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Summary

It has long been known that the estimated persistence parameter in

the GARCH(1,1) - model is biased upwards when the parameters

of the model are not constant throughout the sample. The present

paper explains the mechanics of this behavior for a particular class

of estimates of the model parameters. It gives sufficient conditions

for the estimated persistence to tend to one when the mean of

the process changes, both for a given sample size (as the size of

the structural change increases), and as sample size increases, ex-

tending previous results that were concerned with changes in the

volatility parameters.
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1 Introduction

The GARCH(1,1) - model,

xt = εt + µ (1)

εt = ηtσt

σ2
t = ω + αε2

t−1 + βσ2
t−1,

where ηt ∼ iid(0, 1) and ηt is independent of the past ε’s and σ’s, is still

the main workhorse in all areas of applied economics whenever conditional

heteroscedasticity among the xt is important. Typical examples include stock

returns or inflation rates. Almost from the moment it was born, it was however

plagued by the observation that in many applications, the estimate of the ”per-

sistence parameter” δ := α+β , no matter in which way obtained, was viewed

as much too large (in the sense that the superior forecasting performance im-

plied by high persistence did not materialize in empirical applications), and

that this upward bias towards the maximum of 1 increases with increasing

sample size.

For illustration, figure 1 plots various estimates that have been reported in the

literature against the sizes of the respective samples. The number attached to

the data points are sample sizes; they may be use to identify the papers. For

ease of comparison, we confine ourselves to studies which use daily data (ei-

ther FX-returns or stock returns; a more detailed description can be found in

the appendix). The figure clearly demonstrates that estimated persistence in-

creases with sample size and is almost indistinguishable from unity for samples

of size 2000 or more.

Focusing on daily data ensures that sample size is proportional to calendar

time, which appears to be the real driving force behind the increase in the es-

timated persistence. With hourly data, and a sample size of about 3000, Baillie

and Bollerslev (1990) obtain estimates of persistence only in the range 0.4 -

0.7, while with monthly data, the estimated persistence is already above 0.9

for sample sizes around 500. Therefore the upward tendency in the estimated

persistence is due to an increase in calendar time, not to an increase in sample

size as such.
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Diebold (1986) was probably the first to point out that this upward tendency

of estimated δ′s might be due to a switch in regime somewhere in the sample,

the probability of which increases with increasing calendar time. Among many

others Lamoreux et al. (1990), Hamilton and Susmel (1994) or Mikosch and

Starica (2004), show that empirical estimates of δ do indeed decrease when the

sample is split according to some sensible criterion, and they propose general-

izations of (1) to account for changes in the parameters.

When standard GARCH(1,1)-models are fitted to data generated from such

more general models, empirical estimates δ̂ of δ are rather close to, but usually

less than one. Haas et al. (2004) figure 1 show by Monte Carlo simulations that

δ̂ approaches 1 as persistence in their Markov - switching model increases;

Mikosch and Starica (2004) show analytically that the Whittle - estimator

of δ becomes arbitrarily close to 1 if the differences in the variances of their

sub-models tend to infinity, and Hillebrand (2005) proves the same for ML-

estimators for the case when the number of structural changes remains finite

as sample size increases. The present paper considers the Minimum Distance

Estimator (MDE) of α and β suggested by Baillie and Chung (2001), and

shows that the sum of the estimated α and β can likewise be made arbitrarily

close to 1 if there are structural changes in the unconditional expectation µ

of the xt-process, or more generally, if the xt
2-process behaves as if it had

nonstationary long memory.

2 Structural change in the mean and sample
correlations

The point of departure of this paper is the relationship between certain types

of structural change in the model (1) and the estimated autocorrelations of

the ε2
t . Most models that allow for changes in the coefficients of (1) do so by

letting µ, ω, α or β depend on the (unobserved) state of a finite - dimensional

Markov chain. Recent examples and variants thereof, with useful surveys of the

literature, are Klaassen (2002) or Haas et al. (2004). Alternatively, Hamilton

and Susmel (1994) or Wong and Li (2001) consider

ε∗t := g(∆t)εt, (2)
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where εt is generated by (1) (or some variant thereof), and g again depends on

the state of some Markov-process {∆t} or some other stochastic process. Here,

structural changes do not affect the dynamics of the process, just the scale.

Other examples are Dueker (1997), who considers changes in the variance of

the innovations ηt, or Mikosch and Starica (2004) and Hillebrand (2005), who

simply collect together different sub-samples from different stationary models.

All of these models imply that E(x2
t ) is not constant over time.

The present paper considers the Minimum-Distance estimator of α and β when

there are structural changes in the unconditional expectation µ which are ig-

nored when the model (1) is fitted to the data. These changes can be both

deterministic or stochastic, for instance, by letting µ depend on the state of

an independent Markov process ∆t:

xt := µ(∆t) + εt. (3)

This is similar to (2), except that it is the conditional mean and not the

conditional variance of xt that is affected. No matter which way the process

changes, it is easily seen that any such change will in general increase the

empirical autocorrelations of the x2
t .

For structural changes in µ, other than for structural changes in ω, α and β,

there will, in addition to an increase in the empirical autocorrelations of the

x2
t ’s, also be an increase in the empirical autocorrelations of the xt’s themselves.

This holds for all types of stochastic processes, not just GARCH(1,1). For

illustration, figure 2 depicts the first 16 empirical autocorrelations computed

from n = 4000 observations, for a stationary MA(2) process

xt = µ + εt + 0.5εt−1 + 0.5εt−2, εt ∼ nid(0, 1),

where µ switches from -d to d in the middle of the sample. Without such change

in µ, the theoretical autocorrelations are ρ1 = 0.5, ρ2 = 0.17, ρ3 = ρ4 = ... = 0.

As the figure shows, estimated correlations are much larger and tend to 1 as d

increases.
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Let in general xt (t = 1, ..., T ) be any short memory sequence of random

variables with bounded variance and k shifts in mean at 1 < t1 < ... < tk < T ,

and consider the empirical h’th order autocorrelation coefficient

ρ̂h =

∑T−h
t=1 (xt − x̄)(xt+h − x̄)∑T

t=1(xt − x̄)2
.

Rewriting the numerator as

T−h∑
t=1

(xt − x̄)(xt+h − x̄) =
T∑

t=1

(xt − x̄)2

−
T∑

t=T−h+1

(xt − x̄)2 +
T−h∑
t=1

(xt − x̄)(xt+h − xt), (4)

we see that

ρ̂h = 1−
∑T

t=T−h+1(xt − x̄)2

∑T
t=1(xt − x̄)2

+

∑T−h
t=1 (xt − x̄)(xt+h − xt)∑T

t=1(xt − x̄)2
, (5)

where the last two terms can be made as close to 0 as desired if n is ”large”

relative to k and
∑

(xt − x̄)2 P→∞. This is so because the first term tends to

zero as h/n → 0, and the second term tends to zero in view of the fact that

(xt− x̄)(xt+h−xt) is ”small” relative to (xt− x̄)2 whenever xt+h and xt belong

to the same regime. When the number of shifts is small relative to sample

size, this will apply to an increasing number of terms in the sum, so the ratio

becomes arbitrarily small and empirical autocorrelation of th x′ts can be made

as close to unity as desired for any given sample size.

Another avenue through which empirical autocorrelations may be led to tend

to 1 is for increasing sample size, when the xt can be made to behave as if they

were I(d) with d ≥ 1
2
:

V ar
( T∑

t=1

xt

)
= O

(
T 2d+1

)
. (6)

It has long been known (see e.g. Krämer (1985)) that for d = 1, empirical

autocorrelations of xt of all orders must tend to 1 in probability as T −→ ∞,
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and Hassler (1997) shows that this holds for fractional integration parameters

with 1
2
≤ d < 1 as well. The intuition behind this is that the last two terms in

expression (5) become arbitrarily small as T −→ ∞ as the numerators are of

smaller orders in probability than the denominators.

Diebold and Inoue (2001) show that behavior of type (6) occurs for instance

whenever µ is stochastic and independent of εt and displays structural breaks

of the form

µt = µt−1 + νt (7)

νt =





0 with probability 1− p

ωt with probability p,

where ωt = i.i.d(0, σ2), and where p may depend on sample size. Since

T∑
t=1

µt = Tv1 + (T − 1)v2 + ... + vT , (8)

we have

V ar
( T∑

t=1

µt

)
= p σ2

T∑
t=1

t2 = p σ2T (T + 1)(2T + 1)

6
, (9)

so we can have (6) for any d, 0 < d ≤ 1, by letting

p = c
1

T 2−2d
(0 < c ≤ 1). (10)

Of course, in the limiting case where d = 1 and p does not depend on T , µt

and therefore also xt will be I(1) and long memory will be extreme.

Spurious long memory in xt can also be induced by time varying staying prob-

abilities in the Markov-switching model of (3). For two states and serially

independent ε’s we have:

p00 = 1− c0T
−δ0

p11 = 1− c1T
−δ1
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and Diebold and Inoue (2001) show that then (6) applies with

d =
1

2
max

{
min(δ0, δ1)− |δ0 − δ1|, 0

}
. (11)

To the extent that this carries over to the case where the εt’s follow a GARCH-

process we will for d0 = d1 = 1 again have empirical autocorrelations of the xt

which tend to 1 as a consequence of structural change.

We will not enter into a detailed discussion of this phenomenon here. There

might well be many other instances where this tendency towards unity of em-

pirical autocorrelations occurs. Diebold and Inoue (2001) for instance show

that the Engle and Smith (1999)–STOP-BREAK model, which generates an

I(1)-series, can be generalized to an arbitrary I(d)-behavior where in all cases

we have autocorrelations increasing with sample size. For the present purpose,

it suffices to know that there do exist meaningful models which induce em-

pirical autocorrelations of a time series to become large. The conditions that

guarantee this to happen do not concern us here. Rather, we take this be-

havior as given and explore its implications for the estimated persistence of a

GARCH(1,1)-model.

To that purpose, it remains to show that real or spurious long memory in the

xt’s induces real or spurious long memory in x2
t (since the estimator which we

consider in section 3 is based on the empirical autocorrelations of the squared

observations). For a given sample size and increasing breaks, it is easily seen

that the arguments that lead to increasing autocorrelations of xt also lead

to increasing autocorrelations of x2
t . For “genuine” Gaussian I(d)-processes

with d ≥ 1
2
, Dittmann and Granger (2002) show that the squared process is

also I(d) with the same d, and similar results hold for spurious long memory

as well (in the sense that convergence to 1 of the empirical autocorrelations

of the xt’s implies convergence to 1 of the empirical autocorrelations of the

x2
t ’s). For instance, it is easily seen that with µ’s changing according to (7),

the empirical autocorrelation of both the xt’s and the x2
t ’s must tend to 1 as

sample size increases.
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3 Estimating persistence

Next we consider a particular estimator, the Baillie and Chung (2001)–

Minimum-Distance-Estimator of α and β, given that empirical autocorrelations

behave as explained in section 2. This estimator is based on the ARMA(1,1) -

representation of ε2
t given by

ε2
t = ω + (α + β)ε2

t−1 + ut − βut−1, (12)

where

ut := ε2
t − E(ε2

t |ε2
t−1, ε

2
t−2, ...) = ε2

t − σ2
t (13)

is white noise and uncorrelated with past ε2
t ’s. We also require α > 0, β ≥

0 and α + β < 1. The basic idea is to exploit the fact that, because of (12),

the theoretical autocorrelations of ε2
t are known functions of α and β:

ρ1 = α +
α2β

1− 2αβ − β2

ρ2 = (α +
α2β

1− 2αβ − β2
)(α + β)

...

ρh = (α +
α2β

1− 2αβ − β2
)(α + β)h−1 (h > 1). (14)

The ρk are then estimated by

ρ̂k =

∑T−k
t=1 (ε̃2

t − ¯̃ε2)(ε̃2
i+k − ¯̃ε2)∑T

t=1(ε̃
2
t − ¯̃ε2)2

,

where ε̃t := xt − x̄, and the Minimum Distance Estimators α̂ and β̂ for α and

β are obtained as

arg min
α,β

[ρ̂− ρ(α, β)]′W [ρ̂− ρ(α, β)], (15)

where W is some suitable positive definite weighting matrix, ρ̂ = (ρ̂1, . . . , ρ̂h)
′

and where ρ(α, β) = (ρ1, . . . , ρh)
′ is a vector-valued function of α and β defined

in (14).
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The efficiency of this estimator relative to the Maximum Likelihood estimator

is evaluated in detail by Baillie and Chung (2001); it depends on the particular

choice of h and W and does not concern us here. Rather, we take h and W as

given and consider the behavior of δ̂ = α̂ + β̂ as

ρ̂ = (ρ̂1, . . . , ρ̂h)
′ p→ e := (1, . . . , 1)′. (16)

This particular limiting behavior of ρ̂ implies that

arg min
α,β

[plim ρ̂− ρ(α, β)]′W [plim ρ̂− ρ(α, β)]

⊆ arg min
α,β

[e− ρ(α, β)]′W [e− ρ(α, β)], (17)

where the latter set of minimizing values of α and β is in view of (6) determined

by

α + β = 1 and (18)

α +
α2β

1− 2αβ − β2
= 1. (19)

This is so because (18) and (19) are equivalent to ρ(α, β) = e, which is equiv-

alent to

[e− ρ(α, β)]′W [e− ρ(α, β)] = 0, (20)

which in view of the positive definiteness of W is the minimum value which

can be attained.

It is easily checked that (18) implies (19), so all pairs of α and β with α >

0, β ≥ 0 and α + β = 1 are candidates for plimρ̂→e(α̂, β̂). Which one of

these will eventually materialize depends on the particular way in which ρ̂

approaches e. In practice, it appears that small values of α̂ and large values of

β̂ are preferred (see e.g Haas et al. (2004), figure 1). The point of interest here

is that no matter what the particular probability limits of α̂ and β̂ are, they

must always sum to 1.

Another line of reasoning, different from ours, which also leads to δ̂
p→ 1, is due

to Hillebrand (2005): If the model (1) is estimated by Maximum Likelihood,

we must have

σ̂2
t = ω̂ + α̂ε̂2

t−1 + β̂σ̂2
t−1 (t = 1, · · · , T ), (21)
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where the σ̂2
t and ε̂t are fitted values obtained from the ML-estimators ω̂, α̂

and β̂ and some starting values ε2
0 and δ. If there are in addition finitely many

regimes, with regime-specific stationary expectations E(σ2
t )(i) = E(ε2

t )(i) =: Ei

and with regime-specific sample sizes increasing, one obtains under certain

conditions on the estimators that

σ̂2
(i)

p→ E(i), ε̂2
(i)

p→ E(i), (22)

so

E(i) − E ≈ (α̂ + β̂)(E(i) − E), (23)

where E is the sample mean of the σ̂2
t , and therefore α̂+ β̂ must tend to 1. This

argument however depends crucially on the validity of the limiting relationship

in (22) and is different from the one advanced in the present paper.

4 Some finite sample simulations

This section summarizes various Monte Carlo simulations to check the finite

sample relevance of the above results. First we consider the case where sample

size is fixed and where there are increasing breaks in the mean µ of the xt–

series. Figure 3 shows the mean estimated persistence δ̂ (averaged over 1000

experiments) as a function of the size of the break in µ. The break is always

in the middle of the sample, and we choose ω = 0.001, α = 0.2 and β = 0.4.

The figure shows that the estimated persistence rapidly approaches 1 as the size

of the break increases. We do not show the estimated α’s and β’s separately, so

the (almost) unbiased estimates of δ = α+β in the absence of a break masks the

well known fact that in correctly specified models, α is usually underestimated

and β is usually overestimated in finite samples. Separate results for α and β

are available from the authors upon request.

In all experiments, we use 10 lags for the minimum distance estimation and

obtain the weighting matrix W via the Newey-West (1987)-procedure. Results

however remain virtually unchanged for different number of lags and weighting

schemes. Also, experiments with different α’s and β’s were performed, which

10



all confirmed the message contained in figure 3. Figure 4 and 5 show results for

α = β = 0.3 and α = 0.4, β = 0.2, respectively. Again, δ is estimated (almost)

unbiasedly when there is no structural break, and the upward bias increases

rapidly as the size of the break in µ increases.

In another series of experiments, we let µ change according to the Diebold

and Inoue (2001)–scheme from equation (7). Figure 6 shows some sample time

series of the µ’s, and figure 7 reports the estimated persistence as a function

of the sample size. As was to be expected, the upward bias again increases

rapidly as sample size increases, irrespective of the switching probability.

5 Possible extensions

The arguments above extend naturally to more general GARCH(p, q)-models,

where

σ2
t = ω + α1ε

2
t−1 + . . . + αpε

2
t−p + β1σ

2
t−1 + . . . + βqσ

2
t−q.

The persistence is here measured by α1 + . . .+αp +β1 + . . .+βq and it is easily

seen that the Minimum Distance Estimator must likewise have the property

that

α̂1 + . . . + α̂p + β̂1 + . . . + β̂q
p→ 1

whenever ρ̂i
p→ 1 (i=1,2,3,...). This follows from the fact that theoretical au-

tocorrelations ρi can be written as

ρi = g(α1, . . . , αp, β1, . . . , βq)(α1 + . . . + αp + β1 + . . . + βq)
i−1,

for some continuous function g, so for ρ̂i → 1, the distance between empirical

and theoretical autocorrelations is minimized for α1+. . .+αp+β1+. . .+βq = 1.

However, extensions to other types of structural shifts are not as obvious. For

instance, if we also allow for shifts in ω, α or β, we have breaks in E(ε2
t ),

but also large shifts in the variance of ε2
t , so our argument leading to ρ̂ → 1

for given sample size breaks down (in section 3, we had implicitly assumed

that the variance remains bounded when there are structural breaks in the
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mean). One could still of course obtain persistence parameters close to unity,

as ρ̂h
p→ 1 is only a sufficient, not a necessary condition for α̂ + β̂

p→ 1, as for

instance shown by Hillebrand (2005), but this issue is outside the scope of the

present paper.
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Figure 1 Estimated persistence as a function of sample size
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Figure 2 Empirical autocorrelations with a shift in expectations

a) d=1

b) d=2

c) d=4
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Figure 3 Estimated persistence as a function of the size of the break

(α = 0.2, β = 0.4)
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Figure 4 Estimated persistence as a function of the size of the break

(α = β = 0.3)
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Figure 5 Estimated persistence as a function of the size of the break

(α = 0.4, β = 0.2)
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Figure 6 Stochastic mean according to equation (7), sample size =

1000

a) p = 0.01

b) p = 0.05

c) p = 0.10
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Figure 7 Estimated persistence as a function of the sample size

with switching probabilities p = 0.01, 0.05 and 0.10 respectively
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Appendix

Detailed description of empirical papers from figure 1

Authors Data Sample Size δ̂

Lamoreux et al. (1990) * 20 stocks (80–84) 358 0.728

Mikosch and Starica (2004) S+P 53-56 750 0.831

Baillie and Bollerslev (1989) FX FF,US 01/03/80-28/01/85 1245 0.943

Baillie and Bollerslev (1989) FX IT,US 01/03/80-28/01/85 1245 0.961

Baillie and Bollerslev (1989) FX JPY,US 01/03/80-28/01/85 1245 0.990

Baillie and Bollerslev (1989) FX CHF,US 01/03/80-28/01/85 1245 0.980

Baillie and Bollerslev (1989) FX BP,US 01/03/80-28/01/85 1245 0.971

Baillie and Bollerslev (1989) FX DM,US 01/03/80-28/01/85 1245 0.966

Francq et al. (2001) CAC40 1/6/88-31/12/93 1286 0.923

Dueker (1997) S+P Dec82-Dec91 2370 0.974

Hillebrand (2005) D J 07/12/87-31/10/03 4000 0.996

Lamoreux et al. (1990) * 30 stocks 01/01/63-13/11/79 4228 0.978

Klaassen (2002) ** FX 03/01/78-23/07/97 4982 0.980

Haas et al. (2004) FX SingD,USD 01/81-06/03 5313 0.933

Haas et al. (2004) FX SingD,USD 01/81-06/03 5313 0.986

Haas et al. (2004) FX BP,USD 01/81-06/03 6313 0.974

Haas et al. (2004) FX BP,USD 01/81-06/03 6313 0.990

Haas et al. (2004) FX JPY/USD 01/81-06/03 6336 0.958

Haas et al. (2004) FX JPY/USD 01/81-06/03 6336 0.965

Breit et al. (1998) VW Ret. Jul62-Jul69 6801 0.999

French and Schwert (1987) S+P 01/28-12/52 7326 0.992

Haas et al. (2004) Nasdaq Ret 02/71-06/01 7681 0.986

continued on next page
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Authors Data Sample Size δ̂

French and Schwert (1987) S+P 01/53-12/84 8043 0.992

Bollerslev and Mikkelsen (1996) S+P 500 02/01/53-31/12/90 9558 0.995

French and Schwert (1987) S+P 01/28-12/84 15369 0.996

Ding et al. (1993) S+P 500 03/01/28-30/08/91 17055 0.997

* average over 3 FX-rates

** average over 20 companies
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