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Abstract- Self-adaptation is a powerfull mechanism in
evolution strategies (ES), but it can fail. The reasons for
the risk of failure are manyfold. As a consequence pre-
mature convergence or ending up in a local optimum in
multimodal fitness landscapes can occur. In this article
a new approach controlling the process of adapation is
proposed. This approach combines the old ideas of gene
deletion and gene duplication with the self-adaptation
mechanism of the ES. In order to demonstrate the prac-
ticability of the new approach several multimodal test
functions are used. Methods from statistical design of
experiments and regression tree methods are used to im-
prove the performance of a specific heuristic-problem
combination.

1 Introduction

In modern synthesis of evolutionary theory, gene duplica-
tion emerged as a major force. In particular, redundant gene
loci created by gene duplication are permitted to accumu-
late formerly forbidden mutations and emerge then as ad-
ditional gene loci with new functions. It is hardly surpris-
ing that these major effect is not unconsidered in the de-
sign of evolutionary algorithms. The first evolution strat-
egy (ES) using operators like gene duplication and gene
deletion can be found in Schwefel [Sch68]. Here the op-
timization of a nozzle for a two-phase flow leads to surpris-
ing good results. A good overview of existing approaches
dealing with variable-length representations can be found
in [Sch97, Bur98]. Unfortunately, most of the approaches
are extremely application-oriented. Perhaps the most im-
portant reason for the application oriented design is the re-
strictive fixed-length, fixed-position representation of the
solutions that are used in many search heuristics. Based
on this fixed representation, the introduction of duplication
and deletion leads to several problems. For instance, the
role of positions in a fixed-length solution is destroyed. In
order to design genetic operators which are able to generate
interpretable solutions, the assignment problem of finding
the locus of corresponding genes has to be solved. In most
cases those solutions lead to extremely application oriented
solutions [Har92, GKD89].

The main focus of this article lies on a more applica-
tion independent approach. Starting from the idea of in-
troducing gene duplication and gene deletion into ES, addi-
tional genetic operators varying the number of used endoge-
nous strategy parameters are introduced to generate a satis-

factory self-adaptation in various fitness landscapes. Ex-
periences gained in the last four decades show that self-
adaptation is a powerfull mechanism, but it can fail. The
reasons for the risk of failure are manyfold. As a conse-
quence premature convergence or ending up in a local opti-
mum in multimodal fitness landscapes can occur. There-
fore, various countermeasures should be found in litera-
ture [Rec94, Her92, Tri97], but the main countermeasure
in nature is gene duplication.

The rest of this article is organized as follows: in Sec-
tion 2, an overview of the basic principles of the proposed
search heuristic is given, followed by a brief description
of the implementation details. In Section 3, a stastistical
methodology to set up the experiments in an efficient man-
ner is discussed. Experimental results are presented and dis-
cussed in Section 4. Finally, Section 5 concludes this article
with a summary of the insigths and with directions for fur-
ther research.

2 Evolution Strategy

This section presents the main aspects of a multimembered
evolution strategy (ES), since this was needed for further
discussion. For a comprehensive introduction the reader is
referred to [BS02, Sch95].

In principle, existing parameters in evolution strategies
can be distinguished between exogenous and endogenous
parameters. Exogenous parameters likeµ (parent popu-
lation size) orλ (member of descendants) which are kept
constant during the optimization run, are a characteristic of
most of the modern search heuristics. Endogenous param-
eters are a pecularity of ES: they are used to control the
ability of self-adaptation in ES during the run.

The adaptation of the endogenous parameters - the so
called strategy parameters - depends on various adjust-
ments. First of all, the strategy parameters are closely cou-
pled with the object parameters [BS02]. Each individual has
its own set of strategy parameters. Like the object param-
eters, the strategy parameters undergo recombination (to-
gether with the object parameters) and mutation and are
used to control the mutation of the object parameters. Due
to this mechanism, the optimizer can hope - and only hope -
that an individual is able to learn the approximately optimal
strategy parameters for the specific problem.

The realization of described self-adaptation mechanism
above depends further on the kind and the number of strat-
egy parameters to be adapted. In most cases only1 or N



standard deviations are used. In the sphere function, i.e.
only one standard deviation [Sch95] will do the work ef-
ficiently, in multimodal fitness landscapes it is favourable
to use more than one standard deviation. The question of,
how many standard deviations are necessary for a specific
algorithm-problem combination or how many are necessary
during of evolution, is still open.

Correlated mutations finalize the current self-adaptation
mechanism in ES. For a deeper insight of correlated mu-
tations the reader is referred to [Rud92]. The use of cor-
related mutation introducesN(N − 1)/2 additional strat-
egy parameters which have to be controlled, too. This
may be the reason why correlated mutations are commonly
not used. But in many real-world applications where the
computational cost of optimization problems is determined
mainly by the time-comsuming function evaluations, the
computational effort for the optimization task will be rel-
ativize.

In order to obtain the best possible self-adaptation for
the given problem the specification of the exogenous pa-
rameters is required. Table 1 shows the main exogenous
parameters used in ES and their common default parame-
terizations.

Table 1: Exogenous parameters of an ES. Column1 shows
the usual symbols or the parameters. Column3 holds com-
momly used values [B̈ac96, Kur99].

Symbol Description Default Values

µ number of parent individuals 15
λ number of offspring individuals 100

σ
(0)
i initial standard deviation 1.0

nσ number of standard deviations problem-dimension
cτ0 progress coefficient 1
κ Maximum age of an individual {1;∞}
β correlation variablity 0.0873
ρ Mixing number 2
Rx Recombination type for the ob-

ject variables
r(d) local discrete

Rσ Recombination type for the
standard deviations

r(i) local intermediate

Rα Recombination type for the ro-
tation angles

r(−) no recombination

Some of these values originate from investigations in the
sixties [Sch68, Rec71] of the last century about only two
artificial test functions (sphere and corridor). Other values -
such as the progress coefficientcτ0 - are theoretically very
well analyzed [Bey95], but also only for a specific test func-
tion. Experimental investigations from [Kur99, Bäc96] have
yielded to principle recommendations for the parameter set-
tings i.e. for the type of recombination that must be choosen
if the test function is unimodal or multimodal or for the ini-
tial standard deviation. But all of them state out that the use
of these default values without reflection could be a mistake.

Nevertheless, after a first specification of these param-

eters, an evolution strategy is performed as follows: The
initial parental population of sizeµ will be generated. A
new offspring population is produced then by the rule of the
(µ/ρκλ) - notation. From the parent population of sizeµ, ρ
individuals are randomly choosen as parents for one child.
Depending on the specified types of recombination, the re-
combination of the endogeneous and exogeneous parame-
ters takes place. With respect to the recombination step, the
mutation of the strategy parameters is done. The learning
parameterτ determines the rate and precision of the self-
adaptation of the standard deviations andβ determines the
adaptation of the rotation angles. After having a new off-
spring population of sizeλ, the selection operator is used
to select the new parental population for the next iteration.
κ = 1 referres to the well-known comma-selection scheme
of an ES, andκ = +∞ to the plus-selection scheme.

2.1 Implementation details

As mentioned above, the implementation of the self-
adaptation mechanism depends on the kind and the number
of strategy parameters. Given an individual~a = (~x, ~σ, ~α),
where~x is the vector of objective variables,~σ holds the set
of standard deviations and~α the rotation angles. Each ES
individual may include one up toN(N + 1)/2 endogenous
strategy parameters. For the case1 < nσ < N the stan-
dard deviationsσ1, . . . , σN−1 are coupled with the corre-
sponding object variables andσN is used for the remaining
ones. The number of rotation anglesnα depends directly on
nσ [Sch95] or is explicit set to0.

The new deletion and duplication operator work on the
set of standard deviations (nσ) only. The additional varia-
tion operators are defined as follows:

Duplication Operator: With a predefined duplication
probalitity (dup = 0.028) a duplication may occur
if nσ < N . The duplicated standard deviation is
added then at the end of~σ. The rate of gene duplica-
tion is taken from an investigation of [ML00]. Within
their work an estimation of gene duplication rates of
Drosophila, andC. elegansis given. This is a sur-
prisingly high mutation rate compared to previous es-
timations that recommended a mutation rate of0.1%
per gene.

Deletion Operator: Vice versa a predefined deletion prob-
ability (del = 0.028) is used in order to delete the last
standard deviation innσ if nσ > 1 or not. The dele-
tion of the last standard deviation is used because of
their direct coupling with the rotation angles.



3 Experimental Environment

3.1 Test Functions

Just as for any other search heuristic, evolution strate-
gies need to be assessed concerning their effectiveness
for optimization purposes. To facilitate a reasonably fair
comparison of search heuristics a number of artificial test
functions are typically used. Well-known test suites of
single-criteria parameter optimization problems are those
of De Jong [DeJ75], Schwefel [Sch95] and Flaudas et
el. [FPA+99]. These test suites serve well as an archive.
In most cases only a selection was made taking into account
that it is important to cover various topological character-
istics of landscapes in order to test the heuristics concern-
ing efficiency and effectiveness. In principle, Whitley et
al. [WMRD95] and B̈ack and Michalewicz [BM97] propose
five basic properties as selection criterias for a fair test suite.
The suite should contain unimodal functions in order to test
the efficiency, they have to include high-dimensinal, mul-
timodal functions and also constrained problems to simu-
late typical real-world applications. Due to the possibility
of the presence of noise in industrial applications test func-
tions with randomly pertubed objective values have to be
included to.

The following test suite is composed disregarding the
presence of noise and constraints in real-world applications.

Sphere function (F1) [DeJ75]: This is an unimodal test
function with a minimum at~x∗ = ~0, with f( ~x∗) = 0.
For a test of efficiency, this is the most used fitness
function.

f(~x) =
∑n

i=1 x2
i . (1)

where

Start Point:x0
i = 10∀i ∈ {1, . . . , n}.

Double Sum (F2) [Sch95]:

f(~x) =
∑n

i=1(
∑i

j=1 xi)2. (2)

where

Start Point:x0
i = 10∀i ∈ {1, . . . , n}.

Generalized Rastrigin function (F3) [TZ89]: This is a
multimodal function. The constants are give byA =
10 andω = 2π. Here the global optima is at~x∗ = ~0,
with f( ~x∗) = 0.

f(~x) = n ·A +
∑n

i=1 x2
i −A cos(ωxi). (3)

where

Start Point:x0
i = 4∀i ∈ {1, . . . , n}.

Generalized Ackley function (F4) [BRS93]: This gen-
eral extension of an originally two-dimensional test
function is multimodal. Their constants are given by
a = 20, b = 0.2 andc = 2π.

f(~x) = −a exp[−b( 1
n

∑n
i=1 x2

i )
1/2]−

exp[ 1
n

∑n
i=1 cos(cxi)]+

a + exp(1) · exp(1).
(4)

where

Start Point:x0
i = 25 ∀i ∈ {1, . . . , n}.

Fletcher and Powell (F5) [RF63]: The constants aij ,
bij = [−100, 100] andαj ∈ [−π, π] are randomly
choosen and specify the position of the local minima.
The minimum isf(α) = 0. The matricesA andB
are taken from B̈ack [Bäc96].

f(~x) =
∑n

i=1(Ai −Bi)2 (5)

where

Ai =
∑n

j=1(aij sinαj + bij cos αj)
Bi =

∑n
j=1(aij sinxj + bij cos xj)

Start Point:x0
i = 2.51818∀i ∈ {1, . . . , n}.

3.2 Choice of Parameter Settings

As mentioned in Section 2 many of so called default pa-
rameterizations are proposed for the multimembered ES. In
Table 1 usual default values are listed. But again, each
heuristic-problem combination requires its specific parame-
terization. Therefore, as long as the success or failure of a
heuristic depends on (nearly) optimal parameter settings, it
is neccessary to look for the optimal set of parameters anew.

Manyfold methods are proposed to tackle this problem.
A good overview can be found in [Kle87, BB03]. In
this study, tree based methods, fractional factorial designs
as well as classical regression analysis are used [BFOS84,
Kle87, BBM04] in order to achive good parameter settings
and to analyze the obtained results.

Fractional factorial designs are constructed by choosing
a certain subset of all the possible2k combinations from a
full factorial design. The advantage of reducing the com-
putational effort is in opposite to the disadvantage of con-
founding. From now on it is possible that for several dif-
ferent effects the same algebraic expression is used, so it is
impossible to differentiate between these two effects, these
effects are called confounded. A good way to handle this
problem is the concept of resolution. A2k−p

R fractional fac-
torial design is of resolutionR if no q-factor effect is con-
founded with another effect that has less thanR − q fac-
tors [GB78]. For a first screening phase, where only the



Table 2: Fractional factorial design211−7
III . This design rep-

resents the starting design which is used for all test func-
tions using correlated mutations with duplication and dele-
tion probability> 0. If no correlated mutations, or duplica-
tion/deletion oparetors are used, the values were set to0.

A B C D E=
ABC

F=
BCD

G=
ACD

H=
ABD

I=
ABCD

J=
AB

K=
AC

1 − − − − − + + + − + +
2 + − − − + + − − + − −
3 − + − − + − + − + − +
4 + + − − − − − + − + −
5 − − + − + − − + + + −
6 + − + − − − + − − − +
7 − + + − − + − − − − −
8 + + + − + + + + + + +
9 − − − + − + + + − + +
10 + − − + + + − − + − −
11 − + − + + − + + + − +
12 + + − + − − − − − + −
13 − − + + + − − − + + −
14 + − + + − − + + − − +
15 − + + + − + − − − − −
16 + + + + + + + + + + +

main effects but no interactions are of interest, a resolution
three design is sufficient. It ensures only that no main effect
is confounded with each other main effect. Table 2 shows a
211−7

III design, where the minus and the plus signs denote to
the low and the high levels of the factors. The resulting de-
sign matrix for the high and the low levels of the evolution
strategy is shown in Table 3.

3.3 Methods of Analysis

Classical methods of statistical analysis such as regression
analysis can be extend by tree-based regression methods.
A detailed example can be found in [BB03]. Here, it is
shown that using regression trees the practitioner is able to
screen out important parameter settings. One of their main
advantages, besides their simplicity of interpretation, is that
they do not require any assumptions about the underlying
distribution of the responses.

The construction of a regression tree is a kind of variable
selection similar to stepwise selection from classical ones,
and rely on three components [BFOS84]:

• a set of questions upon which to base a split,

• splitting rules and goodness-of-split criteria for judg-
ing how good a split is and

• the generation of summary statistics for terminal
nodes.

In principle, a set of questions of the form

Is X ≤ d ? (6)

Table 3: Corresponding211−7
III fractional factorial design for

the choosen ES parameterization.
µ λ Nσ κ ρ dup del σ0

init Rx Rσ Rα

10 60 1 1 2 0.001 0.001 0.15 d d d
20 60 1 1 20 0.001 0.028 3.0 i i i
10 120 1 1 10 0.028 0.001 3.0 i i d
20 120 1 1 2 0.028 0.028 0.15 d d i
10 60 5 1 10 0.028 0.028 0.15 i d i
20 60 5 1 2 0.028 0.001 3.0 d i d
10 120 5 1 2 0.001 0.028 3.0 d i i
20 120 5 1 20 0.001 0.001 0.15 i d d
10 60 1 +∞ 2 0.028 0.028 3.0 i d d
20 60 1 +∞ 20 0.028 0.001 0.15 d i i
10 120 1 +∞ 10 0.001 0.028 0.15 d i d
20 120 1 +∞ 2 0.001 0.001 3.0 i d i
10 60 5 +∞ 10 0.001 0.028 3.0 d d i
20 60 5 +∞ 2 0.001 0.028 0.15 i i d
10 120 5 +∞ 2 0.028 0.001 0.15 i i i
20 120 5 +∞ 20 0.028 0.028 3.0 d d d

is given, whereX is a variable andd is a constant. The re-
sponse to such a question is binary (yes/no). Each response
partitions the tree into a left and a right node. This recur-
sive procedure will continue, if one node contains enough
experimental observations for another split.

4 Experimental Results

The following experiments were performed to investigate
the question if the new duplication and deletion operator
improve the performance of an evolution strategy when op-
timizing multimodal fitness functions.

Therefore it is a common practice to compare the per-
formance of the new algorithm including the additional op-
erators with the standard implementation of the original al-
gorithm. In order to ensure a relative fair comparison, both
algorithms have to be tuned on the given heuristic-problem
combination at first. This tuning step should be done with
regression tree methods. In the following a detailed discus-
sion on the20-dimensional ackley function (F4) was per-
formed. The other test functions were analyzed in a similar
manner.

4.1 A Simple Tuning Step

First experiments, based on the experimental design shown
in Table 3, were performed for both types of algorithms.
Due to simplification the experiments are devided into two
main groups:

• Experiments without correlated mutations, and

• with correlated mutations.

For the first group theβ, and theRα values from Table 3
are set to0. Each of the16 parameter settings was repeated
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N=3,4,5,6,7,8,9,10,11,16,18,19,20

J=3

N=1,2

J=0.15

6.89
n=160

0.7813
n=108

0.0002294
n=70

2.22
n=38

19.58
n=52

Figure 1: Pruned regression tree for the modified ES opti-
mizing a 20-dimensional Ackley function. The first split
partitions the160 experiments in the root node in two
groups of108 and52 events. The average fitness value in
the left node reads0.7831 and in the right node19.58. The
first split is performed by the number of used standard devi-
ations (N ).

Table 4: Corresponding ANOVA analysis. All observed fac-
tors have a significant contribution to the results.

Df Sum
Sq

Mean
Sq

F
value

Pr(>F)

J 1 3189.1 3189.1 455.752 < 2.2e− 16
K 1 229.4 229.4 32.783 5.843e− 08
N 14 9170.3 655.0 93.609 < 2.2e− 16
Residuals143 1000.6 7.0

ten times, so that160 observations are available for each
algorithm in the group.

Figure 1 shows the pruned tree of the fitness values of
functionF4 with correlated mutations using the ES with du-
plication and deletion operators.

The first split partitions theN = 160 observations into
groups of108 (left node) and52 (right node) observations.
The left group contains experimental runs with a great num-
ber of standard deviationsN = {3, . . . , 20} and an average
fitness value of0.7831, and the right node contains all ex-
perimental runs, where the number of used standard devi-
ations remains very smallN = {1, 2} with an average fit-
ness value of19.58. Following the tree down to the node
with the smallest average fitness value2.294E − 4 the re-
gression tree indicates that the initial value of the standard
deviation (J) is significant for the success of the evolution
runs. The corresponding classical analysis (Table 4) indi-

|

I=20

J=3

A=20

I=1

J=0.15

A=10

17.74
n=158

15.55
n=78

15.21
n=38

14.56
n=19

15.86
n=19

15.88
n=40

19.86
n=80

Figure 2: Pruned regression tree for the standard ES opti-
mizing a 20-dimensional Ackley function. The first split
partitions the158 experiments in the root node into two
groups of78 and80 events. The average fitness value in
the left node reads15.55 and in the right node19.86. The
first split is performed by the number of used standard devi-
ations (I).

cates that the initial state (J), the number of used standard
deviations (N ), and the duplication (K) probability are sig-
nificant for the obtained results.

The first160 results indicate that a high value for the ini-
tial standard deviation improves the performance. But this
is not an unexpected result keeping in mind that the initial-
ization of the first population of every algorithm takes place
by choosing a single start point. As a consequent the ini-
tial population remains in a relativ small area of the fitness
landscape. The extension of this area is defined by the ini-
tial standard deviation. The greater the value the greater the
covered area. In multimodal fitness landscapes, this type of
initialization is not a disdained factor. It may also be the rea-
son, why in many ES the traditional initialization is changed
to the initialization that is usually in genetic algorithms.

A relative high number of standard deviations (J) used
during the evaluation runs seems to be the most significant
effect for the obtained results. Now, it could be conjectured
that using the greatest possible number of standard devia-
tions in the experiments (Nσ = N ) is the best choice for
this parameter and therefore no additional variation opera-
tors are neccessary. Figure 2 shows the pruned regression
tree for the standard ES.

Although the amount of the used standard deviations is
even significant as in the former case, the heuristic is not
able to reach the global attractor area (fitness =15.21).
Only in the initial phase of the optimization run, the self-
adaptation process with a great number of standard devia-
tions (left node) is able to steer the population through the
multimodal fitness landscape. But a high number of stan-
dard deviations does not seem to be the reason in itself for



Table 5: Parameter setting for the discussed heuristic-
problem combination without correlated mutations.

Parameter modified ES
µ 20 20
λ 120 60
κ +∞ 1
Rx intermediate discrete
Rσ discrete intermediate
Rα none none
ρ 2 2
β 0 0
Nσ 2 20
σinit 3.0 3.0
dup 0.001 0.0
del 0.001 0.0

the good results from Fig. 1. This will be discussed in detail
in the next section.

To begin with a fair comparison of both heuristics, re-
gression tree methods as well as classical statistical methods
are able to produce first statistically proved hints for nearly
optimal parameter settings. For the given heuristic-problem
combination the setting read:

4.2 Comparisons

A comparison of the standard ES and the modified ES with
gene deletion and duplication operators was performed in
this section. Again, each heuristic-problem combination
was going through the discussed simple tunig step before
the comparison was performed.

Figure 3 shows that – on a20-dimensional Ackley func-
tion - the ES working with duplication and deletion op-
erators (DupDel) outperforms the standard ES (ES) in a
significant manner. In Fig. 3(a) the arithmetic mean of
ten independent runs without correlated mutations is de-
picted, respectively. From these ten independent experi-
ments nine runs of (DupDel) are able to reach the global
attractor area 3(b). Only one run shows similar results as
in the standard ES. In this single run the self-adaptation
fails just as in all runs of the standard ES (ES). In the later
case, the ES is not able to guide the population through the
mulimodal fitness landscape. All populations end up in a
local optimum.

Quite different results can be observed, when using cor-
related mutations (see Figure 3(c)). The single freak value
in the former experiments from the DupDel model can be
completely avoided, when using correlated mutations. In
addition, a better convergence rate can be observed (150
iterations in contrast to300). In Figure 4 results for test
functionsF2, F3, andF5 are presented. In functionsF2 and
F3 similar results as in the Ackley function can be shown.
In functionF2 the convergence rate is on multiple regions
superior to the standard ES. In case of functionF3 the mod-
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Figure 3: Figure (a) shows the arithmetic mean of ten inde-
pendent runs optimizing a20-dimensional Ackley function
with using correlated mutations. Figure (b) shows the corre-
sponding histogramm plot. Figure (c) shows the arithmetic
mean of ten independent runs optimizing a20-dimensional
Ackley function with correlated mutations.



Table 6: Comparison of both models optimizing the20-
dimensional sphere function. The number of performed ex-
periments is set to10.

Model median mean
fitness

variance

F1 ESwithout 7.357e−77 1.022e−76 4.72442e− 153
F1 DupDelwithout 3.110e−77 2.913e−77 3.753419e−155
F1 ESwith 6.227e−77 6.287e−77 9.179366e−155
F1 DupDelwith 2.895e−77 3.009e−77 3.664180e−155

ified model is also able to achive the global attractor area in
contrast to the other model. An exception could be found in
functionF5. Here, no improvement can be observed.

4.3 Discussion

In the last section it was shown that it could be favourable
to use additional variation operators mimicing gene dele-
tion and gene duplication from nature in order to solve
multimodal problems - but why? Looking at the duplica-
tion operator, a duplication take place with a probabilty of
dup = 0.028 or0.001. In case ofNσ = 1 before dupli-
cation, the single strategy variable is – depending on the
number of iterations – more or less adapted to the local fit-
ness landscape. Now, adding a second strategy variable the
first endogenous variable controls the first objective variable
only, the second controls all the rest. In the early stage of
the optimization this will lead to relative great jumps in the
fitness landscape. The more duplication and the greater the
initial standard deviations the greater the fluctuations in the
fitness values. In multimodal landscapes this effect could
be high enough to guide a hole population out of a local
optimum. In Figure 5 an interaction plot between the du-
plication probability (K = {0.028, 0.001}) and the sizes of
the inital standard deviation (J = {0.15, 3}) is shown. The
greater the duplication probability and the greater the initial
standard deviation the lower (better) the mean of the fitness
(O). Therefore, the conjecture could be confirmed.

On the other side it must be also considered that this
effect, which is favourable in the early stage of the evolu-
tion run, is counterproductive for the end, when the global
attractor area is achieved. In many test functions – here
for exampleF4, andF3 – when the global attractor area
is achievd, the special case of a sphere function can be
found. Therefore, both heuristics were set up on a20-
dimensional sphere functionF1. Table 6 shows the obtained
results. An extremely high number of fitness evaluations
(Fiteval = 200000) was used in order to show the adapta-
tion.

Despite of duplication and deletion, the modified ES is
able to adapt the global optima in the same accuracy as the
standard ES. The reasons could be found in the progress
of the optimization run itself. During the run, the self-
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Figure 4: Figure (a) shows the arithmetic mean of ten
independent runs optimizing a20-dimensional Achwefel-
1.2 (F2) function without correlated mutations. Figure (b)
shows the obtained results for the generalized Rastrigin
function (F3) with correlated mutations, and finally Figure
(c) shows the results of functionF5.
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Figure 5: Plot of the means of the fitness values. The la-
bel on the x-axis represent different duplication probabili-
ties (K = {0.0028, 0.001})

.

adaptation process leads to smaller and smaller standard de-
viations, so if a duplication or deletion occurs, the noise
will become smaller and smaller. Differences between both
models seem to have vanished at the end of the evolution
run.

5 Summary and Outlook

In this article additional variation operators mimicing gene
duplication and gene deletion from nature were developed
in order to improve the self-adaptation mechanism of evo-
lution strategies. Self-adaptation is a powerful mechanism.
But even in multimodal fitness landscapes it can fail. On
four multimodal test functions it was shown that using the
new operators the risk of failure of the self-adaptation mech-
anism can be reduced in a significant manner. This work
will be extendend in the following way: To avoid the neces-
sity of correlated mutations, the interaction between gene
deletion and gene duplication operators has to be analyzed
in detail.
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