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Summary. We analyze multivariate binary time series using a mixed

parameterization in terms of the conditional expectations given the past

and the pairwise canonical interactions among contemporaneous variables.

This allows consistent inference on the influence of past variables even if the

contemporaneous associations are misspecified. Particularly, we can detect

and test Granger non-causalities since they correspond to zero parameter

values.

1 Introduction

In multivariate time series analysis we want to measure the associations

among the variables and identify lead-lag relationships. This is useful for

predicting future outcomes and for identifying causal mechanisms using the

concept of Granger causality (Granger, 1969). This concept is based on the

common sense that a cause must precede its effect in time.

Observation-driven transitional models are natural candidates for mod-

elling dynamic interactions within multivariate binary time series since they

condition explicitly on the history of the process. We use a likelihood ap-

proach assuming the conditional distribution of the contemporaneous vari-

ables given the past to lie within the quadratic exponential family (Zhao
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and Prentice, 1990), adapting the mixed parameterization in terms of con-

ditional expectations and the canonical pairwise interactions (Fitzmaurice

and Laird, 1993) to the dynamic situation. This allows consistent estima-

tion of the influences of the past even if the contemporaneous association

structure is misspecified. Additionally, it allows straightforward detection

of conditional independencies implying Granger non-causalities among the

process variables (Dahlhaus and Eichler, 2003).

Section 2 introduces the mixed parameterization model for multivariate

binary time series. Section 3 proposes model fitting based on conditional

likelihood and asymptotic tests. Section 4 presents some simulation results.

2 The model

Let MV (t) = (M1(t), . . . ,Md(t))
′, t ∈ Z, be a d-variate process of binary

variables indexed by v ∈ V = {1, . . . , d}. We restrict ourselves to multi-

plicative models (Cox, 1972) for the contemporaneous association structure,

which belong to the quadratic exponential family (Zhao and Prentice, 1990)

and only consider pairwise interactions. We further assume the process to

have a memory of p observations. Denoting the past of the process at time

t by mV (t − 1) = (mV (t − 1),mV (t − 2), . . .), the conditional multivariate

model for the outcome mV (t) ∈ {0, 1}d reads

pr(mV (t)|mV (t − 1)) = ∆(t)−1 exp {mV (t)′ψV (t) + wV (t)′λV } , (1)

where ∆(t) =
∑

mV (t)∈{0,1}d

exp {mV (t)′ψV (t) + wV (t)′λV } ,

and wV (t) = (m1(t)m2(t), . . . ,m2(t)m3(t), . . . ,md−1(t)md(t))
′
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is a d(d − 1)/2 × 1-vector of all different pairwise products from mV (t).

By WV (t) as usual we denote the corresponding random vector. The time-

variant main effects ψV (t) = (ψ1(t), . . . , ψd(t))
′ include the influences of the

past, while the elements of λV are log conditional odds ratios describing pair-

wise interactions, which are assumed to be time-invariant. The normalizing

constant ∆(t) depends on the past mV (t − 1) and the model parameters.

The parameters in this log-linear representation are not restricted.

While Liang and Zeger (1989) implicitly model the canonical parameters

ψV (t) and λV , we follow Zeger and Liang (1991) and model the conditional

expectation πV (t) = E(MV (t)|mV (t − 1)) given the past. In this we make

use of the mixed parameterization of the quadratic exponential family in

terms of the (marginal) expectations and the log conditional odds ratios

λV (Fitzmaurice and Laird, 1993). Conditioning on the past we introduce

past effects via the conditional mean πV (t) = (πv(t))v∈V as it is common

practice in the Gaussian framework. We transform the canonical parameters

(ψV (t), λV ) to (πV (t), λV ) and use the logit link h(πv(t)) = log{πv(t)/[1 −

πv(t)]} = µv(t) for the conditional mean,

πv(t) = E [Mv(t)|mV (t − 1)] = h−1(µv(t)) =
exp(µv(t))

1 + exp(µv(t))
(2)

where µV (t) = φV +

p
∑

h=1

ΦV (h)mV (t − h) .

The matrices ΦV (h) = (φvw(h))v,w∈V , h = 1, . . . , p, describe the time-

invariant effects of past observations, and φV determines the probabilities

of ones which are not induced by others.

In the mixed parameterization model arising from (1) and (2), λvw = 0

means that the variables Mv(t) and Mw(t) are conditionally independent

given the past MV (t−1) and the other variables at time t, MV \{v,w}(t). More
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interestingly, φvw(h) = 0 implies that Mv(t) is independent from Mw(t− h)

given the other past observations, MV (t−1)\{Mw(t−h)}. We can further

deduce that Mv(t) is conditionally independent from the past Mw(t − 1)

of variable w given the past of the other variables if all φvw(h) = 0, h =

1, . . . , p. Variable w is Granger non-causal for v in this case. This model can

be seen as a binary analogue of a Gaussian VAR model parameterized via the

inverse covariance matrix instead of the covariance matrix as investigated

in (Dahlhaus and Eichler, 2003).

3 Model fitting

We derive conditional likelihood estimates and asymptotic tests for the

mixed parameterization model. The tests allow to detect zero parameters,

and this in turn allows specification of (non-)causalities among the process

variables.

3.1 Likelihood estimation

Let in the following β be a vector of mean parameters comprising all ele-

ments of φV , ΦV (1), . . . , ΦV (p), while θ = (β′, λ′)′ contains all parameters

in the conditional means π(t) and the contemporaneous associations λ. We

drop the index V in this section for simplicity, always referring to the set

of all variables. Denoting the follow-up time by T and conditioning on the

first p observations, the conditional log-likelihood reads

ℓ(θ) =
T

∑

t=p+1

ℓt(θ) =
T

∑

t=p+1

[m(t)′ψ(t) + w(t)′λ − log ∆(t)] .
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Let X(t) be the design matrix with past observations, η(t) = E(W (t)|m(t−

1)), V11(t) = cov(M(t)|m(t − 1)), V21(t) = cov(W (t),M(t)|m(t − 1)), and

V22(t) = cov(W (t)|m(t−1)). Evaluating the partial derivatives, (β̂, λ̂) solves

T
∑

t=p+1







∂ℓt
∂β
∂ℓt
∂λ






=

T
∑

t=p+1







X(t)′D(t)V −1
11 (t) [m(t) − π(t)]

{

w(t) − η(t) − V21(t)V
−1
11 (t) [m(t) − π(t)]

}






= 0 .

Here, D(t) = diag(var(M(t)|m(t−1)) is a diagonal matrix, which, like π(t),

depends only on β, while η(t), V11(t), V21(t) and V22(t) depend on β and λ.

The conditional information matrix GT turns out to be block-diagonal,

GT =
T

∑

t=p+1







X(t)′D(t)V −1
11 (t)D(t)X(t) 0

0 V22(t) − V21(t)V
−1
11 (t)V21(t)

′






,

implying that the parameters β and λ modelling the influences of the past

and the contemporaneous associations are orthogonal: estimation of β is ro-

bust against misspecification of the contemporaneous associations, and the

asymptotic variance of β̂ remains the same whether λ is known or estimated

(Cox and Reid, 1987, 1989).

The conditional ML estimates can be obtained using Fisher scoring.

Denoting the estimates obtained in step j of the algorithm by the superscript

(j), the recursions read

β̂(j+1) = β̂(j) +
{

∑

X(t)′D(t)(j)V −1
11 (t)(j)D(t)(j)X(t)

}−1

×
∑

X(t)′D(t)(j)V −1
11 (t)(j)

[

m(t) − π(t)(j)
]

λ̂(j+1) = λ̂(j) +

{

∑

[

V22(t)
(j) − V21(t)

(j)V −1
11 (t)(j)

(

V21(t)
(j)

)′
]}−1

×
T

∑

t=1

{

w(t) − η(t)(j) − V21(t)
(j)V −1

11 (t)(j)
[

m(t) − π(t)(j)
]}

.

Evaluation of these scoring equations is complicated by the fact that the

conditional probability distribution is needed for all time points t to calcu-

late moments of up to fourth order, but there is no closed form expressing
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the joint probabilities as function of π(t) and λ. We follow Fitzmaurice and

Laird (1993) and apply iterative proportional fitting (Deming and Stephan,

1940) of the cell probabilities given the current estimates within each Fisher

scoring step. Given λ(j), we construct 2d tables, St(λ
(j)) with these condi-

tional log odds ratios. Using iterative proportional fitting with St(λ
(j)) as

start table, we then fit the margins π(t)(j) to the table. For the resulting 2d

tables of cell probabilities we get E[M(t)|m(t−1)] = π(t)(j) and conditional

log-odds λ(j), and thus we can use them to update η(t), V11(t), V21(t) and

V22(t). We can save computation time by once evaluating all 2dp possible

such tables in each step j instead of calculating the tables for all T −p time

points individually.

3.2 Parameter tests

For derivation of the asymptotic distribution of the estimators we can adapt

results of Kaufmann (1987) for categorical time series to our context: The

probability that a unique conditional maximum likelihood estimate exists

converges to one. Any sequence {(β̂′
T , λ̂′

T )′} of MLEs is consistent and

asymptotically normal,

(

G
1/2
T

)′







β̂T

λ̂T







d
→ N(0, I),

where we use a square root like the Cholesky one for standardization.

Application of the Wald statistic

θ̂′C ′[CG−1
T (θ̂)C ′]−1Cθ̂

allows to test general linear hypotheses Cθ = 0 for arbitrary matrices C

with appropriate dimensions; particularly, for a given order p we can test
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the significance of subsets of past variables using the estimates obtained for

the saturated model.

As noted before, β̂ is consistent regardless whether the contemporaneous

dependence structure has been correctly specified or not since β and λ are

orthogonal. However, the standardization by the conditional Fisher infor-

mation matrix can give inconsistent estimates of the asymptotic variance of

β̂. A robust alternative is the sandwich estimate, which is not sensitive to

the specification of the association structure (Boos, 1992).

4 Simulations

For illustration, we fit the mixed parameterization model to 3-variate time

series, using the memory p = 1 and the logit link. We hence need to estimate

a total of 15 parameters in β = (φ1, φ11(1), . . . , φ13(1), . . . , φ3, φ31(1), . . . , φ33(1))′

and λ = (λ12, λ13, λ23)
′ ∈ R

3. The design matrix for the conditional mean

is

X(t) =













1 m1(t − 1) . . . md(t − 1)

...
...

...

1 m1(t − 1) . . . md(t − 1)













.

4.1 White noise

First we check whether the Wald tests for the individual significance of

the parameters preserve their level in finite samples of several sizes T =

200, 500, 1000. We generate 3-variate binary time series of independent

observations by discretizing a Gaussian white noise process {YV (t)} with

covariance matrix being the identity, using 1.0 (2.0) as threshold, i.e. we
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set mv(t) = 1 iff for the corresponding Gaussian observation yv(t) > 1.0

(2.0). Thus, all the binary variables are independent, and we expect about

16% (2.5%) of the binary observations to be 1’s for each variable.

Table 1 presents the percentage of cases a parameter describing a past

influence was (incorrectly) found to be distinct from zero within 500 rep-

etitions for each of T = 200, 500, 1000, averaging over all φvw(1), v, w ∈

{1, 2, 3}. The likelihood-based tests using the conditional information ma-

trix for standardization seem to be slightly conservative, both in case of a

large and a small probability of ones.

The tests based on the sandwich covariance matrix also preserve the

significance level well if the probabilities of zeros and ones are about the

same. If the probability of a one is small, however, i.e. if a one is a rare

event, the tests based on the sandwich covariance matrix exceed their levels

largely rejecting the null hypothesis in most of the cases. A large sample

size seems necessary to distinguish zero and non-zero parameters using the

sandwich estimate.

The left hand side of Table 2 shows the percentage of cases in which

the order p = 1 was found to be significant against the null hypothesis

p = 0. Again a Wald test based on either the conditional information

or the sandwich covariance matrix with a significance level α = 10% is

used instead of a simpler score test. The test based on the conditional

information seems to be conservative in samples of moderate size, but this

conservatism diminishes with increasing sample size. In moderately large

samples, the test based on the sandwich estimator seems only useful if zeros

and ones are approximately balanced, see the huge percentage of cases p = 1
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Table 1: Empirical significance levels of tests for the dependence param-

eters φvw(1) at α = 5% for several sample sizes T , using the conditional

information matrix (CI) or the sandwich estimate (SE) for standardization.

Results for 16% (left) and for 2.5% probability of a ‘one’ (right).

T CI SE CI SE

200 3.2% 3.8% 4.0% 94.7%

500 3.7% 3.7% 3.6% 80.1%

1000 4.1% 4.1% 3.9% 63.1%

is incorrectly found to be necessary if there are 2.5% ones; even in case of

a balanced occurrence of zeros and ones it can be somewhat liberal if the

sample is small. This behavior can be explained by the often much larger

variance of the sandwich estimator as compared to a correctly specified

model-based variance estimator, see Kauermann and Carroll (2001).

4.2 VAR(1) process

To check the power of the tests for detecting relevant parameters we consider

two settings with p = 1 and contemporaneously conditionally independent

observations, i.e. λ12 = λ13 = λ23 = 0. The second setting corresponds to

ones being rare events:

1) φv = −2, v = 1, 2, 3; φ21(1) = 1, φ32(1) = 0.5, all other φvw(1) = 0.

This implies P (M2(t) = 1|M1(t − 1) = 0) = P (M3(t) = 1|M2(t −

1) = 0) = 11.9%, but P (M2(t) = 1|M1(t − 1) = 1) = 26.9% and

P (M3(t) = 1|M2(t − 1) = 1) = 18.2%, i.e. an increase of 125% and

53%, respectively.
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Table 2: Percentage of cases (out of 500) in which p = 1 was found to be

significant vs. the null p = 0 at level α = 10% if the true p = 0 or p = 1.

Results for 16% (left) and for 2.5% probability of a one (right). Tests based

on the conditional information (CI) and the sandwich estimate (SE).

p = 0 p = 1 p = 0 p = 1

T CI SE CI SE CI SE CI SE

200 5.4% 15.2% 33.4% 67.0% 2.0% 82.0% 4.8% 83.2%

500 7.0% 9.6% 70.6% 73.6% 5.8% 88.6% 10.0% 89.6%

1000 8.0% 8.2% 94.8% 95.0% 6.4% 95.8% 10.6% 91.4%

2) φv = −4, v = 1, 2, 3; φ21(1) = 1, φ32(1) = 0.5, all other φvw(1) = 0.

This implies P (M2(t) = 1|M1(t − 1) = 0) = P (M3(t) = 1|M2(t −

1) = 0) = 1.8%, but P (M2(t) = 1|M1(t − 1) = 1) = 4.75% and

P (M3(t) = 1|M2(t − 1) = 1) = 2.93%, i.e. an increase of 164% and

61%, respectively.

Table 3 presents the percentage of cases in 500 repetitions in which the

parameters were found to be individually significant. Inference based on

the conditional information matrix has considerable power in setting 1),

but much smaller power in setting 2) where preceding ones in the causing

variables cause a similar relative increase of risk, but on a much smaller level.

Anyway, the power increases with increasing series length, and it is higher

for a larger effect φvw(1). The empirical error rates of first type strengthen

the previous statements on the significance level. Similarly, the necessity of

a memory p = 1 can be detected with high certainty in setting 1), while in

setting 2) longer series seem necessary given the small magnitudes of the
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Table 3: Percentage of cases in which the parameters were significant at

level α = 5% for several sample sizes T , using the conditional information

matrix (CI, left) or the sandwich estimate (SE, right). Results for setting

1) (top) and 2) (bottom).

T φ21(1) φ32(1) others φ21(1) φ32(1) others

200 45.6% 20.2% 4.1% 46.2% 22.0% 9.9%

500 80.6% 34.4% 3.9% 80.8% 33.8% 4.0%

1000 97.6% 52.2% 4.7% 97.6% 52.2% 4.7%

200 10.8% 7.2% 4.9% 95.4% 96.2% 96.6%

500 15.0% 8.0% 5.1% 84.0% 84.2% 90.1%

1000 17.0% 8.2% 3.4% 62.8% 70.4% 77.0%

5000 46.6% 13.4% 3.5% 48.2% 21.0% 15.3%

effects, see Table 2.

When using the sandwich estimate in setting 1), we get almost the same

results as before if the length of the series is at least T = 500. For T = 200

we get almost the same detection rate, but at the expense of a considerably

larger false discovery rate. In setting 2), the tests using the sandwich stan-

dardization are not able to distinguish zero and non-zero parameter values

unless we have several thousand observations available.

5 Conclusion

We have proposed a likelihood approach to modelling multivariate binary

time series that allows detection of Granger (non-)causalities among the
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process variables. Asymptotic tests for zero parameter values and hence

non-causalities have been provided. For a simple and feasible approach,

we have applied some restrictive, but common assumptions like the non-

existence of higher order interactions and invariance of conditional odds

ratios. The severeness of these assumptions is reduced by the orthogonality

of the past and the contemporaneous associations. Likelihood estimation of

the former is consistent even if the contemporaneous association structure

is misspecified. Nevertheless, testing for zero parameter values depends

on the validity of the underlying assumptions since the sandwich estimate

seems unreliable in samples of moderate size if ones are rare events. This

observation and the many other possible modelling assumptions underline

the importance of careful model checking and comparison.
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