
standard-normally distributed.

We call the random vector̃m a Gaussian mutation (vector).For a givenσ ∈ R>0, the random
vectorσ · m̃ is called ascaled Gaussian mutation (vector).

As one may have already guessed, Gaussian mutations bear thefollowing property:

Proposition 3.9. A (scaled) Gaussian mutation vector is isotropically distributed.

Proof. As the components of̃m are independently standard-normally distributed, the density at
x ∈ R

n equals

n∏

i=1

exp(−xi
2/2)

√
2π

=
exp

(∑n
i=1−xi

2/2
)

√
2π

=
exp(−|x|2/2)

√
2π

.

Hence, vectors of equal length have the same density; obviously, the scaling does not affect this
property.

The distribution of|m̃|, of the random length of a Gaussian mutation vector, is well known. It
is aχ -distribution withn degrees of freedom, cf. Arfken (1990). Its density atx ∈ R≥0 equals
xn−1 · e−x2/2 · 21−n/2/Ŵ(n/2) (where “Ŵ” denotes the well-know Gamma-function), forming a
unimodal density having its mode at

√
n−1 and two inflection points at

√
n−1/2±

√
2n−7/4 for

n ≥ 3. As a consequence, forx ≥
√

2n the density drops exponentially so that large deviations
are not probable. More precisely:

Lemma 3.10. For a scaled Gaussian mutationm = σ · m̃ overRn with σ ∈ R>0

E[|m|]





≍ σ ·
√

n

≤ σ ·
√

n

≥ σ ·
√

n−1/2.

Let ℓ̄ abbreviateE[|m|]. For δ > 0

P
{∣∣|m|− ℓ̄

∣∣≥ δ · ℓ̄
}

≤
1

δ2 · (2n−1)
.

Let m1, . . . ,mk denotek independent instances ofm. For any constantε > 0 there exist two
constantsaε,bε > 0 such that, for the index setI := {i ∈ {1,. . . ,k} | aε · ℓ̄≤ |mi | ≤ bε · ℓ̄ }, we have
P{#I < k · (1−ε)} = e−�(k).

Proof. The random variable|m̃| is χ -distributed (withn degrees of freedom), and hence,

E[|m̃|] =
√

2 ·
Ŵ(n/2+1/2)

Ŵ(n/2)
∈
[√

n−1/2 ,
√

n
]

(cf. Haagerup (1982) for the bracketing of the fraction involving the Gamma function).
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Furthermore, since the random variable|m̃|2 isχ2-distributed, we haveE

[
|m̃|2

]
= n, and hence,

we can bound the variance of the length of a Gaussian mutation:

Var[|m̃|] = E
[
|m̃|2

]
−E[|m̃|]2 ≤ n−

(√
n−1/2

)2
= 1/2

(in fact, it has been shown thatVar[|m̃|] ր 1/2 asn → ∞).
If for a random variableY, E

[
Y2
]

exists andE[Y] > 0, then Chebyshev’s inequality yields that
for anyδ > 0:

P{ |Y −E[Y] | ≥ δ ·E[Y]} ≤
Var[Y]

(δ ·E[Y])2

SinceE[|m|] = σ ·E[|m̃|] andVar[|m|] = σ 2 ·Var[|m̃|], applying this bound to|m|, the random
length of a scaled Gaussian mutation, yields

P
{∣∣|m|− ℓ̄

∣∣≥ δ · ℓ̄
}

≤
σ 2 ·1/2

(δ ·σ ·E[|m̃|])2
≤

1/2

δ2 · (n−1/2)
.

Finally, we considerk i. i. d. scaled Gaussian mutations. Since|m| =2(E[|m|]) with probabil-
ity 1− O(1/n) as we have just seen,E[#I ] = k− O(k/n). Applying Chernoff’s bound yields that
#I deviates by a positive constant fraction below its expectation only with probability e−�(E[#I ]),
which is e−�(k) asn grows.3.3 Spatial Gain of an Isotropi
 Mutation
Since any isotropic mutation can be decomposed into a randomdirection, on the one hand, and
an independent distribution for its length on the other hand, we focus on unit isotropic mutations
first.3.3.1 Spatial Gain of a Unit Isotropi
 Mutation
Consider an arbitrary but fixed search pointc ∈ R

n and a unit isotropic mutationu overRn, and
let c′ := c+u denote the random mutant. Then this mutantc′ is isotropically distributed upon the
hyper-sphereSc := {x ∈R

n | dist(x,c) = 1}, the so-calledmutation sphere. Furthermore, consider
the linear function SUMn : Rn → R defined by

SUMn(x) :=
n∑

i=1

xi (3.1)

which is also called ONEMAX when x ∈ {0,1}n. For a givena ∈ R let “HSUM=a” denote the
hyper-plane{x ∈ R

n | SUM(x) = a}, and let “Hc” abbreviateHSUM=SUM(c). Furthermore, for
⊲ ∈ {<,>,≤,≥} we let “HSUM⊲a” denote the open/closed half-space{x ∈ R

n | SUM(x)⊲a}, and
let “H⊲c” abbreviateHSUM⊲SUM(c).

When talking about “the gain” of a mutation or a step, in this section we mean thespatial
gain of a mutation. The change in the SUM-value is merely used as an indicator whether the
mutant ofc lies in the one half-space w. r. t. the hyper-planeHc or in the other. In particular,
instead of SUM we could have chosen any other linear function that essentially depends on alln
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components. In fact, we may chose an arbitrary but fixed hyper-plane containingc since we may
rotateHc aroundc. Because of the isotropy of the mutation vector’s distribution, nothing would
change.

As we focus on isotropically distributed mutation vectors,the larger the length of the mutation
vector, the larger the expected distance between the mutantc′ andHc. Recall that, to focus on the
core of the reasoning, we decided to consider unit isotropicmutations for the present. (Later we
show how to extend the calculations to (scaled) Gaussian mutations, the length of which follows
a (scaled)χ -distribution.) So, the random variableG defined1 by

G :=
{

dist(c′, Hc) if c′ lies in the (closed) half-spaceH≤c

−dist(c′, Hc) if c′ lies in the (open) half-spaceH>c
(3.2)

corresponds to thesigned distanceof the mutant (generated by a unit isotropic mutation) from
the hyper-planeHc (or from any other predefined hyper-plane containing its parent c, as we have
seen). The nice property of this random variableG is that it maps an “n-dimensional randomness”
to a single dimension—leaving just enough information to obtain interesting results as we shall
see. As we consider unit isotropic mutations for now,G is concentrated on the interval [−1,1],
and naturally, we would like to knowG’s distribution. In particular, we are interested in how this
distribution changes withn, the dimensionality of the search space.

Recall the mutation sphereSc := {x ∈ R
n | dist(x,c) = 1} in which the mutantc′ must lie.

Then we haveG ≥ g for some fixedg ≥ 0 if c′ lies in the hyper-hemisphereSc ∩ H≤c such that
dist(c′, Hc) ≥ g. Since all points in the hyper-hemisphereSc ∩ H≤c that have distanceg from the
hyper-planeHc form an (n−1)-sphere lying in some hyper-planeJ which is parallel toHc with
distanceg, the set consisting of all potential mutants that result inG ≥ g in fact forms a hyper-
spherical cap with heighth := 1− g (cf. the figure on page 22); letCc,g denote this cap. For
g = 1, the capCc,g degenerates to a singleton, and forg> 1, obviouslyCc,g is no longer a cap
but the empty set. Thus, we concentrate ong ∈ [1,0] in the following, and sincec′ is uniformly
distributed uponSc, we have

P{G ≥ g} =
(n−1)-volume ofCc,g

(n−1)-volume ofSc
. (3.3)

SinceG is symmetric, i. e.G and −G follow the same distribution, we haveP{G ≤ −g} =
P{G ≥ g} for any g ∈ R. In particular,P{G ≥ g} = P{G> g} because the hyper-planeJ con-
taining the boundary of the capCc,g is hit with zero probability (just like any other predefined
hyper-plane).

In the following we concentrate on the ratio of the hyper-surface area of a hyper-spherical cap
to the one of the hyper-sphere of which this cap is cut off by the intersection with some hyper-
plane, namelyJ. In particular, we are interested in how this ratio depends on the height of the cap
and onn, the dimension of the search space.

Therefore, we assume thatc coincides with the origino and use polar/spherical coordinates:
Let r denote the distance from the origin,α the azimuthal angle with range [0,2π ), andβ3, . . . ,βn

the remaining angles with range [0,π ]. Here, for a givenx ∈ R
n \ {o}, βi is the angle between

1The probability space that underliesG consists ofRn, the corresponding Borelσ -algebra, and the probability
measure induced by the distribution of the random mutation vector overRn.
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(the positive half of) thei th axis (in the Cartesian coordinate system) and the half-line starting at
o and passing throughx. Letρ denote an arbitrary permutation on{3,. . . ,n}. Fixing r in n-space,
but none of the angles, defines ann-sphereS[n]

r with radiusr ; additionally fixingβρ(n) results in
an (n−1)-sphereS[n−1]

r ⊆ S[n]
r having radiusr ·sinβρ(n); fixing βρ(n−1) in addition tor andβρ(n)

results in an (n−2)-sphereS[n−2]
r ⊆ S[n−1]

r ⊆ S[n]
r with radiusr · sinβρ(n) · sinβρ(n−1), and so on

(cf. Kendall (1961)). Thus, the hyper-surface area of ann-sphere with radiusr is given by

∫ π

βn=0

∫ π

βn−1=0
· · ·
∫ π

β3=0

∫ 2π

α=0
(r ·sinβn · · ·sinβ3dα) · (r ·sinβn · · ·sinβ4dβ3) · · ·

· · · (r · sinβn dβn−1) · (r dβn).

Re-grouping the factors and solving theα-integral, namely
∫ 2π

0 dα = 2π , yields

r n−1 ·2π ·
n−2∏

i=1

∫ π

0
(sinβ)i dβ

for the area of ann-sphere with radiusr . Naturally, we could have looked up the formula for the
hyper-surface area of ann-sphere in a formulary, but we also need a formula for the cap.The
formula for the cap can easily be derived from the one above—yet only if one knows about the
derivation of the latter.

h
γ

rg

The area of ann-dimensional spherical cap is calculated by adjusting
the upper limit on the angleβn appropriately. In the figure on the right,
the interdependence between the upper limit (γ ) on the angleβn and
the height (h) of a spherical cap is shown (where the sheet this figure
is drawn on corresponds to the plane spanned by the first and the nth
axis whenα = 0). Consequently, the area of a hyper-spherical cap with
radiusr and heighth = r · (1−cosγ ) ∈ [0,2r ], i. e. γ ∈ [0,π ], is in fact
given by

r n−1 ·2π ·
(∫ γ

0
(sinβ)n−2dβ

)
·
(

n−3∏

i=1

∫ π

0
(sinβ)i dβ

)
.

All in all, in n-space,n ≥ 3, the ratio of the hyper-surface area of a spherical cap withheight
h ∈ [0,2r ], on the one hand, to the hyper-surface area of the hyper-sphere with radiusr the cap is
cut off, on the other hand, reduces to
∫ γ

0 (sinβ)n−2dβ∫ π
0 (sinβ)n−2 dβ

with γ = arccos(1−h/r ) .

Since the mutation sphereSc in which the mutant lies has unit radius (i. e.r = 1), we have
1−h/r = 1− (1− g)/1 = g. Thus, forn ≥ 3, Equation (3.3) on page 21 reads in fact

P{G ≥ g} =
∫ arccosg

0 (sinβ)n−2dβ∫ π
0 (sinβ)n−2dβ

(for n ≥ 3).
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Unfortunately, the anti-derivative of sink (i. e. the indefinite integral

∫
(sinx)k dx) does not have

an “algebraically closed” form. Nevertheless, this identity tells us something: Since arccos and
sin are differentiable, we may try to find the densityDG of G, namely d

dgP{G ≤ g}.
Therefore, we will now transform the formula that we have just derived into one which makes

such an estimation simple and which will turn out useful alsoin the analysis of the expected
spatial gain. Namely, we will concentrate on the probability density of hitting the boundary of
the capCc,g ⊂ Sc. With the help of this density, we will obtain an alternativeformula for the
probability of hitting a cap.

Let9n(x) :=
∫ x

0 (sinβ)n−2dβ and let “9” abbreviate9n(π ). Then for the probability distribu-
tion of G we obtain

P{G ≤ g} = 1−P{G> g} = 1−
9n(arccosg)

9n(π )
,

and hence, forg ∈ (−1,1),

d

dg
P{G ≤ g} =

−1

9n(π )
·

d9n(arccosg)

dg

=
−1

9
·

d

dg

∫ arccosg

0
(sinβ)n−2dβ.

Let Sink denote the anti-derivative of sink, i. e. the indefinite integral
∫

(sinx)k dx, such that
Sink(0) = 0. Then

d

dg

∫ arccosg

0
(sinβ)k dβ =

dSink(arccosg)

dg
= Sin′

k(arccosg) ·arccos′ g

= (sin(arccosg))k ·arccos′ g ,

and since sin(arccosg) =
√

1− g2 and arccos′ g = −1/
√

1− g2, we obtain fork ≥ 2

dSink(arccosg)

dg
=

(
1− g2)k/2 ·

−1√
1− g2

= −1·
(
1− g2)(k−1)/2

.

All in all, we finally obtain forn ≥ 4 the probability density ofG at g ∈ (−1,1) inn-space

DG(g) = d
dgP{G ≤ g} =

1

9
·
(
1− g2)(n−3)/2

(for n ≥ 4). (3.4)

This density function can now be used to derive an alternative formula for the probability that
G is at leastg, namely

P{G ≥ g} =
1

9
·
∫ 1

g

(
1− x2)(n−3)/2

dx for g ∈ [−1,1] andn ≥ 4. (3.5)

Moreover, as a by-product, we obtain9 =9n(π ) =
∫ 1
−1(1− x2)(n−3)/2dx. The value of this def-

inite integral equals
√
π ·Ŵ(n/2−1/2)/Ŵ(n/2), cf. Gradshteyn and Ryzhik (1994) for instance.
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Using the bracketing of the ratio of the two Gamma-function values already applied in the proof
of Lemma 3.10 (p. 19), we obtain the following bracketing forthe normalization factor 1/9
√

n−2

2π
≤

1

9
≤

√
n−1

2π
(for n ≥ 4), (3.6)

which implies 1/9 ≍
√

n/
√

2π ≈ 0.4
√

n.
Unfortunately, as one may expect, also (1− x2)(n−3)/2—like the function9n—does not have

an “algebraically closed” anti-derivative. (We see clearly now that the probabilityP{G ≥ g} drops
exponentially asg → 1, though.) However, the functionx · (1− x2)(n−3)/2 has an anti-derivative,
namely (1−x2)(n−1)/2/(1−n) for n ≥ 4. Thus, for instance, we can compute the expected distance
of the mutantc′ from the hyper-planeHc, which equalsE[G+] − E[G−] = 2 · E[G+], where
we use the symmetry of the random variableG (recall thatG+ and G− abbreviateG ·1{G≥0}

resp.G ·1{G≤0}). More generally, we obtain the following result.

Lemma 3.11. Let G denote the random variable as defined in Equation (3.2) on page 21. Then
for g ∈ [0,1] andn ≥ 4

E[G ·1{G≥g}] =
(1− g2)(n−1)/2

(n−1)·9





≍ (1− g2)(n−1)/2/
√

2πn

< (1− g2)(n−1)/2 ·0.4/
√

n−1

> (1− g2)(n−1)/2 ·0.3989/
√

n+1.

Proof. As we have already noted above, (1− x2)(n−1)/2/(1−n) is an anti-derivative of the func-
tion x · (1− x2)(n−3)/2. Hence,

E[G ·1{G≥g}] =
1

9
·
∫ 1

g
x · (1− x2)(n−1)/2dx

=
1

9
·
[

−1

n−1
· (1− x2)(n−1)/2

]1

g

=
1

9 · (n−1)
· (1− g2)(n−1)/2.

Using the bracketing of 1/9 (Inequality (3.6) on page 24), we obtain

1

9 · (n−1)

{
≤

√
(n−1)/2π

/
(n−1) = 1/

√
2π (n−1) < 0.4/

√
n−1

≥
√

(n−2)/2π
/

(n−1) ≥ 1/
√

2π (n+1) > 0.3989/
√

n+1

(using
√

n−2
/

(n−1) ≥ 1/
√

n+1 for n ≥ 3).

This lemma tells us that for the expected distance of the mutant from Hc (or from any other
predefined hyper-plane containing its parent)E[|G|] ≍ 2/

√
2πn ≈ 0.8/

√
n. This might appear

bewildering (at first) since this implies that, as the searchspace’s dimensionality increases, the
expected distance fromHc tends to zero—although the distance ofc′ form c is fixed to one and
Hc is hit with zero probability. However, noting thatHc is an affine subspace with dimension
n−1 (i. e. codimension 1), it may become more plausible that getting far away fromHc becomes
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less and less probable asn increases. It might also help to recall that ann-hypercube with unit
diameter (longest diagonal) has edges of length 1/

√
n.

Let us come back to the probabilityP{G ≥ g} as given in Equation (3.5) on page 23. Al-
though we may not be able to compute the integral (algebraically in a closed form), we may
approximate the integral’s value. Namely, upper and lower bounds on the value of the integral∫ 1

g (1− x2)(n−3)/2dx must be derived—in dependence ong andn.

Lemma 3.12. Let G denote the random variable as defined in Equation (3.2) on page 21.

1. Forn ≥ 9 andg : N → R such thatg(n) ∈ [ε/
√

n,1/3] for some constantε > 0,

P{G ≥ g}





>
g

9
· exp(−g2 ·4n)

<
g

9
·
exp(−g2 ·n/3)

1−exp(−g2 ·n)
=

g

9
·exp(−g2 ·n/3)·2(1)

so thatP{G ≥ g} =
√

n · g ·e−2(g2·n). Furthermore,

2. 0≥ g = o(1/
√

n ) =⇒ P{G ≥ g} → 1/2 asn → ∞,

3. g ≥ 1/3 =⇒ P{G ≥ g} = e−�(n),

4. P{G ≥ g} =�(1) ⇐⇒ g = O(1/
√

n),

5. 1/2−P{G ≥ g} =�(1) ⇐⇒ g =�(1/
√

n).

Proof. Let β/
√

n substituteg. Then forβ ∈ [ε,
√

n/3] andn ≥ 9, on the one hand,

9 ·P
{
G ≥ β/

√
n
}

=
∫ 1

β/
√

n
(1− x2)(n−3)/2 dx

≥
∫ 2β/

√
n

β/
√

n
(1− x2)(n−3)/2 dx

>
β

√
n

· (1− (2β)2/n)(n−3)/2

>
β

√
n

·exp

(
−

(n−3)/2

n/(2β)2 −1

)
(because (1−1/m)m−1 > 1/e)

=
β

√
n

·exp

(
−2β2 n−3

n−4β2

)

≥
β

√
n

·exp
(
−4β2) (becauseβ ≤

√
n/3 andn ≥ 9),

and on the other hand,
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9 ·P

{
G ≥ β/

√
n
}

=
∫ 1

β/
√

n
(1− x2)(n−3)/2 dx

≤
⌊
√

n/β⌋∑

i=1

β
√

n
·
(
1− (iβ/

√
n)2)(n−3)/2

(upper sum; widthβ/
√

n)

=
β

√
n

·
⌊
√

n/β⌋∑

i=1

(
1− (iβ)2/n

)(n−3)/2

<
β

√
n

·
∞∑

i=1

exp

(
−

(n−3)/2

n/(iβ)2

)
(because (1−1/m)m < 1/e)

≤
β

√
n

·
∞∑

i=1

exp(−(iβ)2/3) (because
n−3

2n
≥

1

3
for n ≥ 9)

<
β

√
n

·exp(−β2/3)·
1

1−exp(−β2)︸ ︷︷ ︸
=2(1) sinceβ ≥ ε ∈ R>0

where the last inequality follows because the summands of the series drop by a factor of

exp(−(i +1)2β2/3)

exp(− i 2 β2/3)
= exp(−(2i +1)·β2/3)

(i≥1)
≤ exp(−β2).

Thus, forβ ∈ [ε,
√

n/3] (i. e., forg ∈ [ε/
√

n,1/3] sinceβ =
√

n · g) we obtain

P{G ≥ g} =
1

9

∫ 1

β/
√

n
(1− x2)(n−3)/2dx =

1

9
·
β

√
n

·e−2(β2) =
√

n · g ·e−2(g2·n)

since 1/9 =2(
√

n ) (cf. Inequality (3.6) on page 24).
Concerning the second claim, note thatg = o(1/

√
n) implies (1− g2)(n−3)/2 → 1 asn grows,

and concerning the third claim, we have (2/3)(n−3)/2/9 = e−�(n) · O(
√

n), which is bounded
above by e−�(n).

Finally, for the proof of the fourth and the fifth claim, note that
√

n ·g ·exp(−2(g2 ·n)) =2(1)
if and only if g =2(1/

√
n ).3.3.2 Spatial Gain of a Gaussian Mutation

As we have seen, a Gaussian mutation is in fact a unit isotropic mutation which is scaled by
multiplying it with a χ -distributed random variableℓχ (with n degrees of freedom and which is
independent of the direction given by the unit isotropic mutation). Analogously to the definition
of the random variableG (Equation (3.2) on page 21), let̃G denote the “signed distance” ofc+ m̃
from the hyper-planeHc, wherem̃ is a Gaussian mutation vector. TheñG’s distribution indeed
equals the one of the random variableℓχ · G. In particular, we have (forn ≥ 4 since we apply
Lemma 3.11 (p. 24) for the value ofE[G+])
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E
[
G̃+] = E

[
ℓχ
]
·E
[
G+]

=
√

2 ·
Ŵ(n/2+1/2)

Ŵ(n/2)
·

1

9 · (n−1)

=
√

2 ·
Ŵ(n/2+1/2)

Ŵ(n/2)
·
Ŵ(n/2)

Ŵ(n/2−1/2)·
√
π · (n−1)

=
√

2 ·
n/2−1/2

√
π · (n−1)

=
1

√
2π

= 0.3989. . .

where we useŴ(n/2+1/2)= (n/2−1/2)·Ŵ(n/2−1/2) and the result onE[ℓχ ] from the proof of
Lemma 3.10 (p. 19). In this case, multiplying the expectations is indeed allowed since we inves-
tigateE

[
G̃ ·1{G̃>0}

]
. Namely, whether the indicator variable is one or zero is independent of the

random variableℓχ sinceP{ℓχ > 0} = 1. Or in other words, the indicator variable merely checks
whether the random direction points into the half-spaceH<c or into H>c, which is—per defini-
tion—independent of the (distribution of the) length. Whenwe are interested inE

[
G̃ ·1{G̃≥g}

]
for

someg 6= 0, things become more complicated, of course. Clearly, forg> 0, the larger the length
of the isotropically distributed vector, the larger the probability thatG̃ exceedsg. Formally, we
have the convolution involving the density of theχ -distributed length. Namely, forg> 0,

P
{
G̃ ≥ g

}
=

∫ ∞

g
Dχ (x) ·P{G ≥ g/x}dx

=
21−n/2

Ŵ(n/2)
·
∫ ∞

g

xn−1

ex2/2
·P{G ≥ g/x}dx,

where the integration starts atg (rather than 0) becauseg/x > 1 for x < g andP{G ≥ 1} = 0
anyway (in less formal words, if the mutation’s length is smaller thang then the mutant’s distance
from Hc must also be smaller thang).

SinceP
{
ℓχ ∈ [

√
n/2,2

√
n ]
}

equals
∫ 2

√
n√

n/2
Dχ (x)dx = 1− O(1/n) as implied by Lemma 3.10

(p. 19), by substituting “1” for “P{G ≥ g/x}” when x /∈ [
√

n/2,2
√

n ] we obtain the upper bound

P
{
G̃ ≥ g

}
=

21−n/2

Ŵ(n/2)
·
∫ 2

√
n

√
n/2

xn−1

ex2/2
·P{G ≥ g/x}dx + O(1/n).

By substituting “0” for “P{G ≥ g/x}” whenx /∈ [
√

n/2,2
√

n ] we trivially obtain the lower bound

P
{
G̃ ≥ g

}
≥

21−n/2

Ŵ(n/2)
·
∫ 2

√
n

√
n/2

xn−1

ex2/2
·P{G ≥ g/x}dx.

Thus, in the remaining part of the convolution ofP{G ≥ g/x)} with the distribution of the ran-
dom length we havex ∈ [

√
n/2,2

√
n ], i. e., g/x = 2(g/

√
n). SinceP{G ≥ g/x)} is bounded

from below by�(1) and from above by 1/2−�(1) if and only if g/x = 2(1/
√

n) as shown in
Lemma 3.12 (p. 25) (items 4 and 5), we directly obtain

Corollary 3.13. Let G̃ denote (analogously toG given in Equation (3.2) on page 21) the ran-
dom variable corresponding to the “signed distance” ofc+ m̃ from Hc, wherem̃ is a Gaussian
mutation. Then

• P
{
G̃ ≥ g

}
=�(1) ⇐⇒ g = O(1),

• 1/2−P
{
G̃ ≥ g

}
=�(1) ⇐⇒ g =�(1).
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We note again that this result is no surprise as theχ -distribution shows only very small devia-

tions from its expectation. Therefore recall that its variance is upper bounded by 1/2, whereas the
expectation is2(

√
n). This may become even more clear when we consider a scaled Gaussian

mutationσ · m̃ which is scaled such that we expect unit length, which implies σ = 2(1/
√

n).
Then the variance isO(σ 2), i. e. O(1/n)—which obviously tends to zero asn grows.3.4 Additional Notes
The random variablesG andG̃ are not tailored to the analysis of a specific function—although
we use the linear function SUM in its definition. As has been already noted several times,Hc

could denote any predefined hyper-plane containingc, rather than{x ∈ R
n | SUM(x) = SUM(c)}.

Due to the isotropy of a unit isotropic mutation, we would actually end up with the same random
variable—or, more precisely, with a random variable havingthe same distribution asG.

Furthermore, we would like to stress that the random variable G differs from the random vari-
able1x∗ corresponding to a unit mutation’s spatial gain towards a fixed pointx∗ ∈ R

n (usually
the/an optimum). However, as dist(c,x∗) → ∞, the (sequence of) random variable(s)1x∗ con-
verges in distribution to the random variableG. In fact, G stochastically dominates1x∗ as we
shall see.

Finally, the approach of using̃G when Gaussian mutations are considered differs from the
commonly followed progress-rate approach at least in one crucial aspect: The reasoning in most
progress-rate results is the following: Assume for a momentthat c coincides with the origin and
that the optimumx∗ lies on the positive halve of the first axis. Then the mutationvector can be de-
composed into a component pointing towardsx∗ along the first axis, calledcentral component(or
radial component), and into a so-calledlateral component(or traversal component) given by the
mutant’s distance from the first axis. Then the central component of the gain towardsx∗ is indeed
normally distributed—because it is just the first componentof the Gaussian mutation vector. The
lateral component, however, lies in the hyper-plane spanned by the remainingn−1 axes (in fact an
(n−1)-subspace sincec coincides with the origin by assumption). The length of the mutation vec-
tor’s lateral component, i. e. the mutant’s distance from the first axis, is againχ -distributed—with
n−1 degrees of freedom rather thann, though. As we have seen, the variance of the lateral com-
ponent’s length is by anO(1/n)-factor smaller than its expectation. In the very most progress-rate
results, this fact is taken as a reason to substitute the expectation of the lateral component’s length
for the random variable in the calculations. This does significantly ease the calculations since the
central component follows an ordinary normal distribution—presumably, one of the best known
and best investigated distributions. This simplification,namely the assumption that the lateral
component’s length were not random, however, rules out the possibility of obtaining theorems on
the algorithm’s behavior. Rather the results are actually obtained for/in a simplifying model of the
stochastic process that is induced by the algorithm under consideration, and simulations become
necessary to justify this simplification.

When we consider the random variablẽG, then the randomness “in alln dimensions” is re-
garded—rather than only the central component—, and the wayto theorems on the algorithm’s
“true” behavior is still open.
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3.4 Additional NotesA Note on Isotropi
 Mutations for Bit-Strings
When EAs for the search space{0,1}n are investigated, the commonly used mutation operator flips
each of then bits independently with some fixed probabilitypmut, usuallypmut := 1/n. However,
just like (scaled) Gaussian mutations forR

n, this can be considered a particular type of isotropic
binary mutation: The number of bits that flip follows a binomial distribution. However, one may
say that the mutation remains isotropic when we choose an arbitrary distribution over{0,1,. . . ,n}
for the number of bits to be flipped. Letk be distributed according to this distribution (which might
depend on the course of the optimization), then a subset ofk of the n bits is uniformly chosen,
and thosek bits are flipped. The reason why we may call this an isotropic binary mutation is
the following: If we pick a particular bit (and disregard theothern−1 bits), then the probability
that this bit is actually flipped is independent of our choice. Formally, the mutation of ann-bit-
string is associated with a distribution over the power-setof {1,. . . ,n}. Then we call a mutation
isotropic if (and only if) any two subsets of equal cardinality are equiprobable. This implies
that the distribution is invariant w. r. t. permutations of the bits’ positions in the string (cf. the
invariance w. r. t. rotations of the search space inR

n).
Considering adaptation of the mutation operator is rather uncommon when{0,1}n is the search

space. In some cases, one wants to consider the best case w. r.t. the mutation operator, and then
considering this general notion of isotropic mutations might by useful. In general, in the best
case there is a particular numberk of bits such that flippingk (uniformly chosen) bits results
in maximum success probability for an isotropic mutation, and hence, the best-case assumption
would just be to assume that with probability 1 we flipk uniformly distributed bits.

For constantk, choosingpmut := k/n results in ak-bit-mutation to occur with probability�(1),
so that for most (of the interesting?) asymptotic analyses,there might be only small differences
between an “optimally adapted isotropic binary mutation” and an optimally chosenpmut for inde-
pendent bit-flips. However, for largek there might be a substantial difference.

We will come back to this in Section 4.5 (p. 47).
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4 General Lower Bounds
In this chapter we will derive lower bounds on the number of isotropic mutations which are
necessary to reduce the approximation error in the search space. Namely, in the following, the
approximation error (in the search space) is given byd := dist(c,x∗), the Euclidean distance of the
evolving search pointc from a fixed search pointx∗ ∈ R

n —for instance the (or a fixed) optimum
of a function to be optimized. In particular, we consider thenumber of mutations to halve this
approximation error. The lower bounds that we will obtain hold independently of the function
to be optimized, i. e., they are valid for any function scenario. To follow the reasoning, however,
one may keep in mind the minimization of SPHERE: Rn → R≥0 defined as the squared distance
from the origin. This function scenario is in some sense a best case since a mutation results in a
gain w. r. t. the SPHERE-value if and only if it results in a spatial gain towards the minimum in the
search space. Halving the distance from the optimum corresponds to a SPHERE-gain of 75%, i. e.,
the function-value is quartered. Besides, this example shows that a lower bound on the runtime
w. r. t. the reduction of the approximation error in the search space usually implies a lower-bound
result on the reduction of the approximation error w. r. t. the function value (this implied bound
may be weak, though; we shall see an example for this effect later, namely when we investigate
positive definite quadratic forms).

Moreover, the lower bounds on the runtime we are going to showwill be valid independently of
the adaptation of the mutation strength. In fact, they will be independent of the length-distribution
of the isotropic distribution that is used to generate mutants. For instance, the length could
be distributed according to a (scaled) Cauchy distribution, rather than according to a (scaled)
χ -distribution (withn degrees of freedom) when Gaussian mutations are used.

One may ask whether lower bounds that hold in such a general sense may be too general,
i. e. too weak, so that common concrete mutation mechanisms just cannot achieve a runtime which
is upper bounded by the same order, i. e., which is at most by a constant factor larger than the lower
bound. This is not necessarily the case as we will see in the chapter where concrete scenarios are
investigated.

We will start off with a closer look at the spatial gain which asingle isotropic mutation may
yield, since a general upper bound on the expectation of thisgain will enable us to obtain various
lower-bound results.4.1 Spatial Gain Towards a Fixed Sear
h Point
When we want to prove a lower bound on the number of mutations which are necessary to realize a
certain reduction of the approximation error, an upper bound on the expected spatial gain towards
x∗ in a single step is needed. So far we have considered the signed distance of the mutant from a
fixed hyper-plane which contains its parent. In the following reasoning, letHc denote the hyper-
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4 General Lower Bounds
plane that containsc and lies perpendicular to the line passing throughc and x∗. Essentially,
we have considered the random variableG (defined in Equation (3.2) on page 21) which bases
on a unit isotropic mutation. LetGℓ denote the random variable defined just likeG except for
the length of the mutation vectorm being fixed toℓ > 0 rather than to 1, i. e.,m is isotropically
distributed such thatP{|m| = ℓ} = 1. ThenGℓ ∼ ℓ ·G since this is just a rescaling of the situation.
Then the random variable

1x∗,ℓ := dist(c , x∗)−dist(c+ m , x∗) (4.1)

corresponds to the spatial gain towardsx∗. (Note that this is not to be mixed up with the so-called
“central component” of a mutation as discussed in Section 3.4 (p. 28).)

The interdependence between the signed distance (g) from Hc and the gain (δ) towardsx∗ is
depicted in the following figure.

c
g

Sc,ℓx

δ

x∗

Hc

Figure 4.1: Interrelation betweenδ (gain towardsx∗) andg (signed distance fromHc)

Obviously (and as we have seen), the larger the length of an isotropic mutation, the larger
the expected distance from the hyper-planeHc. Recall thatd is defined as dist(c,x∗). The best
possible gain towardsx∗ is ℓ—if ℓ ≤ d. If ℓ > d, however, the best possible gain towardsx∗ is
2d − ℓ since all mutants have distance at leastℓ−d from x∗. The least possible gain towardsx∗

is −ℓ, independently of howℓ relates tod. All in all, the range of1x∗,ℓ is [−ℓ,min{ℓ,2d − ℓ}].
(Hence, in particular, the gain towardsx∗ is always negative ifℓ > 2d.)

Now, note this trivial but essential geometric fact:

Fact 4.1. The spatial gainδ towardsx∗ corresponding to the signed distanceg (from the hyper-
plane that containsc and lies perpendicular to the line passing throughc andx∗) cannot be larger
thang.

Since1x∗,ℓ ≥ δ impliesGℓ ≥ g(δ), whereg(δ) denotes theg that corresponds to the specified
δ ∈ [ℓ,min{ℓ,2d − ℓ}], and sinceg(δ) ≥ δ as just noticed, this trivial observation directly implies
that P

{
1x∗,ℓ ≥ δ

}
≤ P{Gℓ ≥ g(δ)} ≤ P{Gℓ ≥ δ}. In other words,1x∗,ℓ ≺ Gℓ. Note that this

stochastic dominance holds for any fixed lengthℓ. As a consequence, the dominance indeed
holds for any distribution of|m|, i. e., for arbitrary isotropic mutations. We have just obtained
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4.1 Spatial Gain Towards a Fixed Sear
h Point
Proposition 4.2. Consider an arbitrary but fixed search pointx∗ ∈ R

n. Let the mutation vector
be distributed according to an arbitrary isotropic distribution F .

Let the random variable1x∗,F be defined (analogously to Equation (4.1) on page 32) as the
mutation’s spatial gain towardsx∗, and let the random variableGF be defined (analogously to
Equation (3.2) on page 21) as the mutant’s signed distance from the hyper-planeHc.

Then1x∗,F ≺ GF (i. e.,GF stochastically dominates1x∗,F ).

Due to the isotropy of the mutation vectorm, for any pointx∗∗ ∈ R
n that has the same distance

(namelyd) from c as x∗, we have1x∗,F ∼ 1x∗∗,F . Because of this invariance, it makes sense
to use the subscript “d” rather than “x∗.” Furthermore, we may drop the subscriptF since the
dominance holds for anyF (as long asF is isotropic, of course).

Naturally, one may ask how the random variables1d1 and1d2 relate when, say,d1 < d2. One
may already guess that1d1 ≺1d2. As this might not be that obvious, the concrete correspondence
betweenδ andg will be derived in the following. Therefore, reconsider Figure 4.1 (p. 32) and
assume that the length of the isotropic mutation happens to be ℓ. Furthermore, we defineMδ :=
{x | dist(x,c) = ℓ∧dist(x,x∗) = d − δ} as the set which consists of all potential mutants that are
exactlyδ closer tox∗ than c. For δ < −ℓ and/orδ > min{ℓ,2d − ℓ}}, Mδ is empty since such
gains are impossible, and forδ = −ℓ and/orδ = min{ℓ,2d − ℓ}}, Mδ is a singleton. Finally, for
−ℓ < δ < min{ℓ,2d − ℓ}, Mδ forms an (n−1)-sphere; namely,Mδ is the intersection of the two
hyper-spheresSc,ℓ (the mutation sphere) andSx∗,d−δ (consisting of all points having distanced−δ
from x∗).

Now, using Pythagoras, we obtain thatℓ2 − g2 as well as (d − δ)2 − (g−d)2 equal the squared
radius ofMδ. Solving the equationℓ2 − g2 = (d − δ)2 − (g−d)2 for g yields the correspondence

g = δ+
ℓ2 − δ2

2d
for δ ∈ [−ℓ,min{ℓ,2d −ℓ} ]. (4.2)

As we can see now, the additive term by whichg (the gain away fromHc) must be larger than the
correspondingδ (the spatial gain towardsx∗), namelyℓ2 − δ2/(2d), is indeed anti-proportional
to d, the distance fromx∗. Since, on the one hand,P

{
1d,ℓ ≥ δ

}
= 1 for anyδ ≤ −ℓ and, on the

other hand,P
{
1d,ℓ ≥ δ

}
= 0 for anyδ ≥ min{ℓ,2d−ℓ} anyway, we have indeed

P
{
1d1 ≥ δ

}
≤ P

{
1d2 ≥ δ

}
when d1 ≤ d2

for any/arbitraryδ ∈ R. As our choice ofℓ in the above reasoning was again arbitrary, the in-
equality that we derived above does not only hold for any isotropic mutation of an arbitrarily
fixed length but for arbitrary isotropic mutations. We obtain the following result (which is not at
all a surprise, yet it will be of great help):

Proposition 4.3.Consider two arbitrary but fixed search pointsx∗,x∗∗ ∈R
n. The search pointc is

mutated by adding a vector which is distributed according toan arbitrary isotropic distributionF .
Then dist(x∗,c) ≤ dist(x∗∗,c) implies1x∗,F ≺1x∗∗,F .

The stochastic-dominance relations that we have derived for the various random variables in-
duced by an isotropic mutation will be frequently used in numerous reasonings and calculations.

As another consequence of the interrelation between the signed distance fromHc and the spatial
gain towards a fixed search point (Equation (4.2) on page 33),we see that1d,ℓ ≥ 0 implies
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4 General Lower Bounds
Gℓ ≥ ℓ2/(2d), and hence,P

{
1d,ℓ ≥ 0

}
, the probability of the mutant being at least as close to

x∗ as c, is upper bounded byP
{
Gℓ ≥ ℓ2/2d

}
. Furthermore, utilizing the stochastic-dominance

relation, we directly obtain that

E
[
1+

d,ℓ

]
≤ E[Gℓ ·1{Gℓ≥ℓ2/(2d)}].

Using Lemma 3.11 (p. 24) (and the fact thatGℓ ∼ ℓ · G), we obtain forn ≥ 4

E[Gℓ ·1{Gℓ≥ℓ2/(2d)}] ≤ ℓ ·0.4·
(
1− (ℓ/(2d))2)(n−1)/2/√

n−1,

and thus, by substitutingx for ℓ/(2d), we have (forn ≥ 4)

E
[
1+

d,ℓ

]
≤

0.8d
√

n−1
· x · (1− x2)(n−1)/2 (4.3)

wherex ∈ (0,1). Considern to be fixed for a moment. It is readily seen thatx · (1− x2)(n−1)/2 has
a unique maximum, and since

d

dx
x · (1− x2)(n−1)/2 = (1− x2)(n−1)/2 − x2 · (n−1)· (1− x2)(n−1)/2−1

= (1− x2)(n−1)/2−1 ·
(
(1− x2)− x2 · (n−1)

)

= (1− x2)(n−1)/2−1 · (1− x2 ·n) ,

solving 1− x2 ·n = 0 for x yields thatx · (1− x2)(n−1)/2 takes its maximum at 1/
√

n. Substituting
“1/

√
n” for “ x · (1− x2)(n−1)/2” in the RHS of Inequality (4.3) on page 34, we obtain forn ≥ 4

E
[
1+

d,ℓ

]
≤

0.8d
√

n−1
·

1
√

n
· (1−1/n)(n−1)/2 ≤

0.8d

n−1
· (3/4)3/2 <

0.52d

n−1
.

Note that also this bound holds independently of the lengthℓ of the isotropic mutation, i. e.,
it holds for any isotropic mutationm with P{|m| = ℓ} = 1. Thus, the bound indeed holds for
arbitrary distributions of|m|, i. e., for any isotropic mutation. Finally, note that—for any random
variableX—we haveE[X+] ≥ E[X ·1{X≥a}] for anya ∈ R. Thus, we have shown the following
result:

Lemma 4.4. Consider the optimization of an arbitrary functionf : Rn → R. Let x∗ ∈ R
n denote

an arbitrary but fixed point (for instance an optimum off , if one exists). Letc denote the cur-
rent search point to which an isotropic mutationm is added, resulting in the mutantc′ = c+ m.
Then—independently of the distribution of|m| and independently of the selection rule, which
decides whetherc′ replacesc or not—the expected spatial gain of this step (mutation followed by
selection) towardsx∗ is smaller than 0.52·dist(c,x∗)/(n−1) for n ≥ 4.

This lemma tells us that, even when the length of an isotropicmutation and the selection rule
are chosen optimally (i. e. such that the expected gain of themutation followed by selection is
maximum), the approximation error (in the search space, w. r. t. x∗) is reduced at most by a
0.52
n−1-fraction. This generalupperbound on the expected best-case one-step gain of a mutation can
now be turned into a generallowerbound on the expected number of steps which are necessary to
realize a certain reduction of the approximation error in the search space (defined as the Euclidean
distance from a certain search point).
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4.2 Lower Bound on the Expe
ted Number of Steps of (1+1) ESs
Before we will do this, however, we will prove that a gain which is “considerably” larger than

the best-case expected gain is very unlikely:

Lemma 4.5. Let x∗ ∈ R
n denote an arbitrary but fixed point andc 6= x∗ the current search point

to which an isotropic mutationm is added, i. e.,d := dist(c,x∗) > 0. Then, for any constant
ε ∈ (0,1], independently of the distribution of|m|, the probability that the mutant is such that
d −dist(c+ m,x∗) = �(d ·nε/n) is bounded from above by e−�(nε), i. e., the mutant’s distance
from x∗ is by an�(nε/n)-fraction smaller than the one of its parent only with an exponentially
small probability.

Proof. Assume that the length of the isotropic mutationm is ℓ > 0. Then withδ := d · nε/n
Equation (4.2) on page 33 tells us that

gδ =
ℓ2

2d
+ δ−

δ2

2d
=

ℓ2

2d
+

dnε

n

(
1−

nε

2n

)
≥

ℓ2

2d
+

dnε

2n
.

Since the two summands in our lower bound ongδ are equal forℓ = d · n(ε−1)/2, we obtain that
whenℓ > d · n(ε−1)/2, then “ℓ

2

2d ” is the larger summand, and whenℓ < d · n(ε−1)/2, then “dnε

2n ” is
the larger summand.

For ℓ ≥ d · n(ε−1)/2, i. e. d ≤ ℓ · n(1−ε)/2, we havegδ ≥ ℓ2/(2d) ≥ (ℓ/2) · n(ε−1)/2, whereas for
ℓ ≤ d · n(ε−1)/2 , i. e. d ≥ ℓ · n(1−ε)/2, we havegδ ≥ dnε/(2n) ≥ (ℓ/2) · n(ε−1)/2. In other words,
gδ ≥ (ℓ/2)·n(ε−1)/2 for any lengthℓ > 0 of the mutation vectorm, and thus,

P
{
dist(c+ m,x∗) ≤ d −d ·nε/n

}
≤ P

{
Gℓ ≥ (ℓ/2)·n(ε−1)/2}.

This probability is bounded from above by e−�(nε) according to Lemma 3.12 (p. 25).
Finally, it is readily checked that this asymptotic upper bound on the probability does not only

hold for aδ of exactlyd ·nε/n, but for anyδ that is�(d ·nε/n).

Like the upper bound on the expected gain of a mutation, also this bound on the gain of a
mutation can be turned into a lower bound on the number of mutations which are necessary to
reach a certain reduction of the approximation error. Before we do so, however, we focus on the
expected gain and on the expected number of steps again.4.2 Lower Bound on the Expe
ted Number of Steps of(1+1) ESs
Recall our framework for (1+1) ESs from Section 1.2 (p. 8). Inthe following, c[i ] denotes the
evolving individual afteri steps and we letd[i ] denote the approximation error in the search space
given by dist(c[i ] ,x∗) after i steps. Thend[0] is the initial approximation error. Moreover, in this
section letα be such thatα ·d is the best-case expected one-step gain (i. e.,α= maxℓ>0E[1+

d=1,ℓ])
for which we have just proved thatα < 0.52/(n−1) = O(1/n). Note that, because of the scaling
invariance of the situation,α= maxd>0 E[1+

d ]/d with the length of the underlying mutation being
fixed to an arbitrary positive length, i. e.,α is well defined.

Our best-case assumptions on the step length and the selection rule obviously result in the
largest possible expected one-step gain—yet one may ask whether the “greedy” assumption of
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4 General Lower Bounds
assuming the best case for each of a number of steps does indeed result in a best-case multi-step
assumption. Therefore, consider two successive steps and assume that in the first step a (possibly
negative) spatial gain ofδ[1] is realized. Then, assuming the best-case for the second/final step, we
obtain for the minimum (best possible) expected approximation error after the two steps (under
the condition of the gain in the first step beingδ[1])

E
[
d[2] | δ[1]] = (1−α) ·d[1] = (1−α) · (d[0] − δ[1]) = (1−α) ·d[0] − (1−α) · δ[1] .

Obviously, the largerδ[1], the smaller the expected final approximation error. Let1[1] denote
the random variable corresponding to the spatial gain of thefirst step (mutationand selection).
Using the linearity of expectation, we obtainE[d[2] ] = (1−α) ·d[0] − (1−α) ·E[1[1]], and hence,
applying the one-step best-case assumption also to the firststep indeed results in the expected
final approximation error to be minimum. Namely, after two steps we have in the best case (w. r. t.
the expected approximation error)

E
[
d[2]]= (1−α) ·d[0] − (1−α) · (α ·d[0]) = (1−α)2 ·d[0] .

By induction we obtain that in the best case—namely when in each step the length of the mutation
was such thatE[1+] is maximum and the selection was such that a mutation is accepted if and
only if the approximation error is decreased—afterk steps the expected approximation error is
(1−α)k ·d[0] . Since (1−α)k ≥ 1−α ·k, the smallest number of stepsk such thatE[d[k] ] ≤ d[0]/2
is at least1/2

α
>

1/2
0.52/(n−1) > 0.96(n−1).

So, now we know a lower bound on the number of steps which are necessary until we expect the
approximation error to be halved. However, in general, maximizing theexpected total gainneed
not necessarily result in minimizing theexpected number of stepsto realize a specified gain (for
instance, to halve the approximation error). Nevertheless, 0.5/α (which is larger than 0.96(n−1)
as we have already seen) will turn out to be a lower bound on theexpected number of steps which
are necessary to halve the approximation error. The proof will be easy once we know about the
following lemma, which is a modification of Wald’s equation (see Feller (1971, Formula (2.8) in
Chapter 12), for instance).

Lemma 4.6. Let X1, X2, . . . denote random variables with bounded range andS the random vari-
able defined byS= min{ t | X1 +·· ·+ Xt ≥ g} for a giveng> 0. Given thatS is a stopping time
(i. e., the event{S= t} depends only onX1, . . . , Xt ), if E[S] <∞ andE[Xi | S≥ i ] ≤ u 6= 0 for
i ∈ N, thenE[S] ≥ g/u.

Proof. First of all note that (unlike in Wald’s equation) theXi need not be independent—making
the assumption necessary thatS is a stopping time, though.

ObviouslyS≥ 1, and fori ≥ 2, the condition “S≥ i ” is equivalent to “X1 +·· ·+ Xk < g for
k ∈ {1,. . . , i − 1}.” Since theXi are bounded,E[X1 +·· ·+ XS] < ∞ if E[S] < ∞. The proof
follows the one of Wald’s equation (up to the point where the upper bound onE[Xi | S≥ i ] is
utilized rather than the original assumption that theXi are i. i. d.).
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4.2 Lower Bound on the Expe
ted Number of Steps of (1+1) ESs
g ≤ E[X1 +·· ·+ XS]

=
∞∑

t=1

P{S= t} ·E[X1 +·· ·+ Xt | S= t ]

=
∞∑

t=1

P{S= t} ·
t∑

i=1

E[Xi | S= t ]

=
∞∑

t=1

t∑

i=1

P{S= t} ·E[Xi | S= t ]

since the series converges absolutely due to the boundedness of theXi

=
∞∑

i=1

∞∑

t=i

P{S= t} ·E[Xi | S= t ]

=
∞∑

i=1

∞∑

t=i

P{S= t | S≥ i } ·P{S≥ i } ·E[Xi | S= t ]

=
∞∑

i=1

P{S≥ i } ·
∞∑

t=i

P{S= t | S≥ i } ·E[Xi | S= t ]

sincet ≥ i , S= t impliesS≥ i

=
∞∑

i=1

P{S≥ i } ·
∞∑

t=i

P{S= t | S≥ i } ·E[Xi | S= t ∧ S≥ i ]

sincet < i impliesP{S= t | S≥ i } = 0

=
∞∑

i=1

P{S≥ i } ·
∞∑

t=1

P{S= t | S≥ i } ·E[Xi | S= t ∧ S≥ i ]

=
∞∑

i=1

P{S≥ i } ·E[Xi | S≥ i ]

≤
∞∑

i=1

P{S≥ i } ·u

= E[S] ·u

Before we apply this lemma to prove the lower bound on the expected number of steps which
are necessary to halve the approximation error, however, wewill show that also when assuming
the best case w. r. t. the expected number of steps, we can assume that mutations which result in a
larger approximation error are always discarded. Therefore, letx∗ ∈R

n be an arbitrary (but fixed)
point and assume that a (1+1) ES minimizes the functionf : Rn → R with c 7→ dist(c,x∗) using
isotropic mutations.

Assume that the spatial gain towardsx∗ in the first step (mutationandselection) isδ[1] < 0 so
thatd[1] = d[0] − δ[1] > d[0]. Let L be the distribution of the mutation’s length which is used by
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4 General Lower Bounds
the original (1+1) ES in the second step to mutate the search point (which was generated in the
first step) at distanced[1] = d[0] − δ[1] (> d[0]) from x∗. Then we claim that discarding the first
mutation and instead using the scaled length distributionL ′ := L · (d[0]/d[1]) in the second step to
mutate the initial individual anew results in a “better” distribution of the mutant that is generated
in the second step (beforeselection). Formally, we consider the random variableδ[1] +1d[1] ,L for
the original process (whereδ[1] < 0 is fixed) and the random variable1d[0] ,L ′ for the alternative
process. We will show that the latter one is “better” in the sense that it stochastically dominates
the random variableδ[1] +1d[1] ,L (which describes the original process). Therefore, note that,
because of the scaling invariance of the situation, we have

1d[1] ,L ∼ d[1]

d[0] ·1d[0] ,L ′ .

Thus, in the alternative process the total spatial gain after the second mutation (beforeselection)
is at leastδ′ with exactly the same probability with which in the originalprocess a total spatial
gain of at leastδ[1] + δ′ · d[1]/d[0] occurs—for anyδ′ ∈ R. Sinceδ[1] < 0 (by assumption) and
d[0] > 0, the following inequalities are equivalent:

δ[1] + δ′ · d[1] /d[0] < δ′

δ′ · (d[0] − δ[1])/d[0] < δ′ − δ[1]

δ′ · (1− δ[1]/d[0]) < δ′ − δ[1]

δ′ · (−δ[1]/d[0]) < − δ[1]

δ′ < d[0] .

Obviously, reducing the approximation error by more than the distance fromx∗ is impossible, and
x∗ is hit with zero probability anyway. Thus, indeedδ′ < d[0] with probability one. Consequently,
a gain of at leastδ′ is realized in the alternative processwith exactly the same probabilitywith
which in the original process thesmallergain of at leastδ[1] +δ′ ·d[1]/d[0] is realized. This directly
implies the claimed stochastic dominance relation:

Proposition 4.7. Let d[0] > 0 as well asδ[1] < 0 be fixed, and letd[1] := d[0] − δ[1] (> d[0]). For
any length distribution (non-negative random variable)L, we have1d[0] ,L·d[0]/d[1] ≻ δ[1] +1d[1] ,L .

So, up to now we considered the first step (consisting of a mutation followed by selection) and
the second mutation (without selection). For the selectionin the second step, we obtain by the
same reasoning that it is again “best” to discard the mutation in this second step if it results in a
negative gain, and so on. By induction, we obtain that afteranynumber of steps, thetotal gain
of the alternative (imaginary) process (in which mutationsresulting in a negative gain are always
discarded) stochastically dominates the total gain of the original process. In other words, for
any number of stepsk, the probability of realizing a predefined reduction of the approximation
error within the firstk steps is at least as large for the alternative process as for the original
process. This directly implies that the random number of steps which are necessary to realize this
reduction for the original process stochastically dominates the respective random variable for the
alternative process. As a simple consequence, we obtain that we expect the original process to
perform at least as many steps (to realize the predefined reduction of the approximation error) as
the alternative process needs in expectation.
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Now we can easily prove the lower bound on the expected numberof steps:

Theorem 4.8.Let x∗ ∈R
n be an arbitrary (but fixed) point. Let a (1+1) ES minimize the function

f : Rn → R, n ≥ 4, with c 7→ dist(c,x∗) (or any other function) using isotropic mutations and
assume that in each step the distribution of the mutation’s length as well as the selection rule are
such that the expected number of steps until dist(c[t] ,x∗) ≤ dist(c[0] ,x∗)/2 for the first time is
minimum. Then this expected number of steps is larger than 0.96· (n−1).

Correspondingly, the expected number of steps until dist(c[t] ,x∗) ≤ dist(c[0] ,x∗)/2b(n) for the
first time, whereb: N → N, is larger thanb(n) · (0.96n−2)+1.

Proof. For the application of Lemma 4.6 (p. 36) we letXi denote the random variable which
corresponds to the spatial gain ini th step (mutation and selection). As we have just seen, we can
assume that mutations which result in a negative gain are always discarded. Consequently, the
distance fromx∗, i. e. the approximation error, will never exceedd[0] (the initial approximation
error). As a further consequence, theXi are bounded, namely 0≤ Xi ≤ d[0] .

We chooseg := d[0]/2 and note thatS is a stopping time in our case. Lemma 4.4 (p. 34) gives
the upper boundE[Xi ] ≤ d[0] · α < d[0] · 0.52

n−1, and hence, we chooseu := d[0] · 0.52
n−1. Then the

lower boundg/u on the expected number of steps necessary to halve the approximation error
(from Lemma 4.6 (p. 36)) finally solves to (d[0]/2)

/
(d[0] · 0.52

n−1)> 0.96· (n−1)> 0.96n−1.
Due to the linearity of expectation, the expected number of steps to halve the approximation

errorb times is lower bounded by (0.96n−1)+ (b−1)· (0.96n−1−1), where the rightmost “−1”
emerges because the last step within a halving-phase is also(and must be counted as) the first step
of the following halving-phase.

Now that we know that�(n) steps are necessaryin expectationto halve the approximation
error in the search space, we would like to know whether thereis a good chance of getting by
with considerably fewer steps, i. e., we want a bound on the probability that a certain number of
steps does—or, does not—suffice to halve the approximation error.4.3 Lower Bound for (1+++,λ)ESs whi
h Holds with OverwhelmingProbability
As in the previous section, we concentrate on the number of steps to halve the approximation
error in the search space, i. e. the distance from a predefinedsearch pointx∗ ∈R

n. However, now
we want to obtain a lower bound on the number of steps which holds with a certain probability,
namely with overwhelming probability, i. e., the probability that fewer steps suffice is exponen-
tially small.

Therefore recall Lemma 4.5 (p. 35). This lemma indeed almostdirectly implies the following
lower-bound result:

Theorem 4.9. Let a (1+,λ) ES using isotropic mutations and an arbitrary mutation adaptation
optimize an arbitrary function. Letx∗ denote some fixed point (for instance the/a fixed optimum).
Given thatd := dist(c[0],x∗) > 0, for b : N → N such thatb = poly(n) and any two constants
κ,ε > 0, the probability that withinκ · b(n) · n1−ε steps (i. e.λ · κ · b(n) · n1−ε mutations) a search
point c[i ] with dist(c[i ] ,x∗) ≤ d/2b(n) is generated is upper bounded by e−�(nε).
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4 General Lower Bounds
Proof. We can focus on the number of iterations to halve the approximation error since the total
error probability is bounded from above byb ·e−�(nε), which is e−�(nε).

Assume thatκ n1−ε steps suffice to halve the approximation error. Then at leastone step must
yield a gain of at least (d/2)/(κ n1−ε) =�(d ·nε/n). Using Lemma 4.5 (p. 35), the probability that
at least one of theλ= poly(n) mutants in a step yields such a gain is upper bounded byλ ·e−�(nε),
which is bounded by e−�(nε).

The proof is appealingly simple. One feels, however, that the “true” lower bound on the number
of steps should become smaller whenλ is increased. Beyer (2001, p. 77) states that “an increase
in the number of offspring of the (1,λ) ES yields a logarithmic increase of the progress rate.”1

So the proof of our lower-bound result may be so simple because the bound is weak. To obtain
a better lower bound, however, a more sophisticated reasoning than a simple application of the
pigeonhole principle seems necessary.

As a starting point, one may ask with what probability a (1+1)ES might halve the approxima-
tion error in a single step. In other words, we aim at anupperbound on the success probability
of an isotropic mutation to result in a spatial gain of at least d/2, whered denotes the distance
from x∗. More precisely, we want to boundP

{
1d,L ≥ d/2

}
from above, where the length dis-

tribution L is arbitrary, i. e., we must again assume that the best lengthdistribution was chosen.
Clearly, there is one particular lengthℓ∗ of an isotropic mutation that results in the best chance of
halving the approximation error. Therefore, recall Equation (4.2) on page 33 which tells us the
correspondence between the distance from the hyperplane containing the parent (and lying per-
pendicular to the line passing throughc andx∗) and the spatial gain towardsx∗, whereℓ denotes
the length of the isotropic mutation. Forg> 0, the largerℓ compared tog, the largerP{Gℓ ≥ g},
and thus, we need to minimize

g

ℓ
=

δ

ℓ
+
ℓ2 − δ2

ℓ ·2d
=

δ

ℓ
+
ℓ

2d
−

δ2

ℓ ·2d

(where we assumeℓ > 0). As

d

dℓ

g

ℓ
=

d

dℓ

(
δ

ℓ
+
ℓ

2d
−

δ2

ℓ2d

)
=

−δ
ℓ2

+
1

2d
+

δ2

ℓ22d
=

1

2d
−
δ(2d − δ)
ℓ22d

,

solving the equationd
dℓ g/ℓ= 0 for ℓ yields that, for 0< δ < d, the length

ℓ∗ :=
√
δ · (2d − δ) (4.4)

results in maximum success probability. Sinceδ < 2d−δ, we haveℓ∗ ≤ 2d−δ, and consequently,

max
ℓ>0

P
{
1x∗,ℓ ≥ δ

}
= max

ℓ>0
P{Gℓ ≥ g(d,δ,ℓ)} = P{Gℓ∗ ≥ g(d,δ,ℓ∗)}, (4.5)

whereg(d,δ,ℓ) = δ+ (ℓ2 − δ2)/(2d) andd is the distance fromx∗.
So, as we want to know the probability of halvingd, we substituted/2 for δ and obtain that

in this caseℓ∗ =
√
δ · (2d − δ) =

√
(d/2)(2d −d/2) = d ·

√
3/4 andg(d,δ=d/2,ℓ∗) = d ·3/4. Since

1 where the progress rate “measures the expected change of thepopulation with respect to a reference point in
the parameter space from generationg to generationg + 1”, describing a “microscopic aspect of the local
evolution” (Beyer, 2001, p. 17)
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(for any fixedℓ > 0) Gℓ ∼ ℓ · G, we haveP{Gℓ∗ ≥ g(d,δ,ℓ∗)} = P{G ≥ g(d,δ,ℓ∗)/ℓ∗}, and hence, the
probability that an isotropic mutation halves the approximation error equalsP

{
G ≥

√
3/4

}
in the

best case, i. e., when the mutation’s length is chosen optimally.
Lemma 3.12 (p. 25) tells us that this probability is e−�(n). We obtain a more precise upper

bound by recalling Equation (3.5) on page 23, which tells us that forn ≥ 4

P
{

G ≥
√

3/4
}

=
1

9
·
∫ 1

√
3/4

(
1− x2)(n−3)/2

dx < (1−3/4)(n−3)/2/9 = 2−n+3/9.

Thus (using the upper bound on 1/9 given in Inequality (3.6) on page 24) we have just proved

Lemma 4.10. Let x∗ ∈ R
n andc ∈ R

n \ {x∗} be fixed search points and letm be arbitrarily iso-
tropically distributed overRn. Then, forn ≥ 4, the probabilityP{dist(c+ m,x∗) ≤ dist(c,x∗)/2}
is bounded above by 2−n+3/9 < 2−n+3 ·

√
n−1/

√
2π < 2−n ·3.2

√
n.

So, what does this lemma tell us? Though it is no surprise thatthe chance of halving the
approximation error with a single mutation drops when the dimensionality increases, we now
know a concrete (exponentially small) upper bound on that probability. And indeed, this upper
bound will enable us to also obtain an upper bound on the success probability within multiple
steps of a (1+,λ) ES.

The idea behind this bound is the “curse of dimensionality” in R
n. Therefore, firstly consider

the search space{0,1}n and the standard mutation operator, which flips each of then bits indepen-
dently with probability 1/n. When we repeatedly mutate a search point without doing selection,
then each point in the search space is hit infinitely often as the number of mutations approaches
infinity. In particular, the number of steps it takes this random search to visit a certain search point
is finite. Now considerRn for n ≥ 3. Let us start with a fixed point and repeatedly add an isotrop-
ically distributed vector (with an arbitrary distributionof the length that is not concentrated on 0)
to this point. Despite the fact that our starting point is never exactly hit again, even the probability
of ever getting close again to our starting point tends to zero as the dimensionality increases, even
if the number of mutations approaches infinity; cf. Grinstead and Snell (1997, Section 12.1).

Obviously, the search of a (1+,λ) ES is not purely random, yet guided by selection (unless a flat
fitness landscape is given, of course). Selection, however,merely means that search paths which
do not seem promising are no longer followed (pruned). One may easily imagine that also these
search paths would be followed (in addition to the promisingones, of course).

In the following, we modify the (1+,λ) ES (with a global mutation strength as described in
Section 1.2 (p. 8)) such that we end up with a search procedurethat is independent of the function
to be optimized and, thus, purely random: Consider the (1+,λ) ES after initialization, i. e., an
initial starting point and an initial mutation strength aregiven. In the first stepλ mutants are
generated, each by adding an isotropic mutation (the distribution of which depends solely on the
currentσ ) to the starting point. In contrast to the original (1+,λ) ES, we now donot select one of
theλ(+1) individuals, yet keep all 1+ λ search points as a populationP[1] . After the first step
σ may be up- or down-scaled—depending on the individuals’ function values. Thus, to also get
rid of this function-dependency, each of the 1+λ points inP[1] is mutated 3 times: once without
changingσ , once with an up-scaledσ , and once with a down-scaled mutation strength. Again
we keep all (1+λ) ·3λ newly generated individuals (each of which consists of a search point and
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4 General Lower Bounds
theσ that was use to generate this search point). Consequently, we have (1+λ) + (1+λ) ·3λ =
(1+λ)(1+3λ) individuals after the second step in the populationP[2]. Repeating this procedure,
after i iterations a populationP[i ] is generated which contains

(1+λ)(1+3λ)i−1 ≤ (1+3λ)i = eln(1+3λ)·i

individuals. The crucial point is thatP[i ] is built without any dependency on the function to
be optimized, and that all search paths of the original (1+,λ) ES emerge in this modified search
procedure with the same probability density. LetS⊂ R

n denote an arbitrary Borel set. Then the
probability thatP[i ] hits S, namelyP

{
S∩ P[i ] 6= ∅

}
, is an upper bound on the probability that the

search point evolved withini iterations by the original (1+,λ) ES is inS. This is readily proved by
induction on the number of steps; it is crucial that the initialization is done in the same way for
both search procedures, of course.

Since each search pointx ∈ P[i ] is generated by successively addingi isotropically distributed
vectors to the initial search point, Lemma 3.7 (p. 18) tells us thatx is indeed isotropically distrib-
uted w. r. t. the initial search point. We do not know the (distribution of the) distance betweenx
and the initial search point, yet this does not matter—namely, we may assume the best case.

Now, if we choose the “target set”S as the hyper-ball containing all search points that have a
distance of at most half the initial distance fromx∗, and if we know that the probability that an
individual in P[i ] hits S is very small, say, upper bounded by 2−n+3/9 = e−(ln2)(n−3)/9 (which
is at most e−0.692n for n large enough since ln2> 0.693), then the probability thatP[i ] contains at
least one point fromS is bounded above by

#P[i ] ·e−0.692n ≤ eln(1+3λ)·i ·e−0.692n = eln(1+3λ)·i−0.692n

for n large enough (using the union bound). Then choosingi := 0.69n/ ln(1+ 3λ) finally yields
an upper bound of e−0.002n = e−�(n) on the probability that after 0.69n/ ln(1+3λ) steps the pop-
ulation contains an individual that lies inS. In other words, more than 0.69n/ ln(1+3λ) steps are
necessary with probability 1− e−�(n) to halve the approximation error. Since adding up a poly-
nomial number of “error probabilities” each of which is e−�(n) results in a total error probability
that is still e−�(n), we obtain the following lower-bound result:

Theorem 4.11. Let a (1+,λ) ES optimize an arbitrary functionf : Rn → R, and letx∗ ∈ R
n

be some fixed point (for instance an optimum). Letb : N → N such thatb = poly(n). Given
that the initial search point has distanced > 0 from x∗, with probability 1− e−�(n) more than
b(n) ·0.69n/ ln(1+3λ) steps (i. e.λ ·b(n) ·0.69n/ ln(1+3λ) f -evaluations) are necessary until (for
the first time) the current search point has a distance of at most d/2b(n) from x∗.

In particular, for the (1+1) ES we obtain that at least 0.69n/ ln4> 0.497n steps/f -evaluations
are necessary with probability 1−e−�(n) to halve the approximation error. Recall that we obtained
0.96n− 1 as a lower bound on theexpectednumber of steps to halve the approximation error in
Theorem 4.8 (p. 39).

So, what about the (1,λ)σSA-ES, i. e. (1,λ) ESs that useσ -self-adaptation instead of a global
mutation strength, one might ask. In fact, the same reasoning applies: We drop selection and
end up with a purely random search (since the way howσ is updated/mutated is independent
of the function to be optimized). The population generated by this search procedure contains
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(1+λ)i = eln(1+λ)·i individuals afteri steps (rather than (1+λ)(1+ 3λ)i−1 ≤ eln(1+3λ)·i ), so that
we obtain a slightly better lower bound:

Theorem 4.12.Let a (1,λ) σSA-ES optimize an arbitrary functionf : Rn → R, and letx∗ ∈ R
n

be some fixed point (for instance an optimum). Letb : N → N such thatb = poly(n). Given
that the initial search point has distanced > 0 from x∗, with probability 1− e−�(n) more than
b(n) · 0.69n/ ln(1+ λ) steps (i. e.λ · b(n) · 0.69n/ ln(1+ λ) f -evaluations) are necessary until (for
the first time) the current search point has a distance of at most d/2b(n) from x∗.4.4 Lower Bound for (µ+1) ESs whi
h Holds with OverwhelmingProbability
Recall the selection mechanism for reproduction in the (µ+1) ES: In each iteration of the evolution
loop one of theµ individuals in the population is selected uniformly at random. Thus, if we
pick one individual in advance (and disregard the otherµ− 1 individuals), this one is actually
selected with probability 1/µ. We assign to each individual, which is generated in a run of the
(µ+1) ES, a unique number. Therefore, let the individuals in the initial population be numbered
−(µ−1),. . . ,0. The mutant that is generated in the first iteration of the evolution loop is numbered
with “1” and so on.

Then each potential lineage of an individual of depthℓ corresponds to a sequence (i0, . . . , iℓ) ∈
Z
ℓ+1 such thatiℓ > · · ·> i0 ∈ {−µ+1,. . . ,0}. We will address the question with what probability

a fixed such sequence emerges within the firstk iterations of the evolution loop in a run of the
(µ+1) ES. Forj ∈ {1,. . . ,ℓ}, the probability that the individuali j −1 is selected (for reproduction)
in thei j th step is either 0 or 1/µ, depending on whether this individual has already been removed
from the population or not. Thus,µ−ℓ is an upper bound on the unconditional probability that
the lineage corresponding to our fixed sequence emerges (we disregard that an individual may
already have been deleted).

Obviously, two such events, e. g., that the lineages respectively corresponding to the sequences
“0,1” and “−1,1” emerge, are not independent (since the label “1” is assigned only once; in other
words, the mutant generated in the first step cannot be a mutant of both, of individual “0” and of
individual “−1”).

Besides theµ choices fori0 ∈ {−µ+1,. . . ,0}, there are
(k
ℓ

)
choices fori1, . . . , iℓ ∈ {1,. . . ,k}, and

thus, the number of sequences which cover all potential lineages of depthℓ equalsµ ·
(k
ℓ

)
. Since

the probability of a union of events is upper bounded by the sum of the probabilities of the single
events (union bound), the probability that a lineage of depth ℓ emerges within the firstk steps is
upper bounded by

µ ·
(

k

ℓ

)
·µ−ℓ ≤

(
e·k
ℓ

)ℓ
·µ−ℓ+1.

This way of bounding the probability that a specific lineage emerges has already been proposed
by Witt (2005a, Lemma 2).

Obviously, if no lineage of depthℓ exists (afterk steps), then the depth of each of theµ family
trees (each of which is rooted at one of theµ initial individuals) is smaller thanℓ.
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Theorem 4.13. Let a (µ+1) ES, whereµ = poly(n), optimize an arbitrary function inRn. Let
α : N → R>0 such thatα(n) ≥ 1/n, and let “α” abbreviate “α(n).” Then the probability that after
αµn iterations/mutations there is an individual in the population which has at leastα3n ancestors
is upper bounded byµ ·0.744n·α .

If α = �(nε/n) for a constantε > 0, then, forn large enough,α3n is an upper bound on the
expected depth of the forest afterαµn steps.

Proof. Choosingℓ := 3k/µ, the upper bound on the probability which we derived above becomes
µ · (e/3)3k/µ. When we choosek := α · n ·µ (implying thatℓ = 3k/µ = α3n), this upper bound
becomesµ · (e/3)α3n. Finally, (e/3)3 < 0.744.

Substituting “2.9” for “3” in the preceding arguments yields that afterαnµ steps with a proba-
bility of less thanµ ·0.83αn the depth of the forest is at mostα2.9n. Hence, the expected depth of
the forest is upper bounded byα2.9n+αnµ · (µ ·0.83αn), which is smaller thanα3n for n large
enough whenα · n = �(nε) andµ = poly(n) (because thenµ2 · 0.83αn = µ2 · e−�(nε) ≤ 0.1 for
n large enough).

This theorem tells us that, if we want a lineage to emerge the depth of which is linear in the
dimensionality of the search space, then w. o. p.�(µn) steps are necessary. Consequently, if we
knew that a lineage of linear depth is necessary w. o. p. for a certain progress of the optimization,
then w. o. p.�(µn) steps would be necessary to obtain such a progress.

Reconsider the (1+1) ES for a moment. As we have shown, it needs (even in the best case)
more than 0.96(n−1) steps until the expected gain towardsx∗ is at least halve the initial distance
from x∗. As we have just seen, for the (µ+1) ES the number of steps until we expect a linage of
length at least 0.96(n− 1) to emerge is by a factor of at leastµ/3 larger. Thus, if the best-case
progress along a linage of the (µ+1) ES was somehow “bounded” by the best-case progress in the
(1+1) ES, we would obtain for the (µ+1) ES a lower bound of (µ/3)·0.96(n−1) = µ0.32(n−1)
on the expected number of steps necessary to halve the approximation error.

Unfortunately, this first rough idea of a reasoning about howto show a lower bound cannot
be extended to a formal proof. The selection mechanism for replacement raises dependencies
between the events which correspond to the emergence of certain lineages. Namely, on the one
hand, if a mutant makes it into the population, then there must be at least one individual in the
population which is not better than the mutant. If, on the other hand, an individualX is elimi-
nated from the population, this event tells us that the respective progress along the lineages ofall
otherµ− 1 individuals has been at least as good as the progress along the lineage ofX. These
dependencies among the individuals in the population (and among their lineages) make an anal-
ysis very hard, possibly impractical. (In particular, we cannot multiply the expected depth with
the expected best-case one-step progress to obtain an upperbound on the expected total progress.)
Nevertheless, in particular the bound on the depth (of the lineages to emerge within a certain num-
ber of steps) which holds w. o. p. will later be useful in the analysis of the (µ+1) ES in a concrete
scenario.

To obtain a general lower bound for the (µ+1) ES, however, and to get around this kind of
dependencies, we may imagine that elimination in the (µ+1) ES was omitted (just as we did in the
derivation of the general lower bound for (1+,λ) ESs). As a consequence, the population grows in
each iteration. Letµ[i ] denote the population’s sizeafter thei th iteration, so thatµ[0] =µ. Instead
of generating one mutant per iteration, we now choose a set of⌈µ[i−1]/µ⌉ individuals uniformly
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at random in thei th iteration each of which is mutated. This ensures that, when having a look at
a fixed individual in the population after a fixed number of steps (and disregarding all the other
individuals), then this individual is selected for reproduction with a probability of at least 1/µ.

Besides the selection for elimination, there is another instruction within the evolution loop of
the (µ+1) ES that raises dependencies when observing the decisions which are made within this
instruction: the mutation adaptation. Whether the mutation strength is increased or decreased
tells us something about the course of the optimization process so far. To get around this kind of
dependencies we replace the mutation adaptation by the following procedure: In thei th iteration
3· ⌈µ[i−1]/µ⌉ new individuals are generated; namely,⌈µ[i−1]/µ⌉ new search points are generated
(by mutating each of the randomly selected individuals once), yet each new search point bears
three new individuals: one with the scaling factor decreased, one with the scaling factor increased,
and one adopts the unmodified scaling factor of its parent.

Since the population grows (in each stepi ) by a factor that is at least 1+3/µ but smaller than
1+6/µ, the population’s size afteri ≥ 1 steps is bracketed by

µ · (1+3/µ)i ≤ µ[i ] < µ · (1+6/µ)i ≤ µ ·e6i/µ.

All in all, our modifications to the (µ+1) ES lead to the following search procedure which
we may call “(µ+1) Random Search” (“(µ+1) RS”), where theg- and b-counters are useless
and, hence, omitted: For a given initialization of the population ofµ individuals, the (µ+1) RS
performs the following loop:

1. Choosek := ⌈current population size/µ⌉ of the individuals in the current population uni-
formly at random (without replacement). Let those beX1, . . . ,Xk.

2. For each (x,σ ) ∈ {X1, . . . ,Xk} do

a) create a new search pointy := x + m ∈ R
n with an isotropic mutation vectorm (the

distribution of which depends solely onσ );

b) add the individuals (y,σ ), (y,2σ ), (y,σ/2) to the population.

3. GOTO 1.

Obviously, this algorithm does not take the function to be optimized into account, yet performs
some kind of “non-guided” random search. Nevertheless, it will be useful in the analysis of the
(µ+1) ES. Namely, for any Borel setS⊂R

n, the probability that the (µ+1) ES hitsS (i. e., at least
one individual from the population lies inS) within i steps is upper bounded by the probability
that afteri iterations the population of the (µ+1) RS contains an individual inS. This is again
readily proved by induction on the number of steps, and againit is crucial that for both search
procedures the population is initialized in the same way.

Hence, if this “hitting-probability” of the (µ+1) RS is bad, namely exponentially small, afteri
iterations, then the (µ+1) ES needs at leasti iterations w. o. p. The main advantage, however, is
the following: Since the random search of the (µ+1) RS is unbiased, each lineage corresponds to
an “independent-mutation sequence” (this notion was coined by Witt (2005a)), i. e., each member
in the population has evolved from some individualX = (x,σ ) in the initial population by adding

45



4 General Lower Bounds
independently isotropically distributed vectors tox. Thus, each search point in the population is
isotropically distributed around the initial individual from which it descends. This enables us to
prove the following lower-bound result:

Theorem 4.14.Let a (µ+1) ES,µ = poly(n), optimize an arbitrary functionf : Rn → R using
isotropic mutations, and letx∗ ∈ R

n be a fixed point (for instance an optimum). Letb: N → N

such thatb = poly(n). Given that each initial search point has distanced > 0 from x∗, with
probability 1− e−�(n) more thanb(n) ·µ · 0.115n steps/f -evaluations are necessary until (for the
first time) there is a search point in the population that has adistance of at mostd/2b(n) from x∗.

Proof. We firstly concentrate on halving the approximation error. Therefore, recall Lemma 4.10
(p. 41) and letS again denote the hyper-ball containing all search points with a distance of at
mostd/2 from x∗. Since afteri steps there are less thanµ · e6i/µ individuals in the population
that is generated by the (µ+1)RS, and since each of the search points is isotropically distributed
around one of theµ initial search points (each of which has a distance of at least d from x∗), the
probability that this population hitsS is smaller than

µ ·e6i/µ ·2−n+3/9 = e6i/µ−n·ln2 ·8µ/9 = e6i/µ−n·ln2 · O(µ
√

n). (4.6)

Since ln2> 0.693, choosingi := µ · 0.115n results in an upper bound of e−0.003n · O(µ
√

n) =
e−�(n) on the probability that afteri steps the population contains a search point that lies inS.
Hence, with probability 1−e−�(n) more thanµ ·0.115n steps are necessary for the population to
halve the approximation error.

Finally, concerning halving the approximation errorb times, summing upb = poly(n) error
probabilities each of which is e−�(n) results in a probability of e−�(n) that at least one ofb halvings
is accomplished within at mostµ ·0.115n steps.

In particular, for the “(µ+1) ES withµ := 1” this bound becomes 0.115n for the number of
steps that are necessary w. o. p. to halve the approximation error, and since we dropped selection,
this bound also holds for the (1+1) ES, i. e. the “(1+λ) ES withλ := 1.” This lower bound is worse
than the bound of 0.497n implied for the (1+1) ES by the lower-bound result for the (1+,λ) ES in
the previous section (namely Theorem 4.11 (p. 42)), though.

However, it has not been our aim to obtain a good bound forµ = 1. We are interested in how
the lower bound scales with the population sizeµ, that is the point. And we see that in the best
case w. r. t. the minimization of the approximation error in the search space, the number of steps
does indeed grow linearly in the population sizeµ for the (µ+1) ES.

The lower bound tells us that w. o. p. at leastµ ·0.115n steps are necessary to halve the approx-
imation error. Yet what about the number of steps that are necessary to reduce the approximation
error by, say, 1% ? Therefore, recall Equation (4.6) on page 46 in the proof of the lower bound,
and in particular the term “2−n+3/9.” This is an upper bound on the best-case probability to
halve the approximation error with an isotropic mutation. Now, Lemma 4.5 (p. 35) tells us that
the probability that an isotropic mutation (in particular,in the best case) reduces the approxima-
tion error by 0.01d is bounded above by e−�(n). Assume, this probability is at most e−εn for n
large enough. Then we can modify Equation (4.6) on page 46 andobtain an upper bound of

µ ·e6i/µ ·e−εn = µ ·e6i/µ−εn
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on the probability that there is at least one individual in the populationP[i ] whose distance from
x∗ is at most 0.99d. Choosingi := µ · n · ε/7, this upper bound becomesµ · e−n·ε/7 = e−�(n).
As all arguments hold not only for the reduction of the approximation error by 1%, but for any
positive constant fraction, we obtain the following:

Corollary 4.15. Let a (µ+1) ES,µ = poly(n), optimize an arbitrary functionf : Rn → R using
isotropic mutations, and letx∗ ∈ R

n be some fixed point (for instance an optimum). Assume that
each initial search point has distanced> 0 from x∗. Then, for any constantε > 0, with probability
1−e−�(n) the (µ+1) ES needs�(µn) steps/f -evaluations until (for the first time) there is a search
point in the population that has a distance of at most (1−ε) ·d from x∗.4.5 Over
oming Gaps with Elitist Sele
tion
We (re)consider (1+λ) ESs in this section, and the crucial aspect to keep in mind isthe following:
When elitist selection is used (as in the (1+λ) ES), then a mutant must be at least as good as its
parent (w. r. t. to the function value) to have a chance to become selected. In other words, mutants
with a worse function value are always discarded.

To get an idea of the problem which we want to deal with, consider the finite search space
{0,1}n for a moment. One of the first functions that have been considered in a theoretical runtime
analysis is JUMPm : {0,1}n → N with m: N → N such that 2≤ m(n) ≤ n/3, defined by

JUMPm(x) :=
{

2n if 1 ≤ SUM(x) ≤ m−1,

SUM(x) otherwise,

which is to be minimized (note that SUM(x) equals the number of 1-bits inx). We call the plateau
of worst JUMP-value 2n “the gap” as it separates the global minimum, namely the origin (the
all-zero string), from theL1-norm based part of the fitness landscape; all bit-strings with exactly
m ones are locally but not globally optimal. Since the (1+1) EAchooses the initial search point
x uniformly at random,E[SUM(x)] = n/2 and, by Chernoff’s bound,P{|x| ≤ n/3} = e−�(n).
Consequently, the initial search point is located in the gaponly with an exponentially small prob-
ability; the probability that the initial search point is the optimum equals 2−n.

Droste, Jansen, and Wegener (2002b) prove that the expectedruntime of the (1+1) EA using
the static mutation probabilityp = 1/n on JUMPm is 2(nm) (in fact, a slightly different func-
tion which is to be maximized is investigated, yet the proof carries over). Roughly speaking,
the (1+1) EA minimizes JUMPm as it minimizes theL1-norm up to the point when a locally but
not globally optimal point with Hamming distancem from the origin is created. Then a muta-
tion must exactly flip the remainingm ones for the (1+1) EA to overcome the gap, i. e., to obtain
a search point with smaller JUMP-value (namely the global minimum). The probability of this
event (called “success” in the following) equalspm(1− p)n−m, where p denotes the mutation
probability (recall that a mutation consists in flipping each bit independently with probabilityp).
Since d

dp pm(1− p)n−m = 0 for p = m/n, the success probability is maximum when using the mu-
tation probabilityp = m/n, and hence, even if the (1+1) EA could adaptp optimally, the success
probability is upper bounded by (m/n)m(1−m/n)n−m. Since the number of trials until a mutation
actually creates a better point is geometrically distributed, the expected runtime of the (1+1) EA
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4 General Lower Bounds
on JUMPm is lower bounded by the reciprocal of the success probability. Thus, we expect a
super-polynomial number of steps if (n/m)m is super-polynomial or if (1−m/n)n−m is super-
polynomially small. Form ∈ [nε,n/3] with ε ∈ (0,1), we have (1−m/n)n−m ≤ (1−nε/n)n·2/3 <
e−nε2/3, and hence, the success probability is exponentially small, so that the expected runtime is
exponential. Form ∈ [logn,nε] with ε ∈ (0,1), we have (n/m)m ≥ (n1−ε)logn = n(1−ε)·logn, and
thus, the expected runtime is super-polynomial. Finally, we consider the casem ≤ logn. Then
(n/m)m = 2m(logn−logm) ≥ 2m(logn−log logn) = 2m·�(logn) = nm·�(1), and hence, the expected runtime
is super-polynomial unlessm = O(1).

All in all, the expected runtime of the (1+1) EA on JUMPm is polynomial (inn) if m = O(1)
when using the standard mutation probability 1/n, and—as we we have just shown—it is super-
polynomial ifm is not O(1) even when the mutation probability could be adapted optimally, i. e.,
our lower bound applies also, for instance, to the dynamic (1+1) EA introduced by Droste, Jansen,
and Wegener (2001), which varies the mutation probability according to a static periodic sched-
ule. Moreover, this remains true when considering arbitrary isotropic binary mutations (cf. the
discussion on page 29): In the best case, a uniformly chosen subset ofm bits would be flipped,
resulting in a success probability of 1/

(n
m

)
. And, sincem ≤ n/3, we have

(n
m

)
= poly(n) only if

m = O(1). In other words, an efficient optimization, i. e. a polynomial (expected) runtime, is pos-
sible only for a gap corresponding to a constant number of specific bits which have to be flipped
simultaneously by a single mutation.

The aim of this section is to prove a similar result for minimization in the search spaceRn

when using “isotropic-mutation hill-climbing”, i. e., when applying (1+λ) ESs that use isotropic
mutations.4.5.1 Linearly Separated Gaps
Consider a search pointc ∈ R

n and its lower-level setA<c := {x ∈ R
n | f (x) < f (c)} for a

given function f . Assume that the setA<c is bounded (finite diameter) and that it has a positive
Lebesgue measure (a positiven-volume). Then we say thatc faces alinearly separated gapin the
search space if there is a hyper-planeHc containingc such thatA<c lies completely in one of the
two half-spaces w. r. t.Hc. Then dist(Hc, A<c) = inf{dist(x, y) | x ∈ Hc, y ∈ A<c} is the (absolute)
size of the gap and we assume that the hyper-planeHc is oriented such that this gap is as large as
possible. Letr := sup{dist(c,x) | x ∈ A<c}. We define the relative size of the linearly separated
gap as dist(Hc, A<c)/r for r > 0, and otherwise, the gap’s relative size is zero.

So, assume that a (1+λ) ES minimizes some functionf in R
n and that the evolving search

point c does face a linearly separated gap of relative sizes> 0. If f is such thatc’s level-set
A=c := {x ∈ R

n | f (x) = f (c)} has zero Lebesgue measure (or such that any point inA=c faces
a linearly separated gap of relative size at leasts), the only chance to overcome the gap, i. e. to
leavec (resp. A=c), is to generate a mutant inA<c. Depending on the gap’s relative size, we
can now ask for an upper bound on the success probability of anisotropic mutation, i. e. on the
probability that the mutantc + m lies in A<c (which is the mass ofA<c w. r. t. to the measure
induced by the distribution of the mutation vectorm). However, depending on the shape ofA<c

and/or the distribution ofm this might actually be intractable, and thus, we are going tomake
best-case assumptions:
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1. Consider the hyper-ballB centered atc with radiusr (cf. above) which is cut in half by

the hyperplaneHc. One of the two parts containsA<c completely, let this part be denoted
by M, i. e., B ⊃ M ⊇ A<c. Let C := {x ∈ M | dist(x, Hc) = dist(Hc, A<c)}, implying that
A<c ⊆ C ⊆ M ⊂ B. (C 6= M iff the gap’s absolute size is non-zero.) The setC is a solid
cap of the ballB.
Then we assume that hittingC ⊇ A<c is a success, in other words, we assume the best case
that the “success region” is “as large as possible” for the given relative gap size.

2. We assume that the distribution of the isotropic mutationis such that the probability of
hitting C ⊇ A<c is maximum.

Assume that this “hitting probability” ispbest> 0 (under these best-case assumptions). Then
again assuming the best case that the (1+λ) ES repeats doing best-case mutations over and over
again, the number of trials necessary to get away fromc (namely to generate a mutant that lies
in C ⊇ A<c) is geometrically distributed. Consequently, the expected number of trials to leavec
equals 1/pbest in the very best case, so that the expected number of isotropic mutations performed
by an (1+λ) ES is lower bounded byλ · ⌈(1/pbest)/λ)⌉, which is at least 1/pbestand considerably
larger than 1/pbest only if λ is considerably larger than 1/pbest. Thus, we could add another
best-case assumption; namely, we may concentrate on (1+1) ESs.

Consider an isotropic mutation with a fixed length ofℓ ∈ (0,r ], i. e., for the isotropic mutation
m we haveP{|m| = ℓ} = 1. Then the probability of hittingC equals

P{c+ m ∈ C | |m| = ℓ} = P{Gℓ ≥ dist(Hc, A<c)} = P{G ≥ dist(Hc, A<c)/ℓ}

(recall the definition of the random variableG in Equation (3.2) on page 21). Thus, the largerℓ,
the larger the hitting probability, and hence we assume thatthe length of the isotropic muta-
tion is concentrated onr (the best case; cf. above). Recall that the relative gap sizeequals
s = dist(Hc, A<c)/r . Using Equation (3.5) on page 23, we obtain a best-case hitting-probability
of

P{c+ m ∈ C | |m| = r } = P{G ≥ s} =
1

9

∫ 1

s

(
1− x2)(n−3)/2

dx.

Since (1− x2)(n−3)/2 is decreasing (inx for 0< x < 1), the integral’s value is in fact bounded
from above by (1−s2)(n−3)/2/9 and it is super-polynomially small ifs2 is notO(logn/n) because
(1− t/k)k ≤ e−t for 0 ≤ t ≤ k ≥ 1 (and 1/9 =2(

√
n); cf. Inequality (3.6) on page 24).

On the other hand, for anya ∈ (0,1/2),

∫ 2a

a

(
1− x2)(n−3)/2

dx ≥ a ·
(
1− (2a)2)(n−3)/2

,

and hence,
∫ 1

s (1− x2)(n−3)/2dx is bounded also from below by a polynomial (of negative degree)
for s2 = O(logn/n). (Note that the (negative) degree of the polynomial depends on the disguised
constant in theO-notation.) In shorter words, we have proved

1
/

P{G ≥ s} = poly(n) ⇐⇒ s2 = O(logn/n).
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All in all, we obtain

Theorem 4.16.Let a (1+λ) ES,λ= poly(n), optimize some functionf : Rn →R using isotropic
mutations. Assume that the current search pointc faces a linearly separated gap of relative sizes
and that f is such thatc’s level set{x ∈ R

n | f (x) = f (c)} has zero Lebesgue measure or that
anyx in c’s level set faces a linearly separated gap of relative size at leasts. Then, independently
of the mutation adaptation, the expected number of mutations until a better (w. r. t. thef -value)
search point is generated cannot be polynomial inn unlesss = O(

√
logn/n).

If in this situations = �(nε/
√

n) for some positive constantε, then, in expectation as well as
with probability 1− exp(−�(n2ε)), the number of mutations which are necessary to generate a
better search point is exp(�(n2ε)).

Proof. That the expected number of steps cannot be polynomial unless s2 = O(logn/n) has just
been shown in the reasoning preceding the theorem.

For the proof of the second claim, lets =�(nε/
√

n), so that

(1−�(n2ε)/n)(n−3)/2/9 ≤ exp

(
−

(n−3)·�(n2ε)

2 · n

)
· O(

√
n) = exp(−�(n2ε))

is an upper bound on the best-case hitting-probability; assume thatα : N → R is such that
exp(−α(n) · n2ε) is this upper bound, i. e.,α = �(1). Then the probability of having at least one
hit in exp(α(n) · n2ε/2) = exp(�(n2ε)) trials/mutations is upper bounded by exp(−α(n) · n2ε/2) =
exp(−�(n2ε)) (using the union bound).

Note that, sinceλ = poly(n), this theorem remains valid when substituting “number of steps”
for “number of mutations,” which makes sense when allλ mutations in a step can be performed
in parallel.4.5.2 Spheri
ally Separated Gaps
Consider again a search pointc ∈ R

n and its lower-level setA<c := {x ∈ R
n | f (x) < f (c)},

and assume again that the setA<c is bounded (finite diameter) and that it has a positive Lebesgue
measure. Then there is a hyper-ballB<c ⊇ A<c of smallest size (i. e. with smallest radius), and we
say that the search pointc ∈ R

n faces aspherically separated gapin the search space of absolute
size dist(c, B<c) and relative size dist(c, B<c)/dist(c,center ofB<c) (if defined).

So, we assume that a (1+λ) ES minimizes some functionf and that the evolving search point
c faces a spherically separated gap of relative sizes> 0. If f is such that the level-setA=c has
zero Lebesgue measure (or such that any point inA=c faces a spherically separated gap of relative
size at leasts), the only chance to overcome the gap, i. e. to leavec (resp.A=c), is to generate a
mutant inA<c. Again we make best-case assumptions:

1. We assume that hitting the hyper-ballB<c ⊇ A<c is a success and that, in addition,

2. the distribution of the isotropic mutation is such that the probability of hittingBc is maxi-
mum.

Assume that this hitting probability ispbest> 0 under the best-case assumptions. Then, again, the
expected number of trials to leavec (resp.A=c) equals 1/pbest in the very best case.
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Recall that we have already tackled the question of the best-case probability to overcome a

spherically separated gap of relative size 0.5. Namely, Lemma 4.10 (p. 41) tells us (by lettingx∗

denote the center of the hyper-ballB<c) that fors= 0.5 the probability of hittingB<c—namely of
halving the distance from the center ofB<c—is bounded above by 2−n ·3.2

√
n for any isotropic

mutation whenn ≥ 4. Thus, in our scenario the expected number of mutations to overcome the
spherically separated gap of relative size 0.5 is bounded below by 2n−O(logn). The reasoning that
has led to the previously mentioned lemma can also be used to upper bound the hitting probability
for other gap sizes. Therefore, reconsider Figure 4.1 (p. 32): x∗ can be considered the center
of the ball B<c and δ the absolute size of the spherically separated gap whichc faces. Then
Equation (4.4) on page 40 tells us the lengthℓ∗ which makes an isotropic mutation hitB<c with
the largest possible probability.

Namely, the optimal length of an isotropic mutation (under the best-case assumptions) equals√
δ · (2d − δ), where hereδ denotes the absolute size of the spherically separated gap and d the

distance betweenc andx∗ (here the center ofB<c). Moreover, Equation (4.5) on page 40 tells us
that the best-case hitting probability in this case equalsP{Gℓ∗ ≥ g(d,δ,ℓ∗)} = P{G ≥ g(d,δ,ℓ∗)/ℓ∗},
whereg(d,δ,ℓ∗) = δ+ ((ℓ∗)2 − δ2)/(2d). Since

g(d,δ,ℓ∗)

ℓ∗
=

δ+ (ℓ∗)2−δ2

2d

ℓ∗
=

δ+ δ·(2d−δ)−δ2

2d√
δ · (2d − δ)

=
δ · (2− δ/d)
√
δ · (2d − δ)

=
√
δ · (2d − δ)

d
=

ℓ∗

d
,

the best-case probability of hittingB<c equals (forn ≥ 4)

P{Gℓ∗ ≥ g(d,δ,ℓ∗)} = P
{
G ≥ g(d,δ,ℓ∗)/ℓ∗

}
= P

{
G ≥ ℓ∗/d

}
=

1

9

∫ 1

ℓ∗/d

(
1− x2)(n−3)/2

dx,

where the last equality is due to Equation (3.5) on page 23. (Note that this best-case probability
is an upper bound on the probability of hittingA<c for any isotropic mutation.)

Sinceℓ∗ =
√
δ · (2d − δ) and 0≤ δ ≤ d, we haveℓ∗/d =

√
ξ · δ/d for some functionξ (of δ)

with range [1,2]. As the relative size of the spherically separated gap iss = δ/d, we obtain

P
{

c+ m ∈ B<c | |m| = ℓ∗
}

=
1

9

∫ 1

√
ξ ·s

(
1− x2)(n−3)/2

dx

as the best-case probability of hittingB<c, i. e., when the isotropic distribution ofm is such that
P{|m| = ℓ∗} = 1. Analogously to the reasoning/calculation for linearly separated gaps, we get

1
/

P
{

c+ m ∈ B<c | |m| = ℓ∗
}

= poly(n) ⇐⇒ s = O(logn/n) ,

where the degree of the polynomial depends on the concealed constant in theO-notation. All in
all, we obtain

Theorem 4.17.Let a (1+λ) ES,λ= poly(n), optimize some functionf : Rn →R using isotropic
mutations. Assume that the current search pointc faces a spherically separated gap of relative
sizes> 0 and thatf is such thatc’s level set{x ∈ R

n | f (x) = f (c)} has zero Lebesgue measure
or that anyx in c’s level set faces a spherically separated gap of relative size at leasts. Then, inde-
pendently of the mutation adaptation, the expected number of mutations until a better (w. r. t. the
f -value) search point is generated cannot be polynomial inn unlesss = O(logn/n).

If in this situations = �(nε/n) for some positive constantε, then—in expectation as well as
with probability 1−exp(−�(nε))—the number of mutations necessary to generate a better search
point is exp(�(nε)).
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Proof. The first claim has just been shown in the reasoning that precedes the theorem.

For the proof of the second claim, lets =�(nε/n), so that

(1−�(nε)/n)(n−3)/2/9 ≤ exp

(
−

(n−3)·�(nε)

2 · n

)
· O(

√
n) = exp(−�(nε))

is an upper bound on the best-case hitting probability; assume thatα (as a function ofn) is such
that exp(−α ·nε) is this upper bound, implying thatα = �(1). Then the probability of having at
least one hit in exp(α ·nε/2)= exp(�(nε)) trials/mutations is upper bounded by exp(−α ·nε/2)=
exp(−�(nε)) (using the union bound).

Recall that, sinceλ = poly(n), also this theorem remains valid when substituting “number of
steps” for “number of mutations.”4.5.3 Exemplary Appli
ation to Con
rete Fun
tions
To demonstrate how the lower-bound result on the (expected)number of steps necessary to over-
come a spherically separated gap can be applied, two examplefunctions which yield more insight
will be introduced now. In the following, “gap” means “spherically separated gap.” As mentioned
in the introduction, we want to investigate functions forR

n that correspond to the function JUMPm

for {0,1}n. Note that JUMPm is symmetric (i. e., any two search points with the same number of
1-bits have the same function value). We will consider symmetric functions forRn —spherically
symmetric, of course.

GAP(x)

1

2

CLIFF(x)

|x| |x|

2

1

1 2 21

φ φ

Figure 4.2: The functions GAP and CLIFF

Let φ : N → (0,1/3] denote a function (which determines the size of the gap). The sequence
of functions GAPφn : Rn → R, n ∈ N, is defined by

GAPφn(x) :=
{

|x|+1 for |x| ∈ [1−φ(n) ,1) and

|x| otherwise.

Due toφ’s codomain, allx in the unit hyper-sphereU = {x | |x| = 1} are locally but not globally
optimal, and the origin is the unique global optimum. Note that only search points inU face a
(spherically separated) gap of positive size, namely of sizeφ.

A similar class of functions is

CLIFFφn(x) :=
{

|x|+φ(n) for |x|< 1−φ(n),

|x| otherwise.

52



4.5 Over
oming Gaps with Elitist Sele
tion
Also for CLIFF, only the local optima face a gap of positive size: A search point in the hyper-
sphere{x ∈ R

n | |x| = 1−φ} faces a gap of absolute sizeφ and relative sizeφ/(1−φ).
So, for both functions the set of search points that face a gap(of positive size) forms a hyper-

sphere and, thus, has zero Lebesgue measure. Hence, unless the initial search point is a local
optimum, the evolving search point will (almost surely) never face a “spherically separated gap”
—as formally defined above—since any isotropic mutation hits the hyper-sphere containing the
local optima only with zero probability. It is intuitively clear, however, that the search faces some
kind of gap. As we will see, a small change in our notion of whenwe consider a search point
better than some other point will enable us to apply the lower-bound result which we obtained in
Theorem 4.17 (p. 51).

Therefore, reconsider the set of points that are “better” than the current search pointc: We
decided to consider a pointx better thanc iff f (x) < f (c) (for minimization), and hence, we
considered the smallest ballB<c ⊇ A<c containing the lower level set ofc (w. r. t. f ). Now, let
B∗ := {x | |x|< 1−φ} denote the open hyper-ball making up the “global optimum region” of
GAP/CLIFF. Then we may consider a pointx better thanc iff it has a better function valueand
lies in the global-optimum regionB∗. In other words, we redefine the size of the (spherical-
ly separated) gap based on the smallest ball containingA<c ∩ B∗. Then, for GAP, any point in
RGAP := {x ∈ R

n | |x| ≥ 1} faces a gap of absolute size at leastφ, and for CLIFF, any point in
RCLIFF := {x ∈ R

n | |x| ≥ 1−φ} does so. Hence, for both functions the relative size of the gap
that a search point fromR faces is at leastφ. Consequently, the best chance (under the best-case
assumptions) to overcome the gap —namely to get fromR into B∗—is at unit distance from the
optimum/origin.

Unlike for CLIFF, for GAP we must deal separately with pointsc ∈ {x ∈R
n | |x| ≥ 2}: For such

points, the lower-level set contains the setM := {x ∈ R
n | |x| ∈ [1 −φ(n) ,1) (the set of points

that get the penalty of “+1”), and hence, a mutant (of such ac) that hitsM would get accepted
by the elitist selection of a (1+λ) ES. However, since in such situationsc’s distance fromM is
at least 1 and|c| ≥ 2, such a mutation would have to overcome a spherically separated gap of
absolute size 1 and relative size 1/2 (which is larger than the maximumφ-value of 1/3).

All in all, we have shown that Theorem 4.17 (p. 51) (almost) directly implies the following
result:

Theorem 4.18. Let a (1+λ) ES, λ = poly(n), optimize GAPφ or CLIFFφ using isotropic mu-
tations. Assume that the initial search point lies inRGAP = {x ∈ R

n | |x| ≥ 1} resp.RCLIFF =
{x ∈ R

n | |x| ≥ 1−φ}. Then, for any mutation adaptation, the expected number of mutations
until the evolving search point enters the global-optimum region B∗ = {x ∈ R

n | |x|< 1−φ}
(for the first time) cannot be polynomial inn unlessφ = O(logn/n). If φ = �(nε/n) for some
positive constantε, then this number of mutations is exp(�(nε))—in expectation as well as with
probability 1−exp(−�(nε)).4.5.4 Additional Notes on Over
oming Gaps
Naturally, we could easily define functions containing linearly separated gaps to demonstrate the
applicability of the lower bound given in Theorem 4.16 (p. 50).

Due to the shape of the set of points that we consider better than the current search pointc, the
size of a spherically and/or linearly separated gap whichc faces might be zero in many cases when
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intuition may say thatc does face “some kind” of a gap. When considering isotropic mutations
and the approximation error w. r. t. to the distance from a fixed point in the search space, however,
the two notions of a gap that we have just considered seem somehow a natural starting point.

Whenφ = o(1), for instanceφ(n) := 1/
√

n (so that the number of steps to overcome the cliff
is exponential w. o. p.), then CLIFF

φ
n converges uniformly to theL2-norm asn → ∞. Since the

smoothL2-norm does not show any gaps, CLIFF can serve as a perfect example for how the
assumption “in the limit of infinite dimensionality” can potentially lead to results that reveal only
ill-founded conclusions for finite dimensional search space.

It is clear that the lower bounds do not only hold for (1+λ) ES as defined in Section 1.2 (p. 8),
yet for any search procedure which fits the following framework (for minimization): For a given
initialization of the evolving search pointc ∈ R

n the following loop is performed:

1. Depending on the complete history of the minimization so far, choose aλ ∈ N.

2. FORi := 1 TO λ DO create a new search pointy[i ] by adding an isotropic mutation toc,
where the isotropic distribution of the mutation vector (infact, the one of its length) may
depend on the complete history of the optimization so far.

3. IF S := { y[i ] | i ∈ {1,. . . ,λ} , f ( yi ) ≤ f (c)} is not empty THEN decide, depending on the
complete history of the optimization so far, whether a pointfrom Sreplaces/becomesc and,
if so, which one of them; updatec accordingly.

4. IF stopping criterion met THEN outputc ELSE GOTO 1.

Note that in each iteration a differentλ can be chosen, and for each of theλmutations, a different
isotropic mutation may be used; respectively depending on the complete history of the search.
The selection, however, is elitist, so that the sequence of function values which is induced by the
evolving search point is monotonic.4.6 Remarks on the Lower-Bound Results
As we have just seen in the preceding section, the lower bounds on the number of isotropic
mutations which are necessary to overcome a (linearly/spherically separated) gap do not only hold
for (1+λ) ESs that fit the framework given in Section 1.2 (p. 8), but forthe generalized framework
described at the end of the preceding section. Also the lowerbound of 0.69n/ ln(1+3λ) on the
number of steps a (1+λ) ES and/or a (1,λ) ES necessarily needs (to halve the approximation error
in the search space) is valid for a broader class of ESs/search heuristics. For instance, a “(1◦λ)ES”
using a “Metropolis-like” selection which accepts a worse mutant with a probability of, say, 5%
would also be covered by the proof of Theorem 4.11 (p. 42). Thereason for this is simple: In
the modified search procedure, which is used in the analysis,all mutants that are ever generated
survive and are kept in the (exponentially growing) population anyway. As a consequence, also a
“simulated annealing-like” selection, where the probability of accepting a worse mutant depends
on how worse the mutant is compared to its parent, would be covered.

We have to be careful, though: The modifications must be such that our modified search pro-
cedure remains independent of the function to be optimized.As we have just seen, this is no
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4.6 Remarks on the Lower-Bound Results
problem for the selection mechanism. The mutation adaptation is more critical in this respect.
In the proof of the lower bound we used that at the end of each step there are exactly three al-
ternatives for the adaptation of the mutation strengthσ , which may be called “increase”, “keep”,
“decrease.” We could allow more alternatives, though. If there were, say, seven alternatives for
theσ -adaptation, the lower bound on the number of steps to halve the approximation error in the
search space would become 0.69n/ ln(1+7λ), for instance.

Although our lower-bound results do not formally prove the following, they do strongly indicate
that (1+,λ) ESs cannot achieve super-linear convergence, i. e. a convergence order of larger than
one, when using isotropic mutations. This topic has recently been discussed by Teytaud and Gelly
(2006) and by Teytaud, Gelly, and Mary (2006).
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So, now that we know some fairly general lower bounds on the number of steps (and mutations)
which (1+,λ) ESs and (µ+1) ESs need to reduce the approximation error in the search space (as
long as they fit one of the frameworks given in Section 1.2 (p. 8), of course), the question arises
whether a concrete ES optimizing a concrete function can achieve a runtime which asymptotically
meets the lower bound, i. e., which is larger than the lower bound only by anO(1)-factor. It is
clear that this is possible, if at all, only for very simple functions, and that this, obviously, depends
on what kind of mutation adaptation is actually used.

We will consider Gaussian mutations since they are by far themost common type of isotropic
mutations, and moreover, they have been used since the very first days of evolution strategies. Fur-
thermore, we concentrate on the well-known 1/5-(success-)rule—mainly for two reasons: Firstly,
it is the oldest adaptation mechanism; it was used in the veryfirst (1+1) ES by Rechenberg and
Schwefel (cf. Rechenberg (1973), Schwefel (1995)). Secondly, it is deterministic; namely, it does
not introduce further randomness in the stochastic processinduced by an ES. In particular, the mu-
tation strength is not part of the evolution, but externallyadapted. For this reason, it is sometimes
referred to as anexogenousadaptation mechanism, whereas self-adaptive methods are sometimes
calledendogenous.

Usually, the 1/5-rule is used in the (1+1) ES only. Yet as we shall see, it does make sense—at
least to some extent in the function scenarios to be considered—for the (1+,λ) ES and also for the
(µ+1) ES. Namely, for very simple functions, the 1/5-rule indeed ensures for the (1+λ) ES and
the (µ+1) ES a runtime which is of the same order as our lower bounds,and for the (1,λ) ES, a
runtime which is off by at most anO(

√
lnλ)-factor.5.1 Gaussian Mutations and 1/5-Rule

Hereinafter, we call a mutation of a search pointc ∈ Rn with a mutation vectorm which results
in f (c + m) ≤ f (c) a successful mutation,and hence, when talking about a mutation,success
probability means the probability that the mutant is at least as good as its parent. Based on
experiments and rough calculations for two function scenarios (namely SPHERE and a corridor
function), Rechenberg proposed the 1/5-rule for the adaptation of Gaussian mutations within the
(1+1) ES. The idea behind this adaptation mechanism is that (in a step of the (1+1) ES) the mu-
tation strengthσ should be such that a scaled Gaussian mutation is successfulwith a probability
of (roughly) 1/5 since in such situations the expected gain of the step (mutation followed by se-
lection) is maximum. Obviously, for the eletist (1+1) ES, the success probability of a step equals
the probability that the mutation is accepted to become the new current search point in this step.
If σ could be adapted such that every step was successful with probability 1/5, we would observe
that on average one fifth of the mutations are successful. Thus, the 1/5-rule works as follows: The
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optimization process is observed without changingσ (we “keep”σ ) until 5n mutations have been
performed; if more than one fifth of the mutations in this observation period have been successful,
σ is doubled (“increased”), otherwise,σ is halved (“decreased”). As a consequence, the 1/5-rule
fits our (1+,λ) ES-framework from Section 1.2 (p. 8).

The number of mutations to be observed between two sequentσ -adaptations varies in the lit-
erature, but is almost always2(n). Also the choice of the constants for the adaptation ofσ , here
2 resp. 1/2, seems somehow arbitrary. In fact, one result we will obtain is that—for the function
scenarios we consider—the order of the runtime (w. r. t. the dimensionality of the search space)
is “robust” with respect to the concrete implementation of the 1/5-rule. Namely, any 1/5-rule that
performs theσ -adaptation every2(n) mutations using any two constants for the scaling ofσ that
are greater resp. smaller than 1 results in the same asymptotic runtime; even the 1/5 can be re-
placed by any positive constant smaller than 1/2 without affecting the order of the runtime—in
the function scenarios that are considered here.5.1.1 Gaussian Mutations and 1/5-Rule for the (1+,λ) Evolution Strategy
The “(1+λ) ES using scaled Gaussian mutations adapted by the 1/5-rule” works as follows: Let
λ : N → N such thatλ = poly(n), and let “λ” abbreviate “λ(n).” We use two global counters:
“g” corresponds to the number of “good” (i. e. successful) mutations, and “b” counts the “bad”
ones (which have not been successful). Then, withb := 0 andg := 0 and a given initialization
of the evolving search pointc ∈ R

n and the global mutation strengthσ ∈ R>0, the following
evolution loop is performed (the instructions that implement the 1/5-rule are marked gray):

1. FORi := 1 TOλ DO BEGIN

a) Create a new search pointy[i ] := c+ m with m := σ · m̃, where each component of
m̃ ∈ R

n is independently standard-normally distributed.

b) IF f ( y[i ]) ≤ f (c) THEN g := g+1 ELSEb := b+1. END

2. IF mini∈{1,...,λ}{ f ( y[i ])} ≤ f (c) THEN c := argmini∈{1,...,λ}{ f ( y[i ])} (when there are more
than one mutant with minimumf -value, one of them is chosen uniformly at random).

3. IF b+ g ≥ 5n THEN BEGIN

a) IF g< (g+b) · (1/5) THENσ := σ/2 ELSEσ := σ ·2.

b) g := 0. b := 0. END

4. GOTO 1.

Note thatσ is adapted every⌈5n/λ⌉ steps/iterations, implying that forλ≥ 5n there isσ -adaptation
after every iteration of the evolution loop.

As expected, we obtain the “(1,λ) ES using Gaussian mutations adapted by the 1/5-rule” by
dropping the IF-condition that determines whetherc is replaced by (one of) the best mutants or
not (Instruction 2).
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5.1 Gaussian Mutations and 1/5-Rule5.1.2 Gaussian Mutations and 1/5-Rule for the (µ+1) Evolution Strategy
In the (µ+1) ES framework each individual consists of a search point and an associated mutation
strength. As we need the counters “b” and “g” for the adaptation of the individual mutation
strength, each individual is associated with its own set of counters, so that an individualX =
(x,σ ,g,b) is inR

n ×R>0 ×N0 ×N0.
Letµ : N → N such thatµ= poly(n). Then the “(µ+1) ES using Gaussian mutations adapted

by the 1/5-rule” works as follows (for minimization): For a given initialization of the population
of µ individuals (where allg- andb-counters are zero) the following evolution loop is performed:

1. Choose one of the individuals in the (current) populationuniformly at random. Let this be
X = (x,σ ,g,b).

2. Create a new search pointy := x + m with a mutation (vector)m := σ · m̃, where each
component of̃m is independently standard-normally distributed

3. IF f ( y) ≤ f (x) THEN g := g+1 ELSEb := b+1.

4. IF b+ g = 5n THEN

a) IF g< (b+ g) · (1/5) THENσ := σ/2 ELSEσ := σ ·2;

b) g := 0; b := 0.

5. Create the mutantY := ( y,σ ,g,b).
(Note thatY inherits the possibly updated/adapted parametersσ ,b,g from its parentX.)

6. Discard one of theµ+ 1 individuals by uniformly choosing one of the worst individuals
(maximal f -value).

7. GOTO 1.5.1.3 Gaussian Mutations and 1/5-Rule and the Spatial Gain
Recall Corollary 3.13 (p. 27) and, in particular, the randomvariableG̃ which corresponds to the
signed distance of the mutantc+ m̃ from a predefined hyperplane containing the search pointc
which is mutated. Accordingly, we now let̃1d denote the spatial gain towards a fixed search
point x∗ with d = dist(c,x∗). Furthermore, when the Gaussian mutation is scaled byσ , we let
1̃σ ,d denote this spatial gain. Formally, for fixedc,x∗ ∈ R

n

1̃σ ,d := d −dist(c+σ ·m̃ , x∗) (5.1)

whered = dist(c,x∗) and m̃ is a Gaussian mutation, i. e., each of then components is inde-
pendently standard-normally distributed. (Recall that wecan restrict ourselves to the distanced
betweenc andx∗ because of the isotropy of a Gaussian mutation.)

As mentioned above, the idea behind the 1/5-rule is to maximize the expected gain in a step
of the (1+1) ES. For instance for SPHERE, a mutation is accepted if and only if the mutant is at
least as close to the optimum as its parent. In this situation, the spatial gain of a step is given
by 1̃+

σ ,d (which abbreviates̃1σ ,d ·1{1̃σ ,d≥0}), and the 1/5-rule is supposed to adaptσ such that the
expected one-step gain ofE[1̃+

σ ,d] is maximum.
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Yet in fact, knowing maxσ>0 E[1̃+

σ ,d] for a given distanced from the optimum does not help
with an analysis. The 1/5-rule is obviously not able to adaptσ such that expected spatial gain is
actually maximum. Besides, we already know from Lemma 4.4 (p. 34) that forn ≥ 4

max
σ>0

E
[
1̃+
σ ,d

]
< 0.52·d/

√
n−1 = O(d/

√
n)

anyway. So the actual questions are: For whichσ doesE[1̃+
σ ,d] =�(d/

√
n) hold? Is the 1/5-rule

able to keepσ in the respective range? And, if so, for how many iterations of the evolution loop?
In fact, we should not restrict ourselves toE[1̃+

σ ,d] since this is the expected spatial gain of a
(1+1) ES on SPHERE. Nevertheless, the answer to the questions will be useful not only for the
SPHEREscenario. Therefore, note that “1̃σ ,d =�(d/

√
n) with an�(1)-probability” implies that

E[1̃+
σ ,d] =�(d/

√
n) because negative gains are zeroed out by the elitist selection in this scenario.

Of course, also the total gain of a sequence of steps will be ofinterest. In particular, we are
interested in the total gain of a number of sequent steps in all of which the same mutation strength
σ is used. As we shall see in the following, it is very unlikely that such a total gain is actually
larger than the double of its expectation:

Therefore, assume that the (1+λ) ES uses for a phase ofk steps a fixed isotropic distribution
F to generate the mutants (i. e., for each mutation the mutation vector is independently drawn
according toF). This is the case for Gaussian mutations adapted by a 1/5-rule during an ob-
servation period, for instance. Let1[1], . . . ,1[k] denote the random variables which respectively
correspond to the gains in thek steps of the (1+λ) ES. Optimistically assume that any mutation
that yields a positive spatial gain is accepted, and that anynegative gain is rejected (as it is the
case for SPHERE). Then the distance from the optimum is non-increasing, andhence, we have
1[1] ≻ ·· · ≻1[k] (cf. Proposition 4.3 (p. 33)). Let11, . . . ,1k denotek independent copies of the
random variable1[1]. Then the random variableS := 11 + . . .1k stochastically dominates the
total gain of the phase, namely the random variable defined as1[1] +·· ·+1[k] .

Let d denote the distance from the optimum at the beginning of the phase. Assume that the
isotropic distributionF is such thatE[S] ≤ d/4 and note thatE[1[1] ] ≤ (d/4)/k implies this upper
bound on the expected total gain of the phase. Then Hoeffding’s bound, namely Theorem 2.3
(p. 13), tells us (sinceE[S] +d/4 ≤ d/2) that

P{S≥ d/2} ≤ exp

(
−2(d/4)2

k · (b−a)2

)
.

We can chosea := 0 since the gain of a step cannot be negative in our scenario. Substituting forb
the trivial upper bound ofd on1i , results in an upper bound of e−(1/8)/k on P{S≥ d/2}, which,
unfortunately, tends to one ask grows. Therefore, assume that1i was bounded from above by
b := d ·nε/n. Then we have

P
{
S≥ d/2 |11, . . . ,1k ≤ d ·nε/n

}
≤ exp

(
−d2/8

k · (d ·nε/n)2

)
= exp

(
−n2−2ε

8k

)
.

If k is O(n), this upper bound on the probability is e−�(n1−2ε). Choosingε := 1/3, we obtain

P
{
S≥ d/2 |11, . . . ,1k ≤ d ·n1/3/n

}
= e−�(n1/3). (5.2)
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With this upper bound we can now prove the following lemma which will later be useful in the
analysis of the 1/5-rule.

Lemma 5.1. Let a (1+λ) ES minimize SPHERE in R
n. Consider a phase ofk = O(n) steps

in which all mutation vectors are independently drawn according to the same isotropic distribu-
tion F . If F is such that the expected gain towards the optimum in the firststep of the phase is
at most (d[0]/4)/k, then the probability that the total gain of the phase is at leastd[0]/2 (i. e., the
approximation error in the search space is halved) is bounded above by e−�(n1/3).

Proof. According to Lemma 4.5 (p. 35) an isotropic mutation yields again of at leastd ·n1/3/n
only with probability e−�(n1/3). (As a consequence, the probability that the best ofλ mutations
in a step yields such a gain is bounded from above byλ · e−�(n1/3) = e−�(n1/3).) Thus, if F is
such that the expected gain of the first step of the phase is at most (d/4)/k, thenP{S≥ d/2} (the
probability that the approximation error is halved in the considered phase ofk steps) is bounded
from above byλ ·k ·e−�(n1/3) +e−�(n1/3), which is e−�(n1/3) sinceλ ·k = poly(n).

All the facts and arguments that we used to derive this lemma do not only hold for SPHERE,
but for all functions that are “like SPHERE” in the following sense.5.2 SPHERE-like Fun
tions
Consider unimodal functions that are monotone with respectto the distance from the minimum.
More formally, a functionf : Rn → R belongs to this class and is called “SPHERE-like” if (and
only if)

1. a minimizerx∗ ∈ R
n exists, i. e.,∀x ∈ R

n : f (x∗) ≤ f (x), and

2. ∀x, y ∈ R
n : dist(x∗,x)< dist(x∗, y) ⇒ f (x)< f ( y).

The crucial property of such a function with respect to the (1+1) ES is that any mutant which
is closer to the minimum is accepted, whereas any mutant which is farther away is discarded.
In other words, a reduction of the approximation error in thesearch space is always accepted,
whereas an increase is always rejected. We do not know, however, whether a mutant with the
same distance from the optimum as its parentc is accepted; yet this does not make any difference
as the hyper-sphere centered atx∗ and containingc has zero Lebesgue measure and, hence, is
hit with zero probability. All in all, when starting with thesame initial approximation error, the
stochastic process induced by the (1+1) ES depends on the class-defining properties, but not on
the function itself.

In particular, the function SPHERE(x) :=
∑n

i=1 x2
i = |x|2 belongs to our class, which is pre-

sumably the most investigated and most discussed function in theory-oriented work on evolution
strategies; cf. for instance Rechenberg (1973, 1994), Schwefel (1995), Rudolph (1997), Beyer
(2001), Bienvenue and Francois (2003), Auger (2005). And this is also the reason for the notion
“SPHERE-like.”

Obviously, theL2-norm is SPHERE-like, and it is readily seen that a functionf = g◦L2 belongs
to our class ifg : R≥0 → R is monotone increasing and bounded from below. With respectto the
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trajectory of the evolving search point/population in the search space, the optimization process
is independent ofg; the progression of the approximation with respect to the objective space,
however, crucially depends ong; consider for instanceg(x) = x2, i. e., f = SPHERE, as opposed
to g(x) = 2x. Results with respect tog can easily be obtained from ones with respect to the
search space, and hence, it makes sense to concentrate on theapproximation error in the search
space, which is defined as the distance from the unique minimum x∗ ∈ R

n. In particular, we may
assume, for notational convenience, that the minimumx∗ coincides with the origin so that the
approximation error (in the search space) is given by|c|.5.2.1 SPHERE-like Fun
tions and the (1+1)ES with 1/5-Rule
As already noted above, obviously, the 1/5-rule cannot ensure that each mutation is success-
ful with a probability of exactly 1/5. Nevertheless, the question for whichσ a step succeeds
with a probability of 1/5 is interesting. Formally, we are interested in the specificσ for which
P
{
1̃σ ,d ≥ 0

}
= 1/5. By using Equation (4.2) on page 33 withδ := 0, we obtain

P
{
1̃σ ,d ≥ 0 | |σ · m̃| = ℓ

}
= 1/5 ⇐⇒ P

{
Gℓ ≥ ℓ2/(2d)

}
= 1/5.

Since the equation on the right is equivalent toP{G ≥ ℓ/(2d)} = 1/5, Lemma 3.12 (p. 25) tells us
that

P
{
1̃σ ,d ≥ 0 | |σ · m̃| = ℓ

}
= 1/5 =⇒ ℓ=2(d/

√
n).

Recall from the reasoning that precedes Corollary 3.13 (p. 27) that|m̃| ∈ [
√

n/2,2
√

n] with prob-
ability 1− O(1/n), and hence, we obtain analogously to that reasoning

P
{
1̃σ ,d ≥ 0

}
= 1/5 =⇒ σ =2(d/n).

Since all arguments remain valid when substituting “1/5” by an arbitrary constantε ∈ (0,1/2) (so
thatε as well as 1/2−ε are�(1), cf. Corollary 3.13 (p. 27) again), we obtain

Lemma 5.2. Fix d ∈ R>0 andε ∈ (0,1/2). ThenP
{
1̃σ ,d ≥ 0

}
= ε impliesσ =2(d/n).

So, we considered a gain (of a mutantc + m) towards a pointx∗ (at distanced from c) of
sizeδ = 0, which corresponds to a “parallel gain” ofg = ℓ2/(2d) when |m| = ℓ. What about
a positive gain? When choosing, say,δ := d/n rather than zero, then the correspondinggℓ,δ
becomesd/n+ (ℓ2 − d2/n2)/(2d) (cf. Equation (4.2) on page 33). Thus, forℓ = 2(d/

√
n) we

obtain a correspondingg that is2(d/n), i. e. 2(ℓ/
√

n). Since the arguments hold for anyδ that
is2(d/n) rather than exactlyd/n, we have in fact shown that, ifℓ=2(d/

√
n), then aδ which is

2(d/n) corresponds to someg which is2(ℓ/
√

n). Recall thatGℓ ∼ ℓ · G. Thus, we can finally
apply Lemma 3.12 (p. 25) (Item 4) to obtain the following result (recall Equation (4.1) on page 32
for the definition of “1x∗,ℓ”).

Lemma 5.3. Let x∗ ∈ R
n be fixed andd = dist(c,x∗)> 0. Given thatℓ is2(d/

√
n), then for any

constantε we haveP
{
1x∗,ℓ ≥ ε ·d/n

}
=�(1) .
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Since|m̃| ∈ [

√
n/2,2

√
n] with probability 1− O(1/n) (as utilized several times), we obtain as

a direct consequence

Corollary 5.4. Let x∗ ∈ R
n be fixed andd = dist(c,x∗) > 0. Given thatσ is 2(d/n), then for

any constantε we haveP
{
1̃σ ,d ≥ ε ·d/n

}
=�(1).

Putting it all together with Corollary 3.13 (p. 27) we obtainthe following lemma which will be
very frequently used in our analyses.

Lemma 5.5. Let x∗ ∈ R
n be fixed andd = dist(c,x∗)> 0. ThenP{1̃σ ,d ≥ 0} =�(1) as well as

1/2−P{1̃σ ,d ≥ 0} =�(1) if and only ifσ =2(d/n), and if so, then for any constantε we have
P{1̃σ ,d ≥ ε ·d/n} =�(1).

In less formal words: If the mutation strengthσ is such that the probability of the mutant being
closer to the optimum is “roughly” 1/5, then the distance from the optimum is reduced by an
1/n-fraction with a constant probability.

The lower bound on the one-step gain, which we have just obtained, will enable us to show
our first result for a concrete scenario—once we have the following lemma (the counterpart of
Lemma 4.6 (p. 36)).

Lemma 5.6. Let X1, X2, . . . denote random variables with bounded range andS the random vari-
able defined byS= min{ t | X1 +·· ·+ Xt ≥ g} for a giveng> 0. Given thatS is a stopping time,
if E[S] <∞ andE[Xi | S≥ i ] ≥ ℓ > 0 for i ∈ N, thenE[S] ≤ E[X1 +·· ·+ XS]/ℓ.

Proof. First of all note that theXi need not be independent—making the assumption necessary
thatSis a stopping time, though. Note that, since theXi are bounded, the assumption/precondition
E[S] <∞ impliesE[X1 +·· ·+ XS] <∞.

The proof follows the one of Lemma 4.6 (p. 36) up to the point where the lower boundℓ on
E[Xi | S≥ i ] is utilized (rather than an upper bound which is called “u” therein).

E[X1 +·· ·+ XS]

cf. Lemma 4.6 (p. 36)=
∞∑

i=1

P{S≥ i } ·E[Xi | S≥ i ]

≥
∞∑

i=1

P{S≥ i } ·ℓ

= E[S] ·ℓ

So, this lemma (which may sound trivial) enables us to show our first result for a concrete and
well-known scenario:
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Theorem 5.7.Let the (1+1) ES using scaled Gaussian mutations optimize a SPHERE-like function
in R

n using a fixed mutation strengthσ (i. e. no mutation adaptation). Given that the initialization
is such thatd[0] > 0 andσ =2(d[0]/n), the expected number of stepsi until d[i ] ≤ d[0]/2 is2(n),
i. e., the expected number of steps to halve the approximation error in the search space grows
linearly in the dimensionality of the search space.

Proof. The�(n)-bound has already been shown in Theorem 4.8 (p. 39), so thatwe concentrate
on theO(n)-bound in the following.

First of all note that negative gains are zeroed out by elitist selection in this scenario. As long
as the approximation error has not been halved, in each step the approximation error is reduced
by an 1/n-fraction with probability�(1) since the distance fromx∗ is in (d[0]/2,d[0] ]. Thus, the
expected gain towardsx∗ is �(d[0]/n) in each step (recall: negative gains are zeroed out). For
the application of the previous Lemma 5.6 (p. 63), we letXi denote the spatial gain towards the
optimum in thei th step, and we know that we can choose a lower boundℓ on the single-step
gain which is�(d[0]/n). Since the total gain of the steps (untild[i ] ≤ d[0]/2 for the first time)
is obviously at mostd[0] , Lemma 5.6 (p. 63) yields an upper bound ofd[0]/�(d[0]/n), which is
O(n), on the expected number of steps untild[i ] ≤ d[0]/2—if the expectation is finite (recall the
precondition “E[S] <∞” in Lemma 5.6 (p. 63)).

Therefore, letB denote the hyper-ball exactly containing all points with a distance of at most
d[0]/2 from x∗. We are interested in the number of iterations of the (1+1) ESuntil the evolving
search point hitsB. Since the mass ofB w. r. t. the measure/distribution overRn induced by
addingσ · m̃ to some pointx ∈ R

n is positive (say lower bounded byp> 0 if x’s distance from
the center ofB is at mostd[0]), the expected number steps untilB is hit is indeed finite (at most
1/p in our case; formally, the trials are dependent, yet we can consider Bernoulli trials to obtain
the upper bound of 1/p).

Unfortunately, unlike the lower bound in Theorem 4.8 (p. 39), the upper bound which we have
just obtained is an asymptotic one, i. e., it tells us nothingabout the constant hidden in the “O(n).”
This constant depends on the actual relation betweenσ andd[0] , and we only assume that the
initialization results inσ =2(d[0]/n). Yet what is more, in contrast to the lower bound, the upper
bound can be iterated at most a constant times. That is, for any constantκ ≥ 1, the expected num-
ber of steps untild[i ] ≤ d[0]/2κ is O(n) by the very same arguments. But what about the number
of steps until, say,d[i ] ≤ d[0]/2n? For this question, considering an adaptation-less (1+1) ES does
not make sense. For a fixedσ , the closerc gets tox∗, the smaller the expected progress. And thus
—even thoughc would converge (namely almost surely) towardsx∗, which is readily seen just
becauseσ is fixed—the progress towardsx∗ would become slower and slower. And moreover,
we would like an upper bound which holds with an overwhelmingprobability rather than only in
expectation.

This is the point where the 1/5-rule comes into play. We must show that it keepsσ =2(d/n)
as the optimization proceeds, i. e., that the mutation strength remains in theevolution window
(this notion, in fact the German termEvolutionsfenster,was coined by Rechenberg (1973, p. 139),
cf. Beyer (2001, pp. 17, 69) for instance).

Interestingly, we can show that the 1/5-rule works for SPHERE-like functions using the lower-
bound result from Theorem 4.11 (p. 42); namely, we will utilize that afterO(n) steps of the
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(1+1) ES the approximation error in the search space is still(at least) a constant fraction of the
initial one (at least with probability 1−e−�(n)).

Theorem 5.8. Let a (1+1) ES using Gaussian mutations adapted by a 1/5-ruleminimize a
SPHERE-like function f : Rn →R. If the initialization is such thatσ =2(d/n), then the 1/5-rule
maintains this property for an arbitrary polynomial numberof steps with probability 1−e−�(n1/3).

Proof. The run of a (1+1) ES is virtually partitioned intophasesin each of whichσ not changed.
Recall from Lemma 5.5 (p. 63) thatσ = 2(d/n) is equivalent to the probability of generating a
better mutant being bounded by�(1) as well as by 1/2−�(1). This is crucial since this enables
us to switch back and forth between considering the relativemutation strengthσ/d in a step, on
the one hand, and the mutation’s success probability in thatstep, on the other hand. Namely, for a
given mutation strengthσ , we letpc := P{ f (c+σ · m̃) ≤ f (c)} denote the success probability (of
the mutation). Thenσ =2(|c|/n) if and only if there is a constantε > 0 such thatpc ∈ [ε,1/2−ε]
for n large enough; we may drop the subscript “c” in unambiguous situations. Note that for two
search pointsx, y ∈ R

n we havepx ≥ py ⇐⇒ |x| ≥ |y| (cf. Proposition 4.3 (p. 33)). Since|c|
is non-increasing in our scenario, by a trivial scaling argument, doublingσ after a phase surely
results in a smaller success probability compared to any of the success probabilities in that phase.
Halvingσ at the end of a phase, however, results in a larger success probability compared to the
success probability of the first mutation in that phase only if the approximation error has not been
halved within this phase. As it is harder to tackle, we start our analysis with the latter situation.

Since in our scenario the distance from the optimum is non-increasing,p is also non-increasing
during a phase. Letp(i ) denote the success probability of thefirst mutation within thei th phase.
Assume thatσ is large such that at the beginning of thei th phase the success probability is small,
say, p(i ) ≤ ε < 0.1 yet still p(i ) = �(1). (The positive constantε will be chosen appropriately
small later.) To show that the 1/5-rule works, we have to showthatσ will be halved after thei th
phase, and that this does result inp(i+1) ≥ p(i ), i. e. in an increase in the success probability. If
this is the case, then the success probability of the last mutation in thei th phase is a lower bound
on the success probabilities that occur. To see that this threshold, namely the success probability
of the last mutation in thei th phase, is indeed�(1) if p(i ) is �(1), recall the lower bound from
Theorem 4.11 (p. 42). It tells us (by choosingb as a constant large enough) that after thei th phase,
which lasts2(n) mutations, the distance from the optimum is a constant fraction of the one at the
beginning of the phase with probability 1−e−�(n). Given that this is the case, also the ratioσ/d
at the end of thei th phase is of the same order as at the beginning of the phase, implying that
p = �(1) at the end of thei th phase (given thatp(i ) = �(1), of course). In the following, we
assume that this is the case (and keep in mind that we err with aprobability of e−�(n)).

Thus, in each mutation within thei th phaseε ≥ p = �(1), and hence, we expect at most an
ε-fraction of the mutations in this phase to be successful. ByChernoff’s bound, with probability
1−e−�(n) (since we expect�(n) successful mutations) at most a 2ε-fraction of the mutations are
actually successful . Again we assume that this is the case (and again we keep in mind that we err
with a probability of e−�(n)).

Since 2ε < 1/5, less than 20% of the mutations are successful so that afterthe i th phase the
scaling factorσ is halved, resulting in an increase of the success probability—when comparing
p(i+1) with the success probability of the last mutation in thei th phase. The crucial question is,
however, whetherp(i+1) ≥ p(i ).
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Here is the point where the choice ofε comes into play. Not only the upper bound on the

(expected) number of successful mutations in the phase is proportional toε, yet also the total gain
of thei th phase; in particular, we can chooseε small enough (i. e.,σ = O(d/n) large enough) such
that the distance from the optimum is not halved within thei th phase with probability 1−e−�(n1/3)

(Lemma 5.1 (p. 61)), i. e., the increase of the success probability due to the halving ofσ after the
i th phase overbalances the decrease of the success probability which is due to the reduction of the
approximation error within thei th phase. Then, as already noted above, the success probability of
the last mutation in thei th phase (which is�(1) under our assumptions) is the lower bound on the
success probabilities which occur. This�(1)-threshold on the mutations’ success probabilities
corresponds toσ being bounded byO(d/n).

Since things may go wrong (i. e., our assumptions are not met)with a probability of e−�(n1/3),
our reasoning does not show thatσ = O(d/n), i. e. p =�(1), “forever with probability one”, yet
“for any polynomial number of phases with probability 1−e−�(n1/3)” because adding up a poly-
nomial number of error probabilities each of which is e−�(n1/3) results in a total error probability
which is bounded by e−�(n1/3) (using the union bound).

Fortunately, the upper threshold of 1/2−�(1) on the mutations’ success probabilities, i. e.,
thatσ remains�(d/n), is easier to show (as already noted at the very beginning ofthis proof).
Therefore, assume that the mutation strengthσ is small such that in the last step of thej th phase
the success probability is large, say,p ∈ [0.3,0.4]. Since during a phasep is non-increasing,
we expect at least 30% of the mutations in thej th phase to be successful, i. e.�(n) many. By
Chernoff’s bound, with probability 1− e−�(n) more than 20% of the mutations in thej th phase
are actually successful, so thatσ is doubled. This results in a smallerp( j +1) compared to the last
mutation of thej th phase—yet also compared top( j ), the success probability of the first mutation
in the j th phase (cf. above). To see that alsop( j ) (our upper threshold on the mutations’ success
probabilities) is bounded above by 1/2−�(1) if the success probability in the last mutation of
the j th phase is at most 0.4, recall that we havep( j ) = 1/2−�(1) if the distance at the end of
the phase is at least a constant fraction of the one at the beginning, which is the case with prob-
ability 1− e−�(n) (by choosingb as a constant large enough in Theorem 4.11 (p. 42) such that
“b · 0.69n/ ln(1+ 3λ)” is at least the number of iterations in thej th phase). Thus, for any poly-
nomial number of phases, with probability 1−e−�(n) the success probabilityp remains bounded
from above by 1/2−�(1), i. e.,σ remains bounded by�(d/n).

Altogether we have shown that, ifσ [0] =2(d[0]/n) after initialization, thenσ =2(d/n) for an
arbitrary polynomial number of steps—at least with probability 1 −e−�(n1/3).

Note that in this proof of that the 1/5-rule works for the (1+1) ES on a SPHERE-like function,
we merely used that the observation period (a phase) lasts2(n) mutations, rather than exactly 5n.
Moreover, increasingσ by 10%, say, rather than by 100% (doubling) surely results ina decrease
in the success probability. Moreover, reducingσ by 30%, say, rather than by 50% (halving) after
a phase results in a larger success probability unless the approximation error has been reduced by
at least 30% within that phase, which is also just a constant fraction. Finally, we could consider a
1/6-rule or a 1/3-rule, for instance. In the case of a 1/3-rule, in the reasoning for the upper thresh-
old of 1/2−�(1) on the success probabilities, we would consider the interval [1/3+ε/2, 1/3+ε]
for some positive constantε < 1/2−1/3, rather than “[0.3,0.4],” of course.
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Corollary 5.9. Theorem 5.8 (p. 65) does not only hold for the 1/5-rule that observes 5n mutations
and doubles/halves the mutation strength, but for any 1/5-rule which observes2(n) mutations and
up-/down-scalesσ using two predefined positive constants which are larger resp. smaller than one.

Moreover, the theorem holds for analogousε-rules, whereε ∈ (0,1/2) is a fixed constant.

Naturally, an observation period ofn would result forn = 1 in a σ -adaptation that would
presumably fail because after each mutation/stepσ would be up-/down-scaled, depending on
whether this single step has been successful or not. This is no contradiction, however, since in
that case the error probability “e−�(n)” may be very very close to one.

Now that we have proved that the 1/5-rule works—in the considered scenario—, we can easily
show an upper bound on the runtime:

Theorem 5.10. Let a (1+1) ES using Gaussian mutations adapted by a 1/5-ruleminimize a
SPHERE-like function inR

n, and letb: N → N such thatb = poly(n). If the initialization is
such thatσ [0] = 2(d[0]/n), then the number of stepsi until d[i ] ≤ d[0]/2b(n) is 2(b(n) · n) with
probability 1−e−�(n1/3).

Proof. The�(bn)-bound has already been shown in Theorem 4.11 (p. 42), so that we concentrate
on theO(b ·n)-bound here.

Recall that the 1/5-rule ensuresσ =2(d/n) for any polynomial number of steps (at least with
probability 1−e−�(n1/3)), in particular for any number of steps which isO(b ·n).

Let κ denote a constant, which will be chosen large enough a posteriori. Within κbn steps,
in each of whichσ = 2(d/n), each step reduces the approximation error at least byd/n with
an�(1)-probability (cf. Lemma 5.5 (p. 63)). Thus, the expectednumber of steps each of which
reduces the approximation error by (at least) an 1/n-fraction is�(κbn). Since (1−1/n)n·ln 2 ≤ 1/2
for n ≥ 2 (and since the approximation error is non-increasing), after at most 0.7n such steps the
approximation error is halved, and after 0.7bn such steps the approximation is less thand[0]/2b.
Now, by choosingκ large enough, the expected number of such steps is at leastbn, and by
Chernoff’s bound, the probability that less than 0.7bn such steps occur within theκbn steps is
bounded by e−�(b·n).

All in all, we have shown that withinκbn = O(bn) steps with probability 1−e−�(b·n) at least
0.7bn of them reduce the approximation error by at leastd/n, respectively, and that this implies
that the approximation error has become smaller than a 2−b-fraction of the initial one—under the
assumption that the 1/5-rule works (i. e.,σ =2(d/n) in all κbn steps). As this is the case with
probability 1−e−�(n1/3) (as shown above), the total error probability is also bounded by e−�(n1/3).

The proof has been apparently simple. This is because most ofthe effort has gone into the proof
of that the 1/5-rule works (in the considered scenario). Again we have to keep in mind the asymp-
totic nature of the result. For low-dimensional search spaces, fine-tuning the 1/5-rule (namely
its parameters) may well make sense. Such a tuning, however,cannot change how the runtime
scales with the dimension of the search space, that is the point. The concrete implementation of
the 1/5-rule influences only the constant in “O(b·n)”—it cannot do anything against that�(b·n)
mutations are necessary (with an overwhelming probability).

This can also be interpreted as some kind of robustness result: Even if the parameters of the
1/5-rule are not fine-tuned,O(b ·n) steps suffice with an overwhelming probability.
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We stick with the function scenario, namely we stick with SPHERE-like functions, yet switch

to the (1+λ) ES now.5.2.2 SPHERE-like Fun
tions and the (1+λ) ES with 1/5-Rule
An observation period of the 1/5-rule lasts2(n) mutations, i. e.2(⌈n/λ⌉) steps. Yet the number
of steps which are necessary to halve the approximation error is�(n/ ln(1+λ)) with probability
1−e−�(n) as we have shown in Theorem 4.11 (p. 42). In other words, sincein each stepλ samples
are drawn at the same location in the search space, the 1/5-rule can adaptσ more accurately,
because the total number of samples between two sequentσ -adaptations is still 5n (or 2(n) for
the generalized 1/5-rule). In particular, the largerλ, the smaller the chance that halvingσ after a
phase does not result in an increase of the success probability.

As a consequence, forλ = O(n), each and every argument within the reasoning in the proof
of Theorem 5.8 (p. 65) (in which we have shown that the 1/5-rule works for the (1+1) ES on
a SPHERE-like function) carries over because a phase consists of2(n) mutations. This fact was
used in the two applications of the Chernoff bound to obtain an error probability of e−�(n) because
of an expectation that is2(n), respectively. Now, ifλ is such thatσ is adapted after every step,
which implies thatλ = �(n), then the two expectations1 are of order2(λ), respectively, so that
the error probabilities are of order e−�(λ), i. e., they are still e−�(n) sinceλ = �(n). Thus, the
proof carries over not only forλ that areO(n) but for anyλ= poly(n).

Corollary 5.11. Let a (1+λ) ES using Gaussian mutations adapted by a 1/5-rule minimizea
SPHERE-like function f : Rn →R. If the initialization is such thatσ =2(d/n), then the 1/5-rule
maintains this property for an arbitrary polynomial numberof steps with probability 1−e−�(n1/3).

This is also true when considering the more general notion ofa 1/5-rule as described in Corol-
lary 5.9 (p. 67).

To obtain an upper bound on the runtime, however, we need to know the gain that theλ muta-
tions in a step of the (1+λ) ES yield. For the (1+1) ES, this gain is given by the random variable
1̃σ ,d. Since in the (1+λ) ES theλmutants in a step are generated using the sameσ , we haveλ in-
dependent samples w. r. t. the same distribution. Hence, themaximum ofλ independent instances
of 1̃σ ,d corresponds to the gain of the mutants, namely to the gain of the best of them. This is
commonly called theλth order statistic (ofλ copies) of̃1σ ,d, denoted here bỹ1〈λ:λ〉

σ ,d .
The proof of Theorem 5.10 (p. 67) is mainly due to the observation that—given that the mu-

tation strengthσ is2(d/n)—a mutation reduces the approximation error byd/n with probabil-
ity �(1), i. e., we utilize thatP{1̃σ ,d ≥ d/n)} =�(1) forσ =2(d/n). When we want to adopt this
approach, we merely need to know for which (function)α we haveP{1̃〈λ:λ〉

σ ,d ≥ α ·d/n)} = �(1)
for σ =2(d/n). Obviously,α=�(1) because the best of the mutants is considered. (Besides,the
lower-bound result from Theorem 4.11 (p. 42) tells us thatα= O(ln(1+λ) ).) Letλ≥ 2 in the fol-
lowing. If α is such thatP{1̃σ ,d ≥ α ·d/n)} ≥ 1/λ, thenP{1̃〈λ:λ〉

σ ,d ≥ α ·d/n)} ≥ 1− (1−1/λ)λ ≥
1−1/e> 0.63, i. e., a step of the (1+λ) ES realizes a gain of at leastα ·d/n with probability�(1).

1namely the expected number of successful steps and the expected number of steps each of which yields a gain
of at leastd/n
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Now, recall Lemma 3.12 (p. 25) (in particular Item 1) which deals with unit isotropic mutations

and their signed distance from a fixed hyper-plane. Since
√

n·g·e−2(g2·n) ≥ 1/λ for some function
g1 which is2(

√
lnλ/n), we haveP{G ≥ g1} ≥ 1/λ. Thus, for an isotropic mutation of lengthℓ,

P{Gℓ ≥ gℓ} ≥ 1/λ for somegℓ which is2(ℓ ·
√

lnλ/n), (5.3)

and consequently, forℓ which are2(d/
√

n), thisgℓ is2(
√

lnλ ·d/n). Since the length of a Gaus-
sian mutation is in [

√
n/2,2

√
n] with probability 1− O(1/n), we obtain that forσ = 2(d/n),

with probability (1/λ) · (1− O(1/n)) ≥ 0.5/λ for n large enough,̃Gσ =�(
√

lnλ ·d/n). Recalling
the interrelation between the gainδℓ towards a fixed point (at distanced) and the signed dis-
tancegℓ given in Equation (4.2) on page 33, we see thatδℓ ≥ gℓ − ℓ2/(2d) = gℓ −2(d/n) for
ℓ=2(d/

√
n). Hence, with a probability of at least 0.5/λ also1̃σ ,d is �(

√
lnλ · d/n). Finally

using (1−0.5/λ)λ ≤ e−0.5< 0.61, we have shown

Lemma 5.12. Let σ = 2(d/n). Then there is aδ which is�(
√

lnλ · d/n) such that forn large
enoughP

{
1̃〈λ:λ〉
σ ,d ≥ δ

}
≥ 0.39.

With the help of this lemma we can now prove an upper bound on the runtime of the (1+λ) ES
for the considered scenario.

Theorem 5.13.Let a (1+λ) ES,λ≥ 2, using Gaussian mutations adapted by a 1/5-rule minimize
a SPHERE-like function inRn. Let b: N → N such thatb = poly(n). If the initialization is such
thatσ [0] = 2(d[0]/n), then the number of stepsi until d[i ] ≤ d[0]/2b(n) is O(b(n) · n/

√
lnλ) with

probability 1−e−�(n1/3).

Proof. The proof follows the one of Theorem 5.10 (p. 67).
Recall that the 1/5-rule ensuresσ =2(d/n) for any polynomial number of steps (at least with

probability 1−e−�(n1/3)), in particular, for any number of steps that isO(b ·n/
√

lnλ).
Let κ denote a constant which will be chosen large enough later. Within κbn/

√
lnλ steps, in

each of whichσ =2(d/n), each step reduces the approximation error by�(
√

lnλ ·d/n) with an
�(1)-probability (cf. the preceding lemma). Thus, the expected number of steps each of which
reduces the approximation error by�(

√
lnλ · d/n) is �(κbn). Since (1−�(

√
lnλ)/n)s ≤ 1/2

for n large enough for somes which is O(n/
√

lnλ), after at mosts such steps the approxima-
tion error is halved; and afterb · s such steps the approximation is less thand[0]/2b. Now, by
choosingκ large enough, the expected number of such steps is at least 2bs, and by Chernoff’s
bound, the probability that less thanbs such steps actually occur within theκbn steps is e−�(bs),
i. e. e−�(bn/

√
lnλ) which is e−�(bn/

√
lnn) becauseλ= poly(n).

All in all, we have shown that withinκbn/
√

lnλ = O(bn/
√

lnλ) steps with a probability of
at least 1− e−�(bn/

√
lnn) the approximation error has become smaller thand[0]/2b(n) —under the

assumption that the 1/5-rule works, i. e., thatσ =2(d/n) in all κbn/
√

lnλ steps. Since this is the
case with probability 1−e−�(n1/3), the total error probability is also bounded by e−�(n1/3).

So, the proof is again simple, yet—unlike for the (1+1) ES—the result is not completely sat-
isfying: The lower bound from Theorem 4.11 (p. 42) tells us that w. o. p. �(n/ lnλ) steps are
necessary to halve the approximation error. The upper boundthat we have just proved, however,
says that w. o. p.O(n/

√
lnλ) steps suffice, i. e., the bounds are not asymptotically tight, but off by

a factor of order
√

lnλ. There are three potential reasons for this:
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1. The lower bound is weak.

2. The upper bound is weak.

3. The 1/5-rule just fails to make the (1+λ) ES get along with a number of steps that is at most
by a constant larger than the optimal number of steps (w. r. t.our (1+λ) ES framework).

The gap between the bounds is solely due to the failure of the 1/5-rule—it will turn out that our
lower bound is indeed sharp (w. r. t. the asymptotic order). So why does the 1/5-rule fail for the
(1+λ) ES? The intuition behind the reason is simple: When you knowthat you have several
trials, you should go a higher risk in a trial. Recall: The idea behind the 1/5-rule is to maximize
the expected gain in a step of the (1+1) ES (on SPHERE). So, how can a simple rule maximize
the expected gain of a step consisting ofλ trials/mutations? Interestingly, also a 1/5-rule can—at
least for the (1+λ) ES a “proper” 1/5-rule can.5.2.3 SPHERE-like Fun
tions and a Modi�ed 1/5-Rule for the (1+λ) ES
We modify the 1/5-rule as follows: Rather than trying to adapt σ such that each mutation succeeds
with a probability of (close to) 1/5,σ should be such thateach stepof the (1+λ) ES succeeds with
a probability of (close to) 1/5. This results in the following (1+λ) ES withmodified 1/5-rule based
on the steps’ success probabilitiesrather than on the mutations’ success probabilities:

With b := 0 andg := 0 and a given initialization of the evolving search pointc ∈R
n and the mu-

tation strengthσ ∈R>0, the following evolution loop is performed (the instructions implementing
the modified 1/5-rule are marked gray):

1. FORi := 1 TOλ DO
Create a new search pointy[i ] := c+ m ∈ R

n with m := σ · m̃, where each of then compo-
nents ofm̃ is independently standard-normally distributed.

2. IF mini∈{1,...,λ}{ f ( y[i ])} ≤ f (c) THEN BEGIN

a) c := argmini∈{1,...,λ}{ f ( y[i ])} (when there are more than one mutant with minimum
fitness, one of them is chosen uniformly at random)

b) g := g+1 END

ELSEb := b+1.

3. IF b+ g ≥ 5n/ log2(1+λ) THEN BEGIN

a) IF g< (g+b) · (1/5) THENσ := σ/2 ELSEσ := σ ·2.

b) g := 0. b := 0. END

4. GOTO 1.

Note thatσ is adapted every⌈5n/ log2(1+λ)⌉ steps (rather than⌈5n/λ⌉ as in the 1/5-rule that is
based on the number of successful mutations; forλ = 1 the two rules do not differ). The reason
for this choice is due to the general lower bound that we have proved.�(n/ ln(1+λ)) steps are
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necessary w. o. p. to halve the approximation error. The observation phase—after whichσ is
halved (or doubled)—does not last longer (by more than a constant factor) than the number of
steps necessary to halve the approximation error. Thus, halving σ after a phase should indeed
result in an increase of the success probability by the same reasoning that we have followed in
the proof of that the 1/5-rule works for the (1+1) ES. (As before, doublingσ surely results in a
decrease in the success probability anyway.)

Interestingly, we have almost already shown that the modified 1/5-rule adaptsσ such that it
is 2(

√
lnλ · d/n), which is by a factor of order

√
lnλ larger than with the original 1/5-rule.

Therefore, recall that we looked at̃1〈λ:λ〉
σ ,d and, in particular, atG〈λ:λ〉

ℓ . Since the best ofλ in-
dependent identical trials succeeds with probability�(1) if one trial succeeds with probability
�(1/λ), and sinceP{Gℓ ≥ gℓ} =�(1/λ) for gainsgℓ that areO(ℓ

√
lnλ/n) (cf. the reasoning that

has led to Inequality (5.3) on page 69), we obtain—using Equation (4.2) on page 33 withδ := 0
and solvinggℓ = ℓ2/(2d) for ℓ—that P

{
1d,ℓ ≥ 0

}
= �(1/λ), i. e., P

{
1〈λ:λ〉

d,ℓ ≥ 0
}

= �(1), for

ℓ= O(d ·
√

lnλ/n).
Starting with the question for whichgℓ the probabilityP{Gℓ ≥ gℓ} is at most1/λ (instead of “at

least”), by the symmetric reasoning we obtain thatP
{
1〈λ:λ〉

d,ℓ ≥ 0
}

is bounded above by 1/2−�(1)

for ℓ=�(d ·
√

lnλ/n). Then, again utilizing that the length of a scaled Gaussianmutation deviates
only very little from its expectationE[|σ · m̃|] ≍ σ

√
n, we obtain

P
{
1̃

〈λ:λ〉
d,σ ≥ 0

}
is bounded

{
below by�(1) =⇒ σ = O(

√
lnλ ·d/n)

above by 1/2−�(1) =⇒ σ =�(
√

lnλ ·d/n).

Assumeσ was such thatP{1̃〈λ:λ〉
d,σ ≥ 0} = 1/5, implying thatσ =2(

√
lnλ ·d/n). As the length

of the mutation vector is in the interval [σ
√

n/2, 2σ
√

n] with probability 1− O(1/n), consider
anℓ that is2(d

√
lnλ/n) in the following. Then, by choosingδ := lnλ ·d/n in Equation (4.2) on

page 33, we obtain an correspondinggδ which is2(lnλ · d/n). Thus,gδ is of the same order as
g0 = ℓ2/(2d), the signed distance (from the hyper-plane containing theparent) that corresponds
to a zero gain towards the optimum. As each of theλ mutants yields a gain of that order with
probability�(1/λ) (as shown above), we obtain that each mutant yields a gain ofat least lnλ ·d/n
with probability�(1/λ). Hence, the best of them yields a gain towards the optimum ofat least
lnλ · d/n with probability 1− (1−�(1/λ))λ = �(1). As our assumption onℓ holds true with
probability 1− O(1/n), we have indeed shown the following:

Lemma 5.14. Let λ≥ 2 andσ =2(
√

lnλ ·d/n). ThenP
{
1̃〈λ:λ〉
σ ,d ≥ lnλ ·d/n

}
=�(1).

Using this lemma we can show the upper bound on the runtime of the (1+λ) ES with the
modified 1/5-rule—once we have shown that this rule keepsσ = 2(

√
lnλ · d/n). Yet this can

again be shown analogously to the proof of Theorem 5.8 (p. 65).

Theorem 5.15. Let a (1+λ) ES, 2≤ λ = poly(n), using Gaussian mutations adapted by the
modified 1/5-rule minimize a SPHERE-like function in R

n. If the initialization is such that
σ =2(

√
lnλ ·d/n), then the modified 1/5-rule maintains this property for an arbitrary polynomial

number of steps with probability 1−e−�(n1/3).

71



5 Bounds for Con
rete S
enarios
Proof. The run of an (1+λ) ES is virtually partitioned into phases of length2(n/ lnλ) (in each
of which σ is not changed). Recall thatσ = 2(

√
lnλ · d/n) is equivalent to the probability of

generating a better mutant in a step (which consists ofλ mutations) being bounded by�(1) as
well as by 1/2−�(1). This is crucial since it enables us to switch back and forth between
considering the relative mutation strength in a step, on theone hand, and the success probability
of that step, on the other hand. So, this time, we letp denote thestep’s success probability.Then
σ =2(

√
lnλ ·d/n) if and only if there is anε ∈R>0 such thatp ∈ [ε,1/2−ε] for n large enough.

Assume thatσ is small such that in the last step of a phasep ∈ [0.3,0.4]. Sincep is non-
increasing, each of the2(n/ lnλ) steps in the phase succeeds with a probability of at least 0.3.
Thus, we expected at least 30% of the steps, i. e.2(n/ lnλ) many, to succeed. By Chernoff’s
bound, more than 20% of them are actually successful with a probability of 1−e−�(n/ lnλ), which
is 1− e−�(n/ lnn) becauseλ = poly(n). Thus,σ is doubled, which surely results in a smallerp
(since the approximation error cannot increase). Asσ is such that in the last step of a phase
p ≤ 0.4, then also in the first step of the phasep = 1/2−�(1) unless the approximation error
has been reduced by more than a constant fraction in this phase—which happens only with a
probability of at most e−�(n) according to the lower bound in Theorem 4.11 (p. 42). Hence,p
remains upper bounded by 1/2−�(1), i. e.,σ remains�(

√
lnλ ·d/n).

Now assume thatσ is large such that in the first step of thei th phasep ≤ ε < 0.1 yetp =�(1),
implying σ = �(

√
lnλ · d/n). Since p is non-increasing, we expect at most 10% of the steps

(namely2(n/ lnλ) many) to be successful, and again by Chernoff’s bound, witha probability
of 1− e−�(n/ lnλ) less than 20% are actually successful, so thatσ is halved. By choosing the
constantε small enough, not only the number of successful steps can be made small enough,
but the total gain of the phase can be made so small that the approximation is halved in this
phase only with probability e−�(n1/3) (Lemma 5.1 (p. 61)). Hence, with this error probability the
halving of σ results in p(i+1) ≥ p(i ). Thus, the success probability of the last step in thei th
phase is the lower threshold on the steps’ success probabilities, and this threshold is�(1) since
the approximation error has at most been halved in thei th phase. Finally, recall thatp = �(1)
impliesσ = O(

√
lnλ ·d/n).

As we have a polynomial number of error probabilities which are e−�(n1/3) each, the total error
probability is also/still bounded by e−�(n1/3).

Now the upper-bound result:

Theorem 5.16.Let a (1+λ) ES,λ≥ 2, using Gaussian mutations adapted by the modified 1/5-rule
minimize a SPHERE-like function inRn. Letb: N→N such thatb= poly(n). If the initialization
is such thatσ [0] = 2(

√
lnλ · d[0]/n), then the number of iterationsi until d[i ] ≤ d[0]/2b(n) is

O(b(n) ·n/ lnλ) with probability 1−e−�(n1/3).

Proof. This proof follows the one of Theorem 5.10 (p. 67).
Recall that our modified version of the 1/5-rule ensuresσ =2(

√
lnλ ·d/n) for any polynomial

number of steps (at least with probability 1−e−�(n1/3)), in particular, for any number of steps that
is O(b ·n/ lnλ).

Let κ denote a constant, which will be chosen large enough later. Within κbn/ lnλ steps, in
each of whichσ =2(

√
lnλ · d/n), each step reduces the approximation error by lnλ · d/n with
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probability�(1). Thus, we expect�(κbn) steps each of which actually reduces the approxima-
tion error by at least lnλ · d/n. Since (1− lnλ/n)s ≤ 1/2 for n large enough for somes that is
O(n/ lnλ), after at mosts such steps the approximation error is halved; and afterb ·s such steps
the approximation is less thand[0]/2b. Now, by choosingκ large enough, the expected number
of such steps is at least 2bs, and by Chernoff’s bound, the probability that less thanb · s such
steps actually occur within theκbn steps is e−�(b·s), i. e. e−�(b·n/ lnλ) which is e−�(b·n/ lnn) because
λ= poly(n).

All in all, we have shown that inκbn/ lnλ= O(bn/ lnλ) steps with probability 1−e−�(bn/ lnn)

the approximation error becomes smaller thand[0]/2b—under the assumption that the 1/5-rule
works, i. e., thatσ = 2(d/n) in all κ · b · n/ lnλ steps. Since this is the case with probability
1−e−�(n1/3), also the total error probability is bounded by e−�(n1/3).

As already noted above, this upper bound on the runtime showsthe following:

Conclusion 5.17.For (1+λ) ESs the general lower bound from Theorem 4.11 (p. 42) is asymp-
totically sharp.

As our lower bound, namely that�(n/ ln(1+λ)) steps are necessary to halve the approxima-
tion error with probability 1− e−�(n), holds for any (1+,λ) ES and any (1,λ) σSA-ES (which fit
our framework), the upper bound for the modified 1/5-rule tells us: When observing the reduc-
tion of the approximation error on a SPHERE-like function obtained by any other (1+,λ) ES or
(1,λ) σSA-ES within a polynomial number of steps, then the (1+λ) ES using Gaussian mutations
adapted by the modified 1/5-rule realizes such a reduction within a number of steps that is at
most by a constant factor larger than the number of steps of other ES (at least with probability
1−e−�(n1/3)). To put it more concise:

Conclusion 5.18.For any givenλ (which may depend on the dimensionality of the search space)
no (1+,λ) ES and no (1,λ)σSA-ES can minimize a SPHERE-like function “considerably” faster
than the (1+λ) ES using Gaussian mutations adapted by the modified 1/5-rule (given a proper
initialization of the mutation strength).

Naturally, one might ask whether our general lower bound is also sharp for (1,λ) ES, i. e.,
whether there is aσ -adaptation mechanism that makes the (1,λ) ES get along (at least for a
SPHERE-like function) with a number of steps that is of the same order as for the (1+λ) ES with
the modified 1/5-rule.5.2.4 SPHERE-like Fun
tions and the (1,λ) ES with 1/5-Rule
Unfortunately, the modified 1/5-rule does not make (much) sense for the (1,λ) ES. There would
be a strong drift away from the optimum, similar to the situation with the original 1/5-rule and
the (1,1) ES. The original 1/5-rule, however, does make sense for the (1,λ) ES—at least whenλ
is “large enough” as we shall see. The case whenλ = �(nε) is especially simple to tackle. Let
“1/5-rule” denote the original version (as described in Section 5.1.1 (p. 58)) in the following.

Recall that the 1/5-rule is supposed to keepσ such that each mutation is successful with a
probability of roughly 1/5. Now, assume the initializationis such that the success probability in
the first mutation of the first phase is at leastβ ∈ R>0. Then—forλ= �(nε)—with probability
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1− (1−β)λ = 1− e−�(nε) at least one of theλ mutants is closer to the optimum than its parent.
Thus, the IF-condition in the (1+λ) ES that makes it different from the (1,λ) ES would evaluate
to “true,” and hence, in such a case there is no difference between the (1,λ) ES and (1+λ) ES.
As our lower-bound result tells us that during an observation period (which lasts2(⌈n/λ⌉),
i. e. O(⌈n1−ε⌉), steps) the approximation error is not halved with probability 1 −e−�(n), with this
probability the success probabilities of all mutations are�(1) in the first phase. As a consequence,
the approximation error isnot monotone decreasing during the phase only with a probability that
is bounded above byO(⌈n1−ε⌉) ·e−�(nε), which is e−�(nε). In other words, if the elitist (1+λ) ES
was run (with the same initialization) rather than the (1,λ) ES, with probability 1− e−�(nε) the
IF-condition that implements elitist selection would never evaluate to “false” in the phase. In less
formal words, w. o. p. the mutations in a phase are such that there is no difference between the
(1,λ) ES and the (1+λ) ES—given thatλ=�(nε).

Since the probability that there is a step in which none of theλmutants is better than the parent
is e−�(nε) even for any polynomial number of steps, the results that we obtained for the (1+λ) ES
carry over for the (1,λ) ES. Namely, the 1/5-rule works (cf. Corollary 5.11 (p. 68)):

Lemma 5.19. Let a (1,λ) ES withλ=�(nε) for a constantε > 0 minimize a SPHERE-like func-
tion in R

n using Gaussian mutations adapted by a 1/5-rule. If the initialization is such that
σ = 2(d/n), then the 1/5-rule maintains this property for an arbitrary polynomial number of
steps with probability 1−exp(−�(nmin{1/3,ε})). This is also true when considering the more gen-
eral notion of a 1/5-rule as described in Corollary 5.9 (p. 67).

And also the upper-bound result carries over directly (cf. Theorem 5.13 (p. 69)):

Theorem 5.20. Let a (1,λ) ES with λ = �(nε) for a constantε > 0 minimize a SPHERE-like
function inRn using Gaussian mutations adapted by a 1/5-rule. If the initialization is such that
σ [0] = 2(d[0]/n), then the number of stepsi until d[i ] ≤ d[0]/2b(n), whereb: N → N such that
b = poly(n), is O(b(n) ·n/

√
lnλ) with probability 1−exp(−�(nmin{1/3,ε})).

So, if λ is so large that there is w. o. p. not a single step (within a polynomial number of steps)
which results in an increase of the approximation error, then we can simply recycle the proofs for
the (1+λ) ES. Yet what about smallerλ? In fact, we can show that for any fixed implementation
of the 1/5-rule there is aconstantλ∗ such that the (1,λ∗)ES using Gaussian mutations adapted by
this specific 1/5-rule results in an asymptotically optimalruntime (for a SPHERE-like function and
given that initiallyσ [0] =2(d[0]/n), of course). To show this, we have to deal with the situation
that steps do occur in which the approximation error increases. The first step in our analysis is to
bound the maximum loss in approximation quality which a single step may cause.

Therefore consider an isotropic mutationm of lengthℓ and recall the so-called signed distance
g ∈ [−ℓ,ℓ] of the mutant from the hyperplane that containsc and lies perpendicular to the line
passing throughc and x∗. Note: We consider the caseg < 0. Then (given that the length of
the mutation vectorm is ℓ) the mutant’s distance fromx∗ is at most

√
(d − g)2 +ℓ2 (by applying

Pythagoras using that the mutant’s distance from the line passing throughc andx∗ is at mostℓ).
Item 1 of Lemma 3.12 (p. 25) tells us thatP

{
Gℓ ≤ −ℓ/n1/3

}
= e−�(1/3) (because of the symmetry

of the random variableGℓ). Hence, with probability 1− e−�(n1/3)

dist(c+ m,x∗) ≤
√

(d +ℓ/n1/3)2 +ℓ2

=
√

d2 +2dℓ/n1/3 +ℓ2/n2/3 +ℓ2.
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Forℓ := d/n1/3, we obtain

dist(c+ m,x∗) ≤
√

d2 +2d2/n2/3 +d2/n4/3 +d2/n2/3

= d ·
√

1+3/n2/3 +1/n4/3

≤ d ·
√

(1+2/n2/3)2

= d +2d/n2/3,

and it is readily seen that for anyℓ which is O(d/n1/3) (rather than exactlyd/n1/3) we obtain
d+ O(d/n2/3) as an upper bound on the mutant’s distance fromx∗. Thus, for any constantκ1> 0
there is a constantκ2 such that

P
{
dist(c+ m,x∗) ≥ d +κ2 ·d/n2/3 | |m| ≤ κ1 ·d/n1/3)

}
= e−�(n1/3).

In particular, for Gaussian mutations, ifσ is such thatP
{
|σ · m̃| = O(d/n1/3)

}
= 1−e−�(n1/3),

then the absolute loss in approximation quality (the absolute increase in distance fromx∗) of a
mutation isO(d/n2/3) with probability 1−e−�(n1/3).

Thus, when the mutation strengthσ is2(d/n), we needP
{
|m̃| ≥ ε ·n2/3)

}
= e−�(n1/3) for any

constantε > 0 for our line of reasoning to work. Therefore, recall from Section 3.2 (p. 19) that
|m̃| is χ -distributed so that the density for a length ofx equalsxn−1 · e−x2/2 · 21−n/2/Ŵ(n/2).
The interesting part (namely the factors that depend onx) is xn−1 ·e−x2/2 = e(n−1) lnx−x2/2. When
x := ε · n2/3 for some constantε > 0, this is bounded above by e−�(n4/3), and so is the integral
over the interval [x,∞). Altogether, we have shown the following: Given thatσ =2(d/n), then
dist(c+σ · m̃,x∗) = d + O(d/n2/3) with probability 1− e−�(n1/3), i. e., there is a constantκ > 0
such thatP

{
1̃d,σ ≤ −κ ·d/n2/3)

}
= e−�(n1/3) .

This upper bound on the loss which a single mutation (and, consequently, also the best of
λ mutations) may yield, can now be used in an application of Hoeffding’s bound to obtain the
following result:

Lemma 5.21. Let the (1,λ) ES using Gaussian mutations minimize a SPHERE-like function in
R

n. Consider a phase of2(n) steps in whichσ is not changed. Letd denote the distance fromx∗

at the beginning of this phase and assume thatσ =2(d/n). Then, ifλ is large enough such that
E[1̃〈λ:λ〉

σ ,d ] =�(d/n), the total gain of this phase is�(d) with probability 1−e−�(n1/3).

Proof. Assume that the total gain is smaller thand/2 (otherwise there is nothing to show). Let
k denote the number of steps, i. e.,k = 2(n), and let1[1] , . . . ,1[k] denote the random variables
which correspond to the spatial gains in thek steps. Due to our assumption, each of them stochas-
tically dominates the random variablẽ1σ ,d/2. So we let11, . . . ,1k denotek independent in-
stances of̃1σ ,d/2 and defineS := 11 + ·· · +1k. Then the total gain1[1] + ·· · +1[k] of the
phase stochastically dominates the random variableS. SinceE[1̃〈λ:λ〉

σ ,d ] = �(d/n) by precondi-

tion, we haveE[1̃〈λ:λ〉
σ ,d/2] = �(d/n), and hence,E[S] = �(d). Using Hoeffding’s bound, namely

Theorem 2.3 (p. 13), we obtain

P{S≤ E[S]/2} ≤ exp

(
−2· (E[S]/2)2

k · (b−a)2

)
= e−�(d2/n)/(b−a)2,

where [a,b] is the range of the random variables1i . We already know (from Lemma 4.5 (p. 35))
that we can chooseb := d/n2/3 because with probability 1−e−�(n1/3) none of thek ·λmutations
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yields a spatial gain towardsx∗ of more thand/n2/3. For the (1+λ) ES, we could choosea := 0
because a step’s gain is non-negative when using elitist selection. In the reasoning preceding this
lemma, we have shown for the (1,λ) ES that with probability 1−e−�(n1/3) the gains are such that
we can chooseb := −κ ·d/n2/3 with some constantκ > 0. Thus,b−a = O(d/n2/3), and hence,
the exponent−�(d2/n)/(b−a)2 becomes−�(d2/n)/O(d2/n4/3), which is−�(n1/3). In other
words, for a constantκ > 0

P
{
S≤ E[S]/2 | −κ ·d/n2/3 ≤11, . . . ,1k ≤ d/n2/3}= e−�(n1/3),

and moreover, we already know that the condition on the rangeof the1i s is met with probability
1−e−�(n1/3). All in all, with probability 1−e−�(n1/3) the total gain is at leastE[S]/2=�(d).

As one may already guess, if we can show that “λ is large enough such that in the first step
E[1̃〈λ:λ〉

σ ,d ] = �(d/n)” can be replaced by “λ ≥ λ∗ for some constantλ∗ (which depends on the
relative mutation strengthσ/d),” then obtaining a bound on the runtime is straight forward(in the
same way as we did for the (1+1) ES).

Therefore, recall the random variablẽG which corresponds to the signed distance of a Gaussian
mutation from a fixed hyperplane. Due to the isotropy of a Gaussian mutation,̃G is symmetric,
i. e.,−G̃ ∼ G̃. Symmetric random variables bear the following property:

Proposition 5.22.Let the random variableX be symmetric, i. e.,P{X ≥ g} = P{X ≤ −g} for any
g ∈ R. ThenE[X〈2:2〉] ≥ E[X ·1{X≥0}] (= E[X | X ≥ 0]/2).

Proof. Note thatP{X ≥ 0} = P{X ≤ 0} ≥ 1/2 due to the symmetry. AsX〈2:2〉 = max{X1, X2},
whereX1, X2 are independent copies ofX,

E
[
X〈2:2〉] = E

[
X〈2:2〉 ·1{X1,X2≥0}

]
+E

[
X〈2:2〉 ·1{X1≥0≥X2}

]

+E
[
X〈2:2〉 ·1{X1,X2≤0}

]
+E

[
X〈2:2〉 ·1{X1≤0≤X2}

]
.

The first summand can be bounded from below as follows:

E
[
X〈2:2〉 ·1{X1,X2≥0}

]
≥ E[X1 ·1{X1,X2≥0}]

= E[X1 ·1{X1≥0}] ·P{X2 ≥ 0}
≥ E[X1 ·1{X1≥0}] ·1/2.

Analogously, we obtainE
[
X〈2:2〉 ·1{X1,X2≤0}

]
≥ E[X1 ·1{X1≤0}]/2 andE

[
X〈2:2〉 ·1{Xi ≥0≥X3−i }

]
≥

E[Xi ·1{Xi ≥0}]/2 for i ∈ {1,2}. Altogether,

E
[
X〈2:2〉] ≥ 3·E[X ·1{X≥0}]/2+E[X ·1{X≤0}]/2 = E[X ·1{X≥0}]

sinceE[X ·1{X≤0}] = −E[X ·1{X≥0}] because of the symmetry−X ∼ X.

This implies the following: When the (1+1) ES and the (1,2) ESminimize the linear function
SUMn (defined in Equation (3.1) on page 20) using plain Gaussian mutations (noσ -adaptation,
i. e.,σ fixed to one), then afteri steps the expected distance of the evolving search point from the
hyperplane given by the level set of the initial search pointis at least as large for the (1,2) ES as it
is for the (1+1) ES—for any number of stepsi . Clearly, when we increaseλ, the drift away from
the hyperplane becomes stronger and stronger.
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Therefore, recall that for anyg ∈ [0,ℓ] (due to the symmetry)P{Gℓ ≥ g} = P{Gℓ ≤ −g}; let p

denote this probability. For the random variableG〈λ:λ〉
ℓ , however,P{G〈λ:λ〉

ℓ ≥ g} = 1− (1− p)λ as
apposed toP{G〈λ:λ〉

ℓ ≤ −g} = pλ.
In the following we prove “1− (1− p)λ ≥ 3 · pλ for λ ≥ 2 andp ∈ [0,1/2]” and start off with

λ= 2. Then

1− (1− p)2 ≥ 3p2

⇐⇒ 2p− p2 ≥ 3p2

⇐⇒ 2p ≥ (2p)2,

which holds since 2p ∈ [0,1].

This shows that forλ = 2 a positive spatial gain of at leastg ≥ 0 is at least thrice as probable
as a negative gain of at most−g ≤ 0, for any g≥ 0. Interestingly, this implies the preceding

proposition, so that we have found an alternative proof:E[G〈2:2〉
ℓ

] = E[G〈2:2〉
ℓ

+
] +E[G〈2:2〉

ℓ

−
] and

E[G〈2:2〉
ℓ

+
] ≥ −3 ·E[G〈2:2〉

ℓ

−
], so thatE[G〈2:2〉

ℓ
] ≥ E[G〈2:2〉

ℓ

+
] · (3−1)/4≥ E[G+

ℓ
]/2.

Forλ≥ 3, on the one hand 3pλ = pλ−2 ·3p2, and on the other hand

1− (1− p)λ = (1− p)λ−2((1− p)2−λ− (1− p)2)

≥ (1− p)λ−2( 1 − (1− p)2).

Hence, we merely have to show that (1− p)λ−2 ≥ pλ−2, which in fact holds sincep ∈ [0,1/2] (so
that 1− p ≥ p). Moreover, if 0≤ p ≤ 1/2− ε for a constantε > 0, then for any constantκ, we
can chooseλ large enough such that

(1− p)λ−2 ≥ (1/2+ε)λ−2 ≥ κ · (1/2−ε)λ−2 ≥ κ · pλ−2,

and consequently, 1− (1− p)λ ≥ 3κ · pλ) in such a case.
Thus, if g is such thatP{Gℓ ≥ g} ≤ 1/2− ε, namelyg = �(ℓ/

√
n), thenP{G〈λ:λ〉

ℓ ≥ g} ≥
3·κ ·P{G〈λ:λ〉

ℓ ≤ −g} for λ large enough, whereλ grows when the constantκ is increased as well
as when the constantε is decreased).

Now, note that the random variable1〈λ:λ〉
d,ℓ + ℓ2/(2d) stochastically dominatesG〈λ:λ〉

ℓ because
Equation (4.2) on page 33 impliesδ ≥ g− ℓ2/(2d). Thus, if we chooseλ large enough such that
E[G〈λ:λ〉

ℓ ] ≥ ℓ2/d, thenE[1〈λ:λ〉
d,ℓ ] ≥ ℓ2/(2d).

Recall that the 1/5-rule tries to adapt the lengthℓ of the mutations such thatP{1d,ℓ ≥ 0} =
P{Gℓ ≥ ℓ2/(2d)} ≈ 1/5, which impliesℓ=2(d/

√
n), so thatℓ2/(2d) =2(d/n). By choosingλ a

constant large enough, we can ensure—forℓ such thatℓ2/d =2(d/n)—thatP{G〈λ:λ〉
ℓ ≥ ℓ2/d} =

(1−�(1))λ ≥ 1− ε for any constantε > 0. As a consequence,P{−ℓ2/d < G〈λ:λ〉
ℓ < ℓ2/d} ≤ ε,

and thus, we haveE[G〈λ:λ〉
ℓ ·1{−ℓ2/d<G〈λ:λ〉

ℓ <ℓ2/d}] ≥ −ε · ℓ2/d. Since, as we have proved above,
E[G〈λ:λ〉

ℓ ·1{G〈λ:λ〉
ℓ ≥ℓ2/d}] ≥ −3·E[G〈λ:λ〉

ℓ ·1{G〈λ:λ〉
ℓ ≤−ℓ2/d}], we can indeed chooseλ∗ as a large enough

constant such thatE[G〈λ∗:λ∗〉
ℓ ] ≥ ℓ2/d. As we have seen, this impliesE[1〈λ∗:λ∗〉

ℓ,d ] ≥ ℓ2/(2d) =
2(d/n). Summing up, we have obtained the following result:

Lemma 5.23. Let ℓ=2(d/
√

n). There is a constantλ∗ such thatE
[
1〈λ∗:λ∗〉
ℓ,d

]
=�(d/n).
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Recall that for a Gaussian mutation

√
n/2 ≤ |m̃| ≤ 2

√
n with probability 1− O(1/n) and

that the tail of the underlyingχ -distribution drops exponentially (cf. the reasoning preceding
Lemma 5.21 (p. 75)). With this it is readily checked that the above lemma also holds for scaled
Gaussian mutations:

Corollary 5.24. Let σ =2(d/n). Then there is a constantλ∗ such thatE
[
1̃〈λ∗:λ∗〉
σ ,d

]
=�(d/n).

The next step in our way to the analysis of the runtime of the (1,λ) ES: We have to check that
the 1/5-rule works. Therefore recall the proof of Theorem 5.8 (p. 65) in which we showed that
the 1/5-rule works for the (1+1) ES. In particular, we have shown thatσ remains bounded from
below by�(d/n), where the actual constant hidden by the�-notation depends on the choice of
the parameters of the 1/5-rule. As we have just shown, we can choose a constantλ∗ large enough
such that the expected one-step gain of the (1,λ∗) ES is at least as large as the one of the (1+1) ES
—just given thatσ is (and remains) bounded by2(d/n). In particular, sinceλ∗ is a constant, an
observation period lasts2(n) steps—just as for the (1+1) ES with the more general 1/5-rule from
Corollary 5.9 (p. 67). Finally, it is readily checked that all arguments carry over so that we obtain
the following result:

Lemma 5.25.Given an implementation of a 1/5-rule according to Corollary 5.9 (p. 67), there ex-
ists a constantλ∗ such that, when the (1,λ∗) ES using Gaussian mutations adapted by this 1/5-rule
minimizes a SPHERE-like function inRn, the following holds: Given that the initialization is such
thatσ =2(d/n), then the 1/5-rule maintains this property for an arbitrary polynomial number of
steps with probability 1−e−�(n1/3).

Finally, also the proof of the runtime bound carries over andwe obtain the following result.

Theorem 5.26. Let a (1,λ∗) ES using Gaussian mutations adapted by a 1/5-rule minimizea
SPHERE-like function in R

n. Let b: N → N such thatb = poly(n). Given that the constant
λ∗ is chosen large enough, if the initialization is such thatσ [0] = 2(d[0]/n), then the number of
stepsi until d[i ] ≤ d[0]/2b(n) is O(b(n) ·n) with probability 1−e−�(n1/3).

Sinceλ∗ is a constant, the number off -evaluations is of the same order as the number steps.
As a consequence, this upper bound asymptotically meets ourlower bound from Theorem 4.11
(p. 42), i. e., the runtime is off by a factor which is bounded above by a constant. Here we see
again the limits of asymptotic results: In practice, one would like to choseλ∗ as small as possible,
and thus, we are again at the point where fine-tuning the 1/5-rule does well make sense. Although
it is possible (in principle) to calculate the smallestλ∗ in dependence on the implementation
of the 1/5-rule, we refrain from this calculation as it wouldnot yield any new insights. Beyer
(2001, p. 73) claims (based on the model-based progress-rate results) that “the largest progress
rate per descendant can be attained atλ = 5.” This means that—given perfectσ -adaptation—
the expected one-step gain divided byλ is maximum forλ = 5, which indicates—yet does not
directly imply—that the expected number of function evaluations to halve the distance fromx∗

is minimum for the (1,5) ES—under the assumption of perfectσ -adaptation. Experiments seem
to show that a (1,8) ES seems to work even when using an implementation of the 1/5-rule which
is not fine-tuned (like the one that doubles/halvesσ ).
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(1,λ) ES withλ a constant as small as possible are especially interesting with respect to the

optimization in fitness landscapes with “cliffs” or “gaps” which must be overcome to enable a
progression towards the optimum search point. This has beendiscussed by Jägersküpper and
Storch (2006), yet it will not be discussed in this dissertation.5.2.5 SPHERE-like Fun
tions and the (µ+1)ES with 1/5-Rule
Recall the (µ+1) ES with 1/5-rule as described in Section 5.1.2 (p. 59). Our general lower bound
from Theorem 4.14 (p. 46) tells us that the number of steps to halve the approximation error must
grow linearly in the dimension of the search space (n) as well as in the size of the population (µ).
Namely, less than 0.115µn steps suffice only with probability e−�(n), and hence, the question is
whether the 1/5-rule makes the (µ+1) ES get along withO(µn) steps. Naturally, one would guess
that this should be the case. However, a proof seems to be non-trivial.

P[i ] denotes the populationafter the i th step. Recall that aσ -adaptation takes place in stepi
in which an individualX = (x,σ ,b,g) ∈ P[i−1] is selected for reproduction for whichb+ g =
5n− 1, i. e., the1/5-rule-countof the chosen individualX must equal 5n−1. Consider the first
µ

√
n steps in a run of the (µ+1) ES with 1/5-rule. In theseµ

√
n steps, the depth of each family

tree (rooted at an initial individual) induced by the (µ+1) ES is at most 3
√

n with probability
1− e−�(

√
n) according to Theorem 4.13 (p. 44). Assume that there is an individual X in P[µ

√
n]

whose 1/5-rule-count is at least 4n. SinceX’s lineage has a length of at most 3
√

n ancestors,
from one ancestor to the next, the 1/5-rule-count increaseson average by at least 4n/(3

√
n) =√

n4/3, respectively. Thus, there is at least one ancestorY in X’s lineage that has at least
√

n4/3
offspring. This implies thatY was selected for reproduction at least

√
n4/3 times. Since an

individual is selected for reproduction only with probability 1/µ, the probability thatY is selected
for reproduction at least

√
n4/3 times withinµ

√
n steps is e−�(

√
n) by Chernoff’s bound (even

despite the chance thatY may be removed from the population before it is mutated
√

n4/3 times
at all). Thus, we have proved the following.

Lemma 5.27. Let the (µ+1) ES with 1/5-rule (observation period of 5n steps) optimize some
function inRn. Then, with probability 1−e−�(

√
n), in the firstµ

√
n steps there is noσ -adaptation.

In fact, our reasoning shows that between any two adaptations in a fixed lineage at leastµ
√

n
steps take place with probability 1− e−�(

√
n). Since a polynomial number of error probabilities

each of which is e−�(
√

n) results in a total error probability which is also bounded bye−�(
√

n), we
directly obtain

Corollary 5.28. Let the (µ+1) ES with 1/5-rule (observation period of 5n steps) optimize some
function inRn. Consider the population after a polynomial number of steps. Then, with probabil-
ity 1−e−�(

√
n), for each individualX in the population, between any two sequentσ -adaptations

in the history ofX at leastµ
√

n steps take place.

(This doesnot imply that betweenanytwo sequent adaptations in a run of the (µ+1) ES at least
µ

√
n steps take place—the two adaptations may affect different lineages.)

We concentrate on SPHERE-like functions in the following. Note—and keep in mind—this
trivial but crucial observation: When the (µ+1) ES minimizes a SPHERE-like function, not only
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the distance of the respectively best individual fromx∗ is non-increasing, also the distance of the
respectivelyworst individual fromx∗ cannot increase.

For an individualX = (x,σ ,b,g) we let |X| := dist(x,x∗). Given that there is no optimum in
the populationP, thebandwidth of the populationis given by maxX,Y∈P |X|/

∣∣Y
∣∣. The popula-

tion’s bandwidth can be considered as one measure of the diversity of a population (in particular
for SPHERE-like functions). We will now show that the population’s diversity w. r. t. this measure
collapses within a few steps of the (µ+1) ES.

Let d[i ] := minX∈P[i ] |X| denote the population’s distance fromx∗ after thei th step. Depending
on their location in the search space w. r. t. the initial approximation errord[0] > 0, the set of
individuals is partitioned into four regions, whereε is an arbitrary small but positive constant:

R0 := {X | |X| < (1−ε)d[0]}
R1 := {X | (1−ε)d[0] ≤ |X| < d[0]}
R2 := {X | d[0] ≤ |X| < (1−ε)−1d[0]}
R3 := {X | (1−ε)−1d[0] ≤ |X| }

Hence, for the initial population,P[0] ⊂ R2 ∪ R3, i. e., there is neither aR0-individual nor a
R1-individual in the initial population. We do not put any assumption on the bandwidth of the
initial population. We know, however, thatP[0] ∩ R2 contains at least one individual, namely the
individual that determinesd[0] , the population’s initial distance from the optimumx∗.

Lemma 5.29. Let a (µ+1) ES using Gaussian mutations adapted by the 1/5-rule minimize a
SPHERE-like function. Assume that the initialization is such thatd[0] > 0 as well as for any
X = (x,σ , . . . ) ∈ P[0] : σ =2(|X|/n).

Then, for any constantα ∈ (0,1/2), after a number of stepsi that isO(nαµ logµ), with proba-
bility e−�(nα), for all X ∈ P[i ] : (1−ε)d[0] ≤ |X|< d[0] for an arbitrary small constantε > 0, i. e.,
the population’s bandwidth has dropped below 1+ε (> (1−ε)−1).

Proof. First of all note that the lower-bound result in Corollary 4.15 (p. 47) tells us that, for any
number of stepsi that iso(µn), the probability thatP[≤i ] := P[0] ∪· · ·∪ P[i ] contains an individual
from R0 is e−�(n) and that, for the same reason, the probability that there is an individual in P[≤i ]

that descends from anR3-individual is also e−�(n).
Let S[i ] := P[i ] ∩ (R0 ∪ R1) denote the subpopulation (afteri steps) which contains exactly

those individuals fromP[i ] with a distance of less thand[0] from x∗. As already discussed above,
with probability 1−e−�(n) for any number of steps that iso(µn), the subpopulationSdoes never
contain anR0-individual nor an individual that descends from anR3-individual. In the following
we assume that this is the case—and keep in mind the error probability e−�(n) and that the number
of steps must be bounded from above byo(µn).

Assume for a moment that noσ -adaptation takes place. By definition ofS, initially S[0] is
empty, i. e., #S[0] = 0. Then we are interested in the number of stepsi until #S[i ] = µ. Note that
#S is non-decreasing because of the elitist selection. The expected number of steps until #S= 1
is O(µ) since a mutation results with probability�(1) in a search point which is closer tox∗

than its parent, and we pessimistically assume that the bestindividual (namely the one at distance
d[0] from x∗) must be selected for reproduction. (The otherµ−1 individuals may be arbitrarily
far away fromx∗.) Subsequently, whenever an individual fromS is selected for reproduction,
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then the mutation is successful with probability�(1) (since for anyX ∈ S we haveX ∈ R1 and
moreoverσ =2(d[0]/n) becauseX cannot descend from anR3-individual). In case of a success,
#S increases (unless #S is alreadyµ, of course). Thus, the expected number of steps until #S
increases is (#S/µ)/�(1), i. e.O(#S/µ). As a consequence, the expected number of stepsi until
#S[i ] = µ is O(µ logµ). Assume thatκ is a constant such thatκµ logµ is an upper bound on
this expected number of steps (forn large enough). Then (using Markov’s inequality) more than
2κµ logµ steps are necessary only with a probability of at most 1/2. Thus,nα2κµ logµ steps are
necessary only with a probability which is bounded from above by 2−nα = e−�(nα ). Finally, since
this number of steps iso(µ

√
n), by the time when #S=µ there has actually been noσ -adaptation

with probability 1−e−�(
√

n), cf. Lemma 5.27 (p. 79).
As all error probabilities are bounded by e−�(nα ), respectively, the total error probability is also

bounded by e−�(nα).

In this proof we have implicitly shown a bound on thetakeover time,which we define as the
number of stepsi until all individuals inP[i ] are better (i. e. closer tox∗) thanthe bestindividual
in the initial population (where “initial” may also refer toa point in time when we (re)start our
observation of the (µ+1) ES).2 Namely, we have shown that this takeover time isO(µ logµ) in
expectation, and that it isO(nεµ logµ) with probability 1− e−�(nε). In other words, after this
time all initial individuals have been removed from the population. (Besides, this implies that, in
our scenario, the number of offspring that an individual produces before it is removed from the
population isO(logµ) in expectation, andO(nε logµ) w. o. p.)

Our assumption that noσ -adaptation takes place until (the first) takeover is sufficient for the
proof. Taking a closer look at the proof, we see that it is merely necessary that each mutation
results with probability�(1) in a search point that is closer tox∗. And this is just what the
1/5-rule is supposed to do. Before we come to this point, however, we consider a hypothetically
situation to become acquainted with what is going on in a run of the (µ+1) ES on a SPHERE-like
function.

Proposition. Let a (µ+1) ES using Gaussian mutations minimize a SPHERE-like function inRn.
Hypothetically assume that in each step the mutant is generated using the mutation strengthd/n,
whered denotes the parents distance fromx∗, implying that each mutation succeeds with an
�(1)-probability. Letε denote an arbitrary small but positive constant.

Then, for any constantα ∈ (0,1/2), after a number of steps that isO(nαµ logµ), with proba-
bility 1 −e−�(nα ), the population’s bandwidth has dropped below 1+ε.

Subsequently, the population’s bandwidth remains boundedby 1+ ε for any polynomial num-
ber of steps with probability 1−e−�(nα ).

Proof. So, let us consider the situation after the first takeover andassume that this takeover
happens in stept1, i. e., P[t1] is the first population containing none of the initial individuals.
Recall that with probability 1− e−�(nα) we haveP[t1] ⊂ R1 (which we assume as a fact in the
following), and thatd[t1] is P[t1] ’s distance fromx∗. Now we redefine our four regions (our

2Our notion of “takeover time” differs slightly from the original one. Originally, the takeover time denotes the
number of iterations of a loop in which solely selection is performed until the complete population consists
of copies of the best individual, cf. Goldberg and Deb (1990).

81



5 Bounds for Con
rete S
enarios
partition of the set of individuals) as follows:

R′
0 := {X | |X| < (1−ε)d[t1]}

R′
1 := {X | (1−ε)d[t1] ≤ |X| < d[t1]}

R′
2 := {X | d[t1] ≤ |X| < (1−ε)−1d[t1]}

R′
3 := {X | (1−ε)−1d[t1] ≤ |X| }

(Note thatR′
2 ⊆ R1 ∪ R2.) Then P[t1] ⊂ R′

2, and by the very same reasoning as for the first
takeover, the second takeover happens in stept2 after anotherO(µ logµ) steps in expectation,
and after anotherO(nαµ logµ) steps with probability 1− e−�(nα). Then P[t2] ⊂ (R′

0 ∩ R′
1), and

in particular,P[t2] ⊂ R′
1 with probability 1−e−�(nα) as before. Now we could again redefine our

four regions w. r. t.d[t2] to investigate the third takeover, and so on.
Since the sum of a polynomial number of error probabilities each of which is e−�(nα ) is bounded

by e−�(nα), and since the bandwidth ofR1 ∪ R2 is 1/(1− ε)2, with probability 1− e−�(nα) the
population’s bandwidth does not exceed (1−ε)−2 (which is smaller than 1+ε′ for some constant
ε′ > 0) for any polynomial number of steps (subsequent to the veryfirst takeover, of course).

Consequently, the population’s diversity, which collapses in the very first few steps, becomes
steady-state w. r. t. a bandwidth very close to one. This means that the population moves somewhat
homogeneously towards the optimum. And this is the reason why the runtime must grow linearly
in the population size. In particular, just because it takesthe (µ+1) ES�(µn) steps to halve
the approximation error, the 1/5-rule should be able to update the mutation strengths frequently
enough to keep them in the range that ensures success probabilities of�(1). It will be even easier
to show the upper bound of 1/2−�(1) on the mutations’ success probabilities, i. e., that the
mutation strengths do not get too small, but remain bounded by �(|X|/n).

Theorem 5.30. Let a (µ+1) ES using Gaussian mutations adapted by the 1/5-rule minimize a
SPHERE-like function. Assume that the initialization is such thatd[0] > 0 as well as for any
X = (x,σ , . . . ) ∈ P[0] : σ =2(|X|/n). Then, with probability 1−e−�(n1/3), for anyi = poly(n),
for anyX = (x,σ , . . . ) ∈ P[i ] : σ =2(|X|/n), i. e., the 1/5-rule keeps the mutation strengths such
that any mutation is successful with a probability that is�(1) as well as bounded from above by
1/2−�(1).

Proof. We chooseα := 0.4 in the lemmas above. With probability 1− e−�(n0.4), by the time
when the first adaptation happens there has already been the first takeover (i. e., the population’s
bandwidth collapsed already), so that all individuals havea distance of less thand[0] from x∗ and
no individual has an ancestor with a distance ofd[0]/(1− ε) or more fromx∗. We assume this as
a fact in the following (and keep in mind the error probability).

Assume thatX = (x,σ ,g,b) ∈ P[i ] is chosen for reproduction withb+ g = 5n − 1 (so that
adaptation takes place) and thatσ is doubled afterX is mutated. Then the number of steps of
the (µ+1) ES between this adaptation and the previous one (inX’s lineage, of course) is larger
thanµ

√
n with probability 1−e−�(

√
n) (Corollary 5.28 (p. 79)). Since a number of steps which is

O(n0.4µ logµ) is o(µ
√

n), with probability 1−e−�(n0.4) there is a takeover between the two adap-
tations. Thus, with probability 1− e−�(n0.4), X’s distance fromx∗ has become smaller between
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the two sequent adaptations. Consequently, assuming that this is in fact the case (and again keep-
ing in mind the error probability) the doubling of the mutation strength does result in a smaller
success probability. Analogously to the proof of that the 1/5-rule works for the (1+1) ES (at least
for SPHERE-like functions; Theorem 5.8 (p. 65)), this implies that there is a lower threshold of
�(|X|/n) on the mutation strengths, i. e., that the success probabilities remain bounded from
above by 1/2−�(1)—for any polynomial number of steps with probability 1−e−�(n0.4) (by the
union bound).

It remains to show the�(1)-threshold on the mutations’ success probabilities, i.e., that the
mutation strengths remain bounded byO(|X|/n). Therefore, assume that in stepj the individual
X = (x,σ ∗,g,b) with g + b = 5n − 1 is selected for reproduction. Assume that the previous
adaptation ofX’s mutation strength took place in thei th step in the run of the (µ+1) ES. Note
that during the “phase” from stepi to step j , in all mutations ofX the mutation strengthσ ∗ is
used.X has been chosen for reproduction overall 5n times in this phase, so that the number of
mutations in the considered lineage is at most 5n; let k denote the number of mutations inX’s
lineage in this phase. Then we have to show that ifσ ∗ is large enough butO(

∣∣x [i ]
∣∣/n) (such that

the first mutation in the phase succeeds with a small probability which is yet�(1)), then not only
σ ∗ is halved w. o. p., yet also

∣∣x [ j ]
∣∣>

∣∣x[i ]
∣∣/2 w. o. p., so that the halving of the mutation strength

actually results in an increase in the success probability of the mutations. This can be shown
analogously to the proof of that the 1/5-rule works for the (1+1) ES (the proof of Theorem 5.8
(p. 65))—if we can deal with the following issue:|X| need not necessarily be non-increasing
during the phase. However, because of the bound on the population’s bandwidth, we know that
after thei th step|X| can never rise above

∣∣x [i ]
∣∣/(1−ε). Letd∗ denote the largest distance between

X andx∗ during the phase. Recall the reasoning (using Hoeffding’s bound) that has finally lead to
Equation (5.2) on page 60. Also here the total gain (alongX’s linage) is stochastically dominated
by a random variableS, namely by the random variableS defined as the sum ofk independent
instances of the random variablẽ1+

d∗,σ∗ ; let those be denoted by11, . . . ,1k. Then analogously
to the derivation of Equation (5.2) on page 60 (usingk ≤ 5n), we obtain that, ifσ ∗ is large such
thatE

[
1̃+

d∗,σ∗
]
≤ d∗/(30n) (≤ (d∗/6)/k), thenP

{
S≥ d∗/3 |11, . . . ,1k ≤ d∗/n2/3

}
= e−�(n1/3).

Moreover, we already know that the condition “11, . . . ,1k ≤ d∗/n2/3” is met with probability
1−e−�(n1/3). Sinced∗ <

∣∣x [i ]
∣∣/(1−ε), we obtain forε small enoughd∗/3<

∣∣x[i ]
∣∣/2, so that the

probability thatX’s distance fromx∗ is halved in the phase (i. e.,
∣∣x [ j ]

∣∣ ≤
∣∣x [i ]

∣∣/2) is bounded

above by e−�(n1/3). In other words, with probability 1− e−�(n1/3) the halving ofσ ∗ after the
phase results in an increase in the success probability of a mutation ofX. Finally,σ ∗ =2(d∗/n)
because an expected gain which is small enough but of order2(d∗/n) is used in the reasoning,
and thus, the success probabilities of allX-mutations within the phase are�(1). In particular, the
smallest success probability in this phase—which determines the lower threshold we are aiming
at—is�(1).

And again, once we have shown that the 1/5-rule works, the upper-bound result is easy to
obtain.

Theorem 5.31. Let a (µ+1) ES using Gaussian mutations adapted by the 1/5-rule minimize a
SPHERE-like function. Assume that the initialization is such thatd[0] > 0 as well as for each
initial individual X = (x,σ , . . . ) ∈ P[0] : σ =2(|X|/n). Then, with probability 1−e−�(n1/3)), the
number of stepsi until d[i ] ≤ d[0]/2b(n) is O(µ ·b(n) ·n), whereb: N → N such thatb = poly(n).
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Proof. In each stepi the best individual in the population is selected for reproduction with proba-
bility 1/µ. Since the mutation strength is2(d[i ]/n)—given that the 1/5-rule works—, the mutant
is by at leastd[i ]/n closer tox∗ than its parent with an�(1)-probability, cf. Lemma 5.5 (p. 63).
Thus, withinκµn steps we expect�(κn) steps each of which reduces the approximation error
by an 1/n-fraction. By choosingκ a constant large enough, using Chernoff’s bound, with prob-
ability 1− e−�(n) at least 0.7n of the κµn steps actually reduce the approximation error by an
1/n-fraction, respectively. Finally, (1−1/n)0.7n < e− ln2 = 1/2, i. e., with probability 1−e−�(n)

theκµn steps suffice to halve the approximation error.
Since our bound on the error probability that the 1/5-rule works is e−�(n1/3), however, the total

error probability (for any polynomial number of steps) is e−�(n1/3).

The upper bound asymptotically meets the lower bound from Theorem 4.14 (p. 46). This tells
us, on the one hand, that the 1/5-rule indeed makes the (µ+1) ES get along with a number steps
which is only by anO(1)-factor larger than the optimum number of steps (w. r. t. isotropic muta-
tions, of course). On the other hand, this shows the following:

Conclusion 5.32.The general lower bound for (µ+1) ESs from Theorem 4.14 (p. 46) is asymp-
totically sharp.5.3 The (1+1) ES on Positive De�nite Quadrati
 Forms
The SPHERE-function given by SPHERE: Rn → R with x 7→ x⊤ I x (where I ∈ R

n×n is the
identity matrix) belongs to the class of positive definite quadratic forms which consists of all
f : Rn → R with x 7→ x⊤ Qx, where the matrixQ ∈ R

n×n is positive definite, i. e.,f (x) > 0
for all x ∈ R

n \ {o}. Such a positive definite quadratic form (PDQF) induces an ellipsoidal fitness
landscape and the minimum is located at the origin. Since theoptimum function value is 0, the
current approximation error is defined asf (c), the f -value of the current individual. It will shortly
become clear why this makes sense in this scenario. Even though we consider the approximation
error w. r. t. thef -value from now on, the spatial gain of a mutation/step in thesearch space will
still be of great importance to the analysis.

At first glance, one might guess that mixed terms (e. g. 3x1x2) may crucially affect the fit-
ness landscape induced by a PDQFx⊤ Qx. However, this is not the case: First note that we
can assumeQ to be symmetric (by balancingQi j with Qj i for i 6= j since they affect only the
term (Qi j +Qj i ) xi j xj i in the quadratic function to be black-box-optimized). Furthermore, any
symmetric matrix can by diagonalized since it hasn eigenvectors. Namely, eigen-decomposition
yields Q = R D R−1 for a diagonal matrixD and an orthogonal matrix3 R.

Thus, the PDQF equalsx⊤ R DR−1x, and sincex⊤ R = (R⊤x)⊤, the PDQF actually equals
(R⊤x)⊤ D(R−1x). As R⊤ = R−1 for an orthogonal matrix, the PDQF equals (R−1x)⊤ D(R−1x).
Thus, investigatingx⊤ Qx using the standard basis forR

n (given byI) is the same as investigating
x⊤ Dx using the orthonormal basis given byR. Finally, the inner product is independent of the
orthonormal basis that we use (because (Rx)⊤(Rx) = x⊤ R⊤ Rx = x⊤ R−1Rx = x⊤ I x = x⊤x).
In short, we can assume the basis to coincide withQ’s principal axes, cf. Lanczos (1956, p. 95).

3An orthogonal matrixR corresponds to an orthonormal transformation, i. e. a (possibly improper) rotation;
thenR−1 is the corresponding “anti-rotation.”
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Consequently, in the following we assume thatQ is a diagonal matrix each entry of which is
positive (Q’s canonical form). In other words, when talking about PDQFswe are talking about
functions of the formfn(x) =

∑n
i=1ξi · xi

2 with ξi > 0, and we can even assumeξ1 ≥ ·· · ≥ ξn.
In fact, ξ1, . . . ,ξn are then eigenvalues ofQ (which need not necessarily be distinct). ThenQ’s
condition number equalsξ1/ξn.

Recall that for a givenf -value ofφ, the corresponding level set is{x ∈ R
n | f (x) = φ}, The

lower level setis given by{x ∈ R
n | f (x)< φ}. The level set induced by SPHERE= φ2, for in-

stance, forms the hyper-sphere with radiusφ centered at the origin, and the corresponding lower
level set forms the corresponding open hyper-ball. Furthermore, for a non-empty setM ⊆R

n\{0},
the bandwidth of the setM equals supx,y∈M{|x|/ | y|}. Note that 1 is the smallest possible band-
width; then all vectors inM are of the same length. The level sets of SPHEREhave bandwidth 1,
for instance.

The level setEφ2 defined by
∑n

i=1ξi · xi
2 = φ2 > 0 forms a hypersurface, namely a hyper-

ellipsoid, and sinceξ1 ≥ ·· · ≥ ξn, we have min{|x| | x ∈ Eφ2} = φ/
√
ξ1 and max{|x| | x ∈ Eφ2} =

φ/
√
ξn, so that the level sets of a PDQF have bandwidth

√
ξ1/ξn. (All level sets but the 0-level

set, of course.) Note the relationship between this bandwidth and Q’s condition number: The
condition number equals the square of the bandwidth.

We may call the fitness landscape induced by a sequencefn : Rn → R of PDQFsclose to
being spherically symmetricif the bandwidth (and with it the condition number) isO(1) asn
grows, more precisely, if then eigenvalues are in [a,κ · a] for somea > 0 (which may depend
on n) and a constantκ ≥ 1. We may also use the notionPDQF of/with bounded bandwidthin
such cases.

Besides of PDQFs with bounded bandwidth, we will exemplarily consider the following class
of (sequences of) quadratic forms, wheren ∈ 2N andξ : N → R≥1 such thatξ = poly(n) as well
asξ = ω(1) asn grows:

fn(x) := ξ ·
(
x1

2 +·· ·+ xn/2
2)+ xn/2+1

2 +·· ·+ xn
2

Sincen/2 of the eigenvalues equal 1, respectively, and the othern/2 eigenvalues equalξ , respec-
tively, the corresponding ellipsoidal fitness landscape has level sets of bandwidth

√
ξ =ω(1), i. e.,

the condition number (which equalsξ ) is unbounded.
Before we look at this specific subclass of PDQFs with unbounded condition number, however,

we investigate the complete class of PDQFs with bounded condition number.5.3.1 Positive De�nite Quadrati
 Forms with Bounded Condition Number
In this section we will formally prove that “slightly deforming” SPHEREdoes not affect the order
of the algorithmic runtime of the (1+1) ES using Gaussian mutations adapted by the 1/5-rule.
More important than this (maybe unsurprising) result itself, however, the line of reasoning will be
made clear, so that we can concentrate on the crucial difference that “an unbounded deformation”
of SPHEREmakes which we will focus on later.

Therefore, letf : Rn → R denote a PDQF. Then, as we have already seen above, the level set
Eφ2 = {x ∈ R

n | f (x) = φ2} (with φ > 0) forms a hyper-ellipsoid and has bandwidth
√
ξ1/ξn.

As we want to utilize our results for SPHERE, we need to know the maximum and the minimum
curvature at points inEφ2. Sinceξ1 ≥ ·· · ≥ ξn, it is sufficient to consider the plane curve defined
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by the intersection ofEφ2 with thex1-xn-plane. LetI denote this intersection, which forms a plane

curve (in thex1-xn-plane). All points inI satisfyξ1x2
1 + ξnx2

n = φ2, i. e.,xn =
√

(φ2 − ξ1 · x2
1)/ξn

as a function ofx1 ∈ [−φ/
√
ξ1,φ/

√
ξ1 ]. Since the curvature at a point inI (as a function ofx1)

equals

d2xn

(dx1)2

(
1+

(
dxn

dx1

)2
)3/2 =

ξ1 · ξn ·φ2

(ξn ·φ2+ (ξ1 − ξn) · ξ1 · x2
1)3/2

,

the maximum curvature of the plane curveI equalsξ1/(
√
ξn ·φ) at the point (0,φ/

√
ξn) in the

x1-xn-plane, which has maximum distance from the origin w. r. t. all points in Eφ2. Analogously,
the minimum curvature equalsξn/(

√
ξ1 ·φ) at the point (φ/

√
ξ1,0) in thex1-xn-plane, which has

minimum distance from the optimum w. r. t. all points inEφ2.
In particular, this result on the curvature tells us that forany c ∈ Eφ2, there is a hyper-sphere

S+ ∋ c with radiusr + = φ ·
√
ξ1/ξn such that the lower level setE<φ2 lies completely inside

this hyper-sphereS+, i. e.,S+ ∩ E<φ2 = ∅ andE<φ2 is a subset of the open hyper-ballB+ whose
missing boundary isS+. Moreover, it tells us that there is another hyper-sphereS− ∋ c with radius
r − = φ ·

√
ξn/ξ1 such that the open ballB− whose missing boundary isS− is a subset of the lower

level setE<φ2.
For PDQFs with level sets of bounded bandwidth, the radii ofS+ andS− are of the same order,

namely of order2(|c|). This will be crucial in the following.
Now consider a mutantc′ := c+ m. This mutantc′ is as good asc iff c′ ∈ Eφ2 and better than

c iff c′ ∈ E<φ2. Hence, the mutation is accepted iffc′ ∈ E≤φ2 := Eφ2 ∪ E<φ2. Recall that so far
“1” has denoted the random variable corresponding to a mutation’s spatial gain towards a fixed
point x∗. Equivalently,1 corresponds to the mutant’s (random) signed distance from the hyper-
sphere which is centered atx∗ and contains the parentc. As here the level-sets are no longer
spherically symmetric (but ellipsoidal), these two perspectives are no longer consistent. Hence,
in the following we let1 denote the mutant’s signed distance from its parent’s levelset (rather
than the gain towards the center of the ellipsoid).

As we have just seen,c′ ∈ E≤φ2 ⇒ c′ ∈ B+ ∪ S+, so that we obtain

E[1F ·1{ f (c′)≤ f (c)}] = E
[
1F ·1{c′∈E≤φ2}

]
≤ E[1F ·1{c′∈B+∪S+}]

for the expected distance fromE>φ2 := R
n \ E≤φ2 after a step—for any isotropic distributionF

overRn according to which the mutation vector is sampled in a step ofthe (1+1) ES. In particular,
we obtain that for a scaled Gaussian mutation,E[1̃+

σ ,r + ] is an upper bound on this expected spatial
gain away fromE>φ2.

However, here we are interested in how fast thef -value reduces during a run of the (1+1) ES.
We obtain an upper bound on thef -gain if we assume that the spatial gain is realized completely
along the component with the heaviest weightξ1. Therefore, for anf -value ofφ2, we optimisti-
cally assume that the search were located atc = (φ/

√
ξ1,0,. . . ,0)∈ R

n and that the mutant were
located atc′ = (φ/

√
ξ1 −α · r +,0,. . . ,0) ∈ R

n for someα : N → R≥0; “α” abbreviates “α(n).”
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Then, asα · r + = α ·φ

√
ξ1/ξn, we obtain

f (c′) = ξ1 ·
(
φ

√
ξ1

−α · r +
)2

= ξ1 ·φ2 ·
(

1

ξ1
−

2α

ξn
+
α2 · ξ1
ξn

2

)
(5.4)

≥ ξ1 ·φ2 ·
(

1

ξ1
−

2α

ξn

)
= φ2 ·

(
1−

2α · ξ1
ξn

)

= f (c) ·
(

1−
2α ξ1
ξn

)
.

Obviously, this upper bound on thef -gain of f (c) ·2αξ1/ξn is not very useful unless it iso( f (c)),
i. e., unlessα · ξ1/ξn = o(1). One reason for this is that the maximum radius of curvature, which
we have just used for the upper bound, isr + = φ ·

√
ξ1/ξn, whereas max{ |x| | x ∈ Eφ2} is only

φ/
√
ξn, i. e., the diameter ofS+ is by a factor of

√
ξ1/ξn larger that the diameter ofEφ2. (This

factor equals the bandwidth of the level setEφ2.)
As we have seen before in Lemma 4.4 (p. 34),E[1̃+

σ ,r + ] ≤ 0.52· r +/(n− 1) for any mutation
strengthσ . In fact, the lemma tells us that the expected distance fromE>φ2 is bounded above by
0.52· r +/(n−1) = 0.52· (φ

√
ξ1/ξn)/(n−1) anyhow the distribution of|m| is chosen in a step of

the (1+1) ES.
For PDQFs with bounded bandwidth/condition number we have (by definition)ξ1/ξn = O(1),

so that substitutingα := 0.52/(n−1) in Inequality (5.4) on page 87 results in an upper bound on
a step’s expectedf -gain of f (c) · (ξ1/ξn) ·1.04/(n−1)= O( f (c)/n)—which is the same order as
for SPHERE. Consequently, we obtain the same asymptotic lower bound onthe expected runtime.
This maybe rather unsurprising. Nevertheless, it is interesting that our lower bound is inversely
proportional to the condition number—and not to the bandwidth, which intuition might tell us.
(This might indicate that our lower bound is not necessarilyas sharp as possible. For a bounded
condition number, however, this does not make much of a difference.)

Theorem 5.33. Let a (1+1) ES using isotropic mutations minimize a positivedefinite quadratic
form fn : Rn → R, n ≥ 4, with bounded condition numberCn. Then the expected number of
stepst until f (c[t] ) ≤ f (c[0])/2 is larger than (n− 1) · 0.48/Cn = �(n); the expected number of
steps untilf (c[t] ) ≤ f (c[0])/2b(n) is larger thanb(n) · (n−1)·0.48/Cn −b(n)+1=�(b(n) ·n), where
b: N → N.

Proof. Let “ f [i ]” abbreviate “f (c[i ])” and recall thatCn = ξ1/ξn for the condition number, where
ξ1 andξn are the largest resp. the smallest eigenvalue associated with the PDQF to be minimized.
For the application of Lemma 4.6 (p. 36), this time we letXi denote the random variable corre-
sponding to thef -gain ini th step. Due to the elitist selection, negative gains are always discarded.
Consequently, thef -value will never exceedf [0] (the initial approximation error). As a further
consequence, theXi are bounded, namely 0≤ Xi ≤ f [0] .

Naturally, for the application of Lemma 4.6 (p. 36) we chooseg := f [0]/2 and note that the
random variableS (as defined in the lemma) is a stopping time in our case. As we have just seen,
E[Xi ] ≤ f [0] ·C ·1.02/(n−1) =: u. Then the lower boundg/u (from Lemma 4.6 (p. 36)) on the
expected number of steps which are necessary to halve the approximation error finally solves to
( f [0]/2)

/
( f [0] ·C ·1.02/(n−1) ≥ 0.48· (n−1)/C.
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Due to the linearity of expectation, the expected number of steps to halve the approximation

error b times is lower bounded by 0.48· (n − 1)/C + (b− 1) · (0.48· (n − 1)/C − 1), where the
rightmost “−1” emerges because the last step within a halving-phase coincides with the first step
of the subsequent halving-phase.

Now that we know that a (1+1) ES needs�(n) steps in expectation to halve the approximation
error, naturally, we would like to obtain a lower bound whichholds with an overwhelming prob-
ability. Before we come to this, however, note that there is an alternative, simpler way of proving
an�(n)-bound:

Recall that thef -value is non-increasing during the optimization (due to elitist selection). Then
even when|m| is chosen optimally, the expectedf -gain of a step isO( f (c)/n) as we have just
seen. Hence, there is a constantκ > 0 such that the total expectedf -gain in k := κ · n steps is
greater thanf [0]/5 but smaller thanf [0]/4. By Markov’s inequality, with a probability of at least
1/2, the total gain of thesek steps is smaller than 2· f [0]/4. In other words, with a probability of
at least 1/2 more thank steps are necessary to halve the approximation error, and consequently,
the expected number of steps to halve the approximation error is larger thank · 1/2 = �(n). By
iterating this argument using the linearity of expectation, we obtain a lower bound of�(b ·n) on
the expected number of steps to halve the approximation error b times.

This proof is apparently simple. It results in worse lower bound, though. If we did an esti-
mation for the constantκ/2, we would end up with a constant that is much smaller than 0.48.
Nevertheless, not the bound, but its proof is useful: If we can show that the total gain of thek
steps exceeds the double of its expectation not only with a probability which is bounded above by
1/2, but which is exponentially small, then we end up with a lower bound on the number of steps
which holds with an overwhelming probability.

Therefore, the next step is to apply Hoeffding’s bound to thetotal gain which a sequence of
steps yields. Unfortunately, the random variables which correspond to the single-step gains are
not independent—which has not been an issue above because ofthe linearity of expectation.
However, also part of our best-case assumption is that in each stepc is located at a point (in the
respective level set) where the curvature is minimum (so that the radius of the hyper-sphereS+

which we use in the estimate is maximum, which again results in maximum expected best-case
gain). As thef -value is non-increasing, we thus obtain an upper bound (in the sense of stochastic
dominance) on the total gain ofk sequent steps by adding up the gain ofk independent instances
of the first step. Therefore, letX1, . . . , Xk denotek independent instances of the random variable
which corresponds to the best-casef -gain in the first step, and letS := X1 +·· ·+ Xk.

Now, if 0 ≤ Xi ≤ z> 0, then Hoeffding (1963, Theorem 2) (cf. Theorem 2.3 (p. 13))tells us
thatP{S≥ E[S] + x} ≤ exp(−2· (x/z)2/k) for x > 0. With x := E[S] this inequality becomes

P{S≥ 2·E[S]} ≤ exp
(
−2· (E[S]/z)2/k

)
=: p ,

and hence, the probability thatk steps suffice to halve the approximation error is not only bounded
by 1/2 (as Markov’s inequality tells us) but also byp. Now, if we can show that (E[X]/z)2 =
�(n1+ε) for some constantε > 0, then p is bounded above by e−�(nε) sincek = 2(n), so that
the reasoning used above (for the simple bound on the expected number of steps) yields that
b ·k = �(b ·n) steps are necessary (to halve the approximation errorb = poly(n) times) not only
in expectation but also with probability 1−e−�(nε ).
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As shown in Lemma 4.5 (p. 35),P

{
1r + ,ℓ ≥ r + ·nε−1

}
= e−�(nε) for any constantε ∈ (0,1)

whatever the lengthℓ. Thus, substitutingα := nε−1 in the estimation off (c′) in Inequality (5.4)
on page 87 yields that a step’sf -gain is smaller than 2· f (c) · C · nε−1 = O( f (c) · nε−1) with
probability 1− e−�(nε). Thus, when considering a polynomial number of steps, with probability
1−e−�(nε ) in all these steps thef -gain isO( f (c) ·nε−1), respectively. We assume that this is the
case (and keep in mind the error probability of e−�(nε)). Then we obtain

(
E[S]

z

)2

≥
(

f [0]/5

2· f [0] ·C ·nε−1

)2

= �(n2−2ε),

so that p = e−�(n2−2ε/k), i. e., p = e−�(n1−2ε ) sincek = 2(n). Choosingε := 1/3, we obtain
p = e−�(n1/3). Since for this choice also our upper bound ofr + · n−2/3 on the maximum single-
step gain holds with probability 1−e−�(n1/3) (even for any polynomial number of steps), all in all
the probability to halve the approximation error within thek steps is bounded above by e−�(n1/3).
So we have proved the following:

Theorem 5.34. Let a (1+1) ES using isotropic mutations minimize a positivedefinite quadratic
form fn : Rn → R with bounded condition numberCn. Let c[t] denote the evolving search point
aftert steps. Then the number of stepst until f (c[t]) ≤ f (c[0])/2b(n) is�(b(n) ·n) with probability
1−e−�(n1/3), whereb: N → N such thatb = poly(n).

In the preceding lower-bound proofs we implicitly assume optimal adaptation of the length
of the isotropic mutations. Consequently, the concrete adaptation mechanism is irrelevant, and
moreover, the arguments for halving the approximation error can simply be iterated4 to obtain a
lower bound on the number of steps which are necessary to reduce the approximation error to a
predefined fraction. For an upper bound on the runtime, however, precisely these two aspects are
the crucial points in an analysis.

We consider Gaussian mutations adapted by the 1/5-rule for the upper bound. Firstly, we have
to check that the 1/5-rule still works.

Theorem 5.35.Let a (1+1) ES using Gaussian mutations adapted by a 1/5-ruleminimize a PDQF
with bounded bandwidth/condition number inRn. If the initialization is such thatσ =2(|c|/n),
i. e., the success probability of the mutation in the first step is�(1) as well as 1/2−�(1), then with
probability 1− e−�(n1/3) the 1/5-rule maintains this property for an arbitrary polynomial number
of steps.

Proof. The crucial property that will help us with the analysis is the bounded bandwidth, of
course. It implies that, for a givenf -value ofφ2, eitherσ is2(|c|/n) or it is not, independently
of where the current search pointc is located in the ellipsoidal level setEφ2. Thus, we can switch
back and forth between the assumptions thatc is located at minimum or at maximum distance
from the minimum/origin within its level set. In other words, for a given f -value ofφ2, either the
mutation strengthσ is such that the probability of generating a better mutant is�(1) as well as
1/2−�(1), or it is not—whereverc is located inEφ2.

4because of the linearity of expectation/the exponentiallysmall error probability
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For a fixed mutation strengthσ , we let pc := P{ f (c+σ · m̃) ≤ f (c)} denote the success prob-

ability (of the step), and we let

pmax
c := max

x∈Ef (c)
P{ f (x +σ · m̃) ≤ f (x)} and pmin

c := min
x∈Ef (c)

P{ f (x +σ · m̃) ≤ f (x)}

(we may drop the subscript “c” in unambiguous situations). Thus,p ∈ [ε,1/2− ε] for a constant
ε > 0 impliesε′ ≤ pmin ≤ p ≤ pmax≤ 1/2−ε′ for a constantε′> 0 (because of the boundedness).

During a phase in a run of the (1+1) ES the mutation strengthσ is kept unchanged, and since
elitist selection is used, i. e., thef -value is non-increasing,pmax as well aspmin are non-increasing
during a phase—althoughp may increase from one step to another within a phase. This enables
us to apply the same reasoning topmax as well as topmin that was applied to the success probabil-
ity “ p” in the analysis for SPHERE-like functions. This reasoning from the proof of Theorem 5.8
(p. 65) will be shortly recapitulated in the following.

We will show that (w. o. p. for an arbitrary polynomial numberof steps)pmin = �(1) on the one
hand, and thatpmax = 1/2−�(1) on the other hand.

Let p(i ) denote the success probability in the first step of thei th phase. Assume that the mutation
strengthσ is large such thatε ≥ pmax

(i ) =�(1) for a constantε (which we will choose appropriately
small later) andn large enough. Sincepmax is non-increasing andp ≤ pmax during a phase, in
each step of this phasep ≤ ε, and hence, we expect at most anε-fraction of the steps in this phase
to be successful. By Chernoff’s bound, w. o. p. less than a 2ε-fraction of the steps are successful
so that the mutation strengthσ is halved (we choose 2ε ≤ 1/5). This results in a larger success
probability—when comparingp(i+1) with the success probability in the last step of thei th phase.
The crucial question is, however, whetherpmax

(i+1) is at leastpmax
(i ) . If this is the case, thenpmin in

the last step of thei th phase is the (lower) threshold for the success probabilities we are aiming
at (sincepmax =�(1) ⇒ pmin =�(1) because of the boundedness). Here is the point where the
choice ofε comes into play. The (upper bound on the) (expected) number of successful steps in
the phase is proportional toε, and since only successful steps can result in a gain, by choosing a
smallerε we can make the phase’s total gain smaller. All in all, we can chooseε small enough such
that the increase of the success probability due to the halving of σ (over)balances the (potential)
decrease due to the phase’s (potential) spatial gain towards the optimum. It remains to show that
our choice satisfiesε = �(1). To this end we can use the lower bound on the runtime whichwe
have shown. Namely, the spatial gain of a phase (ofO(n) steps) is w. o. p. such that after the
phase the distance is at least a constant fraction of the initial one. This implies that the success
probability at the end of the phase is also at least a constantfraction of the initial one, i. e., if it is
�(1) in the first step, then it is�(1) also in the last step of the phase. This observation finishes the
�(1)-threshold on the steps’ success probabilities.

The upper threshold of 1/2−�(1) on the steps’ success probabilities is easer to show. Assume
that the mutation strengthσ is small such that in the last step of thej th phase the success proba-
bility is large, say,pmin ∈ [0.3,0.4]. Sincep ≥ pmin ≥ 0.3 and since during a phase (in whichσ
is kept unchanged)pmin is non-increasing, we expect at least 30% of the steps in thej th phase to
be successful. By Chernoff’s bound, w. o. p. more than 20% of the steps are actually successful so
thatσ is doubled, resulting in a larger mutation strength and, as aconsequence, in a smallerpmin

in the first step of the (j +1)th phase—compared to the last step of thej th phase, yet also com-
pared topmin

( j ) , the success probability in the first step ofj th phase (becausepmin is non-increasing
during a phase). Thenpmax

( j ) is the upper threshold we are aiming at. To see thatpmax
( j ) is at most

1/2−�(1), recall that due to the boundednesspmin = 1/2−�(1)⇒ pmax= 1/2−�(1), and that
due to the upper bound on the gain of a phase, we havepmin

( j ) = 1/2−�(1) if in the last step of

the j th phasepmin = 1/2−�(1) (because the distance at the end of the phase is at least a constant
fraction of the distance at the beginning).
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Since all the error probabilities in our “w. o. p.”-statements are bounded by e−�(n1/3), altogether
we have shown that with probability 1− e−�(n1/3) in each of an arbitrary polynomial number of
stepsσ is such that the success probability is�(1) as well as 1/2−�(1).

Now, having checked that the 1/5-rule also works for PDQFs with bounded condition number,
we can show that the gain of a phase is large enough to obtain anupper bound on the runtime
which asymptotically matches the more general (w. r. t. the adaptation of the mutation vectors’
lengths) lower bound given in Theorem 5.34 (p. 89).

Theorem 5.36.Let a (1+1) ES using Gaussian mutations adapted by a 1/5-ruleminimize a PDQF
f : Rn → R with bounded bandwidth, i. e., the corresponding conditionnumber isO(1). If the
initialization is such thatσ [0] = 2(

∣∣c[0]
∣∣/n), then with probability 1− e−�(n1/3) the number of

stepst until f (c[t]) ≤ f (c[0])/2b(n) is O(b(n) ·n), whereb: N → N such thatb = poly(n).

Proof. First note that the assumption on the initialization implies that p(1) is �(1) as well as
1/2−�(1) and that Theorem 5.35 (p. 89) tells us that this also holds(at least w. o. p.) for an
arbitrary polynomial number of steps. Thus,σ =2(|c|/n) in all these steps, and we assume this
as a fact (and keep in mind the error probability of e−�(n1/3)).

Analogously to the reasoning that precedes (and has led to) Inequality (5.4) on page 87, we
have for the mutantc′

f (c′) ≤ f (c) ⇐⇒ c′ ∈ E≤φ2 ⇐ c′ ∈ B− ∪ S−,

so that we obtain

E[1F ·1{ f (c′)≤ f (c)}] = E
[
1F ·1{c′∈E≤φ2}

]
≥ E[1F ·1{c′∈B−∪S−}]

for the expected distance fromE>φ2 for any isotropic distributionF overRn according to which
the mutation vector is sampled in a step of the (1+1) ES. In particular, for a scaled Gaussian muta-
tion, P

{
1̃σ ,r − ≥ r −/n

}
=�(1) whenσ =2(r −/n) by Lemma 5.5 (p. 63). Since, forf (c) = φ2,

we haver − = φ
√
ξn/ξ1 =2(|c|), each step yields a spatial gain of at leastr −/n = (φ/n)

√
ξn/ξ1

with probability�(1).
Now, even when such a spatial gain is realized completely along the component with the lightest

weight ξn, it corresponds to anf -gain of an�(1/n)-fraction. Therefore, for anf -value ofφ2,
we assume that the search were located atc = (0,. . . ,0,φ/

√
ξn) ∈ R

n and that the mutant were
located atc′ = (0,. . . ,0,φ/

√
ξn − r −/n) ∈ R

n. Then, asr − = φ
√
ξn/ξ1,

f (c′) = ξn ·
(
φ

√
ξn

−
φ ·

√
ξn

n · ξ1

)2

= ξn ·φ2 ·
(

1

ξn
−

2

n · ξ1
+

ξn

n2 · ξ12

)
(5.5)

≤ ξn ·φ2 ·
(

1

ξn
−

1

n · ξ1

(
2−

ξn

n · ξ1

))
(note thatξn/ξ1 ≤ 1 by definition)

≤ φ2 ·
(

1−
ξn

n · ξ1

)
= f (c) ·

(
1−

1

n ·C

)

whereC = ξ1/ξn is the condition number associated with the PDQF.
Thus, each step reduces the approximation error by an�(1/n)-fraction with probability�(1).

By Chernoff’s bound, in a phase of2(n) steps, the number of steps each of which does actually
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reduce thef -value by an�(1/n)-fraction is�(n) with probability 1− e−�(n). Consequently,
with this probability, thef -value is reduced by a constant fraction within a phase (an observation
period of the 1/5-rule). In particular, a constant number (which is nevertheless proportional to
the condition number) of such phases, i. e.O(n) steps, suffice to halve the approximation error, so
that finally inO(b) phases, i. e.O(b·n) steps, the approximation error is reduced to a 2−b-fraction
of the initial f -value.

As the error probability that the 1/5-rule fails is the (asymptotically) largest one, our reasoning
holds for any polynomial number of steps with probability 1−e−�(n1/3).

Now that we have seen how and why the 1/5-rule works for PDQFs with bounded bandwidth,
we are ready to consider PDQFs which result in ellipsoidal level sets with unbounded bandwidth.
Up to now it has not been necessary to care about the actual location of the search point in
it’s respective level set. Note, however, that our lower bound is inversely proportional to the
condition number, whereas our upper bound grows proportional to the condition number. And
precisely the answer to the question where the trajectory ofthe evolving search point is located
in the fitness landscape, whether in a region of high or of low curvature, will be the crucial point
in the analysis of how the (1+1) ES using Gaussian mutations adapted by a 1/5-rule minimizes an
“ill-conditioned” PDQF with an unbounded condition number.5.3.2 Positive De�nite Quadrati
 Forms with Unbounded Condition Number
In this section, we concentrate on the (1+1) ES using Gaussian mutations adapted by the 1/5-rule,
and we consider the following class of (sequences of) PDQFs,wheren ∈ 2N andξ : N → R>1

such thatξ = ω(1) asn grows (“ξ ” abbreviates “ξ (n)” for better legibility):

fn(x) := ξ ·
(
x1

2 +·· ·+ xn/2
2)+ xn/2+1

2 +·· ·+ xn
2 (5.6)

All results in this section will be obtained w. r. t. this scenario.
fn(x) = ξ · SPHEREn/2( y) + SPHEREn/2(z) where y := (x1, . . . ,xn/2) and z := (xn/2+1, . . . ,xn),

and hence, the aim is to minimize the sum of two separate SPHERE-functions, one inS1 = R
n/2

and one inS2 = R
n/2, one of which has weightξ > 1. For short: f (x) = ξ · |y|2 +|z|2.

Recall that for a scaled Gaussian mutation vectorm ∼ σ · m̃ each component of̃m is indepen-
dently standard-normally distributed. Thus,m1 := (m1, . . . ,mn/2) andm2 := (mn/2+1, . . . ,mn) are
two independent (n/2)-dimensional Gaussian mutations which are scaled by the same mutation
strengthσ . As m1 only affectsy, whereasm2 only affectsz, the f -value of the mutant is given
by ξ · |y + m1|2 +|z + m2|2. Thoughm1 ∼ m2, the changes caused bym1 are in a sense “more
important” than the ones caused bym2 because of the weighting.
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ĉ

d1

Ê

x1

Ŝ

xnd2

z2 z1

M̂
Let d1 := |y| andd2 := |z| denote the distance from the origin/optimum in
S1 resp.S2. Since Gaussian mutations as well as SPHEREare invariant with
respect to rotations of the coordinate system, we may rotateS1 andS2 such
that the search point is located at (d1,0,. . . ,0) ∈ S1 resp. (0,. . . ,0,d2) ∈ S2.
Or as Lanczos (1956, p. 95) puts it: “If in the generaln-dimensional case
m eigenvalues [which are associated with the PDQF] collapse into one, this
means that in a certainm-dimensional ‘subspace’ spherical conditions pre-
vail. Any m mutually orthogonal axes can be chosen within that subspace
as principal axes of the quadratic surface.” In other words,we may assume
w. l. o. g. that the current search point is located at (d1,0,. . . ,0,d2) ∈ R

n,
i. e., that it lies in thex1-xn-plane. In fact, we have just described a pro-

jection ̂ : Rn → R
2. Note that, due to the properties of the function classfn and the isotropy

of Gaussian mutations, this projection only conceals irrelevant information—all information rel-
evant to the analysis is preserved. Thus, we can concentrateon the 2D-projection as depicted
in the figure. For some arguments, however, it is crucial to keep in mind that this projection is
based on the fact that the current search point (and also its mutant) can be assumed to lie in the
x1-xn-plane w. l. o. g. (obviously, for the mutant to lie in this plane,S1 andS2 must almost surely
be re-rotated).Gain in a Single Step
In this section we have a closer look at the properties of a single mutation in our ellipsoidal fitness
landscape. “f ” will be used as an abbreviation of thef -value of the current individual and “f ′ ”
stands for the mutant’sf -value.

Recall thatf = ξ ·d1
2+d2

2 (for the current search point) andf ′ = ξ ·d′
1

2+d′
2

2 (for its mutant),
whered′

1 := | y + m1| andd′
2 := |z + m2|. The crucial point to the analysis is the answer to the

question howd1, d2, and the mutation strengthσ—and with it E[|m|]—interrelate when the
success probability of a step (i. e. the probability that themutant is accepted) is about 1/5. In other
words: How does the length of the mutation vector depend ond1 and ond2, and how dod1 and
d2 interrelate?

“Obviously,” the heavier weighted SPHEREn/2 in S1 is minimized “first.” Once the distance from
the origin inS1 becomes smaller and smaller, however, the changes inS2 become more and more
important. Finally, we “expect” some kind of equilibrium w.r. t. the interrelation ofd1 andd2.
Since∇ f̂ (d1,d2) = (ξ 2d1,2d2)⊤, we know that for a search point which satisfiesd1/d2 = 1/ξ
an infinitesimal change ofd1 has the same effect on thef -value as an infinitesimal change ofd2.
Though the length of a mutation is not infinitesimal, this is an indicator that the ratiod1/d2 will
stabilize when using isotropic mutations. And indeed, it will turn out that the process stabilizes
w. r. t. d1/d2 =2(1/ξ ).

In this section we shall see that in the region near the gentlest descent in our ellipsoidal fitness
landscape, namely ford1/d2 = O(1/ξ ), a mutation succeeds with a probability that is�(1) as
well as 1/2−�(1) if and only if σ = 2((

√
f /n)/ξ ), i. e., the mutation strength is inversely

proportional toξ . Furthermore, asymptotically tight bounds on the expectedf -gain of a single
step in such a situation will be obtained. Therefore, we willshow that a mutation of a search
point c for which d1/d2 = O(1/ξ ) with a mutation strengthσ =2((

√
f /n)/ξ ) in the ellipsoidal
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fitness landscape is “similar” to the mutation of a search point x in the SPHERE scenario with
SPHERE(x) =2( f/ξ2) (when using the same mutation strength).

We start our analysis at a pointc ∈ R
n with ĉ = (0,φ), i. e.,d1 = 0 andd2 = φ, so that f = φ2.

That is, ĉ is located at a point with gentlest descent (w. r. t. its levelset, of course), and as a
consequence, the curvature of the 2D-curve which is given bythe projection̂E of then-ellipsoid
Eφ2 = {x ∈ R

n | f (x) = φ2}, is maximum at̂c.

We show by a simple application of differential geometry as in Section 5.3.1 (p. 85) that the curva-
ture at̂c ∈ Êφ2 is�(ξ/φ) if c lies in its level set such thatd1 = O(d2/ξ ). Therefore, consider the

ellipse given byξ ·d2
1 +d2

2 = φ2. Thus,d2 =
√
φ2 − ξ ·d2

1 as a function ofd1, and furthermore,

dd2

dd1
=

−ξ ·d1√
φ2 − ξ ·d2

1

and =
d2d2

(dd1)2 =
−ξ2 ·d2

1(
φ2 − ξ ·d2

1

)3/2 +
−ξ√

φ2 − ξ ·d2
1

.

As the curvature (of a plane curve given byd2 as a function ofd1) equals

d2d2

(dd1)2
(

1+
(

dd2

dd1

)2
)3/2 =

φ2ξ
(
φ2 + (ξ2− ξ ) ·d2

1

)3/2 ,

for d1 = α ·φ/ξ the curvature equals
ξ

φ ·
(
1+ (1−1/ξ ) ·α2

)3/2 .

Finally,
(
1+ (1−1/ξ ) ·α2

)3/2 = O(1) for α = O(1), namely ford1 = O(φ/ξ ). Furthermore, for
α = 0, i. e. ford1 = 0, the curvature equalsξ/φ.

The curvature of the 2D-curvêEφ2 at ĉ = (0,φ) equalsξ/φ, and consequently, the radius of the
osculating circle (̂S in the figure on the preceding page) equalsφ/ξ . As this circlêSactually lies
in thex1-xn-plane, it is an equator of ann-sphereS with radiusφ/ξ (the center of which lies on
thexn-axis, just like the current search pointc). In particular,S⊂ E≤φ2 such thatS∩ Eφ2 = {c}.
Thus, the probability that a mutation hits insideS is a lower bound onP

{
f ′ ≤ f

}
. For the success

probability of a scaled Gaussian mutationm ∼ σ · m̃ we have5

P
{

f ′ ≤ f
}

= P{c+ m lies insideE}
≥ P{c+ m lies insideS}
= P{|x + m| ≤ |x| for somex with |x| = radius ofS= φ/ξ }
= P

{
1̃φ/ξ ,σ ≥ 0

}
.

For an upper bound on the probability that a mutation hits inside E, consider an isotropic
mutation with a length ofℓ < 2φ (since forℓ≥ 2φ, E lies insideM, so that the mutant is rejected
by the elitist selection anyway). LetM = {x ∈ R

n | dist(c,x) = ℓ} denote the mutation sphere

5In fact, the (in)equalities hold for any isotropic mutationvector of a fixed lengthℓ, i. e., if each of the proba-
bilities is conditioned on the event{|m| = ℓ}. Sinceℓ is arbitrary here and the radius ofS is independent ofℓ,
they are valid not only for scaled Gaussian mutations but forany isotropic mutation.
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consisting of all potential mutants (at distanceℓ from c). Then M̂ is a circle (cf. the figure on
page 93) with radiusℓ centered at̂c. Now consider the curvature at a point in̂E ∩ M̂ = {z1, z2}
(there are exactly two points of intersection since 0< ℓ < 2φ). As we have seen on page 94, the
curvature atzi is κℓ =2(ξ/φ) if ℓ= O(φ/ξ ). Since the curvature at any point of the 2D-curveÊ
that lies insideM̂ is greater thanκℓ (sinceξ > 1), ĉ as well aszi lie inside the osculating circle at
z3−i for i ∈ {1,2}. This osculating circle has radiusrℓ := 1/κℓ, and hence, we haverℓ =2(φ/ξ )
for ℓ = O(φ/ξ ). Thus, there is also a circle with radiusrℓ passing througĥc such thatz1 and
z2 lie inside this circle. (Consequently, the radius of the circle passing throughz1, z2, and ĉ is
smaller thanrℓ.) And again, this circle actually lies in thex1-xn-plane of the search space and is
the image of then-sphere having this circle as an equator. Hence,

P
{

f ′ ≤ f | |m| = ℓ
}

≤ P
{
1rℓ,ℓ ≥ 0

}

whererℓ =2(φ/ξ ) if ℓ= O(φ/ξ ). (Besides,rℓցφ/ξ asℓց0.)
Recall that in the above reasoning we have assumed the current search pointc to lie in the

search spaceRn such that̂c = (0,φ) ∈ R
2, i. e.,d1 = 0 andd2 = φ. The estimates we have made

to bound the probability that a mutation hits inside then-ellipsoid E, however, remain valid as
long asd1/d2 = O(1/ξ ) as we shall see: Sinceξ/φ is the maximum curvature of̂E, there is
always a circlêSwith radiusφ/ξ lying inside Ê such that̂S∩ Ê = { ĉ }. And sincêS is in fact an
equator of ann-sphereS, we haveS⊂ E≤φ2 such thatS∩ E = {c}. For the upper bound, we must
merely consider thezi at which the curvature is smaller. The result on the curvature (obtained on
page 94) shows that as long asd1/d2 = O(1/ξ ) andℓ= O(φ/ξ ), the curvatureκℓ is O(ξ/φ) (and
κℓ ≥ ξ/φ anyway).

Hence, whenf (c) = φ2 such thatc satisfiesd1/d2 = O(1/ξ ), we are in a situation resembling
(w. r. t. the success probability of a scaled Gaussian mutation) the minimization of SPHERE at a
point with distance2(φ/ξ ) from the optimum point. Concerning the 1/5-rule, we then know that

P
{

f ′ ≤ f
}

is�(1) as well as 1/2−�(1)

⇐⇒ σ =2((φ/ξ )/n)

⇐⇒ E[|σ · m̃|] =2((φ/ξ )/
√

n).

Thus, we are now going to investigate the gain of a step whenf = φ2 andσ = 2((φ/ξ )/n).
As we have seen above, there exists ann-sphereS with radiusr := φ/ξ lying completely inE
such thatS∩ E = {c}. Since in such a situationP

{
1̃r ,σ ≥ r/n

}
=�(1), with probability�(1) the

mutant lies inE≤φ2 such that its distance fromE>φ2 is at leastr/n. If we pessimistically assume
that this spatial gain were realized along the gentlest descent of f , namely thatd1 = 0 as well as
d′

1 = 0, so thatd′
2 = d2 − r/n = d2 − (φ/ξ )/n, we obtain that with probability�(1)

f ′ = ξ ·d′
1

2 +d′
2

2

≤ 0 + (φ− (φ/ξ )/n)2

= φ2−2φ2/(ξn)+φ2/(ξn)2

= φ2− (2−1/(ξn))︸ ︷︷ ︸φ
2/(ξn)

≤ φ2− 1 φ2/(ξn)

= f − f/(ξn).
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Let c′′ := argmin{ f (c) , f (c′)} denote the search point that is selected by elitist selection. Since
mutants with a largerf -value are rejected (i. e.,f ′′ ≤ f ), this implies for the expectedf -gain of
a step in our scenario

E
[

f − f ′′ | σ =2((
√

f /n)/ξ )
]

= �( f/(ξn)).

Due to the pessimistic assumption on where in the fitness landscape the spatial gain is realized,
this lower bound on thef -gain is valid only forσ =2((

√
f /n)/ξ )), yet it holds independently of

the ratiod1/d2, i. e. independently of wherec is located inEφ2. A spatial gain ofr/n = (φ/ξ )/n
could result in a much largerf -gain, of course. Ifd1/d2 = O(1/ξ ), however, the expectedf -gain
is O( f/(ξn)) in the best case (w. r. t. the length of the mutation) as we shall see.

Therefore, letd1 = ε · φ/ξ with ε = O(1) and still f = ξ · d1
2 + d2

2 = φ2. Owing to the
reasoning for the upper bound onP

{
f ′ ≤ f

}
, we know that there is ann-sphereS with radius

r =2(φ/ξ ) which containsc as well asI := M ∩ Eφ2. The setI consists of all potential mutants
that have the samef -value asc (namelyφ2), and I is the boundary of the hyper-spherical cap
C := M ∩ E≤φ2. Owing to the results for SPHERE-like functions, we know from Lemma 4.4
(p. 34) thatE

[
dist(c′, I ) ·1{c′∈C}

]
≤ 0.52r/(n− 1) = O( (φ/ξ )/n) even for an isotropic mutation

of optimum length. In other words, we know that, if an isotropic mutation hitsE≤φ2, then its
expected distance fromE>φ2 is O( (φ/ξ )/n) whatever the length of this mutation. Thus, if we
optimistically assume that the spatial gain were realized completely inS1, i. e. completely on the
ξ -weighted SPHEREn/2, (so thatd′

2 = d2, implying thatd′′
2 = d2), we obtain

E
[

f ′′ | d1/d2 = O(1/ξ )
]

= E
[
ξ ·d′′

1
2 +d′′

2
2 | d1/d2 = O(1/ξ )

]

≥ ξ ·
(

d1 − O( (φ/ξ )/n)
)2 +d2

2

= ξ ·
(
εφ/ξ − O( (φ/ξ )/n)

)2 +d2
2

≥ ξ ·
(
(εφ/ξ )2−2ε(φ/ξ ) · O( (φ/ξ )/n)

)
+d2

2

= ξ ·d1
2 − O(φ2/(ξ n)) +d2

2

= φ2− O(φ2/(ξ n))

= f − O( f/(ξ n)).

This upper bound on the expectedf -gain of a step holds ford1/d2 = O(1/ξ ) only, yet it holds for
any length of an isotropic mutation, which is converse to thelower bound. However, altogether
we have proved the following lemma on the spatial gain of a step when the evolving search point
is located in the region of the search spaceR

n which consists of all search points for which
d1/d2 = O(1/ξ ). (Recall the initial guess that the search stabilizes in this region.)

Lemma 5.37.Consider the scenario that is described at the beginning of this Section 5.3.2 (p. 92).
If the current search point is located in the search space such that d1/d2 = O(1/ξ ), then

P{ f ′ ≤ f } is�(1) as well as 1/2−�(1) if and only ifσ =2((
√

f /n)/ξ ).
If d1/d2 = O(1/ξ ) andσ = 2((

√
f /n)/ξ ), thenE

[
f − f ′′] = 2(( f/n)/ξ ), and furthermore,

f − f ′′ =�(( f/n)/ξ ) with probability�(1).
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The preceding lemma on the single-step behavior enables us to obtain theorems on the runtime
of the (1+1) ES for the “unbounded” scenario considered herein the same way as we did in
Section 5.3.1 for PDQFs with bounded bandwidth. Namely, ifd1/d2 = O(1/ξ ) during a phase of
5n steps (an observation phase of the 1/5-rule) andσ =2((

√
f /n)/ξ ), i. e.,P

{
f ′ ≤ f

}
is �(1)

as well as 1/2−�(1), at the beginning of this phase, then we expect2(n) steps each of which
reduces thef -value by2( f/(ξ n)). By Chernoff’s bound, there are�(n) such steps w. o. p., and
thus, the f -value (and with it the approximation error) is reduced w. o.p. by a2(1/ξ )-fraction
in this phase. Then w. o. p. after2(ξ ) consecutive phases the approximation error is halved—if
during all these phases the evolving search point is such that d1/d2 = O(1/ξ ). Since, up to now,
the arguments follow the ones for PDQFs with bounded condition number in Section 5.3.1 (p. 85),
in particular the reasoning on the 1/5-rule can be adopted, and we directly obtain the following
result:

Proposition 5.38. Consider the scenario as described at the beginning of Section 5.3.2 (p. 92).
Assume thatd[0]

1 /d[0]
2 = O(1/ξ ) andσ [0] = 2((

∣∣c[0]
∣∣/n)/ξ ) after initialization. If the course

of the optimization is such thatd1/d2 = O(1/ξ ) during the complete optimization process, then
w. o. p. the number of steps to reduce the initialf -value/approximation error to a 2−b(n)-fraction
is2(b(n) · ξ ·n), whereb : N → N such thatb = poly(n).

Obviously, the assumption/condition “d1/d2 = O(1/ξ ) during the complete optimization pro-
cess” lacks any justification and is, therefore, objectionable. Rather we have to show that the
stochastic process bears this property. Thus, the crucial point in the analysis is the question why
should the ratiod1/d2 remainO(1/ξ ) (once this is the case). This crucial question will be tackled
by a rigorous analysis in the remainder of this section.

In the following let11 := d1 − d′
1 and12 := d2 − d′

2 denote the spatial gain of the mutant
towards the origin inS1 resp. inS2. Thend′

1/d
′
2 for the mutant is smaller thand1/d2 for its

parent if and only if11/d1 > 12/d2. Unfortunately,11 and12 correlate becausem1 and m2

are adapted using the same mutation strengthσ . Moreover, we must take selection into account
because only certain combinations of11 and12 are accepted. To see which combinations are
actually accepted, note that

f ′ = ξ · (d1 −11)2 + (d2 −12)2 = ξd2
1 −ξ2d111 + ξ12

1︸ ︷︷ ︸+d2
2 −2d212 +12

2︸ ︷︷ ︸ ,

and hence,

f ′ ≤ f ⇐⇒ f ′ − f ≤ 0 ⇐⇒
︷ ︸︸ ︷
−ξ2d111 + ξ12

1

︷ ︸︸ ︷
−2d212 +12

2 ≤ 0.

We assumed1,d2> 0 in the following. Letα be defined byα/ξ = d1/d2, i. e.,α changes with the
current search pointc just like d1 andd2. Then the latter inequality is equivalent to

−2αd211 + ξ12
1 −2d212 +12

2 ≤ 0

⇐⇒ −α11 +
ξ12

1

2d2
≤ 12 −

12
2

2d2

⇐⇒ −α11

(
1−

11

2d1

)
≤ 12

(
1−

12

2d2

)
(usingd2 = ξ ·d1/α).
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Thus, when using elitist selection, the mutant is accepted if and only if the last inequality holds.
Whenever a mutation satisfying−α11 >12 is accepted, then necessarily

1−
11

2d1
< 1−

12

2d2
⇐⇒

11

d1
>
12

d2
⇐⇒ 11>

d1

d2
12 ⇐⇒ 11 >

α

ξ
12,

implying that11 > 0> 12. Consequently, such a step surely results ind′′
1/d

′′
2 < d1/d2, i. e. in

α′′<α. Hence, in the following we concentrate on the accepted mutations for which−α11 ≤12.

We assume for a moment that the selection mechanism was such that the mutant
replaces (and becomes) the current individual if and only if−α11 ≤12.

Let i ∈ {1,2}. As13−i is random,E[1i ·1{−α11≤12}] is a random variable. For instance, the ran-
dom variableE[11 ·1{−α11≤12}] takes the valueE[11 ·1{−α11≤x}] whenever the random variable
12 happens to take the valuex. We are interested inE

[
E[1i ·1{−α11≤12}]

]
= di − E[d′′

i ], the
expected reduction of the distance from the optimum inSi in a step of the (1+1) ES. In particular,
E[d′′

1 ]
/

E[d′′
2 ] ≤ d1

/
d2 if and only if the expected relative gain inS1 is at least as large as the one

in S2, i. e., if and only if

E
[
E[11 ·1{−α11≤12}]

]/
d1 ≥ E

[
E[12 ·1{−α11≤12}]

]/
d2

⇐⇒ E
[
E[11 ·1{−α11≤12}]

]
· ξ ≥ E

[
E[12 ·1{−α11≤12}]

]
·α.

In order to prove that there is a constantα∗ such that this inequality holds forα ≥ α∗, we aim at
a lower bound onE

[
E[11 ·1{−α11≤12}]

]
and at anupperbound onE

[
E[12 ·1{−α11≤12}]

]
in the

following.
Therefore, note that

E
[
E[1i ·1{−α11≤12}]

]
= E

[
E[1i ·1{−α11≤12} ·1{1i<0}] ·1{13−i<0}

]
+

E
[
E[1i ·1{−α11≤12} ·1{1i<0}] ·1{13−i ≥0}

]
+

E
[
E[1i ·1{−α11≤12} ·1{1i ≥0}] ·1{13−i<0}

]
+

E
[
E[1i ·1{−α11≤12} ·1{1i ≥0}] ·1{13−i ≥0}

]

and thatE
[
E[1i ·1{−α11≤12} ·1{1i<0}] ·1{13−i<0}

]
= 0 since the three indicator inequalities de-

scribe the empty set. Since11,12 ≥ 0 =⇒ −α11 ≤12,

E
[
E[1i ·1{−α11≤12} ·1{1i ≥0}] ·1{13−i ≥0}

]

= E
[
E[1i ·1{1i ≥0}] ·1{13−i ≥0}

]

= E[1i ·1{1i ≥0}] ·P{13−i ≥ 0}.

Thus, for the expected gain of a step inSi we obtain

E
[
E[1i ·1{−α11≤12}]

]
= E[1i ·1{1i ≥0}] ·P{13−i ≥ 0}

+E
[
E[1i ·1{−α11≤12} ·1{1i ≥0}] ·1{13−i<0}

]

+E
[
E[1i ·1{−α11≤12} ·1{1i<0}] ·1{13−i ≥0}

]
.
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Since we are aiming at a lower bound onE

[
E[11 ·1{−α11≤12}]

]
, we may ignore the summand

E
[
E[11 ·1{−α11≤12} ·1{11≥0}] ·1{12<0}

]
because it is non-negative anyway. Moreover, we may

pessimistically assume that11 = −x/α whenever12 happens to equalx ≥ 0, which implies that

E
[
E[11 ·1{−α11≤12} ·1{11<0}] ·1{12≥0}

]

≥ −E
[
E[12 ·1{−α11≤12} ·1{12≥0}] ·1{11<0}

]/
α.

Since furthermore

E
[
E[12 ·1{−α11≤12} ·1{12≥0}] ·1{11<0}

]

≤ E
[
E[12 ·1{12≥0}] ·1{11<0}

]
= E[12 ·1{12≥0}] ·P{11 < 0},

we obtain the following lower bound for the expected gain of astep inS1:

E
[
E[11 ·1{−α11≤12}]

]
≥ E[11 ·1{11≥0}] ·P{12 ≥ 0} (5.7)

−E[12 ·1{12≥0}] ·P{11 < 0}
/
α .

For the expected gain of a step inS2, however, we will use the trivial upper bound

E
[
E[12 ·1{−α11≤12}]

]
≤ E[12 ·1{12≥0}] . (5.8)

With the help of these two bounds we can now prove that the relative gain of a step inS1

becomes larger than the one inS2 whend1/d2 exceedsα∗/ξ for some constantα∗.

Lemma 5.39. In the considered scenario, given thatσ is such thatP{11 ≥ 0} andP{12 ≥ 0} are
�(1), there exists a constantα∗ such that ford1/d2 ≥ α∗/ξ yet d1/d2 = o(1)

E
[
E[11 ·1{ f ′≤ f }]

]/
d1 ≥ κ ·E

[
E[12 ·1{ f ′≤ f }]

]/
d2

for any constantκ for n large enough.

Proof. Recall that f ′ ≤ f ∧ −α11 > 12 implies11 > 0> 12. Thus, all (11,12)-tuples that
are zeroed out by1{−α11≤12} (our temporarily modified selection) but kept by1{ f ′≤ f } (true elitist
selection) are inR>0 ×R<0. Analogously, f ′ > f ∧ −α11 ≤12 implies11 < 0<12, so that
all (11,12)-tuples kept by1{−α11≤12} but zeroed out by1{ f ′≤ f } are inR<0 ×R>0. Hence,

E
[
E[11 ·1{ f ′≤ f }]

]
≥ E

[
E[11 ·1{−α11≤12}]

]
and

E
[
E[12 ·1{ f ′≤ f }]

]
≤ E

[
E[12 ·1{−α11≤12}]

]
.

As d1 · ξ = d2 ·α by definition ofα, we have to show that, ifP{11 ≥ 0} andP{12 ≥ 0} are�(1),
there exists a constantα∗ such that forα ≥ α∗ yetα = o(ξ ) andn large enough

ξ ·E
[
E[11 ·1{ f ′≤ f }]

]
≥ κ ·α ·E

[
E[12 ·1{ f ′≤ f }]

]
.

Using the lower/upper bound on the expected gain of a step inS1 resp.S2, namely Inequality (5.7)
on page 99 and Inequality (5.8) on page 99, it is sufficient to show that
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E[11 ·1{11≥0}] ·P{12 ≥ 0}−E[12 ·1{12≥0}]

/
α ≥ E[12 ·1{12≥0}] ·κ ·α/ξ

in such situations. SinceP{11 ≥ 0} andP{12 ≥ 0} are�(1) (by precondition),E[11 ·1{11≥0}]
andE[12 ·1{12≥0}] are of the same order, namely2(E[|m|]/

√
n). Thus, we can choose a con-

stantα∗ such that the LHS of the inequality above—and with itE[E[11 ·1{ f ′≤ f }]]—is at least
E[11 ·1{11≥0}] · P{12 ≥ 0}/2 for α ≥ α∗ (andn large enough). Thus, forα ≥ α∗ the LHS is
�(E[|m|]/

√
n), whereas the RHS iso(E[|m|]/

√
n) sinceκ ·α/ξ = o(1) due to the precondition

thatα = o(ξ ). This directly implies that the inequality holds forn large enough.

Now, the preceding lemma tells us that, when the current search point is located at a point for
which α ≥ α∗, then the expected relative gain (of the next step) towards the optimum inS1 (on
theξ -weighted SPHEREn/2) is, for instance, twice as large as the one inS2 (for n large enough).
Having in mind that the variations of those gains are small, it becomes apparent thatα is more
likely to decrease than to increase in such a step. Formally,we obtain that the probability thatα
does not decrease in a small number of such steps is exponentially small:

Lemma 5.40. Let the mutation strengthσ be fixed in the considered scenario. If in thei th step
α[i ] ≥ α∗ yetα[i ] = o(ξ ) andP{11 ≥ 0} as well asP{12 ≥ 0} are�(1), then (forn large enough)
w. o. p. after at mostn0.3 steps the search is located at a point for whichα < α[i ] , and furthermore,
w. o. p.α ≤ α[i ] + O(α[i ]/n0.6) in all intermediate steps.

Proof. We begin by proving the second claim. Let us assume that, starting with the i th step,
α ≥ α[i ] for k ≤ n0.3 steps. Recall that, due to elitist selection, thef -value is non-increasing.
Sinced2> d[i ]

2 ∧ f ≤ f [i ] impliesd1< d[i ]
1 , which again impliesα/ξ = d1/d2< d[i ]

1 /d
[i ]
2 = α[i ]/ξ ,

we have just proved that necessarilyd2 ≤ d[i ]
2 during thesek steps. Since (for any choice of the

length of an isotropic mutation) in a step w. o. p.12 = O(d2/n0.9), in all k ≤ n0.3 steps w. o. p.
d2 ≥ d[i ]

2 − k · O(d[i ]
2 /n

0.9) ≥ d[i ]
2 − O(d[i ]

2 /n
0.6), i. e., d2 = d[i ]

2 (1−ψ) for someψ = O(n−0.6),
respectively.

Concerning an upper bound ond1, we have

f = ξ d1
2 +d2

2 = ξ d1
2 +

(
d[i ]

2 −ψd[i ]
2

)2
≤ f [i ] = ξ d[i ]

1
2 +d[i ]

2
2
,

and hence, during thek steps

ξ d1
2 ≤ ξ d[i ]

1
2
+ (2ψ −ψ2)d[i ]

2
2

⇐⇒ d1
2 ≤ d[i ]

1
2
+ (2ψ−ψ2)

d[i ]
2

2

ξ
= d[i ]

1
2
+ (2ψ −ψ2)

d[i ]
1

2

α[i ]
=

d[i ]
1

2
(

1+
ψ(2−ψ)

α[i ]

)
.

Sinceψ(2−ψ)/α[i ] is bounded byO(n−0.6) just likeψ , we finally obtain that in allk steps

α

ξ
=

d1

d2
≤

d[i ]
1

d[i ]
2

·
√

1+ O(n−0.6)

1− O(n−0.6)
=

α[i ]

ξ
· (1+ O(n−0.6)).

Now we are ready for the proof of the lemma’s first claim. Therefore, assume thatα ≥ α[i ] ≥ α∗

for n0.3+ 1 steps. We will show that the probability of observing such asequence of steps is
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exponentially small. Therefore, note that, since w. o. p.d2 ≥ d[i ]

2 (1−ψ) as we have seen, this
assumption implies that also w. o. p.d1 ≥ d[i ]

1 (1−ψ), i. e., w. o. p.d1 = d[i ]
1 − O(d[i ]

1 /n
0.6) in all

n0.3 steps.
Let X[k]

j , j ∈ {1,2}, denote the random variable1j ·1{ f ′≤ f } in the (i −1+k)th step. (In par-
ticular, we haveE[X j ] = E[E[1j ·1{ f ′≤ f }]].) Then, by choosingκ = 2 in Lemma 5.39 (p. 99),
E[X[k]

1 ]/d[k]
1 ≥ 2·E[X[k]

2 ]/d[k]
2 for 1 ≤ k ≤ n0.3, i. e.,

ξ ·E[X[k]
1 ] ≥ 2·α[k] ·E[X[k]

2 ] ≥ 2·α[i ] ·E[X[k]
2 ].

For j ∈ {1,2} let T [k]
j := X[1]

j +·· ·+ X[k]
j denote the total gain of thek steps w. r. t.dj . By linearity

of expectation,E[T [k]
1 ]/d[i ]

1 ≥ 2 · E[T [k]
2 ]/d[i ]

2 for 1 ≤ k ≤ n0.3; however, the goal is to show that
P{T [k]

1 /d[i ]
1 ≤ T [k]

2 /d[i ]
2 for 1 ≤ k ≤ n0.3} is exponentially small.

Therefore, we will assume the worst case w. r. t. to the analysis (i. e. the best case w. r. t. the
chance of observing such a sequence) thatE[X[k]

1 ]/d[i ]
1 = 2·E[X[k]

2 ]/d[i ]
2 in each step.

To see that this is in fact the worst case, consider a search point x for which α > α[i ] , i. e.,
d1/d2 > d[i ]

1 /d
[i ]
2 , such thatξ · E[X1] > 2 ·α · E[X2]. Now consider another search pointx̌ with

f (x̌) = f (x) but α̌ < α. Since this implies thaťd1< d1 andď2> d2, Proposition 4.3 (p. 33) tells us
that1̌1 is stochastically dominated by11, whereas1̌2 stochastically dominates12. This implies
thatX1 dominatesX̌1, whereasX2 is dominated byX̌2, and in particular, we haveE[X1] ≤ E[ X̌1]
andE[X2] ≥ E[ X̌2].

As we have just seen, we may pessimistically assume that in each step the search is located at a
point for whichξ ·E[X1] = 2·α ·E[X2]. Hence,E[T [k]

1 ]/d[i ]
1 = 2·E[T [k]

2 ]/d[i ]
2 . Let Tj abbreviate

T [n0.3]
j for j ∈ {1,2}. Since 1.2/0.8= 1.5< 2, it is sufficient to show that w. o. p.T1 ≥ 0.8·E[T1]

and that also w. o. p.T2 ≤ 1.2·E[T2].
By Hoeffding’s bound (cf. Theorem 2.3 (p. 13)), forX[k]

j ∈ [aj ,bj ] andtj > 0,

P{T1 −E[T1] ≤ −t1} ≤ exp

(
−2· t12

n0.3 · (b1 −a1)2

)
and

P{T2 −E[T2] ≥ t2} ≤ exp

(
−2· t22

n0.3 · (b2 −a2)2

)
.

Choosingtj := 0.2·E[Tj ] for j ∈ {1,2}, each of the two exponents solves to

−0.08·n−0.3 ·E[Tj ]
2/(bj −aj )

2 = −�(n−0.3) ·
(

E[Tj ]

bj −aj

)2

.

Thus, it remains to show thatE[Tj ]/(bj −aj ) =�(n0.2) because this would result in an exponent
of −�(n−0.3 · (n0.2)2), which is−�(n0.1).

First we concentrate onE[T1]/(b1 − a1). SinceT1 is the sum ofn0.3 random variablesX[k]
1 , it

suffices to show thatE[X[k]
1 ]/(b1 −a1) = �(n−0.1) for 1 ≤ k ≤ n0.3. In the following we assume

as a fact thatd1 = d[i ]
1 ± O(d[i ]

1 /n
0.6) andd2 ∈ [ d[i ]

2 − O(d[i ]
2 /n

0.6),d[i ]
2 ] since this happens w. o. p.

(as we have already seen above in the proof of the lemma’s second claim).
Recall that the mutation vector is split into two independent (n/2)-dimensional Gaussian mu-

tations (one forS1 and one forS2) which are scaled by the same mutation strengthσ . In par-
ticular, both mutation vectors have the same expected length; let ℓ̄ denote this expected length
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and recall from Lemma 3.10 (p. 19) that̄ℓ ≍ σ ·

√
n/2. Owing to the results for SPHERE-like

functions, we know thatP
{
1j ≥ 0

}
= �(1) implies thatσ = O(dj /n), i. e., ℓ̄ = O(dj /

√
n), and

that, under these conditions, w. o. p.
∣∣1j

∣∣= O(ℓ̄j /n0.4). Also recall thatE[11 ·1{ f ′≤ f }] is at least

E[11 ·1{11≥0}] · P{12 ≥ 0}/2. SinceP{12 ≥ 0} = �(1) in i th step andd2 ≥ d[i ]
2 (1− O(n−0.6))

in all n0.3 steps, in each of these stepsP{12 ≥ 0} = �(1). Hence,E[X1] = �(E[11 ·1{11≥0}])
in each of then0.3 steps. Owing to the results for SPHERE-like functions, we know (since
ℓ̄= O(d1/

√
n) as we have seen) thatE[11 ·1{11≥0}] =2(ℓ̄/

√
n) so thatE[X1] =�(ℓ̄/

√
n).

Altogether, we have shown thatE[T1] = n0.3 ·�(ℓ̄/
√

n) =�(ℓ̄/n0.2) andb1 −a1 = O(ℓ̄/n0.4),
implying E[T1]/(b1 −a1) =�(n0.2).

Concerning a lower bound onE[T2], recall thatE[T1]/d[i ]
1 = 2 ·E[T2]/d[i ]

2 . As a consequence,
E[T2] = E[T1] · d[i ]

2 /(2 · d[i ]
1 ) = �(n0.3 · ℓ̄/

√
n) ·�(ξ/α[i ]). Sinceα[i ] = O(ξ ) (by precondition),

we haveE[T2] =�(ℓ̄/n0.2), and sinceb2 −a2 = O(ℓ̄/n0.4) (cf. the reasoning forb1 −a1 above),
E[T2]/(b2 −a2) =�(ℓ̄/n0.2)/O(ℓ̄/n0.4), which is also�(n0.2).

All in all, we have shown thatP{T1 ≤ 0.8·E[T1]} as well asP{T2 ≥ 1.2·E[T2]} are bounded
above by e−�(n0.1). Thus, our initial assumption thatα ≥ α[i ] ≥ α∗ for n0.3+1 steps implies that
w. o. p. for the firstn0.3 stepsT1/T2 > α

[i ]/ξ (cf. above), i. e., that w. o. p. after at mostn0.3 steps
α does drop belowα[i ] —a contradiction to our initial assumption. Thus, the sequence of steps
we assumed to be observed happens only with an exponentiallysmall probability.

Since the 1/5-rule keeps the mutation strength unchanged for 5n steps, we can virtually partition
each such observation phase in 5n/n0.3 = 5n0.7 sub-phases to each of which this lemma applies.
SinceO(α[i ]/n0.6) ≤ α[i ] for n large enough, the preceding lemma shows the following:

When starting at a pointc[0] for which α[0] = O(1), i. e.,d[0]
1 /d[0]

2 = O(1/ξ ), thenα remains
smaller than 2·max{α[0],α∗} = O(1) w. o. p. for any polynomial number of steps.

Incorporating these new insights into the reasoning for the1/5-rule known from our analy-
sis for SPHERE-like functions finally enables us to drop the objectionableassumption/condition
“d1/d2 = O(1/ξ ) in the complete optimization process” in Proposition 5.38(p. 97), so that we
obtain the following result:

Theorem 5.41.Let the (1+1) ES using Gaussian mutations adapted by the 1/5-rule minimize the
PDQF fn : Rn → R given in Equation (5.6) on page 92.

Given that the initialization is such thatσ [0] = 2(
∣∣c[0]

∣∣/(nξ )) andd[0]
1 /d[0]

2 = O(1/ξ ), then
w. o. p. the number of steps to reduce the initial approximation error/f -value to a 2−b(n)-fraction
is2(b(n) · ξ ·n), whereb: N → N such thatb = poly(n).

Knowing thatα does never (w. o. p. for any polynomial number of steps) exceed 2·max{α[0],α∗}
is sufficient to obtain this theorem. If the initialization is such thatα[0] is considerably larger
thanα∗, however, we would like to know that there is a drift towards smallerα. And in fact, a
closer look at the arguments in the proof of Lemma 5.40 (p. 100) reveals that the same arguments
show that the drift towards smallerα is so strong whenα ≥ 2·α∗ thatα drops w. o. p. by a constant
fraction within at mostn steps:

Proposition 5.42. Let the mutation strengthσ be fixed in the considered scenario. IfP{11 ≥ 0},
1/2−P{11 ≥ 0}, P{12 ≥ 0} are�(1), then forn large enough: If in thei th stepα[i ] ≥ 2 ·α∗ yet
α[i ] = o(ξ ), then w. o. p. after at mostn steps the search is located at a point withα≤ α[i ] −�(α[i ]).
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Proof. Choosingκ = 3 in Lemma 5.39 (p. 99), we obtain that (at least forn large enough)
ξ ·E

[
E[11 ·1{ f ′≤ f }]

]
≥ 3 ·α ·E

[
E[12 ·1{ f ′≤ f }]

]
. Assume thatα[i ] ≥ 2α∗ andα ≥ α∗ for n steps

(if α drops belowα∗ within thesen steps, there is nothing to show sinceα has been at least halved).
Following the same arguments used in the proof of Lemma 5.40 (p. 100)—except forTj now be-
ing the sum ofn instead ofn0.3 random variables—we obtain that w. o. p.T1/T2> 2·α[i ]/ξ , and
hence, after thesen steps w. o. p.

d[i+n]
1

d[i+n]
2

=
d[i ]

1 − T1

d[i ]
2 − T2

<
d[i ]

1 − T1

d[i ]
2 − T1 · ξ/(2·α[i ] )

=
d[i ]

1 − T1

d[i ]
1 · ξ/α[i ] − T1 · ξ/(2·α[i ] )

=
d[i ]

1 − T1

d[i ]
1 − T1/2

·
α[i ]

ξ

=
(

1−
T1/2

d[i ]
1 − T1/2

)
·
d[i ]

1

d[i ]
2

.

Thus, we must finally show thatT1, the total gain of then steps inS1, is�(d[i ]
1 ) w. o. p. Therefore,

recall thatT1 is the sum ofn random variablesX[k]
1 (namely11 ·1{ f ′≤ f } in the (i −1+k)th step,

respectively). In the following we consider a single step.
As shown in the proof of Lemma 5.40 (p. 100),E[11 ·1{ f ′≤ f }] =�(E[11 ·1{11≥0}]) due to the

lemma’s preconditions. SinceP{11 ≥ 0} is�(1) as well as 1/2−�(1) (also by precondition), the
mutation strengthσ is such thatE[11 ·1{11≥0}] =2(d1/n). All in all, the lemma’s preconditions
ensure thatE[11 ·1{ f ′≤ f }] =�(d1/n) in a step.

Hence,E[T1] = n ·�(d1/n) =�(d1), and by applying Hoeffding’s bound just like in the proof
of Lemma 5.40 (p. 100), we finally obtain thatT1 is�(E[T1]), i. e.�(d[i ]

1 ), also w. o. p.

This lemma shows thatα drops very quickly—if the lemma’s conditions are met. Utilizing the
results that we obtained for SPHERE-like functions just as we have done in Section 5.3.1 (p. 85)
for PDQFs with bounded bandwidth, it is readily checked thatthe condition “P{11 ≥ 0} and
1/2−P{11 ≥ 0} are�(1)” is in fact ensured by the 1/5-rule ford1/d2 ≥ α∗/ξ (recall that the case
d1/d2 = O(1/ξ ) is covered by the arguments and proofs for PDQFs with bounded bandwidth
in Section 5.3.1 (p. 85)). The two conditions “α = o(ξ )” and “P{12 ≥ 0} = �(1)”, however,
originate from Lemma 5.39 (p. 99) where they enable a short and simple proof.

Naturally, forα > α∗ the drift towards smallerα increases whenα increases, and the statement
of the preceding lemma is true without these two conditions.So why does our proof rely on them?
The answer is simple: In the very beginning of the reasoning we decided to focus on smallα,
namely onα that areO(1). As a consequence, we decided on page 99 to disregard “12 < 0.”
It appears neither in the lower bound on the expected gain inS1 (namely Inequality (5.7) on
page 99), nor in the upper bound on the expected gain inS2 (namely Inequality (5.8) on page 99);
neither in an indicator variable, nor in a probability. Yet in fact, for a fixed positivef -value and a
fixed positive mutation strength,P{12 < 0} → 1 asα → ∞, since the mutation of a search point
with d2 = 0 results ind′

2 = |m2|> 0 with probability one.
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Formally, we would show thatE[12 ·1{−α11≤12}] actually becomes negative whenα exceeds

a particularα∗∗. For the lower bound on a step’s expected gain inS1, we would show that the
term E

[
E[11 ·1{−α11≤12} ·1{11≥0}] ·1{12<0}

]
, which we decided to ignore on page 99, is actu-

ally �(E[11 ·1{11≥0}]) for largeα. However, since it is evident that the drift towards smallerα

becomes larger and larger asα grows, we refrain from a full formal treatment.5.3.3 Remarks
Based on the results on how the (1+1) ES minimizes the well-known SPHERE-function, we have
extended these results to a broader class of functions. Namely, on the one hand, all positive
definite quadratic forms with bounded bandwidth/conditionnumber are covered, and on the other
hand, we tackled the algorithmic analysis of the (1+1) ES using Gaussian mutations adapted by
a 1/5-rule for a certain subclass of positive definite quadratic forms with unbounded bandwidth,
which are also sometimes called “ill-conditioned.”

The main insight of these results is that Gaussian mutationsadapted by the 1/5-rule make the
optimization process stabilize such that the trajectory ofthe evolving search point takes course
very close to the gentlest descent of the ellipsoidal fitnesslandscape, i. e., in the region of (almost)
maximum curvature, which leads to a poor performance (because of a small mutation strength).

Naturally, the results carry over to functions that are translations (w. r. t. the search spaceRn)
of a considered PDQFf , namely to functionsg(x) = f (x − x∗) for a fixed translation vector
x∗ ∈ R

n. Rather than considering the distance from the origin, we merely must consider the
distance from the optimum pointx∗ in all arguments. The implications for functions that are
translations w. r. t. the objective space, namelyg(x) = f (x)+κ for some constantκ ∈ R, are also
straightforward. Since the minimum value equalsκ in that case, however, we can no longer use
the current function value as the measure of the approximation error. Either we useg(x)−κ, or
we restrict ourselves to the approximation error w. r. t. thesearch space, i. e., to the distance from
the optimum search point.

Just like all other results in this chapter, also the result obtained for the (1+1) ES in the previous
section is valid not only for Gaussian mutations (which are scaled by the mutation strengthσ ,
which is deterministically adapted). We merely utilized that for a Gaussian mutation vector
m̃ overRn we haveP

{
|m̃| ∈ [

√
n/2,2

√
n
}

= 1− O(1/n), cf. Lemma 3.10 (p. 19). In fact, all
proofs carry over when substituting any isotropically distributed vector̃m∗ for m̃ that satisfies
P
{
|m̃∗| ∈ [a

√
n,b

√
n
}

= 1− o(1) (asn grows) for two positive constantsa andb. (Note that
under these conditionsE[|m̃∗|] might not be finite.)
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6 Con
lusion and Outlook
Kenneth A. De Jong once asked me the question (w. r. t. a resultthat is not part of this dissertation)
“So you proved the obvious?” And this question does make sense. There are at least two different
answers: “Yes, I provedthe obvious.” and “Yes, I provedthe obvious.” The difference is—as
it is often the case—the point of view. As discussed in the introduction, the dynamical-system
approach has borne a bunch of results on the so-called progress rate for the SPHERE scenario,
the expected spatial gain towards a fixed point in the search space. Despite the fact that they
were obtained using the central/lateral component decomposition of the mutation vector (which
we discussed in Section 3.4 (p. 28)) and the assumption that the lateral component would not
deviate from its expectation, those results can be taken as a(more or less) strong indicator that
the expectednumber of steps that a (1+,λ) ES needs to halve the distance from the optimum is
�(n/ ln(1+λ)). Yet as we have seen in Section 4.2 (p. 35), formally concluding a lower bound
on the expected number of steps from an upper bound on the expected one-step gain is anything
but trivial. The aim of this work, however, was to prove lower(and upper) bounds on the number
of steps/mutations. And in fact, we did prove a lower bound of�(n/ ln(1+λ))—and this bound
holds with an overwhelming probability of 1− e−�(n). Such types of results can definitely be
considered as not obvious—as they provide much deeper insight. Nevertheless, one may feel
comfortable with strong indications, of course. The indications of the progress-rate results on the
runtime of concrete ES, however, are not at all as strong as for the general lower bound. The
reason is that they usually aim at the maximum possible progress. And obviously, an adaptation
mechanism cannot ensure the optimal adaptation of the mutation strength in each step. Neverthe-
less, the result that the (1+1) ES using Gaussian mutations adapted by the 1/5-rule gets along with
a linear number (inn) of steps to halve the approximation error when minimizing SPHERE may
appear obvious—since each of thousands of simulations of this scenario has shown this behavior.
Yet in fact, here we have proved why: The results presented inthis dissertation prove that the pa-
rameters of the 1/5-rule can be varied in a large range without changing the order of steps,O(n).
Moreover, failures of the 1/5-rule in this scenario are virtually not observed because the stochastic
process is such that theO(n)-bound holds with an overwhelming probability of 1−e−�(n1/3). And
again, this result can well be considered as not obvious.

Clearly, the 1/5-rule is not used in today’s practical optimization with evolution strategies.
Thus, the results obtained here are just a first starting point. On the other hand, we have proved
why the 1/5-rule is not used in practice (anymore): For the very simple fitness landscapes induced
by positive definite quadratic forms, the 1/5-rule makes theevolving search point move into the
region close to the gentlest descent, which results in a small mutation strength and, finally, in
a slow progression of the optimization. This has already been noted in experimental research,
of course. With thecovariance matrix adaptation (CMA),Hansen and Ostermeier (1996) came
up with an adaptation mechanism which is able to cope with ill-conditioned quadratic functions.
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6 Con
lusion and Outlook
In fact, CMA with cumulative step-length adaptation (CSA)can be consideredthe state-of-the-
art adaptation in evolution strategies. As progress-rate results for CMA/CSA-ES indicate, we
can still not hope to analyze this very sophisticated adaptation in the same way as we did here
for the 1/5-rule. However, a first step within reach may be theanalysis of a (1,λ) ES using a
simplified version of CMA (and no CSA, but a 1/5-rule-like adaptation of the mutation strength).
Another interesting extension would be to consider a (µ/µI ,λ)ES where in each stepλ mutants
are independently generated by adding a scaled Gaussian mutation to the centroid of theµ parent
individuals. This allows for larger mutation strengths as well as for larger progress rates because
of the so-calledgenetic repair,cf. Beyer (2001, Section 6.1.3.2). A runtime analysis of such an
algorithm seems possible with the methods developed in thiswork. Various other modifications
of the ESs that are covered by the results of this dissertation should also be analyzable.

Though we have to accept that (in evolutionary optimization) theory will not catch up with
practice soon, we see that in this field there are lot of challenges and interesting questions to
tackle with a probabilistic analysis. So let’s catch up.
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