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Abstract

The Metropolis algorithm is simulated annealing with a fixed temperature. Surprisingly enough,
many problems cannot be solved more efficiently by simulated annealing than by the Metropolis
algorithm with the best temperature. The problem of finding a natural example (artificial examples
are known) where simulated annealing outperforms the Metropolis algorithm for all temperatures has
been discussed by Jerrum and Sinclair (1996) as “an outstanding open problem”. This problem is
solved here. The examples are simple instances of the well-known minimum spanning tree problem.
Moreover, it is investigated which instances of the minimum spanning tree problem can be solved
efficiently by simulated annealing. This is motivated by the aim to develop further methods to analyze
the simulated annealing process.

1 Introduction

Simple randomized search heuristics like randomized local search (RLS), the Metropolis algorithm (MA),
simulated annealing (SA), evolutionary algorithms (EA), and genetic algorithms (GA) find many applica-
tions. One cannot hope that they outperform sophisticated problem-specific algorithms for well-studied
problems. They are easy to implement and good alternatives if one does not know efficient problem-
specific algorithms and if one shies away from developing a clever algorithm. They are the tool of choice
in black-box optimization where the problem instance is hidden from the algorithm. And they are useful
as parts of hybrid algorithms combining general search principles with problem-specific modules.

Hence, it is interesting to understand the working principles behind these heuristics. The aim is to analyze
the expected optimization time and the success probability within a given time bound of heuristics applied
to specific problems. Up to now there are not many of such results. One reason is that the heuristics are
not designed to support their analysis (in contrast to many problem-specific algorithms). To simplify the
problem many authors have first investigated quite artificial problems hoping to develop methods which
can be used in many other situations.

Here, we are interested in simulated annealing and the Metropolis algorithm (which can be defined as
SA with a fixed temperature). Both algorithms are defined in Section ??. It is an obvious question how
to use the freedom to choose a cooling schedule for SA and whether this option is essential. Little is
known about this leading Jerrum and Sinclair (1996, page 516) to the following statement: “It remains
an outstanding open problem to exhibit a natural example in which simulated annealing with any non-
trivial cooling schedule provably outperforms the Metropolis algorithm at a carefully chosen fixed value

∗Supported in part by the Deutsche Forschungsgemeinschaft (DFG) as part of the Collaborative Research Center “Com-
putational Intelligence” (SFB 531) and by the German-Israeli Foundation (GIF) in the project “Robustness Aspects of
Algorithms”.
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Figure 1: Graphs called connected triangles.

of α.” In their paper, α is the temperature. The notion of a “natural example” is vague, but the known
examples are obviously artificial. Sorkin (1991) has proven the considered effect for a so-called fractal
energy landscape. The chaotic behavior of this function asks for different temperatures in different phases
of the search. The artificial example due to Droste, Jansen, and Wegener (2001) has a simpler analysis.

Jerrum and Sorkin (1998) have analyzed the Metropolis algorithm for the graph bisection problem.
They focus the interest on problems from combinatorial optimization: “Unfortunately no combinato-
rial optimization problem that has been subjected to rigorous theoretical analysis has been exhibited
this phenomenon: those problems that can be solved efficiently by simulated annealing can be solved
just as effectively by “annealing” at a single carefully selected temperature. A rigorous demonstration
that annealing is provably beneficial for some natural optimization problems would rate as a significant
theoretical advance.”

Our problem of choice is the minimum spanning tree problem (MSTP) which is contained in all textbooks
on combinatorial optimization and should be accepted as “natural optimization problem”. It should be
obvious that SA cannot beat MA for each problem instance. E. g., for graphs where all edge weights equal
1 the frozen MA (at temperature 0) cannot be beaten by SA. In Section ??, we describe the notion of
efficiency for randomized search heuristics and, in Section ??, we describe simple instances of the MSTP
where SA outperforms MA. The underlying graphs will be so-called connected triangles (CT), see Figure
??.

The idea is to produce examples as simple as possible. This allows proofs which can be taught in
introductory courses on randomized search heuristics. Afterwards, we try to understand which instances
of the MSTP can be solved efficiently by SA or MA. Weights w1, . . . , wm are called (1 + ε)-separated if
wi > wj implies wi ≥ (1 + ε) · wj . For each ε(m) = o(1) there are graphs with (1 + ε(m))-separated
weights such that SA cannot attack them efficiently (Section ??). For each constant ε > 0, SA can attack
all graphs with (1 + ε)-separated weights efficiently (Section ??). We finish with some conclusions.

It should be obvious that we do not hope that SA or MA beats the well-known algorithms due to Kruskal
and to Prim. Again we like to transfer a statement of Jerrum and Sorkin (1998) from minimum bisections
to minimum spanning trees (MSTs): “Our main contribution is not, then, to provide a particularly
effective algorithm for the minimum bisection problem . . . , but to analyze the performance of a popular
heuristic applied to a reasonably realistic problem in combinatorial optimization.”

2 Metropolis Algorithm, Simulated Annealing, and Minimum
Spanning Trees

An instance of the MSTP consists of an undirected graph G = (V, E) with n vertices and m edges and
a weight w(e) for each edge e. Weights are positive integers. The problem is to find an edge set E′

connecting all vertices with minimal total weight. The edges are numbered and edge sets are described
as characteristic vectors, i. e., x ∈ {0, 1}m describes the set of edges ei where xi = 1. This formalization
is well-suited for MA and SA.

We describe the Metropolis algorithm with temperature T for minimization problems on {0, 1}m. The
first search point x is chosen in some way discussed later. Each round of an infinite loop consists of local
change and selection.

Local change: Let x be the current search point. Choose i ∈ {1, . . . , m} uniformly at random and flip
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xi, i. e., let x′ = (x′
1, . . . , x

′
m) where x′

j = xj , if j �= i, and x′
i = 1 − xi.

Selection of the new current search point with respect to a fitness function f : if f(x′) ≤ f(x): select x′,
if f(x′) > f(x): select x′ with probability exp{−(f(x′) − f(x))/T}, otherwise select x.

We have to discuss some details in order to ensure that our results are not based on too special choices.
Randomized search heuristics do not produce a certificate that a search point is optimal. Therefore, the
algorithm contains an infinite loop, but the run time is defined as the number of rounds until an optimal
search point is produced. A round cannot be performed in time O(1) but quite efficiently and people
have agreed to count the number of rounds.

We choose 1m as starting point. This is similar to the choice 0m for the maximum matching problem
(Sasaki and Hajek (1988)) and the maximum clique problem (Jerrum (1992)). The starting points are
the worst legal solutions. This choice of the starting point implies that we cannot apply the lower bound
technique for MA due to Sasaki (1991) which ensures only the existence of some bad starting point. It
would be an alternative to start with a search point chosen uniformly at random. For many graphs, we
then choose a non-legal solution (an unconnected graph) and the fitness function has to contain hints
directing the search to legal search points. This is not the typical choice in MA and SA but not unusual
for EAs (see Giel and Wegener (2003) who analyzed RLS with 1-bit and 2-bit flips and a simple EA for
the maximum matching problem).

We have chosen the fitness function f where f(x) = ∞ for search points x describing unconnected graphs
and where f(x) is the total weight of all chosen edges if x describes a connected graph. Unconnected
graphs are never accepted as current search points. This again is in accordance with Sasaki and Hajek
(1988) and Jerrum (1992). All search points are legal solutions in the graph bisection problem and
therefore Jerrum and Sorkin (1993, 1998) start with randomly chosen search points.

We follow Sasaki and Hajek (1988) and Jerrum (1992) in allowing only 1-bit neighborhoods. Neumann and
Wegener (2004) have analyzed RLS with 1-bit and 2-bit flips (RLS equals the frozen MA at temperature
T = 0) and a simple EA for the MSTP. These algorithms do not select new search points which are
worse than the old one. Hence, their search strategy is completely different from the strategy applied
by MA and SA that have to accept sometimes worsenings to find the optimum. Flips of two bits allow
to include an edge into a tree and to exclude simultaneously an edge of the newly created cycle. RLS
and the simple EA find an MST in an expected number of O(m2(log m + log wmax)) steps, where wmax

denotes the maximal weight.

Finally, we introduce SA based on a cooling schedule T (t). The initial temperature T (1) may depend on
m and the largest possible weight wmax. The temperature T (t) applied by the selection operator in step
t equals αt−1 ·T (1), where α < 1 is a constant which may depend on m and wmax. This cooling schedule
does not include any knowledge about the problem instance. We use a kind of “continuous cooling”, other
possibilities are longer phases with a constant temperature or dynamic cooling schedules that depend on
the success rate (where a step is called successful if x′ is selected) or the rate of f -improving steps.

3 Efficiency Measures

There are many well-known convergence results on MA and SA. We want to distinguish ”efficient behav-
ior” from non-efficient one. The first idea is to define efficiency as expected polynomial time. We think
that this is not a good choice. There may be a small probability of missing a good event for temperatures
in some interval [T1, T2]. For temperatures smaller than T1 it may be very unlikely that the good event
happens. This may cause a superpolynomial or even exponential expected run time although the run
time is polynomially bounded with overwhelming probability.

Definition 3.1: Let A be a randomized search heuristic (RSH) running for a polynomial number of p(m)
rounds and let s(m) be the success probability, i. e., the probability that A finds an optimal search point
within this phase. A is called
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– successful, if s(m) ≥ 1/q(m) for some polynomial q(m),

– highly successful, if s(m) ≥ 1 − 1/q(m) for some polynomial q(m), and

– successful with overwhelming probability, if s(m) = 1 − e−Ω(mε) for some ε > 0.

One can be satisfied with successful RSHs, since then multistart variants are successful with overwhelming
probability and have an expected polynomial run time. This is true even if the polynomials p and q are
unknown. The following multistart variant of an RSH A works with two parameters r0 and t0 that have
to be polynomially bounded with respect to m. One can think of r0 = 1 and t0 = m.

Definition 3.2 (A multistart variant of an RSH A working in phases): Phase i, i ≥ 0: Perform
ri := 2i · r0 independent runs of A and stop each run after ti := 2i · t0 rounds.

We analyze this multistart variant of A assuming that A is successful with respect to p(m) and q(m).
Let

u(m) := max {�p(m)/t0�, �q(m)/r0�} .

Pessimistically, we assume that the phases 0, . . . , k := �log u(m)� are unsuccessful. Their total cost is

r0t0(40 + · · · + 4k) = O(u(m)2 · r0 · t0).
In phase i > k, we have 2i · r0 ≥ 2i−kq(m) runs working 2i · t0 ≥ 2i−kp(m) steps each. The probability
that this phase is unsuccessful is bounded above by

(1 − 1/q(m))q(m)·2i−k

= e−Ω(2i−k).

Its cost is 4i · r0 · t0 = O(u(m)2 · r0 · t0 · 4i−k). This implies that the multistart variant is successful with
overwhelming probability. Moreover, its expected cost is bounded by

O(u(m)2 · r0 · t0) · (1 +
∑

1≤j<∞
4j · e−Ω(2j)) = O(u(m)2 · r0 · t0)

and, therefore, polynomially bounded. Multistart variants are quite popular in applications.

An RSH is called unsuccessful if, for each poynomial p, the success probability within p(m) steps is
o(m−k) for each constant k. This emplies a superpolynomial expected optimization time. Moreover,
multistart variants do not help.

4 Simulated Annealing Beats Metropolis on Some Simple Graphs

Our plan is to present simple graphs where SA beats MA for each temperature. The graphs should
allow proofs as simple as possible. The idea behind the chosen graphs is the following. The problem to
compute an MST on graphs with many two-connected components is separable, i. e., an MST consists of
MSTs on the two-connected components. We investigate graphs where each two-connected component
can be handled easily by MA with a well-chosen temperature, but different components need different
temperatures. To keep the analysis easy the components have constant size. This implies that, for high
temperatures, each component can be optimized, but the solutions are not stable. They are destroyed
from time to time and then reconstructed. Therefore, it is unlikely that all the components are optimized
simultaneously. SA can handle these graphs efficiently.

As announced, we investigate connected triangles (CT), see Figure ??, with m = 6n edges. The number
of triangles equals 2n and the number of vertices equals 4n + 1. The weight profile (w1, w2, w3) of a
triangle is simply the ordered vector of the three edge weights. We investigate CTs with n triangles with
weight profile (1, 1, m) and n triangles with weight profile (m2, m2, m3). The unique MST consists of all
edges of weight 1 or m2.
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Theorem 4.1: The probability that the Metropolis algorithm applied to CTs with n triangles with weight
profile (1, 1, m) and n triangles with weight profile (m2, m2, m3) computes the MST within ecm steps (c a
positive constant which is small enough) is bounded above by e−Ω(m), i. e., MA is unsuccessful on these
instances.

Proof: We distinguish the cases of high temperature (T ≥ m) and low temperature (T < m).

The low temperature case is easy. We do not care about the triangles with weight profile (1, 1, m) and
assume that all search points contain optimal subsolutions for these triangles. For each other triangle,
MA accepts the exclusion of the first flipping edge. By Chernoff bounds, with probability 1− 2−Ω(m), we
obtain Ω(m) triangles where the first spanning tree contains the heavy edge. In order to obtain the MST
it is necessary to include the missing edge of weight m2. If this edge is chosen to flip, the probability of
selecting the new search point equals e−m2/T ≤ e−m. Hence, the success probability within em/2 steps is
e−Ω(m).

In the high temperature case, we do not care about the heavy triangles and assume that they are
optimized. For the light triangles, we distinguish between complete triangles (the search point chooses all
three edges), optimal triangles (the two weight-1 edges are chosen), and bad triangles. The status of each
triangle starts with “complete” and follows a Markov chain with the following transition probabilities:

complete optimal bad
complete 1 − 3/m 1/m 2/m
optimal 1

m · e−m/T 1 − 1
m · e−m/T 0

bad 1
m · e−1/T 0 1 − 1

m · e−1/T

Let Xt be the number of optimal triangles after time step t, i. e., X0 = 0. We are waiting for the first
point of time t when Xt = n. Obviously, |Xt+1 − Xt| ≤ 1. Moreover,

Prob(Xt+1 = a + 1 | Xt = a) ≤ n − a

m

since it is necessary to flip the heaviest edge in one of the at most n − a complete triangles, and

Prob(Xt+1 = a − 1 | Xt = a) =
a

m
· e−m/T ≥ a

3m

since T ≥ m and since it is necessary to flip the heaviest edge in one of the optimal triangles and to
accept the new search point. Since we are interested in lower bounds, we use the upper bound for the
probability of increasing a and the lower bound for the probability of decreasing a. Ignoring steps not
changing a, we obtain the following transition probabilities for the new Markov chain Yt:

Prob(Yt+1 = a − 1|Yt = a) =
a/(3m)

a/(3m) + (n − a)/m
=

a

3n − 2a
.

There has to be a phase where the Y -value increases from (10/11)n to n without reaching (9/11)n. In
such a phase the probability of decreasing steps is bounded below by (9/11)n

3n−(18/11)n = 3
5 . Applying results

on the gambler’s ruin problem, the probability that one phase starting at a = (10/11)n and finishing at
a = (9/11)n or a = n stops at a = n is bounded above by

((3/2)n/11 − 1)/((3/2)2n/11 − 1) = e−Ω(m)

since the probability of decreasing steps is at least by a factor of 3/2 larger than the probability of
increasing steps. Hence, the probability of finding the MST within ecm steps, c > 0 small enough, is
bounded by e−Ω(m). �

Theorem 4.2: Let p be a polynomial and let the cooling schedule be described by T (1) = m3 and α =
1− 1/(cm) for some constant c > 0. If c is large enough, the probability that simulated annealing applied
to CTs with n (1, 1, m)-triangles and n (m2, m2, m3)-triangles computes the MST within 3cm lnm steps
is bounded below by 1 − 1/p(m).
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Proof: We only investigate the search until the temperature drops below 1. This phase has a length of
at most 3cm ln m steps and contains two subphases where the temperature is in the interval [m2, m5/2]
or in the interval [1, m1/2]. The length of each subphase is at least (c/4)m lnm.

If T ≤ m5/2, the probability of including an edge of weight m3 is bounded above by e−m1/2
. Each run

where such an event happens is considered as unsuccessful. If T ∈ [m2, m5/2] and an (m2, m2, m3)-triangle
is optimal, this triangle remains optimal unless the event considered above happens. Applying Chernoff
bounds to each edge and choosing c large enough, the probability of not flipping edges of each triangle
at least c′′ log m times is bounded by m−k, c′′ > 0 and k arbitrary constants. This is a second source
of bad behavior. Now, we investigate one (m2, m2, m3)-triangle and the steps flipping one of its edges.
For each complete or bad triangle, there is a chance that it turns into optimal within the next two steps
concerning this triangle. This happens if the right two edges flip in the right order (probability 1/9) and
the inclusion of the edge with weight m2 is accepted (probability e−m2/T ≥ e−1). The probability of not
having a good pair among the at least (c′′/2) log m step pairs, can be made much smaller than m−k by
choosing c′′ large enough. Altogether, the probability that the first subphase does not finish with MSTs
on all (m2, m2, m3)-triangles can be made smaller than 1/(3p(m)).

The same calculations for T ∈ [1, m1/2] and the (1, 1, m)-triangles show that the probability that the
second subphase does not finish with MSTs on all (1, 1, m)-triangles can be made smaller than 1/(3p(m)).
Finally, the probability that an (m2, m2, m3)-triangle has turned from optimal into non-optimal after the
first subphase is smaller than 1/(3p(m)). This proves the theorem. �

We have proved that SA is highly successful for the considered graph instances. It is easy to choose a
cooling schedule such that SA is even successful with overwhelming probability, e. g., T (1) = m3 and
α = 1 − 1/m2.

The result is also interesting if one likes to compare SA with RLS (allowing flips of two edges in one
step) and a simple EA. The last two algorithms find MSTs for all graphs with polynomial edge weights in
an expected number of O(m2 log m) steps, see Neumann and Wegener (2004). They also have described
graphs where the algorithms have an expected optimization time of Θ(m2 log m). Applying their methods
it is not difficult to prove that RLS and the EA need Ω(m2 log m) steps on the graphs considered here
even with high probability. The algorithms do not accept f -increasing steps and have to wait for steps
flipping a suitable pair of edges. For each edge pair, the probability for such a step is Θ(1/m2). SA is
more efficient since it can perform the steps “inclusion” and “exclusion” sequentially. The time bound
O(m log m) is optimal for all graphs with m ≥ (1 + ε)n edges and a unique MST. It is necessary that
Ω(m) specified edges flip and then the bound Ω(m log m) follows from the coupon collector’s theorem.

This section contains the result announced in the title of the paper. In the remaining sections, we
investigate which graphs can be handled efficiently by MA or SA.

5 Connected Triangles With the Same Weight Profile

It is interesting to understand how much different weights have to differ such that MA or SA is able to
construct efficiently an MST. For this reason, we investigate graphs consisting of connected triangles in
more detail. In this section, we consider the case of n CTs with the same weight profile (w, w, (1+ε(m))·w)
where ε(m) > 0. We distinguish the cases where ε(m) is bounded below by a positive constant ε and the
case where ε(m) = o(1).

Theorem 5.1: If ε(m) ≥ ε > 0, MA with an appropriate temperature finds the MST on CTs with n
(w, w, (1+ε(m))·w)-triangles in expected polynomial time and is successful with overwhelming probability.

Proof: A good temperature has to fulfil two properties:

• It has to be low enough to distinguish w-edges effectively from (1 + ε) · w-edges.
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• It has to be high enough to allow the inclusion of a w-edge in expected polynomial time.

We choose γ := 3/ε and T := w/(γ · ln m). The probability to accept the inclusion of a w-edge equals
e−w/T = m−γ while the corresponding probability for a ((1 + ε(m)) · w)-edge equals m−γ·(1+ε(m)) ≤
m−γ−3. We analyze the success probability of a phase of length mγ+2 starting with an arbitrary connected
graph. The event to accept the inclusion of a heavy edge is considered as an unsuccessful phase. The
probability of this event is bounded above by 1/m. Following the lines of the proof of Theorem 2 we have
for each triangle with overwhelming probability Ω(mγ+1) steps flipping an edge of this triangle which
we partition into Ω(mγ+1) pairs of consecutive steps. The probability that a complete or bad triangle is
turned within such two steps into an optimal one is Ω(m−γ). Hence, with overwhelming probability, all
triangles turn into optimal during this phase and with probability at least 1−1/m none of them is turned
into non-optimal. Hence, the expected number of phases is O(1) and the probability that a sequence of
m phases is unsuccessful is exponentially small. �

It is obvious how to tune the parameters in order to get improved run times. We omit such calculations
which do not need new ideas. SA finds the MST in polynomial time with a probability exponentially close
to 1 if it starts with T (1) := w/(γ · ln m) and has a cooling schedule such that T (mα+3) ≥ w/(γ′ · ln m)
where γ′ ≥ max{(1/10)γ, γ − 1/10}. This follows in the same way as Theorem 3.

Theorem 5.2: If ε(m) = o(1), MA and SA are unsuccessful on CTs with
n (w, w, (1 + ε(m)) · w)-triangles.

Proof: First, we investigate MA. The search starts with n complete triangles and each one has a prob-
ability of 2/3 to be turned into a bad one before it is turned into an optimal one. With overwhelming
probability, at least n/2 bad triangles are created where the missing w-edge has to be included in order
to be able to turn it into an optimal triangle. The probability of including a w-edge within a polynomial
number of p(m) steps is bounded above by p(m) · e−w/T . This is bounded below by Ω(m−k) only if
e−w/T = Ω(m−γ) for some constant γ > 0. Hence, we can assume that T ≥ w/(γ · ln m) for some
constant γ > 0.

Let p∗(T ) be the probability of accepting the inclusion of a w-edge and p∗∗(T ) the corresponding proba-
bility for a ((1 + ε(m)) · w)-edge. Since T ≥ w/(γ · ln m) and ε(m) = o(1),

p∗(T )/p∗∗(T ) = e−w/T · e(1+ε(m))·w/T

= eε(m)·w/T

≤ eε(m)·γ·ln m

= mε(m)·γ .

Choosing m large enough, this gets smaller than any mδ, δ > 0. It will turn out that this advantage of
w-edges against ((1 + ε(m)) · w)-edges is too small. The stochastic process behind MA can be described
by the parameters b (number of bad triangles) and c (number of complete triangles). We use the potential
function 2b+ c which starts with the value n and has the value 0 for the MST. The value of the potential
function changes in the following way:

• It increases by 1 if a complete triangle turns into a bad one or an optimal one turns into a complete
one. The probability of the first event equals 2c/m, since we have to flip one of the two light edges
of one of the complete triangles. The probability of the second event equals p∗∗(T ) · (n − b − c)/m
since we have to flip the heavy edge in one of the n− b− c optimal triangles and to accept this flip.

• It decreases by 1 if a complete triangle turns into an optimal one (probability c/m) or a bad triangle
turns into a complete one (probability p∗(T ) · b/m).

• It remains unchanged, otherwise.
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Since we are interested in lower bounds on the optimization time, we can ignore all non-accepted steps,
i. e., all steps not changing the potential. If b ≤ n1/2 and m is large enough, the probability that an
accepted step increases the potential is at least 3/5. This claim is equivalent to

2c/m + p∗∗(T ) · (n − b − c)/m

2c/m + p∗∗(T ) · (n − b − c)/m + c/m + p∗(T ) · b/m ≥ 3
5

which is equivalent to

2c + p∗∗(T ) · (n − b − c) ≥ 9
5
c +

3
5
· p∗∗(T ) · (n − b − c) +

3
5
p∗(T ) · b

and
1
5
c +

2
5
p∗∗(T ) · (n − b − c) ≥ 3

5
· p∗(T ) · b.

This is obviously true if c ≥ 3 · b. Otherwise, n − b − c ≥ n − 4b ≥ n − 4n1/2 and it is sufficient to show
that

2 · p∗∗(T ) · (n − 4n1/2) ≥ 3 · p∗(T ) · n1/2

or
p∗(T )/p∗∗(T ) ≤ 2

3
(n1/2 − 4).

We have shown that this holds for large enough m, since n = Ω(m). The claim for MA follows now from
results on the gambler’s ruin problem. The probability to start with a potential of n1/2/2 and to reach the
value 0 before the value n1/2 is exponentially small. Finally, we investigate a polynomial number of p(m)
steps of SA. Let d be chosen such that p(m) ≤ md. We claim that it is unlikely that the potential drops
below n1/2/4 within md steps. With overwhelming probability, we produce a bad triangle. Therefore, it
is necessary to accept the inclusion of a w-edge. Hence, as seen above, only steps where the temperature
is at least w/(γ · ln m) for some appropriate constant γ > 0 have to be considered. However, the analysis
of MA treats all these temperatures in the same way. The probability to start with a potential of n1/2/2
and to reach the value n1/2/4 before (3/4)n1/2 is still exponentially small. �

6 Simulated Annealing is Successful for (1+ε)-separated Weights

We have seen in Theorem ?? that MA and even SA are unsuccessful on certain graphs if we allow
that different weights may differ by a factor of 1 + ε(m) where ε(m) is an arbitrary function such that
ε(m) = o(1). Here, we prove that SA is highly successful on all graphs if the different weights differ at
least by a factor of 1 + ε for some constant ε > 0.

Before proving this result, we repeat some well-known facts about MSTs. Let E1, . . . , Er be the partition
of the edge set E such that all edges in Ei have the same weight Wi and W1 > · · · > Wr. Let ci, 1 ≤ i ≤
r + 1, be the number of connected components of Gi := (V, Ei ∪ · · · ∪ Er). Each MST contains exactly
ai := ci+1 − ci Ei-edges such that the chosen edges from Ei ∪ · · · ∪Er span the connected components of
Gi. A set E∗

i of ai Ei-edges is called optimal if G∗
i := (V, E∗

i ∪ Ei+1 ∪ · · · ∪ Er) has the same connected
components as Gi. An MST contains exactly the edges of optimal sets E∗

1 , . . . , E∗
r . The set E∗

i is
not necessarily uniquely defined. The idea of the proof is the following. There is some point of time
ti, 1 ≤ i ≤ r + 1, such that, with large probability, the following holds. After step ti, no inclusion of an
edge from E1∪· · ·∪Ei is accepted and at step ti the current search point has chosen among all Ej-edges,
1 ≤ j ≤ i − 1, an optimal subset E∗

j . This implies that after step ti no edges from E1 ∪ · · · ∪ Ei−1 are
included (the first property) or excluded (this would destroy the connectedness of the graph described
by the search point). Moreover, no edges from Ei are included and we hope to exclude enough Ei-edges
until step ti+1 such that then the search point chooses an optimal set E∗

i of Ei-edges. Note that after
time step ti the set of chosen Ei-edges is always a superset of an optimal set E∗

i since, otherwise, the
considered graph would be unconnected. Finally, the properties imply that at step tr+1 the search point
describes an MST.

8



Theorem 6.1: Let the weights of the edges be bounded by 2m and (1 + ε)-separated for some constant
ε > 0, i. e., wi > wj implies wi ≥ (1+ε) ·wj . SA with an appropriate cooling schedule is highly successful
when searching for an MST on such graphs.

Proof: Let T (1) := 2m, γ := 8/ε, α be the cooling factor such that it takes mγ+7 steps to decrease the
temperature from T to T/(1 + ε/2), and β be defined by (1 + ε/2)β = 2. Then we set tr+1 := 2βmγ+8.
Until step tr+1, the temperature has dropped (far) below 1/m. Our claim is that, with a probability of
1 − O(1/m), the search point at step tr+1 describes an MST.

To follow the proof strategy discussed above let ti, 1 ≤ i ≤ r, be the earliest point of time when T (ti) ≤
Wi/((1 + ε) · γ · ln m). The probability of accepting the inclusion of an edge of weight Wi after step
ti is bounded above by m−γ−8. During the next mγ+7 steps, with overwhelming probability, there are
O(mγ+6) steps flipping a specified edge and the probability to accept this edge at least once is O(1/m2).
Afterwards, the temperature has dropped by a factor of 1/(1 + ε/2). The probability to accept this
edge is then bounded by m−γ−12 and the probability to accept the edge during the next mγ+7 steps is
O(1/m5). This argumentation can be continued implying that the probability to accept the inclusion of
the considered edge after step ti is O(1/m2). Hence, with probability 1 − O(1/m), it holds that, for all
i, edges of weight Wi are not included after step ti. In the following, we assume that this event holds.

We assume that at step ti the search point chooses optimal sets E∗
1 , . . . , E∗

i−1 and a superset E′
i of an

optimal set E∗
i . This is obviously true for i = 1. We analyze the steps ti, . . . , ti + mγ+7 − 1. The

probability to accept an edge with weight w ≤ Wi+1 in one step is bounded below by m−γ−4 during this
phase. By our assumption, we do not include edges of weight w ≥ Wi. Let bi := |E′

i| − |E∗
i | at step ti.

As long as |E′
i| > |E∗

i | there are at least |E′
i| − |E∗

i | candidate Ei-edges whose exclusion is possible. The
exclusion of such an edge is only accepted if this edge lies on a cycle. Either the edge lies on a cycle or
there is a missing edge of weight w ≤ Wi+1 whose inclusion creates a cycle containing the considered
Ei-edge. If no cycle with an Ei-edge exists, the probability of creating such a cycle in the next step is
at least m−γ−5. If a cycle with an Ei-edge exists, the probability to destroy the cycle by excluding an
Ei-edge is at least 1/m (there may be more than one Ei-edge on the cycle). Let us assume that we do not
exclude bi Ei-edges within the considered mγ+7 steps. Let s be the number of steps in this phase where
a cycle with an Ei-edge exists. If s ≥ m3/2, then the probability of less than bi ≤ m steps excluding an
Ei-edge on the cycle is exponentially small. If s < m3/2, then the probability that among the at least
mγ+7 − m3/2 steps without a cycle with Ei-edges there are less than m3/2 steps creating such a cycle is
exponentially small. Hence, with overwhelming probability, enough Ei-edges are excluded and the claim
holds for step ti+1.

Altogether, with a probability of 1 − O(1/m), SA has found an MST after O(mγ+8) steps. �

It is easy to see that we can generalize the result to weights up to 2p(m) for a polynomial p. The run
time increases by a factor of O(p(m)/m). It is possible to tune the parameters to obtain better run
times. However, the purpose of Theorem ?? and Theorem ?? was to identify the border (with respect
to quotients of different weights) between cases where SA is highly successful and cases where SA can be
unsuccessful. With respect to these aims we have obtained optimal results.

It is easy to generalize our results to prove that SA is always highly successful if one is interested in
(1 + ε)-optimal spanning trees. It remains an open problem to find other sufficient conditions implying
that MA or SA is successful or unsuccessful on the MSTP.

Conclusions

The paper contributes to the theory of randomized search heuristics, in particular, the Metropolis algo-
rithm and simulated annealing. The problem to present a natural example from combinatorial optimiza-
tion where simulated annealing beats the Metropolis algorithm is solved by investigating the problem of
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computing minimum spanning trees. Moreover, the minimal factor between different weights to guarantee
that simulated annealing finds minimum spanning trees efficiently is determined.
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