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Abstract

Long range financial data as typified by the daily returns of the Stan-
dard and Poor’s index exhibit common features such as heavy tails, long
range memory of the absolute values and clustering of periods of high and
low volatility. These and other features are often referred to as stylized
facts and parametric models for such data are required to reproduce them
in some sense. Typically this is done by simulating some data sets un-
der the model and demonstrating that the simulations also exhibits the
stylized facts. Nevertheless when the parameters of such models are to
be estimated recourse is very often taken to likelihood either in the form
of maximum likelihood or Bayes. In this paper we expound a method of
determining parameter values which depends solely on the ability of the
model to reproduce the relevant features of the data set. We introduce
a new measure of the volatility of the volatility and show how it can be
combined with the distribution of the returns and the autocorrelation of
the absolute returns to determine parameter values. We also give a para-
metric model for such data and show that it can reproduce the required
features.

1 Introduction

In Section 2 we criticize the use of universal principles, in particular those based
on likelihood, for determining the values of the parameters of a model given the
data. We argue that the reproduction of stylized facts is a necessary but not
a sufficient condition for a model to be adequate. In Section 3 a concept of
approximation is introduced and it is shown how it can be used to determine
parameter values. The stylized facts of Section 2 are augmented by a measure of
the volatility of the volatility of the data, made more precise and incorporated
into the concept of approximation. In Section 4 a stochastic model for long range
financial data is introduced and it is shown how it can reproduce the chosen
relevant features of the Standard and Poor’s index.
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2 Model Choice

2.1 Universal principles and likelihood

Given a data set xn = (x1, . . . , xn) and a parametric family P = {Pθ : θ ∈ Θ}
we call any principle for determining appropriate parameter values which is in-
dependent of the subject matter of the data a universal principle. Examples are
maximum likelihood, maximum penalized likelihood, Bayes, AIC (Akaike’s in-
formation criterion, Akaike (1973)), BIC (Bayes information criterion, Schwartz
(1978)), MDL (Minimum description length, Rissanen (1987)), and cross valida-
tion (Stone (1974)). Apart from cross validation all these methods are likelihood
based although, for the following reasons, likelihood would seem not to be an
appropriate concept within the context of model choice:

(a) Likelihood is blind.

(b) Likelihood reduces the measure of fit between data xn and a parametric
model Pθ to a single number.

(c) It is not easy to understand on what basis likelihood determines the pa-
rameter values.

(d) Likelihood is pathologically discontinuous with respect to the data and
the model.

With respect to (a) we point out that if the data are i.i.d. Cauchy and the model
is i.i.d. Gauß then the obvious inappropriateness of the model cannot be read
off from the value of likelihood or the sufficient statistics. In the case of (b) the
fit of any model to any data set is reduced to a single number irrespective of the
complexity of the data or the model. One way of understanding (c) is to consider
the Cauchy distribution. This is often used to model outliers but it is less well
known that the Cauchy distribution is peaked at the origin, more so than the
slash distribution which has similarly heavy tails (see for example Cohen 1991).
If likelihood is used to determine the values of the parameters of the Cauchy
model then it will take into account the peakedness at the origin whether this is
desired or not. Finally likelihood inherits the pathological discontinuity of the
differential operator. Models which are close at the level of random variables can
be arbitrarily far apart in the space of densities. In other contexts likelihood has
a road to play but only when it is accompanied by some form of regularization to
avoid “free lunches” (see Tukey 1993). The most obvious example is the normal
distribution which, in a well-defined sense, makes it most difficult to estimate
the mean of a distribution. In the following section we expound an alternative
approach to determining parameter values.

2.2 Long range financial data and stylized facts

Because of the aforementioned weaknesses of likelihood it is never used in its
pure form when a decision about the appropriateness of a model has to be
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made. Some form of diagnostics or model checking will be employed. In the case
of financial data it is often required that the model reproduce certain stylized
facts such as the following;

(a) large changes in and grouping of the volatility (the top panel of Figure 1
which shows the daily returns of the Standard and Poor’s index over 30
years)

(b) heavy tails (the centre panel of Figure 1 which show the quantiles of the
Standard and Poor’s data plotted against the corresponding quantiles of
the Gaussian distribution)

(c) long range memory of the absolute returns (the bottom panel of Figure 1
which show the autocorrelations of the absolute returns)

Stylized facts “concentrate on broad tendencies, ignoring individual detail”
(Kaldor 1961) and consequently the concept is not sufficiently precise to allow
the determination of parameter values.
Their use can be illustrated by the GARCH model defined as follows. The daily
returns R(t) and the volatility Σ(t) are related by

R(t) = Σ(t)Z(t) (1)

where Z(t) is standard Gaussian white noise. The model specifies

Σ(t)2 = α0 + α1Σ(t− 1)2 + β1R(t− 1)2 (2)

where the parameters α0, α1 and β1 may be obtained from the data using for
example maximum likelihood. The results for the Standard and Poor’s data are

α0 = 0.0275, α1 = 0.9248, β1 = 0.0693. (3)

Using these parameter values it is possible to simulate a data set under the
GARCH model. Corresponding to the Figure 1 we get Figure 2. It is clear that
the model reproduces the stylized facts but if this is the only criterion then the
same model would be appropriate for every data set which also exhibits the
same stylized facts. Clearly more attention to the detail is required and we do
this in the next section.

2.3 Approximating data and model choice

Following Davies (1995) we regard a stochastic model P to be an adequate
approximation to a data set xn if “typical” samples Xn(P ) of size n generated
under P “look like” the sample xn. The word “typical” is specified by a number
α, 0 < α < 1, with the interpretation that 100α% of the samples Xn(P ) are
typical. Standard values of α are the usual 0.9, 0.95 etc. The words “look like” are
to be regarded as a decision rule, usually in the form of a computer programme,
which decides whether a sample is typical. A simplified version of the idea is
the following. Given a sample xn and a model P the statistician generates a
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Figure 1: The top panel shows shows the daily returns of Standard and Poor’s
index over 30 years. The centre panel shows the quantiles of the daily returns
plotted against the quantiles of the normal distribution. The bottom panel shows
the autocorrelations of the absolute returns up to a lag of 300 days. The returns
are standardized to so that the median absolute return is 1.
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Figure 2: The top panel shows a simulation of a GARCH process using the
coefficients of (3). The centre panel shows the quantiles of the absolute values
plotted against those of the Gaussian distribution. The bottom panel shows the
autocorrelations of the absolute returns up to a lag of 300 days.
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further 999 samples X1,n(P ), . . . ,X999,n(P ) giving 1000 samples in all. If α =
0.95 the statistician specifies 950 typical samples, or equivalently, 50 atypical
samples. If the real data set xn is among the typical samples the model is
regarded as an adequate approximation: data generated under the model cannot
be distinguished from the real data. In this context Tukey (1993) writes

...we should have to say that certain aspects of the data – not
typically, but unavoidably, including “Most (modelled) observations
have irrational values !” – are not to be used in relating conceptual
(or simulated) samples to observed samples. Thought and debate
as to just which aspects are to be denied legitimacy will be both
necessary and valuable.

Those aspects which are judged to be legitimate and relevant will depend on
probability considerations and on the subject matter of the data; there are
no universal principles for making the decision and consequently no universal
principles for model choice. An example from financial data is the share price of
the German motor-car company BMW. Figure 3 shows the daily returns close
to zero and a large atom at zero itself is apparent. A decision has to be made as
to whether this aspect of the BMW data is to be declared legitimate or not. The
data also exhibit other patterns whose cause is not immediately clear but has
perhaps to do with the truncation of the share price. Again we do not consider
these to be legitimate for the purpose of approximation.
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Figure 3: The upper panel shows the daily returns of the BMW share price. The
lower panel shows the values near zero and a large atom at zero.

We make three additional comments. Firstly, although the idea of approximation
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presented above is in terms of simulations these are not always necessary as the
definition of “looks like” can sometimes be derived analytically. Secondly, if the
parameter space is infinitely dimensional as in non-parametric regression the
idea of approximation has to be augmented by considerations of simplicity. We
refer to Davies and Kovac (2001) and (2004). Thirdly, in the above the degree of
closeness of a probability model to the data is measured in a certain sense by the
number α which specifies the word “typical”. In some cases what is statistically
relevant may be irrelevant within the conceptual framework within which the
data were gathered. A peak may be statistically significant but irrelevant for
the physicist or engineer who produced the data. In such case the measure of
closeness may be one which is not expressed in terms of probability.

3 Approximating Financial Data

3.1 Quantiles and long range memory

As argued above it will not be sufficient for a model to simply reproduce the
stylized facts and more attention to detail is necessary. If we consider the stylized
fact of heavy tails then we will not only require that the model reproduce the
heavy tails but also that simulated quantiles are close to the quantiles of the
data set we are seeking to model. Careful thought about how this may best be
done is necessary. We may make a conscious decision not to model any zeros
which the real data may exhibit (Figure 3). We may also make a conscious
decision not to model the outliers which are present in the Standard and Poor’s
data (Figure 1). This may be done by restricting attention to the 0 − 0.99–
quantiles and we shall now do so. In the following we shall treat the positive
and negative returns on the same basis and consider only the quantiles of the
absolute values of the returns. Using the parameters (3) we can simulate samples
of the same size n = 9558 as the Standard and Poor’s data and for each sample
we can calculate a quantile curve (p,Q(p)), p = 0, . . . , 0.99.On the basis of 10000
simulations we calculate lower and upper bounds so that 98% of all simulated
quantile curves lie between the two bounds. The upper panel of Figure 4 shows
the results together with the corresponding quantile curve (denoted by stars)
for the Standard and Poor’s data. Because of the scale of the upper panel it
is not possible to distinguish between the lower bound and the Standard and
Poor’s quantiles. For values of p up to about 0.7 the Standard and Poor’s curve
lies below the lower bound as is shown in the lower panel of Figure 4 which
plots the difference between the two curves. In this sense the quantiles of the
GARCH process are somewhat too large. More relevant is the fact that many
GARCH simulations results in very large quantiles and a model which does this
may well be not acceptable. A similar situation holds for the autocorrelations as
shown in Figure 5. The upper and lower bounds again contain about 98% of all
simulated autocorrelation curves and the autocorrelation curve of the Standard
and Poor’s process lies well between them. Again, a model which produces such
large variations may not be regarded as satisfactory although it is by no means
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Figure 4: The upper panel shows the lower and upper bounds for the quantile
curves of a GARCH process with parameters given by (3). About 98% of the
simulated curves lie between the two bounds. The quantile curve for the Stan-
dard and Poor’s data is shown by the starred line. The lower panel shows the
difference between the quantile curve of the Standard and Poor’s data and the
lower bound.

easy failing any relevant theory or empirical evidence to decide on what degree
of variation is acceptable.

3.2 The volatility of the volatility

Figure 6 allows a direct comparison of the Standard and Poor’s data shown in
the top panel of Figure 1 and the GARCH simulation in the top panel of Figure
2. To aid comparison the Standard and Poor’s data has been truncated to the
same scale. There are similarities and differences. One of the differences is the
presence of outliers in the Standard and Poor’s data which we have chosen to
ignore. It is sometimes difficult to quantify perceived differences. It is easy to
recognize a friend’s photograph amongst many photographs of strangers but
not easy to write a computer programme to perform this task automatically.
Sometimes theory may help to specify relevant differences but in its absence
it is a matter of trial and error. A close visual inspection of the two processes
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Figure 5: The panel shows the upper and lower bounds for autocorrelations of
the absolute values of a GARCH process with parameters given by (3). About
98% of all autocorrelation functions lie between these two bounds. The starred
curve gives the corresponding autocorrelations for the Standard and Poor’s data.

indicates, at least to the author, that the Standard and Poor’s data exhibits more
frequent changes in volatility, the volatility of the volatility, than the simulated
data. As the volatility of the volatility may be a relevant factor we now attempt
to quantify it. We take a non-parametric approach. Applying the model (1) to
real data (denoted by lower case letters) we look for a decomposition of the form

r(i) = σ(i)z(i) (4)

where the r(i) are the recorded daily returns. The σ(i) and z(i) are confounded
but in accordance with the model (1) we intend to choose the σ(i) so that the
z(i) “looks like” standard Gaussian noise. We make this precise on noting that
(1) implies

∑

i∈I

R(i)2

Σ(i)2
=
∑

i∈I
Z(i)2 D

= χ2(|I |) (5)

where χ2(k) denotes a chi-squared random variable with k degrees of freedom
and |I | denotes the number of points i in the interval I. As (5) holds for every
interval I we are lead to the following system of inequalities

qu((1− αn)/2, |I |) ≤
∑

i∈I

r(i)2

σ(i)2
≤ qu((1 + αn)/2, |I |), I ∈ I. (6)

where qu(α, k) denotes the α–quantile of a chi-squared random variable with k
degrees of freedom and I is a family of intervals I . The default choice of αn is

αn = 1− 2 exp(−1.15 log(n))/
√

4.3π log(n) (7)
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Figure 6: The upper panel shows the simulated GARCH process of Figure 2.
The lower panel shows the Standard and Poor’s data of Figure 1 truncated to
the size of the GARCH simulation.

which corresponds to the choice
√

2.3 log(n) for the threshold in Davies and
Kovac (2001). The inequalities (6) alone do not determine the σ(i) and, as in
other non-parametric problems, some form of regularization is required. The
one we choose is to take σ(t) to be piecewise constant and then to minimize the
number of intervals of constancy subject to (6). This leads to an optimization
problem for the data at hand (Davies and Kovac 2001 and 2004) whose exact
solution is not algorithmically simple. We propose the following procedure. We
start with the first observation r(1) and note that the volatility σ1 for the first
interval of constancy satisfies the inequalities

σl(1) ≤ σ(1) ≤ σu(1)

where the lower and bounds σl(1) and σu(1) are given by

σu(1) =
√
r(1)2/qu((1− αn)/2, 1) (8)

σl(1) =
√
r(1)2/qu((1 + αn)/2, 1). (9)
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If the first interval contains t observations with lower and upper bounds σl(t)
and σu(t) respectively the bounds for the first t+ 1 observations are given by

σu(t+ 1)2 =

min



σu(t)2, min

1≤j≤t+1




t+1∑

i=j

r(i)2/qu((1− αn)/2, t+ 2− j)







 (10)

σl(t+ 1)2 =

max



σl(t)

2, max
1≤j≤t+1




t+1∑

i=j

r(i)2/qu((1 + αn)/2, t+ 2− j)







 . (11)

If for some t we have σu(t) < σl(t) then the inequalities cannot be satisfied for a
constant volatility and we start with a new interval. In practice we are somewhat
more restrictive as, for reasons of interpretability, we wish the squared volatility
σ(I)2 over an interval I of constancy to be the mean of the squared returns over
that interval, σ(I)2 =

∑
i∈I r(i)

2/|I |. Because of this we check at each stage the
mean lies between the the squares of the lower and upper bounds

σl(t)
2 ≤ 1

|I |
∑

i∈I
r(i)2 ≤ σu(t)2. (12)

and if this is not so we start with a new interval.

Using this procedure we can quantify the volatility of the volatility by the num-
ber of intervals of constancy and also by the distribution function of the lengths
of the intervals, that is, the sojourn times at the different volatilities. In the case
of Gaussian white noise for sample sizes from n = 500 to 10000 the procedure
results in one interval of constancy in about 60% of the cases and the mean
number of intervals is about 1.6.

The top panel of Figure 7 shows the Standard and Poor’s data with the 49
intervals of constancy. The centre panel shows the observations 2001-3000. The
bottom panel shows the distribution function of the sojourn times at a constant
volatility. The shorter these are, the more often the volatility changes. The
Standard and Poor’s data results in 49 intervals of constancy. We can now use
this quantification of the volatility of the volatility can be reproduced by the
GARCH model. The 98% bounds for the numbers of intervals of constancy
are 27–43 with a mean value of 34.95. This confirms the impression that the
volatility of the volatility for the GARCH model is too low. Figure 8 shows the
98% bounds for the distribution function of the sojourn times together with the
distribution function for the Standard and Poor’s data. It is seen that it does
not lie within the bounds so again the model is not able to reproduce this aspect
of the data.
Mercurio and Spokoiny (2000) also give a non-parametric piecewise constant
volatility analysis of financial data based on the idea of adaptive weighted
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Figure 7: The top panel shows the Standard and Poor’s data with 49 intervals
of constant volatility. The centre panel shows the observations 2001–3000. The
bottom panels shows the distribution function of the sojourn times.
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Figure 8: The upper and lower bounds for the distribution function of the so-
journ times for the GARCH process and the distribution function of the sojourn
times for the Standard and Poor’s data (starred line).

smoothing (see Polzehl and Spokoiny 2002). Although their method is concep-
tually different and based on local behaviour rather than some form of global
regularization the results are very similar. Peters (2003) uses a piecewise con-
stant volatility model based on a piecewise linearization of the quadratic varia-
tion process. He applies the method to high frequency data whereas we use only
daily data.

3.3 Combining the features

The features defined by the quantiles of the absolute returns, the autocorrelation
function of the absolute returns, the number of intervals of constant volatility
and the distribution of the sojourn times at the volatility levels may be combined
in that we require a typical sample generated under the model to reproduce all
four features. We have done this using a probabilistic definition of approximation
and spent 0.02=1-0.98 of probability on each feature. This leads to a value of
the alpha which quantifies “typical” of at least 1−0.08 = 0.92. The features are
however related and the actual value of α will probably exceed the lower bound
of 0.92. On the basis of 10000 simulations a more accurate value for α for the
Standard and Poor’s data is 0.947. A model will be an adequate approximation
if the corresponding quantities for the real data lie within the specified bounds.
The results for the Standard and Poor’s data and the GARCH model with
parameters given by (3) is that only the autocorrelation function of the Standard
and Poor’s data lies within the corresponding bounds. We conclude that the
model is not an adequate approximation. The results for the German motor-car
company BMW are similar. The maximum likelihood parameter values for the
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GARCH model are

α0 = 0.0579, α1 = 0.8473, β1 = 0.1327 (13)

and it turns out that none of the four features lies within the bounds. The limits
for the number of intervals for example are 45 and 66 whereas the BMW data
have 73 intervals.
Other models for such time series include COGARCH, continuous GARCH,
non-Gaussian Ornstein-Uhlenbeck models, cascade models, non-linear adaptive
systems models and genetic adaptive learning models have also been proposed.
We refer to Embrechts, Klüppelberg and Mikosch 1997, Mikosch and Stărciă
1999, Barndorff-Nielsen and Shephard (2001) and (2002), Hommes (2002), Lux
and Schornstein (2002), Mikosch 2003, Lux 2003, Klüppelberg, Lindner and
Maller (2004) and (2005) and the references given there. Initial indications are
that these models cannot reproduce all the four features simultaneously but
an exhaustive investigation remains to be carried out. In the next section we
propose another model which does seem able to reproduce these features at least
for some financial data series.

4 A Stochastic Model for Volatility

4.1 A finer scale for the volatility

In the model (1) the volatility Sigma(t) and the white noise process Z(t) are
confounded. They can be separated by proposing a model for Σ(t) such as a
GARCH model or, as in the last section, by regularizing Σ(t) in some manner.
Specific models differ by their specification of the volatility process Σ(t) and
we now use non-parametric piecewise constant volatility idea to help in the
construction of a model for the volatility. If we replace the αn of (7) by α =
0.99 then for the Standard and Poor’s data we obtain 453 intervals of constant
volatility. Figure 9 shows the plot of their logarithms. It suggests that to a first
approximation the log-volatility can be modelled by a stationary process with
long range memory. Figure 10 plots the sojourn times against the volatility level
for the volatility process of Figure 9. It is clear that the sojourn times are small
both for high and low volatilities.

4.2 A stochastic model for the volatility

We start with a stationary process X to model the log-volatility. We take X to
have a spectral density of the form

f(ω) = (1− α)λ1 exp(−λ1ω) + αλ2 exp(−λ2ω) + δ, 0 ≤ ω ≤ 2π, (14)

where λ1, λ2, δ ≥ 0 and α, 0 ≤ α ≤ 1 are parameters. The initial volatility
process is

Σ0(t) = exp(σX(t)) (15)
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Figure 9: The upper panel shows the logarithm of the piecewise constant volatil-
ities for the Standard and Poor’s data with αn = 0.99. The lower panel shows
the observations 1:1000.

where σ > 0 is a further parameter. We model the sojourn times at a particular
volatility level as follows. Given a sample Σ0(i), i = 1, . . . ,m we put

τ(i) = bcΣ0(i)E(i)/(1 + exp(bΣ0(i)))c (16)

where b and c are further parameters and the E(i) are independently and ex-
ponentially distributed random variables with mean 1. The functional form of
(16) is suggested by Figure 10 where the sojourn time is small for small and
large volatilities. The volatility is initially Σ0(1) and remains at this level for a
time τ(1) after which it changes to Σ0(2) and remains at this level for a time
τ(2) and so forth. We denote this volatility by Σ(t). The final process R(t) is
then given by (1) with Z(t) standard Gaussian white noise. This model has in
all seven parameters, λ1, λ2, δ, α, σ, b and c.

4.3 Model choice

Given data r(1), . . . , r(n) and the model of the previous section we must now
determine which parameter values if any give an adequate model for the data.
As argued above this means that simulated data should “look like” the real data
in certain respects which are judged to be relevant. The ones we have chosen are
the marginal distributions of the returns, the autocorrelations of the absolute
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Figure 10: Standard and Poor’s sojourn times plotted against volatility with
α = 0.99upto a standardized (median 1) volatility of 10.

terms, the number of intervals of constant volatility and the distribution of the
sojourn times Section 3.2. The parameter values we use for the Standard and
Poor’s data are

λ1 = 10, λ2 = 600, α = 0.60, δ = 0.4, σ = 0.47, b = 0.5, c = 100. (17)

Figure 11 shows the results for the quantiles of the absolute returns, the au-
tocorrelations and the distribution function of the sojourn times of constant
volatility. As for the GARCH model the bounds are chosen so that under the
model the values for the simulated data lie within the bounds with probability
about 0.98 for each feature separately. The results for the number of intervals
give an upper bound of 62, a lower bound of 38 and a mean value of 50.40
compared with 49 intervals for the Standard and Poor’s data. It is seen that the
model of Section 4.2 with the parameter value (17) can reproduce these features
of the Standard and Poor’s data and in this precise sense it is an adequate ap-
proximation. The value of α which quantifies the word “typical” is at least 0.92.
Simulations give a more accurate value of 0.945.
The number of intervals of constant volatility for the BMW data is 73 which is
well outside the limits 49–62 for the Standard and Poor’s data. This shows that
the parameter values (17) do not give an adequate approximation for the BMW
data. The set of parameter values A(xn) which are an adequate approximation
for a data set is called an approximation region in Davies (1995). Although it has
certain similarities with, and occasionally coincides with, a confidence interval it
is somewhat different. An adequacy region can be empty which means that there
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Figure 11: Model of Section 4.2: The top panel shows the bounds for the quan-
tiles of the absolute returns, the mean values and the values for the Standard
and Poor’s data. The centre panel shows the the bounds for the autocorrelations
of the absolute returns, the mean autocorrelations and the autocorrelations for
the Standard and Poor’s data.The bottom panel shows the distribution func-
tion of the sojourn times, the mean distribution function and the distribution
function for the Standard and Poor’s data.

is no adequate model in the models class under consideration. Any reasonable
procedure fro model choice must include this option.
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