

Ulrich Flegel, Michael Meier (Eds.)

Detection of Intrusions and Malware
& Vulnerability Assessment

GI Special Interest Group SIDAR Workshop, DIMVA 2004
Dortmund, Germany, July 6-7, 2004
Proceedings

DIMVA 2004

Gesellschaft für Informatik 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46906619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Lecture Notes in Informatics (LNI) - Proceedings
Series of the Gesellschaft für Informatik (GI)

Volume P-46

ISBN 3-88579-375-X
ISSN 1617-5468

Volume Editors
Ulrich Flegel
 University of Dortmund,
 Computer Science Department, Chair VI, ISSI
 D-44221 Dortmund, Germany
 ulrich.flegel@udo.edu
Michael Meier
 Brandenburg University of Technology Cottbus,
 Computer Science Department, Chair Computer Networks
 P.O. Box 10 13 44, D-03013 Cottbus, Germany
 mm@informatik.tu-cottbus.de

Series Editorial Board
Heinrich C. Mayr, Universität Klagenfurt, Austria (Chairman, mayr@ifit.uni-klu.ac.at)
Jörg Becker, Universität Münster, Germany
Ulrich Furbach, Universität Koblenz, Germany
Axel Lehmann, Universität der Bundeswehr München, Germany
Peter Liggesmeyer, Universität Potsdam, Germany
Ernst W. Mayr, Technische Universität München, Germany
Heinrich Müller, Universität Dortmund, Germany
Heinrich Reinermann, Hochschule für Verwaltungswissenschaften Speyer, Germany
Karl-Heinz Rödiger, Universität Bremen, Germany
Sigrid Schubert, Universität Siegen, Germany

Dissertations
Dorothea Wagner, Universität Karlsruhe, Germany

Seminars
Reinhard Wilhelm, Universität des Saarlandes, Germany

 Gesellschaft für Informatik, Bonn 2004
printed by Köllen Druck+Verlag GmbH, Bonn

A Honeynet within the German Research Network –
Experiences and Results

Helmut Reiser Gereon Volker
Munich Network Management Team Munich Network Management Team

Ludwig Maximilian University Munich Technical University Munich
helmut.reiser@ifi.lmu.de gereon.volker@mytum.de

Abstract: A honeynet is a special prepared network which is not used in normal
business. It is a kind of playground to watch and learn the tactics of crackers. The only
purpose of a honeynet is to be probed, attacked or compromised. During the operation
other systems may not be harmed by an attack originated within the honeynet. In
this paper the design, realization and operation of a honeynet built within the German
Research Network (DFN) will be described. Concepts for continuously monitoring
and securing the honeynet are introduced. A selection of the results of the operation
phase will be presented as well.

1 Introduction

Due to increasing number and severity of attacks it is important for security administra-
tors to know about tactics, motives and preferred targets of their adversaries. In this paper
the design, operation and analysis of a honeynet built within the German Research Net-
work will be described. A honeynet is a screened and controlled network of honeypots.
A honeypot is a system whose single purpose is to be probed, attacked, or compromised,
by attackers. Learning the tactics, tools, and motives of attackers is one reason to build
honeypots. The other reason is to slow down an attack by engaging the attacker with a sys-
tem whose only purpose is to be attacked. The honeypot should be sufficiently interesting
for the attacker, to extend his efforts and spend a lot of time at this system. A honeynet
is not a single system but a network. Within this honeynet different types of honeypots
can be placed. The whole honeynet with all its systems is not used productively in regu-
lar business. Therefore, all traffic within this network must be originated by an attacker.
The honeynet is located therefore behind a filter (the honeywall) where all inbound and
outbound data is captured. This data is then analyzed to learn about the techniques of
attackers [Ho01].

The honeynet described here has been set up at the Leibniz–SupercomputingCenter within
the German Research Network. The German Research Network is the Internet backbone
for all universities and research institutes in Germany. In German it is called ”Deutsches
Forschungsnetz (DFN)”. DFN is the national research network with upstream connections
to the European research network Géant, to various commercial providers and the global

114 H. Reiser and G. Volker

Internet. DFN connects all research facilities and provides them Internet access and ad-
ditional services (e.g. mail, WWW, Video-Conferencing, etc.). DFN is one of the largest
Internet providers in Germany. In 2003 data transmitted per month, exceeded the petabyte
barrier. The Leibniz–SupercomputingCenter (”Leibniz Rechenzentrum”, LRZ) in Munich
operates the Scientific Network in Munich (MWN) and research facilities in the south part
of Bavaria and is directly connected to one of the core routers of the DFN. The honeynet
which will be described in this paper has been built at the LRZ. Its operation time lasted
from July 15th until September 12th 2003.

Section 2 describes the requirements, the design, the architecture and the operation of the
honeynet. Alarming mechanisms as well as analysis tools are described. The results of the
deployment are pointed out in section 3. The paper is concluded by a “lessons learned”
section and a view to further work.

2 Design, Operation and Analysis

To deploy a honeynet, three basic tasks must be carried out: data capture, data control and
data analysis. Data capture deals with the recording of all traffic which arrives or leaves
the honeynet. This must be done on several layers and on all systems within the honeynet.
For this reason a few tools are installed on the honeywall and the honeypots which are
described in the following.

Honeynets must be configured in a way that other systems cannot be harmed or attacked if
an attacker breaks into the honeynet. This is the aim of data control. Data analysis means
efficient analysis of the collected data. Therefore, tools are required which are able to help
the administrator to analyze fast growing log files (up an even more than 100 MB a day)
and to extract relevant information out of data noise.

In the following, we describe hardware and software architecture design to meet these
requirements.

2.1 Honeynet Software– and Hardware–Architecture

Based on the ideas of Lance Spitzner, one of the founders of the honeynet project [Honb], a
second-generation (Gen II) honeynet (see figure 1) has been selected for this work [Sp03].
A Gen I honeynet is placed behind a simple firewall with a capturing component. In a Gen
II honeynet the “copy of the production net” is placed behind a honeynet sensor which is
also called honeywall. The only way to reach a honeypot is throughout the honeywall.

A honeynet is a smaller copy of the network and system infrastructure within a certain
organization. Therefore it should contain systems similar to those regularly used within
the organization. In our case Linux and Windows honeypots have been placed in the
honeynet.

The honeywall is a more complex gateway, it is a bridging firewall with an intrusion detec-

A Honeynet within the German Research Network – Experiences and Results 115

CISCOSYSTEMS

Router

Internet

Production

Honeynet

Honeynet Sensor
(Honeywall)

Gen II Honeynet

log server

LinuxLinux Windows

eth2
(Honeynet Management)

eth0
(Inbound Traffic)

eth1

eth3

Linux

Figure 1: Gen II honeynet with additional log server

tion system. It has to realize two properties: The attacker should not be able to detect the
existence of the honeywall and for the operator of the honeynet it is an efficient analyzing,
filtering and controlling tool.

From the attackers point of view the honeywall acts like a bridge which means that the
honeywall is nearly “invisible” to the attacker. There is no decrement of the time-to-live
(TTL) field in the IP–Header, there is no packet routing (bridges operate on layer two of
the ISO/OSI model) and there are no MAC addresses to identify. Bridges usually use the
spanning tree protocol to detect loops. This protocol is deactivated at the honeywall during
operation. The only way to recognize the bridge respectively another system between the
attacker and a honeypot is to capture the network traffic on one of the honeypots. If the
attacker exceeds the outgoing connection limit or starts new attacks which get dropped by
the controlling component of the honeywall he might wonder why his attacks do not reach
the destination system. However in this case the attacker has already gained access to a
honeypot and left behind lots of information about his attack. Even if he realizes that he
has been bluffed, his traces can be used to reconstruct the way the attacker compromised
the honeypot.

From the honeynet operators point of view the honeywall works like an extended firewall.
All of the data passing the honeywall can be captured, and filtered. As the firewall com-
ponent does not analyze any content of packets an Intrusion Detection System (IDS) and
a controlling component is installed. The intrusion detection system is realized with snort
[snoa]. Snort controls the traffic from the Internet to the honeypots. Known attacks (es-

116 H. Reiser and G. Volker

pecially attacks on web servers) can be easily detected: snort compares each packet with
its internal database of signatures. A signature describes a kind of a patten of a known
attack. If a packet matches one of these signatures an alert is generated or an action can
be triggered. To simplify the analysis self defined signatures can be added. This feature
has been used during the analysis phase to separate data noise from interesting traffic and
new attacks. Data noise in this case is traffic which is already known and analyzed, e.g.
probes which can be seen regularly, known mass attack–attempts from certain sources or
senseless attacks like testing Windows IIS exploits on a Linux honeypot.

Snort inline [snob] is a modified version of snort. It is intended as a protection for foreign
hosts. It must be prevented that a honeypot is used as a platform for further attacks on other
systems in the Internet. Therefore the firewall forwards outgoing packets from a honeypot
to snort inline (via the queue target of iptables [ipta]). The signatures are similiar to snort
and all recognized attacks from one of the honeypots are dropped by snort inline. Even if
a worm (e.g. like Blaster or MS Slammer) or another kind of “automatic” attack reaches
one of the honeypots this will not harm other systems. One deficiency of snort is that
this kind of signature based IDS is unable to detect new attacks which are not known and
therefore not represented in the signature database. In consequence a concept is necessary
for protecting the “rest of the world” from unknown attacks.

For that purpose a controlling component has been installed to restrict the number of out-
going connections. The firewall which counts all outgoing connections could be used as
such a controlling component on the honeywall. In our case each honeypot is allowed to
have 15 outgoing connections per day (in each case for TCP, UDP and ICMP). This num-
ber is quite restrictive and the asymmetry between inbound and outbound traffic bandwidth
might give an attacker a hint that he is within an honeynet. We are aware of that problem,
however our most important requirement is to protect foreign systems from damage caused
by our honeynet.

Besides this protection and control system a data capturing concept has been implemented.
Data capture is done on all systems and on several layers:

1. All network traffic (inbound and outbound) will be dumped on the honeywall. To
log binary dumps of all packets tcpdump has been used.

2. Firewall logfiles are more general than network dumps. Several tools exist to an-
alyze these files. Analyzing the tcpdump log files is very time-consuming so it’s
much easier to get an overview of the events by firewall logfiles and select the most
interesting binary dumps with this information.

3. A mechanism to dump attacker’s keystrokes on each honeypot is required. Only with
shell inputs the attacker’s approach could be analyzed. Members of the Honeynet
Project developed some tools to dump the keystrokes: for Windows platforms exists
a tool called ComLog [com] on Unix systems Sebek [seb] is used. This tool is a
modified rootkit based on the Adore rootkit [ado]. It forwards keystrokes and even
SSH connections to a specified host. In this case these messages are forwarded to
the honeywall. The messages can’t be recognized by the attacker because Sebek
puts the data directly to the network device driver and not via the socket interface

A Honeynet within the German Research Network – Experiences and Results 117

and the TCP/IP stack of the kernel [Mc03]. The attacker does not see any suspicious
network connections. Even if he puts the network interface in promiscuous mode he
is not able to see related outgoing packets.

4. On each honeypot the local logfile entries are forwarded to a central log server.
This prevents from modifications of local logs concealing the attacker if a honeypot
has been taken over. To ensure the forwarding to the log server and to camouflage
forwarding a second syslog daemon (with a hidden configuration file) is installed
and configured on the Linux honeypot. The Windows eventlog is forwarded with
Eventlog to syslog [eve] to this log server.

Especially for forwarding of local logs a central log server is needed. The first idea was to
place it together with the honeypots within the honeynet, but in this configuration the log
server becomes another honeypot and might also be a potential aim for an attack which is
not intended. For this reason the honeywall is equipped with a fourth network interface
card where the log server is connected to.

The resulting architecture consists of a honeywall two honeypots (operating systems Win-
dows 2000 and SuSE Linux 8.0) which are connected to the honeywall (cf. figure 1). Two
interfaces on the honeywall are used for inbound and outbound honeynet traffic (eth0 and
eth1), one is a dedicated management interface to administrate the architecture remotely
(eth2) and the fourth is needed for the log server (eth3). The IP address of the manage-
ment interface is placed in a different and additionally protected subnet which can not be
reached directly from the honeynet. The log interface is protected by the firewall.

The Windows honeypot is installed without any Service Packs or patches for IIS or Win-
dows on the Linux honeypot a default installation with X environment (also without any
patches) was chosen.

The honeypots must be configured in a way that attackers should not notice the existence
of the honeynet and the honeypots must be as interesting that they will be selected as a
target for an attack. For this reason several services are set up and “attractive” names
for the systems must be found to suggest productive systems. One honeypot is named
internal.lrz-muenchen.de to indicate a host where confidential information is stored. The
other one got the name tivoli.lrz-muenchen.de to pretend a running network management
host.

The following services are configured:

• Web servers: On both honeypots are web servers installed, an Internet Information
Server (IIS) on the Windows honeypot, which is included with Microsoft Windows
2000 Professional. There are no web pages configured to pretend the installation
was done by a careless administrator who forgot this installed service. An Apache
web server with PHP is configured on the Linux honeypot. To generate content
every day two statistics of the daily traffic amount are generated by the accounting
server of the LRZ and copied to the Linux honeypot. A Perl script randomizes the
IP-addresses and stores the timestamp of the generation in a MySQL database to
implement a history function.

118 H. Reiser and G. Volker

Name Function CPU/RAM Operating System

gway.lrz-muenchen.de Honeynet sensor PIII 500 MHz SuSE Linux 8.3
128 MB RAM

tivoli.lrz-muenchen.de Honeypot I Pentium 200MHz Microsoft Windows 2000
256 MB RAM (without any Service Pack)

internal.lrz-muenchen.de Honeypot II Pentium 200MHz SuSE Linux 8.0
64 MB RAM (default installation)

logging.lrz-muenchen.de Log server Pentium 200MHz SuSE Linux 8.3
128 MB RAM

Table 1: Systems building the honeynet

• FTP servers: Both honeypots have a FTP server installed. Download-able data (a
Knoppix distribution) is available on the Windows honeypot.

• SSH server: A SSH server is installed per default on the Linux honeypot.

• Database server: The MySQL database which is used for the generation of web
pages is also directly accessible from the Internet.

In addition, users with weak passwords have been created on both honeypots to provoke
password guessing and account cracking. Table 1 summarizes the installed systems within
the honeynet.

2.2 Alarming

Operation of a honeynet is a time consuming and critical task. During operation it is nec-
essary to keep the administrator informed about the ongoing incidents in the honeynet.
Therefore different notification mechanisms were set up on the honeypots and on the gate-
way. Notifications via email was one way to inform the administrator.

In the honeynet a program called swatch [swa] watches the firewall logfile. If a new entry
was added to the logfile swatch sends out an email to predefined addresses. To restrict
the traffic and prevent a mailbox overflow limits were set: Maximum ten emails were sent
within an hour. Additionally all entries within one hour were counted. If the value of
this counter exceeds more than 25 an additional email informed the administrator. Be-
sides notifications via email Short Message Service (SMS) was used as a further alarming
mechanism which allows the administrator greater mobility. As SMS is pretty expensive
the notification via SMS was highly restricted. A maximum of two SMS per hour and only
if outgoing connections were registered were sent.

A Honeynet within the German Research Network – Experiences and Results 119

2.3 Analysis Tools

During and after operation the collected data must be analyzed. There are three main tasks:
Logfile Analysis, binary packet analyzing and investigation of the source of the attack and
the tools used. Some tools are suitable to do an offline analysis; especially web based tools
are better for online analysis. The following tools were used:

• Logfile Analysis:
The honeynet administrator had to investigate snort logs, firewall logs and honeypot
logs. To have efficient searching and querying possibilities all logfile entries were
additionally stored in a database (e.g., MySQL). To analyze snort logs ACID [aci]
was used, which is a PHP based web frontend for snort. ACID allows, for example,
to generate charts, summarize alerts, select time frames or to take a look at the
content of selected packets. All logs during the whole operation time of the honeynet
have to be accessible, therefore ACID has to cope with huge amounts of data (cf.
figure 2). The performance of the hosting system is the determining factor for ACID
response times.

The firewall was implemented using Linux iptables. To evaluate the logfiles, iptables
log, a PHP/MySQL based web frontend was used [iptb]. This tool stores every entry
of the iptables logfile in a database. With the database approach entries are easier to
read, easier to group and easier to analyze than the logfile itself.

Snort inline [snob] logs all outgoing attacks and drops them. These logs are im-
portant if a successful attack hit one of the honeypots because it’s possible to gain
information about further propagation of the attack. Also ACID could be used here.

This kind of analysis is very suitable for online analysis. If the administrator gets
informed about an incident he can easily take a look at ACID or iptables log via a
web browser.

• Binary packet analysis:
All inbound and outbound traffic was dumped via tcpdump [tcp]. Packetyzer [pac]
and Ethereal [eth] are efficient and handy tools to cope with tcpdump logfiles and
support decoding of several protocols. Packetyzer (for Windows platforms only) is
easier to handle and allows searching for patterns within captured packets. Ethe-
real is recommended for UNIX platforms. Normally binary packet analysis is done
offline.

• Investigation of the source of the attack:
One of the interesting questions during an analysis is the source (subnetwork or
domain) of an attack. An IP address doesn’t contain any information about the ge-
ographical position of the system the attacker uses. If nslookup returns a hostname
of the IP address a rough guess of the location is possible. With traceroute transit
systems between the honeynet and the attacker’s system might be determined. Un-
fortunately traceroute doesn’t determine the country where the system is located.
Visualroute [vis] shows results of traceroute on a world map using known locations

120 H. Reiser and G. Volker

of a lot of transit systems. This approach is far from being perfect, however in quite
a lot of cases it reveals helpful and useful information.

By these tools it is only possible to determine the name and the rough location of the
attacker’s system. P0f [p0f] allows to identify the operating system of the attacker’s
host by using a technique called passive fingerprinting. Unlike active fingerprinting
where packets are sent to the foreign host, passive fingerprinting uses the passing
network traffic and analyzes the TCP options [Do].

3 Results

The honeynet was in operation between July 15th and September 12th 2003. At no time
existence of the new subnet was propagated actively and no connections were made from
the honeynet to other sites, e.g. there was no mail, news or www traffic. The honeynet was
brought online at 8:55 am (GMT+1) on July 15th and two minutes later the first successful
attack — a CodeRed2 on Microsoft IIS — hit the Windows honeypot. The honeynet was
frequented quite often enabling us to collect a high amount of data (cf., figure 2).

0

1

10

100

1000

1
5
.0

7
.0

3

1
7
.0

7
.0

3

1
9
.0

7
.0

3

2
1
.0

7
.0

3

2
3
.0

7
.0

3

2
5
.0

7
.0

3

2
7
.0

7
.0

3

2
9
.0

7
.0

3

3
1
.0

7
.0

3

0
2
.0

8
.0

3

0
4
.0

8
.0

3

0
6
.0

8
.0

3

0
8
.0

8
.0

3

1
0
.0

8
.0

3

1
2
.0

8
.0

3
1
4
.0

8
.0

3

1
6
.0

8
.0

3

1
8
.0

8
.0

3

2
0
.0

8
.0

3

2
2
.0

8
.0

3

2
4
.0

8
.0

3

2
6
.0

8
.0

3

2
8
.0

8
.0

3

3
0
.0

8
.0

3

0
1
.0

9
.0

3

0
3
.0

9
.0

3

0
5
.0

9
.0

3

0
7
.0

9
.0

3

0
9
.0

9
.0

3

1
1
.0

9
.0

3

M
b
y
te

 p
e
r

D
a
y

Figure 2: Honeynet traffic

Most attacks targeted the Windows systems. Regarding the services being attacked (cf.,
figure 3) one can observe that more than half of all attacks (57 % in sum) tried to exploit
one of the plenty Windows NetBIOS vulnerabilities. The second biggest group, 36 % of
the traffic, targeted Web servers. Incidents presented in the following can be classified
in four main categories: Attacks against web servers, worm attacks, spoofing attacks and
noise traffic.

A Honeynet within the German Research Network – Experiences and Results 121

57699 (Mysterium
55808)

8% (3134)

137 (NetBIOS)
2% (699)

1434 (MS-SQL)
2% (693)

1433 (MS-SQL)
20% (612)

Other
8% (3034)

445 (NetBIOS)
13% (5145)

57 (FX Scanner)
12% (357)

1740 (Encore)
15% (456)

1080 (SOCKS)
7% (227)

17300 (Kuang2)
7% (215)

4899 (RAdmin)
5% (153)

113 (Ident)
4% (114)

27374 (SubSeven)
9% (268)

21 (FTP)
8% (257)

135 (NetBIOS)
19% (7554)

(98% (7395) blocked)

139 (NetBIOS)
13% (5298)

80 (HTTP)
36% (14339)

554 (RealServer)
12% (375)

Figure 3: Attacked ports (services) and frequency

3.1 General Observations

At the start–up of the honeynet (July 15th), additional port filters had already been enabled
on the DFN-Gateway. This filters block destination ports especially for avoiding well-
known and easy exploitable bugs in different Windows NetBIOS system (i.e. ports 135,
137, 138, 139, 445 and 593 are blocked; see [lrz]). During the operation phase it was
decided to open these ports to observe all attacks. On August 12th these filters were
disabled for the honeynet which resulted in a heavy rise of traffic per day (figure 4).

In figure 5 the number of attacks against port 80 and port 139 for both honeypots are
shown. The lines are mostly “parallel” for both systems. Even if a honeypot is not vul-
nerable the attackers tried to probe both systems. This suggest heavy tool usage and broad
scans of Script–Kiddies. Often tools have been seen which probe the kind of OS and than
stop on systems which are not vulnerable. This behavior explains the heavy differences in
the number of attacks regarding both honeypots.

An analysis on source addresses of packets arriving at the honeynet revealed interesting
aspects regarding the distribution of source domains (cf., figure 6). The transformation
used were reverse DNS lookups directly on the firewall. The vast majority of attacks
were carried out from t-dialin.net. Addresses of digital subscriber line (DSL) of
“Deutsche Telekom” are bound to this domain. For the second largest group (36%) a
reverse DNS lookup (promptly triggered by iptables) did not succeed, giving that group
the name “unknown”. IP–spoofing or IP–addresses from private networks may be possibly
the reason for this fact, although some IP–addresses simply might have no reverse lookup
defined by intention.

122 H. Reiser and G. Volker

0
25
50
75

100
125
150
175
200
225
250

15
.0

7.
03

17
.0

7.
03

19
.0

7.
03

21
.0

7.
03

23
.0

7.
03

25
.0

7.
03

27
.0

7.
03

29
.0

7.
03

31
.0

7.
03

02
.0

8.
03

04
.0

8.
03

06
.0

8.
03

08
.0

8.
03

10
.0

8.
03

12
.0

8.
03

14
.0

8.
03

16
.0

8.
03

18
.0

8.
03

20
.0

8.
03

22
.0

8.
03

24
.0

8.
03

26
.0

8.
03

28
.0

8.
03

30
.0

8.
03

01
.0

9.
03

03
.0

9.
03

05
.0

9.
03

07
.0

9.
03

09
.0

9.
03

11
.0

9.
03

Sum Different IP-addresses (Windows honeypot) Different IP-addresses (Linux honeypot)

Figure 4: Number of different registered IP–addresses per day

3.2 Web attacks

Web servers (especially Microsoft IIS based ones) frequently become victims of worm
code because of plenty and well known (but mostly unfixed) bugs in the software, e.g.
vulnerability to buffer overflows.

The IIS webservers in our honeynet was successfully hit by an attack identified as Code
Red II [dfn] only two minutes after being online. Even on the Linux honeypot, this at-
tack was recognized eight times during the two month of operation. This fact raises the
assumption that script kiddies are randomly trying to attack systems without determining
the type of the running web server software in advance.

Some attackers tried to harm the web servers by buffer overflow attacks sending large
HTML requests. In most cases the request length was 4096 characters.

3.3 Worm attacks

During the honeynet’s operation time the Blaster worm (also known as Lovsan or W32Bla-
ster [cer]) spread out over the globe. It’s first appearance at the honeynet was recognized
on August 11th at 10:56 pm. A client within the Munich Research Network (MWN) —
most likely a notebook — sent requests to port 135 over the whole network, also hitting the
Windows honeypot. Further dissemination of the worm was circumvented by snort inline
blocking outgoing TFTP request. Such a connection would have been necessary for the
worm to retrieve a file called msblaster.exe which was needed to spread further.

The worm’s impact on the Windows honeypot was to kill the remote procedure call sub-
system (RPC), causing messages in the eventlog (one approximately every 2 minutes).

A Honeynet within the German Research Network – Experiences and Results 123

1

10

100

1000

10000

1
5

.0
7

.0
3

1
7

.0
7

.0
3

1
9

.0
7

.0
3

2
1

.0
7

.0
3

2
3

.0
7

.0
3

2
5

.0
7

.0
3

2
7

.0
7

.0
3

2
9

.0
7

.0
3

3
1

.0
7

.0
3

0
2

.0
8

.0
3

0
4

.0
8

.0
3

0
6

.0
8

.0
3

0
8

.0
8

.0
3

1
0

.0
8

.0
3

1
2

.0
8

.0
3

1
4

.0
8

.0
3

1
6

.0
8

.0
3

1
8

.0
8

.0
3

2
0

.0
8

.0
3

2
2

.0
8

.0
3

2
4

.0
8

.0
3

2
6

.0
8

.0
3

2
8

.0
8

.0
3

3
0

.0
8

.0
3

0
1

.0
9

.0
3

0
3

.0
9

.0
3

0
5

.0
9

.0
3

0
7

.0
9

.0
3

0
9

.0
9

.0
3

1
1

.0
9

.0
3

Linux, Port 80 Windows, Port 80 Linux, Port 139 Windows, Port 139

Figure 5: Number of attacks on ports 80 and 139 comparing both honeypots

The system was restored to a clean state by rebooting. Finally, on August 12th at 12:30
am a new rule for dropping requests to port 135/TCP had to be added to the honeywall, as
at that time every two minutes the Windows honeypot was hit by a new attack.

On August 20th a variant of the Blaster worm (GaobotAA) [sym] hit the Windows honey-
pot. This worm also uses the RPC vulnerability but it connects via ports 139 and 445. The
execution of the worm code (a file called winhlpp32.exe (about 58 KB) was dropped
in %WindDir%\system32) inducing a connection to the worm’s source system on des-
tination port 22226 or 22227. Via that connection data could be exchanged. However
GaobotAA was not able to download code because of the former mentioned new blocking
rule for port 135. After September 7th no more attacks of this worm were recognized.

3.4 DoS-Attacks

Between August 26th and September 12th nameservers of different providers in the USA
probably became victims of denial of service (DoS) attacks. The queries’ source address
was set to one of the honeypots’ IP–address, the destination port was 53 or 80. The hosts
replied to the given IP–address sending response packets with set SYN/ACK–Flag. The
honeypots itself replied with a RST-Flag because the source port of the original query
was 1740 and this port was closed by default. The honeypots received only the spoofed
answers and were not among the intended victims.

124 H. Reiser and G. Volker

t-dialin.net
40%

unknown
36%

rr.com
1%

ne.jp
1%

wanadoo.fr
1%

verizon.net
1%

bezeqint.net
5%

mchsi.com
4%

lrz-muenchen.de
3%

cistron.nl
1%

hinet.net
1%

qwest.net
1%

aol.com
1%

hispeed.ch
2%

Other
10%

bbtec.net
1%

swbell.net
1%

Figure 6: Distribution of DNS domains (more than 250 incoming connections)

3.5 Stumbler/“Mysterium 55808”

Since the beginning of operation, packets with a very high window size were recognized
only on the Linux honeypot. The window size was set to 55808 and destination port was
always set to 57669. Intrusec [int] and ISS [iss] called the causing trojan “Stumbler” and
investigated these packets. The characteristic of Stumbler is its window size and a spoofed
source IP–addresses. The trend of this activity is shown in figure 7.

3.6 “Noise”

Lots of connection requests were registered which tried to set up a connection to known
trojan ports like Skydance respectively IRC (Port 4000), RAdmin (Port 4899), NetBus
(Port 12345), Kuang 2 (Port 17300) and SubSeven (Port 27374). None of these ports were
in listen state so all requests have been confirmed with RST. Nearly the same number of
requests were noticed on both honeypots. This is also an evidence that script kiddies tried
to find vulnerable systems by doing random scans. The same situation showed up with the
classic proxy ports (3128, 8080) and the SOCKS port (1080).

A Honeynet within the German Research Network – Experiences and Results 125

0
10
20
30
40
50
60
70
80
90

100
110
120
130

1
5

.0
7

.0
3

1
7

.0
7

.0
3

1
9

.0
7

.0
3

2
1

.0
7

.0
3

2
3

.0
7

.0
3

2
5

.0
7

.0
3

2
7

.0
7

.0
3

2
9

.0
7

.0
3

3
1

.0
7

.0
3

0
2

.0
8

.0
3

0
4

.0
8

.0
3

0
6

.0
8

.0
3

0
8

.0
8

.0
3

1
0

.0
8

.0
3

1
2

.0
8

.0
3

1
4

.0
8

.0
3

1
6

.0
8

.0
3

1
8

.0
8

.0
3

2
0

.0
8

.0
3

2
2

.0
8

.0
3

2
4

.0
8

.0
3

2
6

.0
8

.0
3

2
8

.0
8

.0
3

3
0

.0
8

.0
3

0
1

.0
9

.0
3

0
3

.0
9

.0
3

0
5

.0
9

.0
3

0
7

.0
9

.0
3

0
9

.0
9

.0
3

1
1

.0
9

.0
3

Figure 7: Received Packets per day with window size 55808

4 Lessons learned and future work

This work showed that computer systems which are placed in the Internet without pub-
lishing their exitance are under attack extremely fast. The honeynet got online and only
two minutes later the first attack took place. “Unfortunately” no “real” or “clever” hostile
take-over happened; neither to windows nor to linux. Nevertheless, it was very interesting
to watch and analyze the ongoing events in the honeynet, especially the propagation of the
Blaster worm.

The honeynet project presents the results and traces of clever attacks. However our expe-
rience was, that such attacks are quite seldom. This implies that more than 90 % of the
attacks can be defended quite easily by applying a patch for vulnerable software.

The Windows platform was the favorite target of our attackers, 69 % of the attacks aim at
this platform. On the Windows honeypot one third of all connections tried to attack the
Web server. On the Linux honeypot however we could not detect any serious or successful
attack.

A lot of our attackers can be categorized as Script–Kiddies. They are low skilled and
mostly use scripts written by more sophisticated crackers. We infer a Script–Kiddie based
on the following reasons: A lot of attacks were web attacks using tools which are available
in the Internet e.g. FX Scanner [fxs]. These tools are suited for automated attacks over
a wide range of IP-addresses and subnets (brute-force scans) without knowing anything
about existing systems and their vulnerabilities. Scans have been seen, trying to exploit a
certain OS–dependent bug, on both honeypots regardless the used operating system.
Another big group of unintentional “attackers” became infected by a worm or virus, which
started to spread out and hit the honeynet casually.

126 H. Reiser and G. Volker

Regarding the sources of the attacks: More than 40% could be assigned to systems which
use the Deutsche Telekom as ISP (based on the IP-addresses and domain names). For
the attacker such a big provider might be used as a kind of “anonymizer”. Each dial in
results in a changed IP address. Without judicial authorization it is nearly impossible to
find further informations about the “real” source of the attack.

To sum it up: Most attackers are low skilled, the favorite target of attacks was Windows es-
pecially the IIS. In most cases the security level could be improved quite easily. A firewall
blocking services which are a cinch to exploit and a patch management which operates
continuously, consequently and rapidly are the two most important building blocks for
higher security.

Deploying a honeynet the way described here and especially its operation requires a lot
of time (supervisioning and analyzing the collected data) and a lot of knowledge about
operating systems. However, a honeynet can give hints to ongoing mass attacks and very
important information about propagation and effects of such attacks (e.g. worms). A hon-
eynet can slow down an attack. It shows which systems used in the production network
are mostly attacked and which services are preferred. This insights can influence the se-
curity policy of an organization. Honeynets are very flexible and can be deployed for a
multiplicity of scenarios.

During the operation of this work several new ideas were developed to enhance and achieve
new insights e.g. how honeynets can help to fight spam. Therefore faked open proxies (e.g.
Bubblegum proxypot [pro]) are configured which pretend to anonymize the spammers’
data but this data is captured. A possible way to fight relay spam with a special sendmail
configuration is pointed out in [fig].

We are interested to compare a virtual honeynet (Honeyd [hona]) with a dedicated system.
In the virtual honeynet the honeypots are not represented as physical hosts but emulated
on a single host.

A honeynet might also be used as an Intrusion Response System (IRS) or even as an Intru-
sion Prevention System (IPS). Detection of an attack can be coupled with active defense
operations (e.g., closing ports or filtering certain sources). We are aware that this can be
double-edged sword. However defending against extremely fast automatic attacks only an
automatic defense system may help.

Acknowledgment

The authors wish to thank the members of the Munich Network Management (MNM)
Team for helpful discussions and valuable comments on previous versions of the paper.
The MNM Team directed by Prof. Dr. Heinz-Gerd Hegering is a group of researchers of
the University of Munich, the Munich University of Technology, and the Leibniz Super-
computing Center of the Bavarian Academy of Sciences. The web server of the MNM
Team is located at http://wwwmnmteam.informatik.uni-muenchen.de.

A Honeynet within the German Research Network – Experiences and Results 127

References

[aci] ACID. http://acidlab.sourceforge.net/.

[ado] Adore rootkit. https://www.team-teso.net/releases/adore-0.39b4.
tgz.

[cer] CERT Advisory CA-2003-20 W32/Blaster worm. http://www.cert.org/
advisories/CA-2003-20.html.

[com] ComLog. http://www.geocities.com/floydian_99/comlog.html.

[dfn] Code Red2 Analyse und Gegenmassnahmen. http://www.dfn-cert.de/dfn/bt/
2001/bt-2001-codered.pdf.

[Do] Doyle, B. Passive Fingerprinting Utilizing the Telnet Protocol Negotiation data. http:
//www.sans.org/resources/idfaq/fingerp_telnet.php.

[eth] Ethereal. http://www.ethereal.com/.

[eve] Eventlog to Syslog Utility. https://engineering.purdue.edu/ECN/
Resources/Documents/UNIX/evtsys.

[fig] Fighting Relay Spam the Honeypot Way. http://www.tracking-hackers.com/
solutions/sendmail.html.

[fxs] FX Scanner. http://www.der-klan.de/tools/scanner.html.

[HAN99] Hegering, H.-G., Abeck, S., und Neumair, B.: Integrated Management of Networked
Systems — Concepts, Architectures and their Operational Application. Morgan Kaufmann
Publishers, ISBN 1–55860–571–1. January 1999. 651 p.

[Ho01] Honeynet Project (Hrsg.): Know Your Enemy: Revealing the Security Tools, Tactics, and
Motives of the Blackhat Community. Addison-Wesley. 2001.

[hona] Honeyd. http://www.honeyd.org.

[Honb] The Honeynet Project. www.honeynet.org.

[Honc] The Honeynet Project: Frequently Asked Questions. http://www.honeynet.org/
misc/faq.html.

[int] Intrusec Alert: 55808 Trojan Analysis. http://www.intrusec.com/55808.html.

[ipta] iptables. http://www.netfilter.org/.

[iptb] iptables log. http://www.gege.org/iptables/.

[iss] “Stumbler” Distributed Stealth Scanning Network. http://www.iss.net/issEn/
delivery/xforce/alertdetail.jsp?oid=22441.

[lrz] Einschränkungen und Regeln im Netzbetrieb. http://www.lrz-muenchen.de/
services/netz/einschraenkung/.

[Mc03] McCarty, B.: The Honeynet Arms Race. IEEE Security and Privacy. 1(6). December
2003.

[p0f] P0f. http://lcamtuf.coredump.cx/p0f.shtml.

128 H. Reiser and G. Volker

[pac] Packetyzer. http://www.networkchemistry.com/products/packetyzer/.

[pro] Bubblegum proxypot. http://world.std.com/˜pacman/proxypot.html.

[seb] Know Your Enemy: Sebek2. http://www.honeynet.org/papers/sebek.pdf.

[snoa] Snort - The Open Source Network Intrusion Detection System. http://www.snort.
org.

[snob] Snort inline. http://sourceforge.net/projects/snort-inline/.

[Sp03] Spitzner, L.: The Honeynet Project: Trapping the Hackers. IEEE Security and Privacy.
1(2). March 2003.

[swa] Swatch. http://swatch.sourceforge.net/.

[sym] W32.HLLW.Gaobot.AA. http://www.symantec.com/avcenter/venc/data/
w32.hllw.gaobot.aa.html.

[tcp] tcpdump. http://www.tcpdump.org/.

[vis] Visualroute. http://www.visualroute.com/.

