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Abstract

Several recent developments in nonparametric regression are based on the concept
of data approximation: They aim at finding the simplest model that is an adequate
approximation to the data. Approximations are regarded as adequate iff the residuals
’look like noise’. This is usually checked with the so-called multiresolution criterion.
We show that this criterion is related to a special norm (the ’multiresolution norm’),
and point out some important differences between this norm and the p-norms often
used to measure the size of residuals. We also treat an important approximation
problem with regard to this norm that can be solved using linear programming.
Finally, we give sharp upper and lower bounds for the multiresolution norm in terms
of p-norms.

1 Introduction

Some recent developments in nonparametric statistics are based on the new concept of
data approximation proposed in Davies [3]. Much of the new methodology, including
the multiresolution criterion we consider here, was introduced by Davies and Kovac [6]
in connection with the taut-string procedure. Further results and applications to other
problems are presented in [5], [4], [10], [7] and [8]. Bernholt and Hofmeister [1] give a
fast algorithm to check the criterion; their point of view is also geometric, but completely
different from the one adopted in this note.

Consider the nonparametric regression model

y(t) = f(t) + ε(t)

for t = 1, . . . , N , where ε(1), . . . , ε(N) is iid normal distributed noise with (known)
variance σ2. Within the data approximation framework, one aims at minimizing a measure
of complexity of the regression function f subject to the condition that f is an adequate
approximation to the data. Complexity may be measured in terms of smoothness (e.g.
total variation of a derivative), but also by discrete criteria (e.g. the number of modes or
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jumps of the function). An approximation f is regarded as adequate iff the residuals “look
like” white noise, i.e. are not too large and not too regular. This is formalized by the
multiresolution criterion:

max
I∈I

1√|I|

∣∣∣∣∣
∑
t∈I

r(t)

∣∣∣∣∣ ≤ C (1)

where r(t) = f(t) − y(t) denotes the residuals, and I is the system of all intervals in
{1, . . . , N}, although smaller systems may be used. The maximum in (1) is large when
there are single large residuals or long intervals consisting mainly of residuals with the
same sign. The constant C generally depends on N and the noise level σ. For large N ,
one may use the asymptotically justified choice C = σ

√
τ log(N) for τ > 2. Then, if the

residuals are Gaussian white noise, (1) holds a.s. as N tends to infinity, cf. [6]. For small
N , one can choose a suitable quantile of the left hand side by simulations. In the present
paper, we are not concerned with the choice of C, nor will we consider any asymptotics or
probabilities.

Our aim is to present a geometric interpretation of (1) that provides new insight into
statistical procedures based on the multiresolution criterion. All the calculations are ele-
mentary and mainly serve the purpose of illustrating how the criterion works. Nevertheless,
some of the results may be useful for theoretical comparisons to other widely used measures
of fit or construction of algorithms.

It is well known that the set of all r ∈ R
N for which (1) is fulfilled can be characterized

by a finite number of linear inequalities (cf. [7], ch. 2.1). However, to our knowledge, it
has never been explicitly stated that this set is indeed a ball in a norm derived from the
multiresolution criterion. We introduce the multiresolution norm in section 2 and state
some elementary properties. The usefulness of the criterion as a formalized residual plot is
mainly due to the fact that this norm does not share some important invariance properties
that e.g. the p-norms do possess. We investigate this in the third section. In section
4, we show how best approximations from subspaces with respect to the multiresolution
norm can be characterized as solutions of linear programming problems. The fifth section
contains sharp upper and lower bounds for the multiresolution norm in terms of p-norms.

2 Multiresolution conditions as a norm

Definition 1. Let N ∈ N and I = {I|I = {i, i + 1, . . . , l}, 1 ≤ i ≤ l ≤ N}. The
multiresolution norm is defined by the mapping

‖·‖MR : R
N −→ R+

‖(x1, . . . , xn)‖MR := max
I∈I

1√|I|

∣∣∣∣∣
∑
t∈I

xt

∣∣∣∣∣ .
The following proposition states that this mapping is indeed a norm.
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Proposition 1. 1. For N ∈ N, ‖·‖MR is a norm.

2. For N ≥ 2, ‖·‖MR does not define an inner product.

3. For N ≥ 2, ‖·‖MR is not strictly convex.

Proof. 1. The nonnegativity of ‖·‖MR is obvious. Since I contains all singletons of
{1, . . . , N}, all components of a vector x have to be zero for ‖x‖MR to be zero.
For x ∈ R

N and α ∈ R, we have

‖αx‖MR = max
I∈I

1√|I|

∣∣∣∣∣
∑
t∈I

αxt

∣∣∣∣∣ = |α|max
I∈I

1√|I|

∣∣∣∣∣
∑
t∈I

xt

∣∣∣∣∣ = |α|‖x‖MR.

For any x, y ∈ R
N , we get

‖x + y‖MR = max
I∈I

1√|I|

∣∣∣∣∣
∑
t∈I

(xt + yt)

∣∣∣∣∣ ≤ max
I∈I

1√|I|

(∣∣∣∣∣
∑
t∈I

xt

∣∣∣∣∣ +
∣∣∣∣∣
∑
t∈I

yt

∣∣∣∣∣
)

≤ max
I∈I

1√|I|

∣∣∣∣∣
∑
t∈I

xt

∣∣∣∣∣+ max
I∈I

1√|I|

∣∣∣∣∣
∑
t∈I

yt

∣∣∣∣∣ = ‖x‖MR + ‖y‖MR .

2. It is well known that a normed space (X, ‖ · ‖) is an inner product space if and only
if the parallelogram identity holds, i.e. iff

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2 (2)

for any x, y ∈ X (cf. [12], ch. I.5). For N > 2 consider x = (1, 0, 0, . . . , 0) and
y = (0,−1, 0, . . . , 0). Then we have

‖x + y‖2
MR + ‖x − y‖2

MR = ‖(1,−1, 0, . . . , 0)‖2
MR + ‖(1, 1, 0, . . . , 0)‖2

MR

=
(
max{1, 1, 0/

√
2, 0, . . .}

)2

+
(
max{1, 1, 2/

√
2, 0, . . . }

)2

= 1 + 2 = 3,

but

2‖x‖2
MR + 2‖y‖2

MR = 2‖(1, 0, 0, . . . , 0)‖2
MR + 2‖(0,−1, 0, . . . , 0)‖2

MR = 2 + 2 = 4,

thus (2) does not hold.

3. Strict convexity means that the boundary of the unit ball contains no straight line
segments, i.e. for any x, y ∈ R

N with ‖x‖ = ‖y‖ = 1, ‖1
2
(x + y)‖ = 1 implies x = y.

If we take x = (−1, 0, . . . , 0) and y = (−1, 1, 0, . . . , 0), then ‖x‖MR = ‖y‖MR = 1, but

‖1

2
(x + y)‖MR = ‖(−1,

1

2
, 0, . . . , 0)‖MR = 1,

thus the multiresolution norm is not strictly convex.
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Figure 1: The multiresolution norm unit ball for N = 2

We also note that, for other systems of intervals, we always get a semi-norm, but the
mapping is not positive definite in general. Our definition of the multiresolution norm can
be rewritten as

‖x‖MR = ‖Tx‖∞
using the maximum norm and a suitable matrix T . For other choices of I the matrix would
be different. Positive definiteness holds iff T is injective. A sufficient, but not necessary
condition is that the interval system contains all singletons. This is true e.g. for the dyadic
scheme proposed in [6]. The matrix T is related to the noise detection criteria proposed
as generalizations of the multiresolution criterion in chapter 5 of [10].

Figure 1 shows the unit ball for N = 2. Note that, in order to lie inside a ball, the
components of a vector may be larger if the signs differ.

Since ‖ ·‖MR is a norm, checking the multiresolution criterion means calculating a norm
of the residuals; (1) then translates to:

‖r‖MR ≤ C. (3)

3 Lack of invariance

The size of residuals is often measured in other norms, the most widely used being p-norms
defined by

‖(x1, . . . , xN)‖p =

(
N∑

t=1

|xt|p
)1/p

for (1 ≤ p < ∞)
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and
‖(x1, . . . , xN)‖∞ = max{|x1|, . . . , |xN |}.

In section 4, we will give exact bounds for the multiresolution norm in terms of p-norms,
but we first point out some important differences. By the definitions above, it is clear
that for 1 ≤ p < ∞ the p-norm of a vector depends only on the absolute values of the
components, and hence is invariant under

1. changes of sign in one or several components, and

2. permutation of the components.

To see that the multiresolution norm is not invariant under these transformations we
calculate the multiresolution norms of vectors consisting of components that differ in sign
only. These vectors can also be considered as permutations of each other. We have

‖(1,−1, 1)‖MR = 1,

but
‖(1, 1,−1)‖MR =

√
2.

Note that changing the signs of some components of a vector may alter the multi-
resolution norm, while changing all signs simultaneously does not, since this corresponds
to multiplication with −1.

In the following, we use |x| = (|x1|, . . . , |xN |) as abbreviation for a vector that is
obtained from another vector x by replacing all components by their absolute values. We
have the following lemma:

Lemma 1. For x ∈ R
N ,

‖x‖MR ≤ ‖|x|‖MR ,

and strict inequality is possible.

Proof. We have maxI∈I 1√
|I|
∣∣∑

t∈I xt

∣∣ ≤ maxI∈I 1√
|I|
∑

t∈I |xt|. An example for strict in-

equality is ‖(1,−1)‖MR = 1 <
√

2 = ‖(1, 1)‖MR.

The usefulness of the multiresolution criterion is mainly due to its ability to detect long
runs of residuals with the same sign which suggest that the signal has been systematically
over- or underestimated on some interval. This dependence of the multiresolution norm on
the sign pattern of a vector shows up in particular when considering vectors that consist
of components with the same absolute size:

Proposition 2. Consider the set of all x = (x1, . . . , xN ) with |x1| = · · · = |xN | =: m > 0.

1. ‖x‖MR is maximal when all components have the same sign. Then ‖x‖MR =
√

Nm.

2. ‖x‖MR is minimal iff the components have alternating signs. Then ‖x‖MR = m.
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3. ‖x‖MR ≥ √
�m, where � is the length of the longest run of components with the same

sign.

Proof. 1. Obvious from Lemma 1.

2. First suppose the signs are alternating. For intervals containing an even number of
points all terms in the summation cancel out. For odd interval length, one term
will remain. In this case we have 1√

|I|
∣∣∑

t∈I xt

∣∣ = m/
√|I|. This is maximized for

single-point-intervals, so we have ‖x‖MR = m.

Now suppose that at least two neighboring components, say xi and xi+1, have the
same sign. Then ‖x‖MR ≥ 1√

2
|xi + xi+1| = 2√

2
m =

√
2m > m.

3. Consider an interval I consisting of components with the same sign. Then
1√
|I| |
∑

t∈I xt| =
√|I|m.

Furthermore, the p-norms have a decomposition property:

‖(x1, . . . , xk, xk+1, . . . , xN)‖p
p = ‖(x1, . . . , xk, 0, . . . , 0)‖p

p + ‖(0, . . . , 0, xk+1, . . . , xN)‖p
p

for 1 ≤ p < ∞ and

‖(x1, . . . , xk, xk+1, . . . , xN)‖∞ = max{‖(x1, . . . , xk, 0, . . . , 0)‖∞, ‖(0, . . . , 0, xk+1, . . . , xN )‖∞},

i.e., after splitting up a vector into two subvectors, the norm of the whole vector can still be
reconstructed from the norms of the two subvectors. A simple induction argument shows
that this property still holds for partitions into more than two subvectors. This property
is related to the so-called reduction principle in several complexity-penalized M-estimators
for nonparametric regression, which allows for separate approximations of the signal on
different subintervals. See [9] for a recent account and fast algorithms.

However, the multiresolution norm does not fulfil this property, as is easily seen:
‖(1, 1)‖MR =

√
2 and ‖(1,−1)‖MR = 1, but the one-component subvectors have ‖(1, 0)‖MR =

‖(0, 1)‖MR = ‖(0,−1)‖MR = 1. Thus there is no function that maps the norms of the sub-
vectors to the norm of the original vector. We have the following inequality:

Proposition 3. Let I1 and I2 denote the sets of all subintervals of {1, . . . , k} and
{k + 1, . . . , N}, respectively. Then

max

{
max
I∈I1

1√|I|

∣∣∣∣∣
∑
t∈I

xt

∣∣∣∣∣ , max
I∈I2

1√|I|

∣∣∣∣∣
∑
t∈I

xt

∣∣∣∣∣
}

≤ ‖x‖MR.

Proof. The inequality is obvious since I1 ∪ I2 ⊆ I. Equality holds e.g. for k = 1 and
‖(1,−1)‖MR.
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4 Best approximations via linear programming

It is well known that minimizing certain measures of complexity (like the total variation)
over all signals that fulfil (1) can be considered as a linear programming problem (cf.
[7], ch. 2.1). In the framework presented here, this means minimizing over a ball in the
multiresolution norm with radius C. We consider a different, but related problem: Given
a set A ⊂ R

N of candidates, the problem now is to decide whether A contains an adequate
approximation to the data y ∈ R

N , i.e. whether there exists x ∈ A with ‖x − y‖MR ≤ C.
This can be achieved by calculating a best approximation x0 to y with respect to the
multiresolution norm, i.e. a solution of

‖x0 − y‖MR = min
x∈A

‖x − y‖MR,

provided that a best approximation exists. This is guaranteed e.g. if A is compact or
a linear subspace (cf. chapter 1 in [11]). If the distance of x0 to y is larger than C,
then no adequate approximation exists in A. One might then consider a larger set A′

of candidate approximations. Proceeding in this way, one can – at least theoretically
– construct algorithms to find an adequate approximation of minimal complexity if the
measure of complexity is discrete and direct minimization over the multiresolution ball is
not possible. To do this, one must be able to calculate the set of candidate approximations
for a given value of the complexity measure, and existence of a best approximation must
be guaranteed.

In the following, we will treat the case where A is a linear subspace of R
N . There always

exists at least one best approximation, and the set of all best approximations is convex
(cf. [11], Theorem 2.2). Since the multiresolution norm is not strictly convex (cf. part 3
of Proposition 1), this set may consist of more than one element. Consider for example
y = (0, 1) and the subspace A := {(x, 0)|x ∈ R}. Then

‖(x, 0) − (0, 1)‖MR = max{|x|, 1, |x − 1|/
√

2}
and the minimum value of 1 is attained by all (x, 0) with 1 −√

2 < x < 1.
We now characterize the set

A0 := argmin
x∈A

‖x − y‖MR (4)

for given data y ∈ R
N and a linear subspace A ⊆ R

N as the solution of a linear programming
problem. Let dimA = k and A be a matrix the columns of which form a basis of A. With
λ = (λ1, . . . , λk) ∈ R

N , instead of (4) we can equivalently solve (with A0 = A(A∗))

A∗ = argmin
λ∈Rk

‖Aλ − y‖MR. (5)

Combining the fact that the multiresolution ball is given by a set of linear inequalities
(cf. [7], ch. 2.1) with the standard technique to solve maximum-norm approximation
problems (cf. [2], p.293), we get:
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Proposition 4. Let y,A, A∗ be given as above. A∗ is then the set of solutions of the linear
programming problem

s −→ min!

subject to

s ≥ 0 (6)√
|I|s +

∑
t∈I

(Aλ)t ≥
∑
t∈I

yt ∀I ∈ I (7)

−
√

|I|s +
∑
t∈I

(Aλ)t ≤
∑
t∈I

yt ∀I ∈ I (8)

with λ ∈ R
k and s ∈ R.

Proof. We define

As := {λ | ‖Aλ − y‖MR ≤ s}. (9)

It is now clear that A∗ = As for the smallest possible s ≥ 0 such that As = ∅. The
minimum is attained since at least one best approximation exists. This yields the target
function and the side condition (6).

‖Aλ − y‖MR ≤ s

translates into (7) and (8) by elementary manipulations.

The problem of calculating best approximations with respect to the multiresolution
norm can now be solved by standard techniques like the simplex-algorithm.

5 Bounds for other norms

Finally, after emphasizing some important differences between the multiresolution norm
and the widely used p-norms, we will show how they are exactly related. Since all norms
in R

N are equivalent, it is possible to give upper and lower bounds:

Theorem 1. For x ∈ R
N :

1

N1/p
‖x‖p ≤ ‖x‖MR ≤ ‖x‖p (1 ≤ p ≤ 2) (10)

1

N1/p
‖x‖p ≤ ‖x‖MR ≤ N1/2−1/p‖x‖p (2 < p < ∞) (11)

‖x‖∞ ≤ ‖x‖MR ≤
√

N‖x‖∞ (12)

and all bounds are sharp.

8



Proof. 1. Lower bounds: The case p = ∞ is trivial, since the multiresolution norm is
the maximum over a larger set.
Now consider p ∈ [1,∞). Suppose there exists x ∈ R

N such that ‖x‖p =: m and

‖x‖MR <
m

N1/p
.

Since ‖x‖∞ ≤ ‖x‖MR, we get

|xt| <
m

N1/p

for all t ∈ {1, . . . , N}. This implies

‖x‖p =

(
N∑

t=1

|xt|p
)1/p

<

(
N

mp

N

)1/p

= m,

which is a contradiction to ‖x‖p = m.
To see that the bounds cannot be improved, take vectors of the form x = (a,−a, a,−a, . . . )
for a ∈ R. Then ‖x‖∞ = ‖x‖MR = a, and ‖x‖p = N1/pa.

2. Upper bounds: Consider again the case p = ∞. Let ‖x‖∞ =: m be fixed. We
now construct a vector with the largest possible multiresolution norm. Because of
Lemma 1, we may restrict to vectors with nonnegative components. The sum over
any interval I becomes larger if we increase the absolute size of the components. The
multiresolution norm then is maximized by replacing every component by the largest
possible value m. Then

‖(m, . . . , m)‖MR = max
I∈I

|I|√|I|m = max
I∈I

√
|I|m =

√
Nm =

√
N‖(m, . . . , m)‖∞.

For p ∈ [1,∞), we use the Hölder inequality. For I ∈ I we get:

1√|I|

∣∣∣∣∣
∑
t∈I

xt

∣∣∣∣∣ ≤ 1√|I|
∑
t∈I

|xt · 1| (13)

≤ 1√|I|

(∑
t∈I

|xt|p
)1/p(∑

t∈I

1

)1−1/p

(14)

≤ ‖x‖p|I|1/2−1/p (15)

For p ∈ [1, 2], we have |I|1/2−1/p ≤ 1, and (15) leads to the upper bound in (10). To
see that this bound is sharp, take the unit vectors x = (1, 0, . . . , 0).
For p > 2, we get |I|1/2−1/p ≤ N1/2−1/p, so (15) gives the upper bound in (11).
Equality holds again for vectors of the form x = (m, . . . , m) with ‖x‖MR =

√
Nm

and ‖x‖p = N1/pm.
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Figure 2: Multiresolution, 1-, 2- and ∞-norm unit balls for N = 2

Figure 2 shows the unit balls with respect to the 1-, 2-, ∞- and multiresolution norm
for N = 2. Note that the 2-norm ball touches the multiresolution ball in ±(1/

√
2, 1/

√
2),

and p-norm unit balls for smaller p are entirely contained in the multiresolution unit ball.
This illustrates the fact that the upper bounds in (10) and (11) are different, depending
on whether p ≤ 2 or p > 2.
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