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Abstract 

Current alarm systems on intensive care units create a very high rate of false 
positive alarms because most of them simply compare the physiological 
measurements to fixed thresholds. An improvement can be expected when 
the actual measurements are replaced by smoothed estimates of the 
underlying signal. However, classical filtering procedures are not 
appropriate for signal extraction as standard assumptions, like stationarity, 
do no hold here: the measured time series often show long periods without 
change, but also upward or downward trends, sudden shifts and numerous 
large measurement artefacts. Alternative approaches are needed to extract 
the relevant information from the data, i.e. the underlying signal of the 
monitored variables and the relevant patterns of change, like abrupt shifts 
and trends. This article reviews recent research on filter based online signal 
extraction methods which are designed for application in intensive care. 
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1 Introduction 

Monitoring systems in intensive care need to be credible tools for judging 
the state of the critically ill. Apart from the actual measurements, relevant 
patterns of change, like abrupt shifts or monotonic trends, contain essential 
information about a patient's condition. Therefore, methods are required for 
the reliable extraction of this information from the data. At the same time 
the methods have to be able to deal with many artefacts and irrelevant minor 
fluctuations. 
Most alarm systems currently used for the haemodynamic monitoring in 
intensive care are essentially based on thresholds: violations of the upper or 
lower control limit activate an alarm – sometimes after a certain offset time. 
For example, the monitoring system we study here triggers an alarm for the 
systolic arterial blood pressure if the measurements exceed the upper control 
limit or fall below the lower control limit for at least four seconds. This 
offset time is one possibility to make the system robust against single 
measurement artefacts. However, experience with real data sets suggests 
that in practice such artefacts also occur in 'patches' of several consecutive 
values. Thus, even this proceeding does not completely avoid false alarms 
(see Fig. 1). 
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Figure 1 Current alarm systems trigger false alarms, e.g. because of 

measurement artefacts.  
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Pre-processing the input data for an alarm system by robust online filtering 
can be expected to yield considerably less false alarms as it does not only 
remove single but also short patches of artefacts. We review some robust 
versions from the broad variety of filtering methods, exhibiting certain 
characteristics which are desirable in the online monitoring context. 
Measurements  from a physiological variable, recorded in short time 

intervals up to once per second, can be represented by a simple 'signal plus 
noise' model 

Ztty ∈)(

ttt uµy +=  for  Zt∈ . 

Here,  symbolises the underlying 'true' biosignal, which is assumed to 

vary smoothly with a few sudden changes, and  defines the noise 
component. This component can contain large aberrant values, e.g. due to 
measurement artefacts, which are called 'outliers' in the statistical literature. 

tµ

tu

A simple approach for extracting the signal is to use a moving average: In 
time windows of fixed length n the average of the observations is calculated 
for estimation of the signal in the window centre. Moving averages are 
popular since they trace trends and are very efficient for Gaussian samples. 
However, sudden level shifts are 'smeared' and outliers can cause a 
considerable bias (see Fig. 2). 

tµ

A running median, as suggested by Tukey [1], is robust against outliers and 
capable of tracing level shifts. This filter can resist up to [n/2] outliers 
within one time window but it deteriorates in trend periods (see also Fig. 2).  
In the following, we review filtering techniques for signal extraction which 
are robust against outliers but additionally capable of tracing trends, trend 
changes and level shifts. We compare these methods by applications to 
intensive care data, discuss their performance in situations which are of 
particular interest in the online monitoring context, and point out further 
demands for future research. 
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Figure 2 Moving average and running median applied to a time series of 
pulse measurements from intensive care. 

2 Signal Extraction Methods 

2.1 Simple Robust Regression Filters 

In view of the weakness of the running medians in trend periods, Davies, 
Fried and Gather [2] achieve a better adaptation to temporal trends by 
assuming the signal to be locally linear instead of locally constant. This 
means, within a time window centred at time point t the following model is 
applied: 

itttit εiβµy ,++=+  for  i = -m,...,m, 

where  again represents the underlying signal, and  is the slope in the 
window centre, while  describes the noise component. 

tµ tβ

itε ,

Standard methods for the estimation of  and  such as least squares 
regression are not suitable in the presence of outliers. It is rather advisable 
to apply robust regression methods which are able to deal with a certain 
amount of contamination without becoming srongly affected. Denoting the 
residuals in a window by  

tµ tβ

)
~~( iβµyr ttitit +−= ++   for  i = -m,...,m, 
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Davies, Fried and Gather [2] survey the following techniques for estimating 
 and : tµ tβ

- L1 Regression 
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- Repeated Median (RM) Regression [4] 

⎭
⎬
⎫

⎩
⎨
⎧

−

−
= ++

≠−=−= ji
yy

medmedβ jtit

ijmmjmmi

RM
t ;,...,,...,

~
 

}
~

{~
,...,

iβymedµ RM
titmmi

RM
t −= +−=

 

The LMS filter offers the highest robustness against many large outliers and 
is able to track level shifts and trend changes well. The RM filter slightly 
smoothes such changes. Nevertheless, the repeated median is considered the 
best choice for signal extraction because it does not only offer considerable 
robustness against outliers, but it is also stable w.r.t. moderate variations in 
the data. Additionally, computation of the RM filter is much faster: In [5] an 
algorithm for the RM regression line is presented which only needs linear 
time for an update. Here the term 'update' means that estimation takes place 
by using the stored information from the last time window – only inserting 
the new information given by the most current data point and deleting that 
of the oldest data point. Thus, update algorithms save a lot of computation 
time as the estimates do not have to be calculated for each window from 
scratch. 
Estimation of the parameters  and  in the centre of the time window 
means a delay of m time units for the filter output. Taking into account the 
urgency of reliable output on intensive care units, only minimal delays are 
acceptable. Thus, signal extraction as described above is rather suitable for 
retrospective analyses when applying a large window width.  

tµ tβ
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For signal extraction without time delay, Gather, Schettlinger and Fried [6] 
examine the online estimates  

mβµµ tt
online

mt
~~~ +=+ , 

estimating the signal value at the most recent time point. Since both RM and 
LMS regression show certain advantages in [2], these methods are 
considered again and compared to two further robust regression methods in 
the online situation: least trimmed squares (LTS) regression [7] and deepest 
regression (DR) [8]. 
It turns out that the differences in the outcomes between LMS and LTS 
regression are negligible, and also that there is little difference between the 
repeated median and deepest regression filters (see Fig. 3). In the online 
situation, LMS and LTS track shifts with a longer delay than their 
competitors and tend to overshoot shifts, while RM and DR show more 
stable results (see also Fig. 3). Considering the computational speed, again 
the repeated median is recommended for applications in intensive care. 
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Figure 3  Online signals extracted with four different regression filters. 
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2.2 Repeated Median Hybrid Filters 

As pointed out above, a simple RM filter does not preserve sudden level 
shifts as such but 'smears' them somewhat [2]. Heinonen and Neuvo [9], 
[10] emphasise the advantages of linear median hybrid filters for preserving 
such signal edges. FIR median hybrid (FMH) filters are computationally 
even less demanding than running medians and preserve shifts similarly 
good or even better than these. An FMH filter is defined as the median of 
several linear subfilters: 

{ }Mt medyFMH ΦΦΦ= ,,,)( K21 . 

For signal extraction from blood pressure measurements, Heinonen, Kalli, 
Turjanmaa and Neuvo [11] use a simple FMH filter with M = 3 subfilters, 
consisting of two one-sided moving averages and the central observation as 
central subfilter: 
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Similar to running medians, such simple FMH filters assume the signal to be 
locally constant. Predictive FMH (PFMH) filters use one-sided weighted 
averages instead of ordinary half-window averages for tracking linear trends 
[10]. Combined FMH filters, finally, combine the structures for a local 
constant and for a local linear signal. However, these filters can only 
remove single isolated outliers and hence, they are not sufficiently robust 
for applications in intensive care. 
Fried, Bernholt and Gather [12] construct hybrid filters based on RM 
regression to combine the robustness of the repeated median with the better 
shift preservation of FMH filters.  
Several filters are investigated, using either the central observation yt or the 
median of all observations in the window tµ~ as central subfilter. Instead of 
one-sided means they use one sided medians 

},...,{~
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F
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and instead of the one-sided weighted averages they apply one-sided RM 
filters 

}
~

...,,
~

{ F
tt

F
tmt

F
t βyβmymedRM ++= −− 1  

where F
tβ

~
is the RM slope estimate based on the observations yt-m,...,yt-1, and 

 is defined analogously for the other half of the window. Since these 
subfilters make predictions for the central value, the procedures are called 
'predictive' – or 'combined' if both, median and RM subfilters, are used. 

B
tRM

In general RM based filters are not affected by trends and attenuate 
Gaussian as well as spiky noise well. The smoothest signal estimations are 
obtained by the ordinary RM filter, but on the other hand it also smoothes 
out shifts and trend changes. In contrast, the predictive RM hybrid filter 

},,{)( B
tt

F
tt RMyRMmedyPRMH =  

can preserve trend changes and level shifts almost exactly – even within 
trends – but it attenuates Gaussian noise less efficiently, and like the other 
RM hybrid filters it is more affected by many outliers. Also, RM hybrid 
filters are designed for delayed signal extraction and hence, for online signal 
extraction different subfilters had to be applied. 
 
2.3 Nested Filters 

An approach for combining the smoothness of the moving average with the 
robustness and shift preservation of the running median is given by 
modified trimmed means (MTM) [13]. The idea is to calculate the median 
of all observations in the window and then 'trim', i.e. discard, those 
observations which deviate more than a specified multiple of a robust scale 
estimate, e.g. the median absolute deviation about the median (MAD) [14] 

|}{|~
,..., itmmi

MAD
t rmedσ +−=

= . 

The arithmetic mean of the remaining observations is then taken as signal 
estimate in the centre of the time window. These MTM estimates are both 
robust against outliers and efficient for Gaussian noise. Also, they can 
preserve large shifts in an otherwise constant level better than ordinary 
running medians [15]. 
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Since the location-based MTM deteriorates in trend periods Gather and 
Fried [16] extend this idea to the trimmed repeated median (TRM): Within 
each time window a RM regression line is fitted and the MAD calculated 
from its residuals for estimating the local variability [17]. Observations 
deviating more than a multiple of the residual MAD from the fitted line are 
trimmed, and the final signal estimate is derived by a least squares fit to the 
remaining observations. This TRM filter is almost as robust as a variant 
applying another RM regression in the second step, but it is more efficient 
for Gaussian errors.  
To further improve the preservation of shifts, Bernholt, Fried, Gather and 
Wegener [18] use a smaller window width in the first step for the initial RM 
fit. Because of the nested design of the windows for the first and the second 
regression step, the prefix 'double window' (DW) is added to the estimates 
which results in DWMRM and DWTRM (see Fig. 4). 
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Figure 4  DWTRM fit to a single time window of width n=31: In the 
second step only the observations within the trimming 
boundaries around the RM line are used to calculate the least 
squares fit. 
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Using this double window technique considerably improves the 
performance of the RM filters concerning the preservation of shifts. In 
general, shifts which are large relative to the observational noise are traced 
more accurately than smaller shifts.  
If the application allows for a relatively large outer window width, the 
signal estimation can also be improved by using a short inner window for 
the initial RM slope estimation and a larger outer window for the level 
estimation. First experiences show that the DWTRM filter seems even more 
promising for delayed signal extraction – keeping in mind the demands for 
robustness and the allowable time delay. Yet, these methods have not been 
investigated carefully in full online analysis. 
 
2.4 Weighted Repeated Median Filters 

In analogy to the popular weighted median (WM) filters, Fried, Einbeck and 
Gather [19] construct weighted repeated median (WRM) filters. While the 
former are based on the idea that a constant level is more likely for close-by 
observations, the latter filters assume the signal slope to be more likely to be 
the same in short time lags. Suitable symmetric bell-shaped (in 
delayed/retrospective analysis) or monotonic (in full online analysis) 
weighting schemes allow to use longer time windows than ordinary running 
medians or RM filters which correspond to uniform weights. 
Considering n observations (xi,yi)’, i=1,...,n, where the xi are not necessarily 
equidistant, and two sets of integer weights wi and jw~ , the weighted 

repeated median is defined by 
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Here, the operator ◦ symbolises replication, i.e. wi◦yi means that yi is 
replicated wi times. This newly defined method is then compared to L1 and 
weighted L1 filters. 
Among other things, the study determines the minimal window width which 
is necessary for the investigated methods to resist a certain number h of 
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successive outliers, while taking these deviant values into account if their 
number is larger than h. The reason for this lies in the fact that, moving a 
time window through a series of measurements, at some point the time 
series contains h subsequent outliers or 'spikes' (which are still regarded as a 
sequence of artefacts) while in the subsequent time window the presence of 
h+1 successive outliers with the same size and sign may already indicate a 
shift [20]. In this way, window widths are determined which allow for 
tracking shifts lasting at least h+1 observations while eliminating a smaller 
number of outliers.  
For the RM weighting improves the adjustment to nonlinear trends, allows 
for larger window widths, and increases the efficiency, while for the L1 
filter weighting can increase robustness and efficiency. 
For online signal extraction, the WRM filter tracks shifts better than the L1 
filter, which has some difficulties in distinguishing relevant from irrelevant 
patterns. The weighting reduces the bias of the RM, implying that the WRM 
also outperforms the standard RM filter in tracing shifts. Also, the WRM 
filter shows generally the smoothest signal estimations in application to time 
series, while the L1 filter overshoots shifts and is wiggly. In conclusion, a 
suitably designed weighted RM filter can be recommended for online signal 
extraction. In the retrospective situation the weighted L1 filters provide even 
better results than the WRM filters. Particularly for moderate outliers, 
weighted L1 filters show the least biased results and further they trace large 
shifts with a smaller time delay.  
However, if it is possible that several outlier patches occur close to each 
other and thus intrude into the same time window, the standard RM filter 
may still be the best choice because of its maximal breakdown point. 
 
2.5 Extended Robust Regression Filters 

In contrast to LMS filters, RM filters are more vulnerable to large outliers 
while they accommodate small outliers well (see e.g. [16] and [17]). Also, 
large outliers are usually easier to detect than small ones. Therefore, it is 
worthwhile to add automatic rules for outlier detection and replacement to 
the repeated median to increase the robustness of the signal estimation [21]. 
Likewise we can apply automatic rules for level shift detection to the RM 
filters investigated in [2] and [6]. 
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Similarly to the nested filters approach, an observation is regarded as outlier 
if the corresponding absolute deviation from the current regression line is 
larger than a specified multiple d of a robust scale estimation, i.e. if 

tit σdr ~⋅>+ . However, here only the next, incoming observation is screened 

for outlyingness before entering the actualised time window by 
extrapolating the previous regression line. Detected outliers are replaced and 
no longer considered in the following analysis. In this way they lose their 
influence on the estimations. For certain 'worst case' scenarios, replacing 
outliers by the simple extrapolation of the regression line, gives better 
results than other ‘down-sizing’ replacement strategies, for the price of 
reduced Gaussian efficiency.  
For the scale estimation, several robust estimators are investigated and their 
respective advantages elaborated. These are, in addition to the MAD (see 
Section 2.3), Rousseeuw's and Croux' Sn and Qn estimators [22] and the 
'length of the shortest half' (LSH) [23], [24]. The Qn and the LSH scale 
estimator give the best results in case of many large outliers of similar size, 
but the Qn provides better efficiency, especially when identical 
measurements occur, e.g. due to rounding. 
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Figure 5 Comparison of the simple (delayed) RM filter with its extended 
version including outlier and shift detection. 
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For shift detection, a simple majority rule is added to the filtering procedure: 
Considering the most recent m observations in the time window, the number 
of observations with residuals larger than a certain bound and same sign is 
counted. If this number exceeds m/2, this indicates a level shift and the 
procedure moves to the next window not overlapping the current one.  
This rule enables the regression filters to detect and thus preserve shifts, and 
hence it overcomes the biggest disadvantage of the RM filter (see Fig. 5). 
Also, the delay in following shifts decreases – ideally to a minimal delay of 
⎣m/2⎦ +1 time units. In this context, regression based filters with additional 
shift detection rules seem preferable to other shift preserving procedures 
like LMS or FMH filters.  
Further, some simple rules can be added to overcome problems in the 
infrequent case that too many observations are identified as outliers and thus 
replaced [21]. 
The rules for outlier treatment and shift detection can also be applied for 
online signal extraction. However, the minimal delay of shift detection 
cannot be reduced further because of the necessary differentiation of shifts 
and outlier patches. 

3 Applications 

The different approaches described in the previous sections, produced 
different filters which seem promising for application to online monitoring 
data from intensive care. Especially filters based on the repeated median 
show good results. However, the choice of the appropriate filter should 
depend on the characteristics of the underlying signal whenever known. 
Summarising the outcomes described above, the following recommenda-
tions can be given: For retrospective signal extraction the predictive RM 
hybrid (PRMH) filter (Sec. 2.2) seems to be the best choice if the signal is 
assumed to contain many jumps and trend changes, while the simple RM 
filter (Sec. 2.1) yields better results if many outliers but no abrupt changes 
are expected. A compromise between these two methods is given by the 
DWTRM filter (Sec. 2.3), while the RM filter in combination with 
additional rules (Sec. 2.5) works better than the simple RM filter in the 
occurrence of many outlier patches and level shifts (see Fig. 5). 
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Figure 6 Comparison of a nested RM (DWTRM) and an RM hybrid filter 
(PRMH) with the simple RM filter for retrospective application. 

For online signal extraction, the weighted version of the RM filter (Sec. 2.4) 
seems the best choice at the moment but another promising approach based 
on the RM is currently under research, adapting the window width at each 
time point. To provide a comparison of the specific benefits of the proposed 
filters, we present some applications to intensive care time series here.  
The comparison of the simple RM filter with its extended version (Sec. 2.5) 
in Fig. 5 shows how much a shift detection rule can improve the RM filter. 
However, local extremes, i.e. sudden trend changes, cannot be traced as well 
with this extended RM filter. In that case, the application of the PRMH 
(Sec. 2.2) or the DWTRM filter (Sec. 2.3) is more recommendable (see 
Fig. 6). 
In Fig. 6 we see that the predictive RM hybrid filter (PRMH) traces the 
sudden shifts and local extremes very accurately. However, the PRMH 
signal shows the largest variability, especially in relatively constant periods, 
e.g. from 14:30h to 14:40h here. The simple RM filter output is the 
smoothest but smears sudden shifts and 'cuts' local extremes. As pointed out 
before, the DWTRM signal is a compromise between the RM and the 
PRMH filter output: It is smoother than the PRMH signal but traces trend 
changes and shifts better than the RM filter. 
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Real-time application of these filters implies a time delay of half the 
window width used for the signal extraction. Therefore, filters have been 
examined for their online application without any time delay. As displayed 
in Fig. 3, simple regression filters (Sec. 2.1) are suitable for this purpose but 
even the online version of the RM filter still possesses some disadvantages – 
such as the slow reaction to level shifts. Weighted RM filters (WRM, 
Sec. 2.4), which are under current research, can possibly improve upon 
simple online RM filters. 
Online signal extraction by such methods can be used for improving 
monitoring systems for haemodynamic variables: Basing an alarm system 
on the signal instead of the actual measurements would not trigger alarms at 
the occurrence of single measurement artefacts or irrelevant patches of 
outliers. Therefore, we claim that such an alarm system will have a lower 
false alarm rate than alarm systems based on raw measurements. Fig. 7 
shows that basing the alarm system on the extracted RM online signal 
avoids false alarms due to artefacts. However, the system would still react to 
the sudden change of heart rate around 15:00h.  
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Figure 7 A filter based alarm system does not trigger alarms in case of 
measurement artefacts. 
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Figure 8 Depending on the alarm settings, the overall alarm rate of current 
monitoring systems can be very high – even in the absence of 
outliers. 
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Figure 9 A filter based alarm system can reduce the overall alarm rate 
drastically. 
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Further, an alarm system based on the data signal can also reduce the overall 
alarm rate: Fig. 8 shows half an hour of systolic arterial blood pressure 
measurements with the alarm settings and alarms triggered by the currently 
used alarm system.  
In Fig. 9 it is demonstrated that – although these data do not contain any 
measurement artefacts – an alarm system based on the filter output can 
reduce this high alarm rate considerably. This result does not imply a 
decrease of the false alarm rate. However, a decrease of the number of total 
alarms may also be considered an improvement. 
One should note that the figures and applications given here are only 
exemplary. The general superiority of a filter based alarm system has yet to 
be shown – based on a sensible and careful definition of the term 'false 
alarm'. The full assessment of such a new alarm system is one aim of a 
currently running clinical study conducted at the Hospital of the University 
of Regensburg and supported by the collaborative research centre SFB 475 
at the University of Dortmund.  

4 Discussion 

The methods recommended for univariate signal extraction here, are based 
on a simple linear regression approach. The ordinary repeated median 
regression filter improves on running medians in trend periods but lacks the 
property of preserving sudden shifts. Different approaches to overcome this 
problem have been proposed and work well for particular situations, but 
there is no ‘universal’ procedure without any deficiencies. Double window 
TRM filters are promising for delayed signal extraction while weighted RM 
filters are hopeful candidates for the online analysis.  
Further investigations show that median based filters are also robust against 
the presence of autocorrelations. Compared to procedures based on least 
squares, robust location or regression filters, based on the median, trimmed 
means or the repeated median respectively, gain relative efficiency in the 
frequent case of positive correlations. In that case, they also outperform 
filters incorporating the autocorrelations explicitly into the analysis (Fried 
[25], Fried and Gather [26]). In the infrequent situation of strong negative 
autocorrelations a Prais-Winsten transformation of the data is worthwhile 
and improves the ordinary RM filter. 
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With the linear time RM update algorithm developed by Bernholt and Fried 
[5] or its advancement to a linear storage algorithm [12], the RM filter is 
computationally feasible even for high frequency data. This update 
algorithm also means linear computation time for all of the recommended 
filters. Outlier and shift detection as described in Section 2.5 does not add 
further computation time when using e.g. an O(log n) MAD update 
algorithm [18] for the scale estimation. Thus, an RM filter with such 
extensions offers an acceptable choice for signal extraction.  
Another approach to improve the computational speed is proposed by Fried 
and Gather [27]. Dividing the time window into n2 disjoint segments, each 
of length , the level within each segment is estimated by an ordinary 
median or by repeated median regression. Then the RM, or another 
procedure, can be applied to this pre-processed output window of width n

1n

2. 
Hence, the computation time can be shrunk by a factor  when using a 

linear time algorithm and by  when using an algorithm needing quadratic 
time. 

1n
2
1n

For retrospective analyses, computation times are not as crucial as for real-
time applications but they are still important because of the possible 
magnitude of the data sets. Hence, the computability of the filters should 
always be taken into account when choosing the 'right' filter. 
For the filtering procedures described above, the window width n = 2m + 1 
has been assumed to be fixed throughout. The suitable choice of the width is 
no trivial task and depends on statistical as well as medical demands. Larger 
window widths generally imply a smoother filter output, but they also 
increase the bias at shifts.  
To tackle the problem of accurate tracing of level shifts Gather and Fried 
[16] introduce a procedure with a variable, data-adaptive choice of the 
window width for delayed signal extraction with the RM filter. This 
adaptive procedure improves the tracing of trend changes and level shifts, 
while still achieving smooth signal estimations and high robustness. 
Therefore, it is of special interest for future research to convert this method 
to the situation of signal extraction without any time delay to make it 
applicable for online monitoring in intensive care. 
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Using extracted signals for judging the patient's state of health may improve 
the work on intensive care units notably. However, the superiority of filter 
based alarm systems is a task yet to be completed, and there is still need for 
research on fully adaptable signal extraction methods best suitable in the 
online monitoring context. Nevertheless, the presented signal extraction 
filters provide a solid background for the development of enhanced alarm 
systems with lower false alarm rates. 
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