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FB Informatik, Lehrstuhl 2, Universität Dortmund, 44221 Dortmund, Germany

jj@Ls2.cs.uni-dortmund.de

Abstract. We consider the (1+1) Evolution Strategy, a simple evolutionary

algorithm for continuous optimization problems, using so-called Gaussian

mutations and the 1/5-rule for the adaptation of the mutation strength.

Here, the function f : Rn
→ R to be minimized is given by a quadratic form

f(x) = x>Qx, where Q ∈ R
n×n is a positive definite diagonal matrix and

x denotes the current search point. This is a natural extension of the well-

known Sphere-function (Q=I). Thus, very simple unconstrained quadratic

programs are investigated, and the question is addressed how Q effects the

runtime. Therefore, quadratic forms

f(x) = ξ ·

`
x1

2 + · · · + xn/2
2
´

+ xn/2+1
2 + · · · + xn

2

with ξ = ω(1), i. e. 1/ξ → 0 as n → ∞, and ξ = poly(n) are exem-

plarily investigated. It is shown that the optimization very quickly ap-

proaches a steady state in which the expected runtime (defined as the num-

ber of f -evaluations) to halve the approximation error is Θ(ξ · n). Though

ξ · n = poly(n), this result actually shows that the evolving search point

indeed creeps along the gentlest descent of the ellipsoidal fitness landscape.

1 Introduction

Finding—or at least approximating—an optimum of a given function f : S → R

is one of the fundamental problems—in theory as well as in practice. Methods

for solving continuous optimization problems, e. g. S = R
n, are usually classified

into first-order, second-order, and zeroth-order methods depending on whether they

utilize the gradient (the first derivative) of the objective function, the gradient and

the Hessian (the second derivative), or none of both.1

A zeroth-order method is also called derivative-free or direct search method.

Newton’s method is the example for a second-order method; first-order methods

can be (sub)classified into Quasi-Newton, steepest decent, and conjugate gradient

methods. Classical zeroth-order methods try to approximate the gradient in or-

der to plug this estimate into a first-order method. Finally, amongst the “modern”

zeroth-order methods, evolutionary algorithms (EAs) come into play. EAs for con-

tinuous optimization, however, are usually subsumed under the term evolution(ary)

? supported by the German Research Foundation (DFG) as part of the research center
“Computational Intelligence” (SFB 531)

1 Note that here “continuous” relates to the search space rather than to f , and that, unlike
in math programming, throughout this paper “n” denotes the number of dimensions of
the search space and not the number of optimization steps; “d ” generally denotes a
distance in the n-dimensional search space.
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strategies (ESs). Obviously, in general we cannot expect zeroth-order methods to

out-perform first-oder methods or even second-order methods.

However, when information about the gradient is not available, for instance if

f relates to a property of some workpiece and is given by simulations or even by

real-world experiments, first-order (and also second-order) methods just cannot by

applied. As the approximation of the gradient usually involves Ω(n) f -evaluations,

a single optimization step of a classical zeroth order-method is computationally

intensive, especially if f is given implicitly by simulations. In practical optimization,

especially in mechanical engineering, this is often the case, and particularly in this

field EAs are enjoyed with growing popularity. However, the enthusiasm in practical

EAs has led to an unclear variety of very sophisticated and problem-specific EAs.

Unfortunately, from a theoretical point of view, the development of such EAs is

solely driven by practical success and the aspect of a theoretical analysis is left aside.

In other words,—concerning EAs—theory has not kept up with practice, and thus,

we should not try to analyze the algorithmic runtime of the most sophisticated EA

en vogue, but concentrate on very basic, or call them “simple”, EAs in order to

build a sound and solid basis for EA-theory.

For discrete search spaces, essentially {0, 1}n, such a theory has been started suc-

cessfully in the mid 1990s (Mühlenbein (1992), cf. Wegener (2001) and Droste et al.

(2002)). There first results for non-artificial but well-known problems have been ob-

tained recently (namely for the maximum matching problem by Giel and Wegener

(2003), for sorting and the shortest-path problem by Scharnow et al. (2002), and

for the minimum-spanning tree by Neumann and Wegener (2004)).

The situation for continuous evolutionary optimization is different. Here, the vast

majority of the results are based on empiricism, i. e., experiments are performed and

their outcomes are interpreted, which leads to a theory in the sense of physics rather

than computer science. Also convergence properties of EAs have been studied to a

considerable extent (e. g. Rudolph (1997), Greenwood and Zhu (2001), Bienvenue

and Francois (2003)). A lot of results have been obtained by analyzing a simplify-

ing model of the stochastic process induced by the EA, for instance by letting the

number of dimensions approach infinity. Unfortunately, such results rely on exper-

imental validation as a justification for the simplifications/inaccuracies introduced

by the modeling. In particular Beyer has obtained numerous results that focus on

local performance measures (progress rate, fitness gain; cf. Beyer (2001b)), i. e., the

effect of a single mutation (or, more generally, of a single transition from one gen-

eration to the next) is investigated. Best-case assumptions concerning the mutation

adaptation in this single step then provide estimates of the maximum gain a single

step may yield. However, when one aims at analyzing the (1+1)ES as an algorithm,

rather than a model of the stochastic process induced, a different, more algorithmic

approach is needed. In 2003 a first theoretical analysis of the expected runtime,

given by the number of function evaluations, of the (1+1)ES using the 1/5-rule was

presented (Jägersküpper, 2003). The function/fitness landscape considered therein

is the well-know Sphere-function, given by Sphere(x) :=
∑n

i=1 x2
i = x>Ix, and

the multi-step behavior that the (1+1)ES bears when using the 1/5-rule for the

adaptation of the mutation strength is rigorously analyzed. As mentioned in the

abstract, the present paper will extend this result to a broader class of functions.

One may guess that an ellipsoidal landscape is similar to the ridge-function scenario

(especially to the parabolic ridge). Beyer (2001a) focuses on local measures for this
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fitness landscape. However, since ridge functions are unbounded, i. e. there is no opti-

mum, and there is no need for adaptation, from an algorithmic point of view—when

one is interested in adaptation mechanisms and how they work—ellipsoidal fitness

landscapes are more challenging.

Finally note that, regarding the approximation error, for unconstrained opti-

mization it is generally not clear how the runtime can be measured (solely) with

respect to the absolute error of the approximation. In contrast to discrete and

finite problems, the initial error is generally not bounded, and hence, the ques-

tion how many steps it takes to get into the ε-ball around an optimum does

not make sense without specifying the starting conditions. Hence, we must con-

sider the runtime with respect to the relative improvement of the approximation.

Given that the optimization process becomes steady-state, considering the number

of steps/f -evaluations to halve the approximation error is a natural choice. For the

Sphere-function, Jägersküpper (2003) gives a proof that the 1/5-rule makes the

(1+1)ES perform Θ(n) steps to halve the distance from the optimum and, in addi-

tion, that this is asymptotically the best possible w. r. t. isotropically distributed mu-

tation vectors, i. e., for any adaptation of isotropic mutations, the expected number

of f -evaluations is Ω(n) (moreover, for any constant ε > 0, O(n1−ε) f -evaluations

suffice only with an exponentially small probability).

The Algorithm

We will concentrate on the (1+1) evolution strategy ((1+1) ES), which dates back

to the mid 1960s (cf. Rechenberg (1973) and Schwefel (1995)). This simple EA uses

solely mutation due to a single-individual population, where here “individual” is

just a synonym for “search point”. Let c ∈ R
n denote the current individual. Given

a starting point, i. e. an initialization of c, the (1+1)ES performs the following

evolution loop:

1. Choose a random mutation vector m ∈ R
n, where the distribution

of m may depend on the course of the optimization process.

2. Generate the mutant c′ ∈ R
n by c′ := c + m.

3. IF f(c′) ≤ f(c) THEN c′ becomes the current individual (c := c′)

ELSE c′ is discarded (c unchanged).

4. IF the stopping criterion is met THEN output c ELSE goto 1.

Since a worse mutant (with respect to the function to be minimized) is always

discarded, the (1+1)ES is a randomized hill climber, and the selection rule is called

elitist selection. Fortunately, for the type of results we are after we need not define

a reasonable stopping criterion. How the mutation vectors are generated must be

specified, though. Originally, the mutation vector m ∈ R
n is generated by firstly

generating a vector m̃ ∈ R
n each component of which is independently standard

normal distributed; subsequently, this vector is scaled by the multiplication with a

scalar s ∈ R>0, i. e. m = s · m̃. This type of mutation is called Gaussian mutation.

In practice, Gaussian mutations are the most common type of mutations (for the

search space R
n) and, therefore, will be considered here. The crucial property of a

Gaussian mutation is that m is isotropically distributed, i. e., m/ |m| is uniformly
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distributed upon the unit hypersphere and the length of the mutation, namely the

random variable |m|, is independent of the direction m/ |m|.2
The question that naturally arrises is how the scaling factor s is to be chosen.

Obviously, the smaller the approximation error, i. e., the closer c is to an optimum,

the shorter m needs to be for a further improvement of the approximation to be

possible. Unfortunately, the algorithm does not know about the current approxima-

tion error, but can utilize only the knowledge obtained by f -evaluations. Based on

experiments and rough calculations for two function scenarios (namely Sphere and

a corridor function), Rechenberg proposed the 1/5-(success-)rule. The idea behind

this adaptation mechanism is that in a step of the (1+1)ES the mutant should be

accepted with probability 1/5. Hereinafter, a mutation that results in f(c′) ≤ f(c)

is called successful, and hence, when talking about a mutation, success probability

denotes the probability that the mutant c′ = c+m is at least as fit as c. Obviously,

when elitist selection is used, the success probability of a step equals the probability

that the mutation is accepted in this step. If every step was successful with prob-

ability 1/5, we would observe that on the average one fifth of the mutations are

successful. Thus, the 1/5-rule works as follows: the optimization process is observed

for n steps without changing s; if more than one fifth of the steps in this observation

phase have been successful, s is doubled, otherwise, s is halved.3

The Function Scenario

In this section we will have a closer look to the fitness landscape under consideration

and preview isotropic mutations in this scenario. Note that “fitness” is used as a

synonym for “function value”. Furthermore, since the optimum function value is

0, the current approximation error is defined as f(c), the fitness of the current

individual. As mentioned in the abstract, we exemplarily consider the following

class of quadratic forms (n ∈ 2N):

fn(x) := ξ ·
(
x1

2 + · · · + xn/2
2
)

+ xn/2+1
2 + · · · + xn

2

Hence, fn(x) = ξ · Spheren/2(y) + Spheren/2(z) where y := (x1, . . . , xn/2) and

z := (xn/2+1, . . . , xn). Thus, the aim is to minimize the sum of two separate sphere

functions, in S1 = R
n/2 resp. S2 = R

n/2, having weight ξ resp. 1, i. e., f(x) =

ξ · |y|2 + |z|2, where |·| denotes the length of a vector in Euclidean space (Euclidean

norm). Recall that the mutation vector m equals s · m̃ . As each component of m̃

is independently standard normal distributed, m1 := (m1, . . . , mn/2) and m2 :=

(mn/2+1, . . . , mn) are two independent (n/2)-dimensional Gaussian mutations based

on the common scaling factor s. Obviously, m1 only affects y, whereas m2 only

affects z, and thus, the fitness of the mutant equals ξ · |y + m1|2 + |z + m2|2.

2 The state of the art in mutation adaptation seems to be the covariance matrix adaptation
(CMA) (Hansen and Ostermeier, 1996) where m = s · B · fm with a matrix B ∈ R

n×n

which is also adapted. Unlike B = t · I for some scalar t, the mutation vector is not
isotropically distributed—by intention, of course.

3 Various implementations of the 1/5-rule can be found in the literature, yet in fact, one
result of (Jägersküpper, 2003) is that the order of the runtime is indeed not affected
as long as the observation lasts Θ(n) steps and the scaling factor s is multiplied by a
constant greater than 1 resp. by a positive constant smaller than 1.



(1+1) ES Minimizing Simple Quadratic Forms 5

x1

Ê

Ŝ

M̂

xnLet d1 := |y| and d2 := |z| denote the distance from the ori-

gin/optimum in S1 resp. S2. Since Gaussian mutations as well

as Sphere are invariant with respect to rotations of the coordi-

nate system, we may rotate S1 and S2 such that we are located

at (d1, 0, . . . , 0) ∈ S1 resp. (0, . . . , 0, d2) ∈ S2. In other words,

we may assume w. l. o. g. that the current search point is located

at (d1, 0, . . . , 0, d2) ∈ R
n, i. e., that it lies in the x1-xn-plane.

In fact, we have just described a projection ̂ : R
n → R

2. Note

that due to the properties of f and Gaussian mutations this pro-

jection only conceals irrelevant information, i. e., all information

relevant to the analysis is preserved. Thus, we can concentrate on the 2D-projection

as depicted in the figure. For some arguments, however, it is crucial to keep in mind

that this projection is based on the fact that the current search point, and also

its mutant, can be assumed to lie in the x1-xn-plane w. l. o. g. (obviously, for the

mutant to lie in this plane, S1 and S2 must almost surely (a. s.) be re-rotated).

In the next section some of the results presented in (Jägersküpper, 2003), which

will be used here, will be shortly restated. In Section 3 the crucial properties of

a single mutation in the considered fitness landscape are discussed, and in the

subsequent section we will have a closer look to the adaptation, i. e., the multi-step

behavior of the (1+1)ES will be analyzed for the considered function class/fitness

landscape. We end with some concluding remarks in Section 5.

2 Preliminaries

In this section some notions and notations are introduced. Furthermore, the results

obtained for the Sphere-scenario in (Jägersküpper, 2003) that we will use are

resumed; for more details cf. Jägersküpper (2002).

Definition 1. A probability p(n) is exponentially small in n if for a constant ε >

0, p(n) = exp(−Ω(nε)). An event A(n) happens with overwhelming probability

(w. o. p.) with respect to n if P{¬A(n)} is exponentially small in n.

A statement Z(n) holds for n large enough if (∃n0 ∈ N)(∀n ≥ n0) Z(n).

Let c ∈ R
n − {0} denote a search point and m a Gauss mutation. Note that

Sphere(c) = |c|2 (recall that |c| is the L2-norm (Euclidian length) of c). The

analysis of the (1+1)ES for Sphere has shown that for n large enough

P{|c + m| ≤ |c| ||| |m| = `} ≥ ε for a constant ε ∈ (0, 1
2 ) ⇐⇒ ` = O(|c| /

√
n),

i. e., the mutant obtained by an isotropic mutation of c is closer to a predefined

point, here the origin, with probability Ω(1) iff the length of the mutation vector

is at most an O(1/
√

n)-fraction of the distance between c and this point. On the

other hand,

P{|c + m| ≤ |c| ||| |m| = `} ≤ ε for a constant ε ∈ (0, 1
2 ) ⇐⇒ ` = Ω(|c| /

√
n),

in other words, the mutant obtained by an isotropic mutation of c is closer to a

predefined point, here again the origin, with a constant probability strictly smaller

than 1/2 iff the length of the mutation vector is at least an Ω(1/
√

n)-fraction of the
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distance between c and this point. (The actual constant ε respectively correlates

with the (multiplicative) constant in the O-notation resp. in the Ω-notation.)

The expected length of a Gauss mutation m equals s · E[|m̃|] = s · Θ(
√

n)

since |m̃| is χ-distributed (with n degrees of freedom). Let ¯̀ := E[|m|]. Moreover,

P
{∣∣|m| − ¯̀

∣∣ ≥ δ · ¯̀
}
≤ 1/

(
δ2(2n − 1)

)
for α > 0, in other words, there is only small

deviation in the length of a mutation; e. g., with probability 1−O(1/n) the mutation

vector’s actual length differs from its expected length by no more than ±1%.

Concerning the mutation adaptation by the 1/5-rule for Sphere, we know that

there exists a constant ph ∈ (0, 1/5) such that if the success probability of the

mutation in the first step of an observation phase is smaller than ph, then w. o. p.

less than 1/5 of the steps in this phase are successful so that the scaling factor is

halved. Analogously, pd ∈ (1/5, 1/2) exists such that if the first step of a phase is

successful with probability at least pd, then w. o. p. more than 1/5 of the steps in

this phase are successful so that s is doubled. This can be used to show that the 1/5-

rule in fact ensures that each step is successful with a probability in [a, b] ⊂ (0, 1/2)

for two constants a, b.

Let ∆ = |c| − |c′| denote the spatial gain towards the origin, the optimum of

Sphere, in a step. For Sphere, a mutation is accepted (by elitist selection) iff

∆ ≥ 0. Consequently, negative gains are zeroed out. Thus, the expected spatial

gain of a step is E
[
∆ · 1{∆≥0}

]
and we know that E

[
∆ · 1{∆≥0} | ¯̀= Θ(|c| /√n)

]
=

Θ(|c| /n), i. e., if the scaling factor causes a mutation to be successful with a constant

probability in (0, 1/2)—for instance 1/5—then the distance from the optimum

is expected to decrease by an Θ(1/n)-fraction. Furthermore, in this situation the

distance decreases by an Ω(1/n)-fraction with probability Ω(1).

3 Gain in a Single Step

In this section we now take a closer look at the properties of a Gaussian mutation

in the ellipsoidal fitness landscape under consideration. Since ξ = ω(1), ξ > 1 for n

large enough, and therefore, we assume ξ > 1 in the following. Furthermore, “f ”

will also be used as an abbreviation of the fitness of the current individual and “f ′ ”

stands for the fitness of the mutant.

Recall that f = ξ d 2
1 + d 2

2 (for the current search point) and f ′ = ξ d′ 21 + d′ 22
(for its mutant), where d′

1 := |y + m1| and d′2 := |z + m1|. The crucial point

to the analysis is the answer to the question how d1, d2 and the scaling factor

s—and with it |m|—relate when the success probability of a step, i. e. the prob-

ability that the mutant is accepted, is about 1/5. In other words, how does the

length of the mutation vector depend on d1 and d2, and how do d1 and d2 relate.

Since ∇f̂(d1, d2) = (ξ 2 d1, 2 d2)
>, for a search point satisfying d1/d2 = 1/ξ an

infinitesimal change of d1 has the same effect on f as an infinitesimal change of

d2. Though the length of a mutation is not infinitesimal, this may be taken as an

indicator that the ratio d1/d2 will approach a steady state when using isotropic mu-

tations, and indeed, it turns out that the process approaches a steady state where

d1/d2 = Θ(1/ξ). In this section, we will see that near the gentlest descent in our

ellipsoidal fitness landscape, namely for d1/d2 = O(1/ξ), a mutation succeeds with

a constant probability greater than 0 but smaller than 1/2 iff the scaling factor

corresponds to E[|m|] = Θ(
√

f/n/ξ). Furthermore, asymptotically tight bounds

on the expected fitness gain of a single step, i. e. E[f − min{f, f ′}], in such a situ-
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ation will be obtained. Therefore, we will show that a mutation of a search point

c for which d1/d2 = O(1/ξ) with a mutation satisfying E[|m|] = Θ(
√

f/n/ξ) in

the ellipsoidal fitness landscape is “similar” to the mutation (with the same scaling

factor) of a search point x in the Sphere scenario with Sphere(x) = Θ(f/ξ2).

We start our analysis with d1 = 0 and d2 = φ so that f = φ2. Consequently,

c is located at a point with gentlest descent w. r. t. all points having fitness φ2,

and hence, the curvature of the 2D-curve given by the projection of f = φ2, i. e.

the projection Ê of the n-ellipsoid E := {x | f(x) = f(c)} ⊂ R
n, is maximum

at ĉ. By a simple application of differential geometry (Appendix A), we get that

the curvature equals ξ/φ (for d1 = 0 and d2 = φ). Consequently, the radius of the

osculating circle (Ŝ in the figure) equals φ/ξ. As this circle Ŝ actually lies in the

x1-xn-plane, it is the equator of an n-sphere S with radius φ/ξ (the center of which

lies on the xn-axis, just like the current search point c). Note that this sphere lies

completely inside E such that S ∩ E = {c}. Thus, the probability that a mutation

hits inside S is a lower bound on the probability that f ′ ≤ f , i. e.,

P{f ′ ≤ f} = P{c + m lies inside E}
≥ P{c + m lies inside S}
= P

{
|x + m| ≤ |x| for some x with |x| = radius of Ŝ = φ/ξ

}

= P
{
Sphere(x + m) ≤ Sphere(x) | Sphere(x) = (φ/ξ)2

}
.

In fact, our argumentation yields that the preceding (in)equalities hold for any

fixed length ` of the mutation vector m, i. e., if the probabilities are conditioned on

the event {|m| = `}, respectively. Since ` is arbitrary here and the radius of S is

independent of `, they remain valid when this condition is dropped.

For an upper bound on the probability that a mutation hits inside E, consider

a mutation (vector) having length ` < 2φ (since for ` ≥ 2φ, E lies inside M). Let

M = {x ||| |c − x| = `} ⊂ R
n denote the mutation sphere consisting of all potential

mutants. Then M̂ is a circle (cf. the figure above) with radius ` centered at ĉ. (Note

that, though c′ = c + m, given |m| = `, is uniformly distributed upon M , ĉ′ is not

uniformly distributed upon M̂). Now consider the curvature at a point in Ê ∩ M̂ =

{z1, z2} (there are exactly two points of intersection since 0 < ` < 2φ). Simple

differential geometry shows that the curvature at zi is κ` = Θ(ξ/φ) if ` = O(φ/ξ)

(cf. Appendix A). As the curvature at any point of Ê that lies inside M̂ is greater

than κ` (since ξ > 1), ĉ as well as zi lie inside the osculating circle at z3−i which

has radius r` := 1/κ` = Θ(φ/ξ) if ` = O(φ/ξ). Thus, there is also a circle with

radius r` passing through ĉ such that z1 and z2 lie inside this circle. Therefore, the

circle passing through z1, z2, and ĉ has a radius smaller than r`, and again, this

circle actually lies in the x1-xn-plane of the search space and is the image of the

n-sphere having this circle as an equator. Hence,

P{f ′ ≤ f ||| |m| = `}
≤ P

{
Sphere(x + m) ≤ Sphere(x) | Sphere(x) = (α φ/ξ)2, |m| = `

}

where α = Θ(1) if ` = O(φ/ξ). (Besides, r` ↘φ/ξ as `↘ 0.)

Recall that we assumed ĉ = (0, φ) ∈ R
2, i. e. d1 = 0 and d2 = φ, in the above

argumentation. The estimates we have made for the bounds on the probability

of a mutation hitting inside the n-ellipsoid E, however, remain valid as long as
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d1/d2 = O(1/ξ): Since ξ/φ is the maximum curvature of Ê, there is always a circle

Ŝ with radius φ/ξ lying inside Ê such that Ŝ ∩ Ê = {ĉ}, and since Ŝ is in fact an

equator of an n-sphere S, S lies completely inside E such that S ∩ E = {c}. For

the upper bound, we must merely consider the zi at which the curvature is smaller,

and indeed, it turns out that as long as d1/d2 = O(1/ξ) and ` = O(φ/ξ), κ` is still

Θ(ξ/φ) (cf. Appendix A).

Hence, when f(c) = φ2 such that c satisfies d1/d2 = O(1/ξ), we are in a situa-

tion resembling (w. r. t. the success probability of a mutation) the minimization of

Sphere at a point having distance Θ(φ/ξ) from the optimum/origin. Concerning

the 1/5-rule, we know (cf. Section 2) that

(∃ constant ε > 0) ε ≤ P{f ′ ≤ f} ≤ 1/2− ε ⇐⇒ ` = Θ((φ/ξ)/
√

n)

where ε correlates with the two multiplicative constants within the Θ-notation.

Thus, we are now going to investigate the gain of a step when f = φ2 and

` = Θ((φ/ξ)/
√

n). As we have seen above, there exists an n-sphere S with radius

r = φ/ξ lying completely in E such that S∩E = {c}. Again owing to the results for

Sphere, we know that a mutation having length ` = r/
√

n hits with probability

Ω(1) a hyperspherical cap C ⊂ M containing all points of M that are at least

Ω(r/n) closer to the center of S than c. Consequently, with probability Ω(1) the

mutant lies inside E such that its distance from E is Θ(r/n), i. e. Θ((φ/ξ)/n). If we

pessimistically assume that this spatial gain were realized along the gentlest descent

of f , i. e. d1 = 0 and d′
1 = 0 so that d′

2 = d2 − Θ((φ/ξ)/n), we obtain that with

probability Ω(1)

f ′ ≤ (φ − Θ((φ/ξ)/n) )2

= φ2 − 2αφ2/(ξn) + α2φ2/(ξn)2 for some α = Θ(1)

= φ2 − α(2 − α/(ξn))︸ ︷︷ ︸φ2/(ξn)

= φ2 − Θ(1) φ2/(ξn)

= f − Θ(f/(ξn)).

Let c′′ := argmin{f(c) , f(c′)} denote the search point that gets selected by elitist

selection. Since mutants with a worse fitness are rejected, i. e. f ′′ ≤ f , this implies

for the expected fitness gain of a step

E

[
f ′′ ||| |m| = Θ(

√
f/n/ξ)

]
= f − Ω(f/(ξn)).

Due to the pessimistic assumptions, this lower bound on the fitness gain just derived

is valid only for ` = Θ(
√

f/n/ξ)), yet it holds independently of the ratio d1/d2.

A spatial gain of Θ(f/(ξn)) could result in a much larger fitness gain, though. If

d1/d2 = O(1/ξ), however, the fitness gain is also O(f/(ξn)) as we will see. Therefore,

let d1 = α · φ/ξ with α = O(1) and still f = ξ · d2
1 + d2

2 = φ2. Owing to the

argumentation for the upper bound on the success probability of a step, we know

that there is an n-sphere S with radius r = O(φ/ξ) such that c ∈ S and I := M∩E ∈
S, where I is the boundary of the hyperspherical cap C ⊂ M lying inside E. Owing

to the results for Sphere, we know that E
[
dist(c′, I) · 1{c′∈C}

]
= O(r/n) even if

|m| is optimal, i. e., even if the length of the mutation vector were magically chosen

such that the expected distance of the selected search point, c′′, from the center of S
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is minimized. In other words, we know that if a mutation hits inside E, its expected

distance from E is O(r/n) = O((φ/ξ)/n) anyway. Thus, if we optimistically assume

that the spatial gain were realized completely in S1, i. e. completely on the heavier

weighted Sphere, (so that d′
2 = d2, implying d′′2 = d2), we obtain

E
[
ξ d′′21 + d′′22 | d1/d2 = O(1/ξ)

]
≥ ξ

(
d1 − O((φ/ξ)/n)

)2
+ d2

2

= ξ
(
αφ/ξ − O((φ/ξ)/n)

)2
+ d2

2

≥ ξ
(
(αφ/ξ)2 − 2α(φ/ξ) · O((φ/ξ)/n)

)
+ d2

2

= ξ d2
1 − O(φ2/(ξn)) + d2

2

and hence,

E[f ′′ | d1/d2 = O(1/ξ)] = φ2 − O(φ2/(ξn)) = f − O(f/(ξn)).

This upper bound on the expected fitness gain of a step holds only for d1/d2 =

O(1/ξ), yet independently of (the distribution of) |m|, which is converse to the

lower bound. However, altogether we have proved the following:

Lemma 1. Consider a step of the (1+1)ES. If d1/d2 = O(1/ξ) in this step, then

ε ≤ P{f ′ ≤ f} ≤ 1/2− ε for a constant ε > 0 iff |m| = Θ(
√

f/n/ξ).

If d1/d2 = O(1/ξ) and |m| = Θ(
√

f/n/ξ) in this step, then E[f − f ′′] =

Θ(f/(ξn)), and furthermore, f − f ′′ = Ω(f/(ξn)) with probability Ω(1).

4 Multi-Step Behavior

The results just obtained show that if d1/d2 = O(1/ξ) during a phase of n steps (an

observation phase of the 1/5-rule) and E[|m|] = Θ(
√

f/n/ξ), i. e. ε ≤ P{f ′ ≤ f} ≤
1/2 − ε for a constant ε > 0, at the beginning of this phase, then we expect Θ(n)

steps each of which reduces the fitness by Θ(f/(ξn)). By Chernoff bounds, there

are Ω(n) such steps w. o. p., and thus, the fitness, and with it the approximation

error, is reduced w. o. p. by an Θ(1/ξ)-fraction in this phase. Consequently, after

Θ(ξ) consecutive phases, the fitness is halved w. o. p. if during these phases d1/d2 =

O(1/ξ). Since, up to now, the argumentation completely bases on the results for

Sphere, even the argumentation on the 1/5-rule can be adapted, which directly

yields the following result (cf. Theorem 2 in (Jägersküpper, 2003) or Theorem 3 in

Jägersküpper (2002)):

Theorem 1. If d1/d2 = O(1/ξ) in the complete optimization process and the scal-

ing factor is initialized such that in the first step E[|m|] = Θ(
√

f/n/ξ), then the

expected number of steps/f -evaluations to reduce the initial approximation error to

a 2−t-fraction, t = poly(n), is Θ(t · ξ · n).

Obviously, the assumption “d1/d2 = O(1/ξ) in the complete optimization pro-

cess” lacks justification and is, therefore, objectionable. It must be replaced by a

much more weaker assumption on the starting conditions only. Thus, the crucial

point in the analysis is the question why should d1/d2 = O(1/ξ). This question will

be tackled in the following. Therefore, let ∆1 := d1 − d′1 and ∆2 := d2 − d′2 denote

the spatial gain of the mutant towards the origin in S1 resp. S2. Then

f ′ = ξ (d1 − ∆1)
2 + (d2 − ∆2)

2 = ξd2
1 − ξ2d1∆1 + ξ∆2

1 + d2
2 − 2d2∆2 + ∆2

2 ,
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and hence,

f ′ ≤ f ⇐⇒ f ′ − f ≤ 0 ⇐⇒ −ξ2d1∆1 + ξ∆2
1 − 2d2∆2 + ∆2

2 ≤ 0.

Let α be defined by α/ξ = d1/d2. Then the latter inequality is equivalent to

−2αd2∆1 + ξ∆2
1 − 2d2∆2 + ∆2

2 ≤ 0 ⇐⇒ −α∆1 +
ξ∆2

1

2d2
≤ ∆2 −

∆2
2

2d2

(using d2 = ξ · d1/α) ⇐⇒ −α∆1

(
1 − ∆1

2d1

)
≤ ∆2

(
1 − ∆2

2d2

)

Thus, when using elitist selection, the mutant is accepted iff the last inequality

holds. Note that whenever a mutation satisfying −α∆1 > ∆2 is accepted, then

1 − ∆1

2d1
< 1 − ∆2

2d2
⇔ ∆1

d1
>

∆2

d2
⇔ ∆1 >

d1

d2
∆2 ⇔ ∆1 >

α

ξ
∆2,

implying that ∆1 > 0 and ∆2 < 0, and consequently, such a step surely results in

d′′1/d′′2 < d1/d2, i. e. α′′ < α. Hence, in the following we may concentrate on the

accepted mutations for which −α∆1 ≤ ∆2.

So, let us assume for a moment that the mutant replaces/becomes the current

individual iff −α∆1 ≤ ∆2. Let i ∈ {1, 2}. As ∆3−i is random, E
[
∆i · 1{−α∆1≤∆2}

]

is a random variable taking the value E
[
∆i · 1{−α∆1≤x}

]
whenever ∆2 happens to

take the value x. We are interested in E
[
E
[
∆i · 1{−α∆1≤∆2}

]]
= E[di − d′′i ], the

expected reduction of the distance from the optimum in Si in a step, and we expect

d′′1/d′′2 ≤ d1/d2, i. e. α′′ ≤ α, iff

E
[
E
[
∆1 · 1{−α∆1≤∆2}

]]
≥ α

ξ
· E
[
E
[
∆2 · 1{−α∆1≤∆2}

]]
.

In order to prove that this inequality holds for α = O(1), we aim at a lower bound

on E
[
E
[
∆1 · 1{−α∆1≤∆2}

]]
and an upper bound on E

[
E
[
∆2 · 1{−α∆1≤∆2}

]]
in the

following. Note that

E
[
E
[
∆i · 1{−α∆1≤∆2}

]]
= E

[
E
[
∆i · 1{−α∆1≤∆2} · 1{∆i<0}

]
· 1{∆3−i<0}

]

+E
[
E
[
∆i · 1{−α∆1≤∆2} · 1{∆i<0}

]
· 1{∆3−i≥0}

]

+E
[
E
[
∆i · 1{−α∆1≤∆2} · 1{∆i≥0}

]
· 1{∆3−i<0}

]

+E
[
E
[
∆i · 1{−α∆1≤∆2} · 1{∆i≥0}

]
· 1{∆3−i≥0}

]

and that E
[
E
[
∆i · 1{−α∆1≤∆2} · 1{∆i<0}

]
· 1{∆3−i<0}

]
= 0 since the three indicator

inequalities describe the empty set. Since ∆1, ∆2 ≥ 0 implies −α∆1 ≤ ∆2,

E
[
E
[
∆i · 1{−α∆1≤∆2} · 1{∆i≥0}

]
· 1{∆3−i≥0}

]
= E

[
E
[
∆i · 1{∆i≥0}

]
· 1{∆3−i≥0}

]

= E
[
∆i · 1{∆i≥0}

]
· P{∆3−i ≥ 0}.

As we need a lower bound on E
[
E
[
∆1 · 1{−α∆1≤∆2}

]]
, we may pessimistically as-

sume that ∆1 = −x/α whenever ∆2 happens to equal x. By this assumption,

E
[
E
[
∆1 · 1{−α∆1≤∆2} · 1{∆1<0}

]
· 1{∆2≥0}

]

≥ −E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2≥0}

]
· 1{∆1<0}

]/
α,
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E
[
E
[
∆1 · 1{−α∆1≤∆2} · 1{∆1≥0}

]
· 1{∆2<0}

]

≥ −E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2<0}

]
· 1{∆1≥0}

]/
α.

All in all, we have

E
[
E
[
∆1 · 1{−α∆1≤∆2}

]]
≥ E

[
∆1 · 1{∆1≥0}

]
· P{∆2 ≥ 0}

−E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2≥0}

]
· 1{∆1<0}

]/
α

−E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2<0}

]
· 1{∆1≥0}

]/
α,

E
[
E
[
∆2 · 1{−α∆1≤∆2}

]]
= E

[
∆2 · 1{∆2≥0}

]
· P{∆1 ≥ 0}

+E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2≥0}

]
· 1{∆1<0}

]

+E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2<0}

]
· 1{∆1≥0}

]
.

Recall that we want to show that for some α = O(1)

ξ · E
[
E
[
∆1 · 1{−α∆1≤∆2}

]]
≥ α · E

[
E
[
∆2 · 1{−α∆1≤∆2}

]]
,

and note that E
[
∆1 · 1{∆1≥0}

]
· P{∆2 ≥ 0} and E

[
∆2 · 1{∆2≥0}

]
· P{∆1 ≥ 0} are

of the same order when P{∆2 ≥ 0} and P{∆1 ≥ 0} are Ω(1), respectively. Conse-

quently, since ξ = ω(1), for the above inequality to hold for n large enough, it would

be sufficient that

E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2≥0}

]
· 1{∆1<0}

]

+ E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2<0}

]
· 1{∆1≥0}

]
≤ 0 (1)

because then we would have

E
[
E
[
∆1 · 1{−α∆1≤∆2}

]]
≥ E

[
∆1 · 1{∆1≥0}

]
· P{∆2 ≥ 0} and

E
[
E
[
∆2 · 1{−α∆1≤∆2}

]]
≤ E

[
∆2 · 1{∆2≥0}

]
· P{∆1 ≥ 0}.

Concerning the expected spatial gain in S2, however, we are going to use the trivial

upper bound

E
[
E
[
∆2 · 1{−α∆1≤∆2}

]]
≤ E

[
∆2 · 1{∆2≥0}

]
,

and thus, we concentrate on a lower bound on the expected spatial gain in S1 in

the following. Therefore, we prove next that inequality (1) holds for α = O(1) at

least if the actual length of m2 differs by no more than a constant fraction from ¯̀
1,

the expected length of m1.

Lemma 2. If P{∆1 ≥ 0} = Ω(1) and |m2| = Θ( ¯̀
1), there exists a constant α∗

such that for n large enough inequality (1) holds for all α ≥ α∗.

The proof can be found in Appendix B. Note that ¯̀
1 = ¯̀

2 in our scenario. We

know (cf. Section 2) that

P

{∣∣|m2| − ¯̀
2

∣∣ ≥ (
√

3 − 1) · ¯̀
2

}
≤
(
(
√

3 − 1)2 · 2 · (n − 1)
)−1

< (n − 1)−1,
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and thus, the condition “|m2| = Θ( ¯̀
1)” is violated only with probability O(1/n).

Whether or not this condition is met, obviously ∆1 ≥ − |m1|, and consequently,

E
[
E
[
∆1 · 1{−α∆1≤∆2}

]]
≥ − ¯̀

1. Applying this rough/trivial bound only in case of∣∣|m2| − ¯̀
1

∣∣ > (
√

3 − 1) · ¯̀
1 and ∆1 < 0 ≤ ∆2 ∨ ∆1 ≥ 0 > ∆2, we can extend the

preceding lemma: if P{∆1 ≥ 0} = Ω(1) then for α ≥ α∗

E
[
E
[
∆1 · 1{−α∆1≤∆2}

]]
≥ E

[
∆1 · 1{∆1≥0}

]
· P{∆2 ≥ 0} −

¯̀
1

n − 1
.

Next we will see that this additive error term vanishes in situations that arise due

to the 1/5-rule.

Lemma 3. If P{∆1 ≥ 0}, 1/2 − P{∆1 ≥ 0}, P{∆2 ≥ 0} are Ω(1), respectively,

there exists a constant α∗ such that for α ≥ α∗ and n large enough

E
[
E
[
∆1 · 1{f ′≤f}

]]
≥ E

[
∆1 · 1{∆1≥0}

]
· P{∆2 ≥ 0}/ 2.

Proof. Recall that f ′ ≤ f ∧ −α∆1 > ∆2 implies ∆1 > 0 > ∆2. Consequently, all

(∆1, ∆2)-tuples zeroed out by 1{−α∆1≤∆2}, but kept by 1{f ′≤f} are in R>0 ×R<0.

Analogously, f ′ > f ∧ −α∆1 ≤ ∆2 implies ∆1 < 0 < ∆2 so that all (∆1, ∆2)-tuples

kept by 1{−α∆1≤∆2}, but zeroed out by 1{f ′≤f} are in R<0 ×R>0. Hence,

E
[
E
[
∆1 · 1{f ′≤f}

]]
≥ E

[
E
[
∆1 · 1{−α∆1≤∆2}

]]
(
and E

[
E
[
∆2 · 1{f ′≤f}

]]
≤ E

[
E
[
∆2 · 1{−α∆1≤∆2}

]] )
.

As 1/2 − P{∆1 ≥ 0}, P{∆1 ≥ 0} = Ω(1) implies ¯̀
1 = Θ(d1/

√
n) and, as a con-

sequence, E
[
∆1 · 1{∆1≥0}

]
= Θ(d1/n) (cf. Section 2), the error term ¯̀

1/(n − 1) is

Θ(d1/n1.5) whereas E
[
∆1 · 1{∆1≥0}

]
· P{∆2 ≥ 0} = Θ(d1/n). As the error term is

by a Θ(1/
√

n)-factor smaller, finally 1 − Θ(1/
√

n) ≥ 1/2 for n large enough.

Recall: we expect α′′ = α iff ξ · E
[
E
[
∆1 · 1{f ′≤f}

]]
= α · E

[
E
[
∆2 · 1{f ′≤f}

]]
or,

equivalently, iff E
[
E
[
∆1 · 1{f ′≤f}

]]
/d1 = E

[
E
[
∆2 · 1{f ′≤f}

]]
/d2. Thus there exists

a distinct α0 such that there is no drift w. r. t. the ratio d1/d2, and this is the steady

state of the optimization: for α < α0, α is more likely to increase than to decrease,

and for α > α0, α is more likely to decrease than to increase.

Since E
[
E
[
∆2 · 1{f ′≤f}

]]
≤ E

[
E
[
∆2 · 1{−α∆1≤∆2}

]]
≤ E

[
∆2 · 1{∆2≥0}

]
and ξ =

ω(1), we have ξ · P{∆2 ≥ 0}/2 ≥ α∗ for n large enough if P{∆2 ≥ 0} = Ω(1), and

hence, α0 ≤ α∗ = O(1) under the conditions of Lemma 3. Besides, the 1/5-rule

just ensures these conditions as long as d1 = O(d2). For the same reasons, there

exists α↓ > α0 such that ξ · E
[
E
[
∆1 · 1{f ′≤f}

]]
≥ 2 · α · E

[
E
[
∆2 · 1{f ′≤f}

]]
(for n

large enough) and α↓ = O(1) again under the conditions of Lemma 3. Thus, when

α ≥ α↓ there is a drift towards smaller α; more formally:

Lemma 4. Let the scaling factor s be fixed. If P{∆1 ≥ 0} and 1/2−P{∆1 ≥ 0} as

well as P{∆2 ≥ 0} are Ω(1), respectively, there exists a constant α↓ such that for

n large enough, if in the ith step α[i] ≥ α↓ (yet α[i] = O(ξ)), then w. o. p. after at

most n0.3 steps the search is located at a point for which α < α[i], and furthermore,

w. o. p. α ≤ α[i] + O(α[i]/n0.6) in all intermediate steps.

The proof can be found in Appendix C. Since the 1/5-rule keeps the scaling factor

unchanged for n steps, we can virtually partition each such observation phase in
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n/n0.3 = n0.7 sub-phases to each of which this lemma applies. Incorporating these

new insights into the argumentation for the 1/5-rule known from the analysis of

Sphere finally enables us to replace the objectionable condition “d1/d2 = O(1/ξ)

in the complete optimization process” in Theorem 1 by “d1/d2 = O(1/ξ) for the

initial search point”—yielding the main result on the steady state performance of

the the (1+1)ES on the considered quadratic forms:

Theorem 2. If d1/d2 = O(1/ξ) for the initial search point and the scaling factor

is initialized such that in the first step E[|m|] = Θ(
√

f/n/ξ), then the expected

number of steps/f -evaluations to reduce the initial approximation error/function

value to a 2−t-fraction, t = poly(n), is Θ(t · ξ · n).

Now, one might ask what happens if the optimization starts at a point for which

d1 is not O(d2/ξ). A closer look at the argumentation in the proof of the preceding

lemma reveals that the same argumentation results in the proof of the existence of

another constant α⇓ > α↓ such that the drift towards smaller α is that strong when

α ≥ α⇓ that w. o. p. α drops by a constant fraction within at most n steps:

Lemma 5. Let the scaling factor s be fixed. If P{∆1 ≥ 0} and 1/2−P{∆1 ≥ 0} as

well as P{∆2 ≥ 0} are Ω(1), respectively, then there exists a constant α⇓ such that

for n large enough: if in the ith step α[i] ≥ α⇓ (yet α[i] = O(ξ)), then w. o. p. after

at most n steps the search is located at a point with α ≤ α[i] − Ω(α[i]).

See Appendix D for the proof. Finally, this lemma shows that α drops very

quickly if the lemma’s conditions are met. Again utilizing the results for Sphere,

it is rather simple to check that these conditions are met when d1 is O(d2) (and

Ω(d2/ξ), of course). If d1 is not O(d2), for instance if we start at a point of steepest

descent, i. e. d2 = 0 so that f = ξd2
1, then a simple argumentation using rough

bounds on ∆1 and ∆2 yields that—as expected—d1/d2 drops even faster than in

situations covered by the preceding lemma since the (expected) spatial gain in S1

(on the heavier weigthed sphere) is negative whereas the one in S2 is positive.

5 Conclusion

Based on the results on how the (1+1)ES minimizes the well-known Sphere-

function, we have extended these results to a broader class of functions consisting of

certain positive definite quadratic forms. The main insight of the results presented is

that Gaussian mutations adapted by the 1/5-rule result in the optimization process

to become steady-state very close to the gentlest descent of the ellipsoidal fitness

landscape. However, more insight into how EAs for continuous optimization work

is gained, contributing to building an algorithmic EA-theory for continuous search

spaces.

A The Curvature is Ω(ξ/φ) if d1 = O(d2/ξ)

We consider the ellipse given by ξ · d2
1 + d2

2 = φ2. Thus, d2 =
√

φ2 − ξ · d2
1,

dd2

dd1
=

−ξ · d1√
φ2 − ξ · d2

1

and =
dd2

d2d1
=

−ξ2 · d2
1

(φ2 − ξ · d2
1)

3/2
+

−ξ√
φ2 − ξ · d2

1

.
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As the curvature (of a plane curve) equals

dd2

d2d1(
1 +

(
dd2

dd1

)2
)3/2

=
φ2ξ

(φ2 + (ξ2 − ξ) · d2
1)

3/2
,

for d1 = α · φ/ξ the curvature equals

ξ

φ · (1 + (1 − 1/ξ) · α2)
3/2

.

Finally note that
(
1 + (1 − 1/ξ) · α2

)3/2
= O(1) for α = O(1), i. e. d1 = O(φ/ξ).

Furthermore, this shows that for d1 = 0, i. e. α = 0, the curvature equals ξ/φ.

B Proof of Lemma 2

Proof. Let us assume for a moment that the distribution of |m2| were concentrated

at a certain `2, and let “D{·}” denote the density of an event. Then

E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2≥0}

]
· 1{∆1<0}

]

=

∫ `2

0

x · D{∆2 = x} · P{−x/α ≤ ∆1 < 0}dx and

E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2<0}

]
· 1{∆1≥0}

]

=

∫ 0

−`2

y · D{∆2 = y} · P{∆1 ≥ −y/α}dy

=

∫ `2

0

−x · D{∆2 = −x} · P{∆1 ≥ x/α} dx .

We know from the analysis of Sphere that for x ∈ [0, `2)

D{∆2 = x} <
Ψn

`2
· (1 − (x/`2)

2)(n−3)/2 < D{∆2 = −x}

(with Ψn := π−1/2 ·Γ(n/2) / Γ(n/2−1/2) = Θ(
√

n), where “Γ ” denotes the Gamma

function), and thus, the LHS of (1) is smaller than

∫ `2

0

x · Ψn

`2
· (1 − (x/`2)

2)(n−3)/2 · P{−x/α ≤ ∆1 < 0}dx

−
∫ `2

0

x · Ψn

`2
· (1 − (x/`2)

2)(n−3)/2 · P{∆1 ≥ x/α} dx

=

∫ `2

0

x · Ψn

`2
· (1 − (x/`2)

2)(n−3)/2 ·
(
P{−x/α ≤ ∆1 < 0} − P{∆1 ≥ x/α}

)
dx.

Let Φ : [0, `2] → [−1, 1] be defined by Φ(y) := P{−y ≤ ∆1 < 0}−P{∆1 ≥ y}. Hence,

∫ `2

0

x · Ψn

`2
· (1 − (x/`2)

2)(n−3)/2 · Φ(x/α) dx ≤ 0
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implies the inequality (1). Note that, obviously, P{−0 ≤ ∆1 < 0} = 0 and, by as-

sumption, P{∆1 ≥ 0} = Ω(1). Since, P{∆1 ≥ y} decreases monotonically, whereas

P{−y ≤ ∆1 < 0} increases monotonically when y grows, Φ(y) is monotone increas-

ing for 0 ≤ y ≤ min{`1, `2} and equals P{∆1 < 0} for y ≥ `1. Furthermore, if ε

denotes an arbitrary constant with 0 < ε < P{∆1 ≥ 0}, then P{∆1 ≥ y} = ε im-

plies y = Θ( ¯̀
1/
√

n). Analogously, if 0 < ε < P{∆1 < 0}, then P{−y ≤ ∆1 < 0} = ε

implies y = Θ( ¯̀
1/
√

n). Thus, there exists y̌ = κ · ¯̀
1/
√

n − 1 with κ = Θ(1) such

that P{∆1 ≥ y̌} = P{−y̌ ≤ ∆1 < 0}, i. e., Φ(y̌) = 0, and hence, the inequality to be

shown reads

− Ψn

`2

∫ α·y̌

0

x · (1 − (x/`2)
2)(n−3)/2 · Φ(x/α) dx

≥ Ψn

`2

∫ `2

α·y̌

x · (1 − (x/`2)
2)(n−3)/2 · Φ(x/α) dx. (2)

For the RHS we have, using (1 − a/(n − 1))(n−1)/2 ≤ e−a/2 for n − 1 > a > 0,

∫ `2

α·y̌

x · (1 − (x/`2)
2)(n−3)/2 · Φ(x/α) dx

≤
∫ `2

α·y̌

x · (1 − (x/`2)
2)(n−3)/2 · 1 dx

=

[−`2
2

2
· (1 − (x/`2)

2)(n−1)/2

(n − 1)/2

]`2

α·y̌

= 0 −
( −`2

2

n − 1
· (1 − (α · y̌/`2)

2)(n−1)/2

)

=
`2
2

n − 1
· (1 − (α · y̌/`2)

2)(n−1)/2

≤ `2
2

n − 1
·
(
1 − (α · κ · ¯̀

1/`2)
2/(n − 1)

)(n−1)/2

if n − 1 >

(
α · κ ·

¯̀
1

`2

)2

then ≤ `2
2

n − 1
· e−(α·κ· ¯̀1/`2)2/2.

For the LHS of (2) note that, by the same arguments, there exists ÿ = τ · ¯̀
1/
√

n − 1

with τ = Θ(1) such that P{∆1 ≥ ÿ} = 2 ·P{−ÿ ≤ ∆1 < 0}, and thus, for 0 ≤ y ≤ ÿ

we have P{∆1 ≥ y} ≥ 2 · P{−y ≤ ∆1 < 0}, i. e., −Φ(y) ≥ p := P{∆1 ≥ ÿ}/2 =

Ω(1). Hence,

−
∫ α·y̌

0

x · (1 − (x/`2)
2)(n−3)/2 · Φ(x/α) dx

≥
∫ α·ÿ

0

x · (1 − (x/`2)
2)(n−3)/2 · p dx

= p ·
[−`2

2

2
· (1 − (x/`2)

2)(n−1)/2

(n − 1)/2

]α·ÿ

0

= p · −`2
2

n − 1
·
((

1 − (α · ÿ/`2)
2
)(n−1)/2 − 1

)

= p · `2
2

n − 1
·
(

1 −
(

1 − (α · τ · ¯̀
1/`2)

2

n − 1

)(n−1)/2
)

if n − 1 >

(
α · τ ·

¯̀
1

`2

)2

then ≥ p · `2
2

n − 1
·
(
1 − e−(α·τ · ¯̀1/`2)

2/2
)
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All in all, we have broken it down into the inequality

p · `2
2

n − 1
·
(
1 − e−(α·τ · ¯̀1/`2)

2/2
)

≥ `2
2

n − 1
· e−(α·κ· ¯̀1/`2)

2/2.

Since p, τ , and κ are Θ(1), it is finally obvious that α = O(1) can be chosen

large enough for this inequality to hold for n large enough if ¯̀
1/`2 = Θ(1), i. e.

`2 = Θ( ¯̀
1).

C Proof of Lemma 4

Proof. We begin by proving the second claim. Let us assume that, starting with

the ith step, α ≥ α[i] for k ≤ n0.3 steps. Recall that, due to elitist selection, the

fitness is non-increasing. As d2 > d
[i]
2 and f ≤ f [i] implies d1 < d

[i]
1 , which again

implies α/ξ = d1/d2 < d
[i]
1 /d

[i]
2 = α[i]/ξ, we have just proved that (surely) d2 ≤ d

[i]
2

in these k steps, respectively. Since, irrespective of the adaptation of the length

of an isotropic mutation, in a step w. o. p. ∆2 = O(d2/n0.9), in all k ≤ n0.3 steps

w. o. p. d2 ≥ d
[i]
2 − k ·O(d

[i]
2 /n0.9) ≥ d

[i]
2 −O(d

[i]
2 /n0.6), i. e., d2 = d

[i]
2 (1−σ) for some

σ = O(n−0.6), respectively. Concerning an upper bound on d1, we have

f = ξd2
1 + d2

2 = ξd2
1 +

(
d
[i]
2 − σd

[i]
2

)2

≤ f [i] = ξd
[i]
1

2
+ d

[i]
2

2
,

and hence

ξd2
1 ≤ ξd

[i]
1

2
+ (2σ − σ2)d

[i]
2

2

⇔ d2
1 ≤ d

[i]
1

2
+ (2σ − σ2)

d
[i]
2

2

ξ
= d

[i]
1

2
+ (2σ − σ2)

d
[i]
1

2

α[i]

= d
[i]
1

2
(

1 +
σ(2 − σ)

α[i]

)

Since σ(2 − σ)/α[i] is O(σ), i. e. O(n−0.6), we finally get that in all k steps

α

ξ
=

d1

d2
≤ d

[i]
1

d
[i]
2

·
√

1 + O(n−0.6)

1 − O(n−0.6)
=

α[i]

ξ
· (1 + O(n−0.6)).

Now we are ready for the proof of the lemma’s first claim. Therefore, assume

that α ≥ α[i] ≥ α↓ for n0.3 + 1 steps. We are going to show that the prob-

ability of observing such a sequence of steps is exponentially small. Note that,

since w. o. p. d2 ≥ d
[i]
2 (1 − σ) as we have seen, our assumption implies that also

w. o. p. d1 ≥ d
[i]
1 (1 − σ), i. e., w. o. p. d1 = d

[i]
1 − O(d

[i]
1 /n0.6) in all n0.3 steps.

Let X
[k]
j , j ∈ {1, 2}, denote the RV ∆j · 1{f ′≤f} in the (i − 1 + k)th step (so

that E[Xj ] = E
[
E
[
∆j · 1{f ′≤f}

]]
). Then, according to the arguments preceding the

lemma, for 1 ≤ k ≤ n0.3, E

[
X

[k]
1

]
/d

[k]
1 ≥ 2 · E

[
X

[k]
2

]
/d

[k]
2 , i. e.,

ξ · E
[
X

[k]
1

]
≥ 2 · α[k] · E

[
X

[k]
2

]
≥ 2 · α[i] · E

[
X

[k]
2

]
.
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Let S
[k]
j := X

[1]
j + · · ·+X

[k]
j denote the total gain of k steps w. r. t. to dj . By linearity

of expectation, E

[
S

[k]
1

]
/d

[i]
1 ≥ 2 · E

[
S

[k]
2

]
/d

[i]
2 for 1 ≤ k ≤ n0.3; however, the goal is

to show that P

{
S

[k]
1 /d

[i]
1 ≤ S

[k]
2 /d

[i]
2 for 1 ≤ k ≤ n0.3

}
is exponentially small.

Therefore, we will assume the worst case (w. r. t. to the analysis, i. e. the best case

w. r. t. the chance of observing such a sequence) that E

[
X

[k]
1

]
/d

[i]
1 = 2 · E

[
X

[k]
2

]
/d

[i]
2

in each step. To see that this is in fact the worst case consider a search point x

for which α ≥ α[i], i. e. d1/d2 > d
[i]
1 /d

[i]
2 , so that ξ · E[X1] > 2 · α · E[X2]. Now

consider a search point x̃ with f(x̃) = f(x) but α̃ < α, i. e., d̃1 < d1 and d̃2 > d2.

Owing to the results on Sphere we know that, for an isotropic mutation of an

arbitrary fixed length `j , for any fixed g ∈ (−`j , `j), P{∆j ≥ g} strictly increases

with dj (when dj > `j). Consequently, (independently of the distribution of |m|) ∆̃1

is stochastically dominated by ∆1, whereas ∆̃2 stochastically dominates ∆2. This

implies that X1 dominates X̃1, whereas X2 is dominated by X̃2 (in particular, we

have E[X1] < E

[
X̃2

]
and E[X2] > E

[
X̃2

]
).

As we have just seen, we may pessimistically assume that in each step the

search is located at a point for which ξ · E[X1] = 2 · α · E[X2]. Hence, E

[
S

[k]
1

]
/d

[i]
1 =

2 ·E
[
S

[k]
2

]
/d

[i]
2 . Let Sj := S

[n0.3]
j . Since 1.2/0.8 = 1.5 < 2, it is sufficient to show that

w. o. p. S1 ≥ 0.8 · E[S1] and w. o. p. S2 ≤ 1.2 · E[S2]. The Hoeffding bounds (1963)

(cf. Section 2.6.2 of (Hofri, 1987)) state that, for X
[k]
j ∈ [aj , bj ] and tj > 0,

P
{
S1 − E[S1] ≤ −n0.3 · t1

}
≤ exp

(−2 · n0.3 · t 2
1

(b1 − a1)2

)
and

P
{
S2 − E[S2] ≥ n0.3 · t2

}
≤ exp

(−2 · n0.3 · t 2
2

(b2 − a2)2

)
.

For tj = 0.2 · E[Sj ]/n0.3, both exponents equal

−0.08 · n−0.3 · E[Sj ]
2
/(bj − aj)

2 = −Ω(n−0.3) ·
(

E[Sj ]

bj − aj

)2

,

respectively. Therefore, our goal is to show that E[Sj ]/(bj − aj) = Ω(n0.2).

First we concentrate on E[S1]. Since S1 is the sum of n0.3 RVs X
[k]
1 , it suffices

to show that E

[
X

[k]
1

]
/(b1 − a1) = Ω(n−0.1) for 1 ≤ k ≤ n0.3. In the following

we assume that d1 = d
[i]
1 ± O(d

[i]
1 /n0.6) and d2 ∈

[
d
[i]
2 − O(d

[i]
2 /n0.6), d

[i]
2

]
since we

have seen (in the preceding proof of the second claim) that this happens w. o. p.

Owing to the results for Sphere, we know that P{∆j ≥ 0} = Ω(1) implies that

the scaling factor s is O(dj/n), which results in ¯̀
j = O(dj/

√
n), and that, under

these conditions, w. o. p. |∆j | = O( ¯̀
j/n0.4). Recall that E

[
∆1 · 1{f ′≤f}

]
is at least

E
[
∆1 · 1{∆1≥0}

]
· P{∆2 ≥ 0}/2. Since P{∆2 ≥ 0} = Ω(1) in ith step and d2 ≥

d
[i]
2 (1−O(n−0.6)) in all n0.3 steps, in each of these steps P{∆2 ≥ 0} = Ω(1). Hence,

E[X1] = Ω(E
[
∆1 · 1{∆1≥0}

]
) in each of the n0.3 steps. Owing to the results for

Sphere, we know that (since ¯̀
1 = O(d1/

√
n) as we have seen) E

[
∆1 · 1{∆1≥0}

]
=

Θ( ¯̀
1/
√

n) so that E[X1] = Ω( ¯̀
1/
√

n). Thus, E[S1] = n0.3 · Ω( ¯̀
1/
√

n) = Ω( ¯̀
1/n0.2)

and b1 − a1 = O( ¯̀
1/n0.4), i. e., E[S1]/(b1 − a1) = Ω(n0.2).

Concerning a lower bound on E[S2], recall that E[S1]/d
[i]
1 = 2 · E[S2]/d

[i]
2 , i. e.,

E[S2] = E[S1] ·d[i]
2 /(2 ·d[i]

1 ) = Ω( ¯̀
1/n0.2) ·Ω(ξ/α[i]). As ¯̀

1 = ¯̀
2 and (by assumption)
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α[i] = O(ξ), we have E[S2] = Ω( ¯̀
2/n0.2). Since b2 − a2 = O( ¯̀

2/n0.4) (see above),

E[S2]/(b2 − a2) = Ω( ¯̀
2/n0.2)/O( ¯̀

2/n0.4) is also Ω(n0.2).

All in all, our initial assumption that α ≥ α[i] ≥ α↓ for n0.3 + 1 steps implies

that w. o. p. for the first n0.3 steps S1/S2 > α[i]/ξ, i. e., that w. o. p. after at most

n0.3 steps α drops below α[i] — showing that the sequence of steps we assumed to

be observed happens only with an exponentially small probability.

D Proof of Lemma 5

Proof. By the same arguments used before, under the given assumptions there

exists α′ = O(1) such that for n large enough ξ · E
[
E
[
∆1 · 1{f ′≤f}

]]
≥ 3 · α ·

E
[
E
[
∆2 · 1{f ′≤f}

]]
. Let α⇓ := 2 · α′. Assume that α[i] ≥ α⇓ and α ≥ α⇓/2 = α′ for

n steps (if α < α⇓/2 within these n steps, there is nothing to show). Following the

same argumentation used in the proof of the preceding lemma (except for Sj now

being the sum of n (instead of n0.3) RVs), we get that w. o. p. S1/S2 > 2 · α[i]/ξ,

and hence, after these n steps w. o. p.

d1

d2
≤ d

[i]
1 − S1

d
[i]
2 − S2

<
d
[i]
1 − S1

d
[i]
2 − S1 · ξ/(2 · α[i])

=
d
[i]
1 − S1

(d
[i]
1 − S1/2) · ξ/α[i]

=
d
[i]
2 − S1

d
[i]
1 − S1/2

· α[i]

ξ
=

(
1 − S1/2

d
[i]
1 − S1/2

)
· d

[i]
1

d
[i]
2

≤
(

1 − S1

2 · d[i]
1

)
· d

[i]
1

d
[i]
2

.

Thus, we must merely show that S1 = Ω(d
[i]
1 ). Recall that S1 is the sum of n RVs

X
[k]
1 (∆1 · 1{f ′≤f} in the (i − 1 + k)th step, respectively). In the following we con-

sider the ith step. Our argumentation just bases on the fact that E
[
∆1 · 1{f ′≤f}

]
≥

E
[
∆1 · 1{∆1≥0}

]
· P{∆2 ≥ 0}/2, and since P{∆2 ≥ 0} = Ω(1) by assumption, we

have E
[
∆1 · 1{f ′≤f}

]
= Ω(E

[
∆1 · 1{∆1≥0}

]
). Furthermore, since P{∆1 ≥ 0} as well

as 1/2− P{∆1 ≥ 0} are Ω(1) by assumption, we know that ¯̀
1 = Θ(d1/

√
n), which

implies E
[
∆1 · 1{∆1≥0}

]
= Θ(d1/n). As a consequence, the assumptions ensure

E
[
∆1 · 1{f ′≤f}

]
= Ω(d1/n), and hence, E[S1] = n · Ω(d1/n) = Ω(d1). Applying

Hoeffding’s bound just as in the proof of the preceding lemma, we immediately get

that w. o. p. S1 = Ω(E[S1]) = Ω(d
[i]
1 ).
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