
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Design and Analysis of an Asymmetric
Mutation Operator

Thomas Jansen and Dirk Sudholt

No. CI-195/05

Technical Report ISSN 1433-3325 May 2005

Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46906426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Design and Analysis of an Asymmetric

Mutation Operator∗

Thomas Jansen and Dirk Sudholt

FB Informatik, Univ. Dortmund, 44221 Dortmund, Germany

{Thomas.Jansen, Dirk.Sudholt}@udo.edu

Abstract

Evolutionary algorithms as general randomized search heuristics
typically perform a random search that is biased only by the fitness of
the search points encountered. In practical applications the use of bi-
ased variation operators suggested by problem-specific knowledge may
speed-up the search considerably. Problems defined over bit strings of
finite length often have the property that good solutions have only very
few one-bits or very few zero-bits. Here, one specific mutation oper-
ator that is tailored towards such situations is defined and analyzed.
The assets and drawbacks of this mutation operator are discussed.
This is done by presenting analytical results on illustrative example
functions as well as on function classes.

1 Introduction

General randomized search heuristics are often applied in the context of op-
timization when there is not enough knowledge, time, or expertise to design

∗This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG) as
part of the Collaborative Research Center “Computational Intelligence” (SFB 531).

1

problem-specific algorithms. One popular example belonging to this class of
algorithms are evolutionary algorithms. When analyzing such algorithms,
one typically assumes that nothing is known about the objective function at
hand and that function evaluations are the only way to gather knowledge
about it. This optimization scenario is called black-box optimization [3] and
it leads to the well-known no free lunch theorem (NFL) when taken to its ex-
treme: when there is no structural knowledge at all, then all algorithms have
equal performance [6]. In practical applications, such a scenario is hardly
ever realistic since there is almost always some knowledge about typical so-
lutions. It is well known that incorporating problem-specific knowledge can
be crucial for the success and the efficiency of evolutionary algorithms.

Here, we consider one specific mutation operator that is plausible when it is
known that good solutions typically contain either very few bits with value
zero or almost only bits with this value. Many real-world problems share
this specific property. One example is the problem of computing a minimal
spanning tree [9]. A bit string x ∈ {0, 1}n represents an edge set where
each bit corresponds to exactly one edge of the graph and the edges selected
correspond to bits with value 1. Most graphs with m nodes contain Θ(m2)
edges whereas trees contain only m − 1 edges. The most common mutation
operator for bit strings of length n flips each bit independently with proba-
bility 1/n. In case we have got a bit string representing one such tree and we
wait for another tree to be generated by mutation, this operator is quite slow
since it tends to create offspring with a larger number of ones. Biasing the
search towards strings with few one-bits may lead to a significant speed-up.

We introduce a mutation operator that, on average, preserves the number
of one-bits. Considering the search space {0, 1}n one can think of all points
with exactly i one-bits as forming the i-th level. Clearly, for i = O(1) and
i = n − O(1) the levels contain only a polynomial number of points whereas
the levels with i ≈ n/2 are exponentially large. Imagine a random walk on
{0, 1}n induced by repeated standard bit mutations. Standard bit mutations
tend to sample the search space uniformly. This implies that the random
walk spends most of the time on levels with i ≈ n/2. When reaching a search
point x with either very few or lots of one-bits, there is a strong tendency
to return to levels i ≈ n/2 since these levels have got a much larger size.
The mutation operator defined here tends, on average, not to change a level.
This implies that the random walk induced by repeating these asymmetric bit

2

mutations spends more time on levels with very few or lots of one-bits since
the above-mentioned tendency to levels with medium numbers of one-bits is
missing.

At first glance, this behavior seems contradictory. We have designed an
operator where, on average, the current level of a random walk is preserved.
But since there is no tendency to the medium levels, the random walk based
on the asymmetric bit mutations is more likely to reach levels with very few
or lots of one-bits than the random walk based on standard bit mutations.

In an optimization process, if the fitness values encountered guide the search
towards areas of the search space where the number of one-bits is either small
or large, this mutation operator is more efficient in generating other such
search points at random. The mutation operator is, however, not custom-
built with one specific application in mind. It is still a quite general mutation
operator that we consider to be a natural choice when it is known that good
solutions to the optimization problem at hand have either very few or lots
of one-bits. It has to be noted, though, that it is not an unbiased operator
as defined by Droste and Wiesmann [4] (assuming Hamming distance to be
a natural metric in {0, 1}n). This paper, however, is not about the design of
a specific mutation operator for a specific kind of problem and the demon-
stration of its usefulness. Our aim is to present a broad and informative
theoretical analysis of this mutation operator. We consider its performance
on illustrative example functions and on interesting classes of functions. All
example functions considered here have been introduced elsewhere and for
completely different reasons. Thus, they are not designed with this muta-
tion operator in mind. With this approach we are able to prove the assets
and drawbacks of this specific mutation operator in a clear and intuitive,
yet rigorous way. In addition to this concrete analysis this is meant to be
an example of how a thorough analysis of new operators and variants of
evolutionary algorithms can be presented.

In the following section, we define the mutation operator, the evolutionary
algorithm we consider, and our analytical framework. In Section 3, we ana-
lyze the performance on simply structured example functions and prove that
the operator shows increased efficiency as expected. In a more general con-
text, we prove in Section 4 that the performance on a broad and interesting
class of functions does not differ from that of an unbiased mutation operator.
Section 5 presents an example where the bias introduced by the mutation op-

3

erator has an immense negative impact. Finally, we conclude in Section 6
with some remarks about possible future research.

2 Definitions

In order to concentrate on the effects of the mutation operator we consider
an evolutionary algorithm that is as simple as possible. This leads us to the
well-known (1+1) EA, a kind of stochastic hill-climber.

Algorithm 1 ((1+1) EA).

1. Initialization

Choose x ∈ {0, 1}n uniformly at random.

2. Mutation

y := mutate(x).

3. Selection

If f(y) ≥ f(x), x := y.

4. Stopping Criterion

If the stopping criterion is not met, continue at line 2.

Most often the (1+1) EA is applied using standard bit mutations. We give
a formal definition of this mutation operator.

Mutation Operator 1 (Standard Bit Mutations). Independently for
each bit in x ∈ {0, 1}n, flip the bit with probability 1/n.

The asymmetric mutation operator that we consider aims at leaving the
number of bits with value 1 unchanged. This can be achieved by letting
the probability to mutate a bit depend on its value. In order to give a
formal definition, we introduce the following notations. For a bit string
x = x1x2 · · ·xn we denote the number of bits with value 1 in x by |x|1, i. e.,

|x|1 =
n
∑

i=1

xi. Analogously, |x|0 denotes the number of bits with value 0, i. e.,

|x|0 = n − |x|1.

4

Mutation Operator 2 (Asymmetric Bit Mutations). Independently for
each bit in x ∈ {0, 1}n, flip the bit with probability 1/(2 |x|1) if it has value 1
and with probability 1/(2 |x|0) otherwise.

In the following, we refer to the (1+1) EA with asymmetric bit mutations as
the asymmetric (1+1) EA. We use 1/(2|x|i) as mutation probability instead
of 1/|x|i since this avoids that the mutation operator becomes deterministic
for the special case of exactly one bit with value 0 or 1. In this deterministic
case, the property that any y ∈ {0, 1}n can be reached by any x ∈ {0, 1}n in
one mutation is not preserved. The value 2 is a straightforward choice but
other constants c > 1 may be used instead.

Theoretical results concerned with the performance of evolutionary algo-
rithms as optimizers often concentrate on the expected optimization time,
i. e., the expected run time until some optimal point in the search space
is found. As usual we consider the number of function evaluations to be an
accurate measure for the actual run time. Sometimes, the expected optimiza-
tion time is biased by rare events that yield overly large run times. Thus,
we accept the success probability after t steps, i. e., the probability to find a
global optimum within the first t function evaluations, as additional robust
measure of the efficiency of algorithms. Wegener [10] links these two mea-
sures by presenting a general restart scheme with the following property. A
randomized search heuristic with a success probability that is bounded below
by a term converging to 0 polynomially fast within a polynomial number of
steps is turned into a randomized search heuristic with expected polynomial
optimization time.

When using standard bit mutations, the probability for mutating some x ∈
{0, 1}n into some y ∈ {0, 1}n is determined only by the number of bits
with different values in x and y, i. e., their Hamming distance H (x, y) =
n
∑

i=1

(xi ⊕ yi) where xi ⊕ yi denotes the exclusive or of xi and yi. Therefore,

one easy way of generalizing results on specific example functions to results
on function classes is to group functions that are essentially equal but differ
only in their “coding.” We adopt the definition and notation of [1] where the
generalization of objective functions is considered in the context of black-box
complexity.

5

Definition 1. For f : {0, 1}n → R and a ∈ {0, 1}n we define fa : {0, 1}n → R

by fa(x) := f(x ⊕ a) for all x ∈ {0, 1}n where x ⊕ a denotes the bit-wise
exclusive or of x and a.

Since the (1+1) EA with standard bit mutations is insensitive to the number
of ones in the current bit string and since it treats one-bits and zero-bits
symmetrically, it exhibits the same behavior on f as on fa for any a. So,
the class of functions fa is a straightforward generalization of f . When
we use asymmetric bit mutations instead, this is not necessarily the case.
Transforming x to x ⊕ a does in general change the number of one-bits and
therefore alters the mutation probabilities. This is one way to describe how
the asymmetric mutation operator biases the search. We will consider this in
greater detail in the following section. Note, however, that the (1+1) EA with
asymmetric bit mutations behaves the same on fa and fa where a denotes
the bit-wise complement of a. This is due to the symmetrical roles of 0 and
1 as bit values if one replaces all zeros by ones and vice versa. Therefore, it
suffices to consider functions fa with |a|1 ≤ n/2, only. We adopt the widely
used notation bi for the i concatenations of the letter b. Thus, the all one bit
string of length n can be written as 1n.

There is a number of well-known example functions that we want to consider
in the following sections. We give precise formal definitions here and cite
results on the expected optimization time of the (1+1) EA with standard bit
mutations. These results are used as a bottom-line for the comparison when
we use the asymmetric bit mutations instead.

Definition 2. We define the following functions on {0, 1}n.

OneMax(x) := |x|1

Needle(x) :=
n
∏

i=1

xi

Ridge(x) :=

{

n − |x|1 if x /∈ {1i0n−i | 0 ≤ i ≤ n}

n + i if x ∈ {1i0n−i | 0 ≤ i ≤ n}

Plateau(x) :=

n − |x|1 if x /∈ {1i0n−i | 0 ≤ i ≤ n}

n + 1 if x ∈ {1i0n−i | 0 ≤ i < n}

n + 2 if x = 1n

6

A point x ∈ {0, 1}n is a local optimum of a function f : {0, 1}n → R if f(x) ≥
f(y) holds for all Hamming neighbors y of x. A function f : {0, 1}n → R is
unimodal iff it has exactly one local optimum.

Theorem 1. Let E (Tf) denote the expected optimization time of the (1+1) EA
with standard bit mutations on the function f : {0, 1}n → R.

E (TOneMax) = Θ(n log n) [2]

E (TNeedle) = Θ(2n) [5]

E (Tf) = O(n · d) for unimodal functions f with d different function values
[2]

E (TRidge) = Θ(n2) [7]

E (TPlateau) = O(n3) [7]

It is important to remember that E (Tf) = E (Tfa) holds for the (1+1) EA
with standard bit mutations for any a. We will see that this is different for
the (1+1) EA with asymmetric bit mutations and that the performance gap
on f and fa can be exponentially large.

3 Assets of the Asymmetric Mutation Oper-

ator

The asymmetric bit mutation operator preserves, on average, the number
of zero-bits in the parent. This makes this mutation operator very different
from standard bit mutations if the number of zero-bits is either very small or
very large. Thus, we expect to obtain best results when good search points
have this property and when good search points lead the algorithm to the
global optimum. The well-known fitness function OneMax has all these
properties. It is therefore not surprising that the asymmetric bit mutation
operator can lead to a considerable speed-up.

Theorem 2. The expected optimization time of the (1+1) EA with asym-
metric bit mutations on OneMax is bounded above by 5.1n.

7

Proof. As long as the current search point x is different from the unique
global optimum, its fitness can be increased by a mutation of at least one
zero-bit and no one-bit. The probability for such a mutation is given by

p(x) :=

(

1 −

(

1 −
1

2 |x|0

)|x|
0

)

·

(

1 −
1

2 |x|1

)|x|
1

.

Using the inequalities

1

2
≤

(

1 −
1

2k

)k

≤ e−1/2

for all k ∈ N, we obtain p(x) ≥ (1−e−1/2) · (1/2). Since for each fitness value
i ∈ {0, 1, . . . , n − 1} the fitness needs to be increased from i to some larger
value at most once,

n−1
∑

i=0

2

1 − e−1/2
< 5.1n

is an upper bound on the expected optimization time.

Asymmetric mutations outperform the standard mutation operator by a fac-
tor of the order of log n here. However, this relies heavily on the fact that
the unique global optimum is the all one bit string. Clearly, the objective
function OneMax can be described as minimizing the Hamming distance
to the unique global optimum. We can preserve this property but move the
global optimum x∗ somewhere else by defining the fitness as n − H (x∗, x).
This leads us exactly to OneMaxa with a = x∗. One may fear that the
advantage of asymmetric bit mutations for OneMax is counterbalanced by
a disadvantage when the global optimum is far away from 1n. This, however,
is not the case if one considers asymptotic expected optimization times.

Theorem 3. Let a ∈ {0, 1}n with |a|1 ≤ n/2. The expected optimiza-
tion time of the (1+1) EA with asymmetric bit mutations on OneMaxa is
Θ(n log(2 + |a|1)).

Proof. The unique global optimum of OneMaxa is a. Let T denote the opti-
mization time of the (1+1) EA with asymmetric bit mutations on OneMaxa.
We begin with a proof of an upper bound on E (T).

8

We partition a run into two phases: the first phase starts with the beginning
of the run and ends when we have a search point with at least |a|1 − |a|1 =
n − 2 |a|1 one-bits for the first time. The second phase starts after the first
phase and ends when the global optimum is found. Let T1 and T2 denote the
lengths of the two phases. Thus, T = T1 + T2 holds.

We call a position i where xi = 0 and ai = 1 an improving position for x.
Clearly, if x is the current population, a mutation that flips only xi increases
the fitness. During the first phase |x|1 < |a|1 − |a|1 holds. Thus, there are at
least |a|1 improving positions for x. Analogously to the proof of Theorem 2,
we obtain a lower bound Ω(1) on the probability to increase the fitness.
Therefore, E (T1) = O(n) follows.

The special case |a|1 = 0 is dealt with in Theorem 2. Thus, we can assume
|a|1 > 0 here. In the second phase, |x|1 ≥ n−2 |a|1 holds. We have H (x, a) ≤
3 |a|1 since we have H (x, 1n) = |x|0 ≤ 2 |a|1 and H (1n, a) = |a|1. This implies
OneMaxa(x) ≥ n−3 |a|1. There are n−OneMaxa(x) Hamming neighbors
with function value larger than x. It is not difficult to see that the probability
to reach a specific Hamming neighbor by a direct mutation is bounded below
by 1/(8n) (see Lemma 1 in the following section for a proof). Thus, the
expected length of the second phase is bounded above by

n−1
∑

i=n−3|a|
1

8n

n − i
= 8n

3|a|
1

∑

i=1

1

i
= O(n log(2 + |a|1)).

For the lower bound we distinguish four cases with respect to |a|1. Since
the mutation operator is symmetric with respect to bit positions, we can
assume that a = 1|a|10|a|0 holds without loss of generality. It is important to
remember that the Hamming distance to the unique global optimum cannot
increase during a run. Chernoff bounds [8] yield that for any constant ε with
0 < ε < 1/2 with probability 1− 2−Ω(n) the initial Hamming distance to the
unique global optimum is bounded below by ((1/2)−ε)n and bounded above
by ((1/2) + ε)n.

We begin with the special case |a|1 = 1. With probability 1 − 2−Ω(n) the
initial population has Hamming distance at most (3/5)n−1 from the unique
global optimum. Then, the probability to flip a zero-bit to one is bounded
above by 1/(2 · (3/5)n) = (5/6)n. With probability 1/2, the initial value of

9

the left-most bit is 0. Remember that we have a = 10n−1. Thus, the expected
optimization time is bounded below by (6/5)n in this case. This yields Ω(n)
as lower bound.

For the special case |a|1 = 0, we need to be more precise. Let pi,j (with i < j)
denote the probability that a mutation of x with |x|1 = i leads to x′ with
|x′|1 = j. Since at least j − i zero-bits need to mutate, we have

pi,j ≤

(

|x|0
j − i

)(

1

2 |x|0

)j−i

≤

(

1

2

)j−i

as upper bound on pi,j. With probability 1 − 2−Ω(n) the initial population
has Hamming distance at least (2/5)n and at most (3/5)n from the unique
global optimum. Let D denote the decrease in Hamming distance from the
global optimum in one mutation. We can bound E (D) from above and have

E (D) =

|x|
0

∑

d=1

p|x|
1
,|x|

1
+d · d <

∞
∑

d=1

2−d · d = 2

independent of the current population x. Note, that this independence is true
for our bound, not for the actual expectation. Due to this homogeneity we
have that the expected decrease in the Hamming distance in t generations
is bounded above by 2t. By Markov’s inequality, the probability to have
a decrease in Hamming distance by at least 4t in t generations is bounded
above by 1/2. Thus, with probability at least (1/2) ·(1−2−Ω(n)) the optimum
is not reached within n/10 generations. This yields

(

1 − 2−Ω(n)
)

·
1

2
·

n

10
= Ω(n)

as lower bound on the expected optimization time.

Now we consider the case 1 < |a|1 ≤ n/4. With probability at least 1/2, the
initial population contains at least |a|1 /2 one-bits in the first |a|1 positions.
Analogously, it contains at least |a|0 /2 one-bits in the last |a|0 positions
with probability at least 1/2. In the following, we consider the case where
both events occur which happens with probability at least 1/4. Since the
Hamming distance to the global optimum 0|a|

11|a|0 can only decrease, the
number of one-bits is bounded below by |a|0 /2 − |a|1 ≥ n/8 during the run.
Thus, the probability that a one-bit is flipped is bounded above by 4/n.

10

We have at least |a|1 /2 one-bits that all need to flip at least once. The
probability that this does not happen within ((n/4) − 1) ln |a|1 mutations is
bounded below by

1 −

(

1 −

(

1 −
4

n

)((n/4)−1) ln|a|
1

)|a|
1
/2

≥ 1 −
(

1 − e− ln|a|
1

)|a|
1
/2

≥ 1 − e−1/2.

Thus, the expected optimization time is bounded below by

1

4
·
(

1 − e−1/2
)

·
(n

4
− 1
)

ln |a|1 = Ω(n log(2 + |a|1))

in this case.

Finally, we consider the case n/4 < |a|1 ≤ n/2. It is easy to see that with
probability 1− 2−Ω(n), we only have mutations with o(n) bits flipping simul-
taneously within the first O(n logn) generations. Thus, we may consider the
situation at the end when the Hamming distance to the optimum is decreased
to n/8− o(n). Then, the number of ones in the current population is always
bounded below by n/8 and bounded above by 7n/8. This implies that for
each bit (regardless of its value) the probability to flip it is bounded above
by 4/n. Now we are in a situation very similar to the third case. Repeating
the line of thought from there completes the proof.

We see that, asymptotically, there is no disadvantage for the (1+1) EA with
asymmetrical bit mutations in comparison with standard bit mutations on
OneMaxa. The reader might conclude from this result that the search is
not clearly biased by asymmetrical bit mutations. However, for OneMaxa,
the function values point into the direction of the global optimum so clearly
that the relatively small bias introduced by the asymmetric mutations is not
important when compared to the clear bias introduced by selection.

In the following, we show that there is a clear bias due to asymmetric bit mu-
tations which can have a great impact on the performance of the asymmetric
(1+1) EA. We consider the asymmetric (1+1) EA on a flat fitness function:
we consider Needle. Since all non-optimal search points have got the same
fitness value, we exclude the effects of selection on the optimization process
and as long as the needle is not found, the search process equals the random

11

walk induced be repeated asymmetrical bit mutations. So, by considering
the function Needle with the needle in 1n, we can learn more about the
bias induced by asymmetric bit mutations.

It will turn out to be important to consider the probabilities to increase
and decrease the number of zero-bits depending on its current value. We
compare standard bit mutations and asymmetric bit mutations with respect
to this property. Figure 1 shows clear differences. More important than the
different size of the probabilities (indicated by the different scaling) are the
different shapes of the curves. This leads to a performance on Needle that
is surprising.

Theorem 4. For any constant k ∈ N0 and all a ∈ {0, 1}n with either at
most k zero-bits or at most k one-bits, the success probability of the asym-
metric (1+1) EA on Needlea after O(n2) steps is bounded below by Ω

(

n−k
)

.
Making appropriate use of restarts, the expected optimization time is bounded
above by O(nk+2).

Proof. Since the proof is somewhat involved and contains some tedious tech-
nical details, we concentrate on the main proof ideas here and refer to techni-
cal lemmas in the appendix for the details. First, we prove that the expected
number of steps the asymmetric (1+1) EA needs to reach some x ∈ {0n, 1n}
for the first time is bounded above by O(n2). The probability that some
string with either at most k zero-bits or at most k one-bits is an intermedi-
ate population in these O(n2) steps is bounded below Ω(1). Proving that each
of these strings is the actual intermediate population with equal probability
completes the proof for the success probability.

Let Zt denote the random number of zero-bits in the current population of
the asymmetric (1+1) EA in the t-th generation. We consider the random
changes of Zt during one run of the asymmetric (1+1) EA. Therefore, we are
interested in the probability to increase and decrease Zt. Let B+

z denote the
event that the number of zero-bits is increased from z by at least 1 in one
mutation. Analogously, let B−

z denote the event that the number of zero-bits
is decreased from z by at least 1 in one mutation. Due to symmetry reasons,

Prob
(

B+
bn/2c−i

)

= Prob
(

B−
dn/2e+i

)

holds for all values of i. This implies

Prob
(

B+
bn/2c

)

= Prob
(

B−
dn/2e

)

as a special case. We know from Lemma 3

(see appendix) that Prob (B+
z) ≥ Prob (B−

z) holds for z ≥ n/2.

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100
number of zero bits

pr
ob

ab
ili

ty

Prob(increase #zero bits)
Prob(decrease #zero bits)

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0 20 40 60 80 100
number of zero bits

pr
ob

ab
ili

ty

Prob(increase #zero bits)
Prob(decrease #zero bits)

Figure 1: Probability to increase and decrease the number of zero-bits for
standard bit mutations (top) and asymmetric bit mutations (bottom) with
n = 100.

Clearly, Prob (B+
z) + Prob (B−

z) = Ω(1) holds. Thus, we may restrict our-
selves to the consideration of generations where the value of Zt changes. This
does not change the order of magnitude of the number of generations needed
for the minimum value of t with Zt ∈ {0, n}. Let T denote this value of t. Let
B′+

z and B′−
z denote the conditional probabilities to increase resp. decrease

the number of zero-bits given that this number changes. It is well known that
having Prob

(

B′+
z

)

= 1/2 implies E (T) = O(n2). We have Prob
(

B′+
z

)

≥ 1/2

for z ≥ n/2 and Prob
(

B′−
z

)

≥ 1/2 for z ≤ n/2. This tendency to increase
the majority value of bits can only decrease E (T). This completes the proof
for k = 0.

13

For k > 0, we concentrate on the case of a target point a with exactly k
one-bits. The other case is symmetric. There are exactly

(

n
k

)

bit strings with
exactly k one-bits. For k = O(1),

(

n
k

)

= Θ(nk) holds. Consider the case
when a string with k ones becomes the current population of the asymmetric
(1+1) EA. For symmetry reasons, all strings with k ones have equal proba-
bility. The probability to change the number of one-bits in one generation by
exactly one is bounded below by Ω(1). In addition, the probability to mutate
i bits decreases exponentially with i. This implies that a becomes current
population with probability Ω(1/nk) within the first O(n2) generations.

For the statement on the expected optimization time, we stop a run after
O(n2) generations and restart it. On average, O(nk) restarts are sufficient.

Let N := {Needlea | a ∈ {0, 1}n} be the class of needle-functions with the
global optimum at some point a in the search space. It is known from results
on the black-box complexity of function classes [1] that any search heuristic
needs at least 2n−1 + 1/2 function evaluations on N on average. Thus, while
the asymmetric (1+1) EA performs very well on Needlea with a close to
0n or 1n, it performs poorly on other functions Needlea with a far from
0n and 1n. This is another hint that the search process of the asymmetrical
(1+1) EA is clearly biased.

Note, that the class N = {Needlea | a ∈ {0, 1}n} is closed under permu-
tations of the search space. Thus, the same conclusion seems to be implied
by the NFL: averaged over all such functions all algorithms make an equal
number of different function evaluations [6]. However, this result has only
limited relevance with respect to the expected optimization time since it does
not take into account re-sampling of points in the search space.

4 Analysis for Unimodal Functions

The results from Section 3 proved the asymmetric mutation operator to be
advantageous for objective functions that meet the assumption that good
bit strings have either many or few zero-bits. In order to gain a broader
perspective, results on more general function classes are needed. Here, we
compare the performance of the asymmetric (1+1) EA with the (1+1) EA

14

with standard bit mutations on a whole class of interesting and important
functions, namely on unimodal functions. It is interesting to note that the
class of unimodal function is closed under the transformation of objective
functions considered here. I. e., for any a ∈ {0, 1}n, fa is unimodal if and
only if f is. Thus, the unique global optimum may be anywhere in the search
space.

An important property of unimodal functions is that they can be optimized
via mutations of single bits, i. e., hill-climbers are guaranteed to be successful.
Starting with an arbitrary search point, there is a path of Hamming neighbors
to the unique global optimum with strictly increasing fitness. Therefore, we
are interested in the probability to reach a specific Hamming neighbor.

Lemma 1. Let x, x′ ∈ {0, 1}n with H (x, x′) = 1 be given. The probability to
mutate x into x′ in one asymmetric mutation is bounded below by 1/(8n).

Proof. Assume that one zero-bit in x needs to flip; the other case is symmet-
ric. For x 6= 0n, the probability to flip exactly this bit equals

1

2 |x|0

(

1 −
1

2 |x|0

)|x|
0
−1(

1 −
1

2 |x|1

)|x|
1

≥
1

8n
.

For x = 0n we obtain 1/(4n) > 1/(8n) as lower bound in the same way.

Note, however, that paths to the unique global optimum may be exponen-
tially long making such functions difficult to optimize. In fact, it is known
that any search heuristic needs in the worst case an exponential number of
function evaluations to optimize a unimodal function [3].

Using Lemma 1, it is easy to obtain a general upper bound on the expected
optimization time for unimodal functions with d different function values.
The upper bound as well as its proof are not different from the corresponding
result for standard bit mutations.

Theorem 5. Let f : {0, 1}n → R be a unimodal function with d different
function values. The expected optimization time of the (1+1) EA on f with
asymmetric bit mutations is bounded above by O(n · d).

Proof. We know from Lemma 1 that the probability to increase the function
value of the current population by at least 1 is bounded below by 1/(8n).

15

This yields 8n as upper bound for one mutation increasing the function value.
Clearly, at most d− 1 such mutations are sufficient to reach the global opti-
mum.

We see that asymmetric bit mutations deliver the same upper bound on an
important class of functions as standard bit mutations. Of course, in both
cases, the upper bound is not necessarily tight. However, it is known to be
tight for standard bit mutations for some functions. We consider Ridge as
one example and analyze the performance of the (1+1) EA with asymmetric
bit mutations on Ridge.

Theorem 6. The expected optimization time of the (1+1) EA with asym-
metric bit mutations on Ridge is Θ(n2). The same holds for Ridgea and
any a ∈ {0, 1}n.

Proof. The upper bound follows from Theorem 5. With probability 1−2−Ω(n)

the initial search point has Hamming distance at least n/3 from the unique
global optimum. Offspring closer to the optimum with a fitness value smaller
than n + 1 are rejected. Thus, with probability 1 − 2−Ω(n) the first point x∗

with f(x∗) ≥ n+1 that becomes current search point has Hamming distance
Ω(n) to the unique global optimum.

Let S = (s0, . . . , sn−1) be the sequence of Hamming neighbors such that
f(si) = n + i for all 0 ≤ i ≤ n − 1. Then for every a there is a subsequence
S ′ = (s′1, . . . , s

′
m) of S of length m = Ω(n) such that f(s′1) ≥ f(x∗) and both

|s′i|1 = Ω(n) and |s′i|0 = Ω(n) hold. Due to the definition of Ridgea, this
subsequence has to be traversed in order to optimize Ridgea. The expected
decrease in Hamming distance to the global optimum on this subsequence
in one mutation is O(1/n). Using the same arguments as in the proof of
Theorem 3 we obtain Ω(n2) as lower bound on the expected optimization
time.

The performance of the (1+1) EA with standard bit mutations and asym-
metric bit mutations are asymptotically equal on Ridgea. Even the proofs
of the bounds are very similar [7]. So far, we have seen only advantages
for the asymmetric mutations and many similarities to standard bit muta-
tions. In the following section, we consider an example where the asymmetric
mutation operator leads to an extreme decline in performance.

16

5 Drawbacks of the Asymmetric Mutation

Operator

The function Plateau is very similar to Ridge. The function values differ
only for n out of 2n points in the search space. These n points are the most
important ones, though. For Ridge, the increase in function values of this
ridge points into the direction of the global optimum. For Plateau, the
function values are constant and the evolutionary algorithms has to perform
a kind of blind random walk on this plateau. It is known that standard bit
mutations complete this random walk successfully on average in O(n3) steps.
Asymmetric bit mutations fail to be efficient in any sense, here.

Theorem 7. The probability that the (1+1) EA with asymmetric bit muta-

tions optimizes Plateau within 2O(n1/4) steps is bounded above by 2−Ω(n1/4).

Proof. It is easy to see that the probability to flip more than n1/4 bits in one
mutation is bounded above by 2−Ω(n1/4 log n). Thus, the probability that such a
mutation occurs within 2O(n1/4) generations is bounded above by 2−Ω(n1/4 log n).

With probability 1 − 2−Ω(n), the first population on the plateau contains at
most 2n2/3 one-bits. We ignore steps on the plateau where the number of
one-bits is smaller than n2/3. This can only decrease the optimization time.
We consider a phase of length t = n5/4. Let E+ denote the event that one
mutation increases the number of one-bits in the population. Let L+ denote
the sum of the step lengths of all these steps in the phase. Analogously, let
E− denote the event that one mutation decreases the number of one-bits in
the population. Let L− denote the sum of the step lengths of all these steps
in the phase. We make a crude worst case assumption: each step leading
towards the global optimum has the maximal step length n1/4 whereas each
step leading away from the global optimum has the minimal step length 1.
Obviously, this can only decrease the optimization time. Our assumption
yields

E
(

L+
)

≤ Prob
(

E+
)

· t · n1/4 = Prob
(

E+
)

· n3/2

and
E
(

L−
)

≥ Prob
(

E−
)

· t = Prob
(

E+
)

· n5/4.

17

As long as |x|1 = Θ(n2/3) holds, we can find a upper bound on Prob (E+) as
follows. On the plateau, there is for each value of i at most one search point
with Hamming distance i and a larger number of one-bits. This yields

Prob
(

E+
)

≤

|x|
0

∑

i=1

(

1

2 |x|0

)i

<
∞
∑

i=1

n−i = O(1/n).

Clearly, the probability for a direct mutation to a Hamming neighbor on the
plateau is a lower bound on Prob (E−). By the proof of Lemma 1, we have
Prob (E−) ≥ 1/(8 |x|1) = Ω(n−2/3). Taking the condition into account that
at most n1/4 bits flip simultaneously does not change the order of growth
of these bounds. Let L′+ and L′− denote values corresponding to L+ and
L− under the condition that at most n1/4 bits flip simultaneously. Then
E
(

L′+
)

= O(n1/2) and E
(

L′−
)

= Ω(n7/12). Applications of Chernoff bounds

yield that with probability 1−2−Ω(n1/2), the random values of L′+ and L′− are
within the same order of growth as their expectations. Thus, with probability
1 − 2−Ω(n1/4 log n), the Hamming distance to the optimum is not decreased at
the end of this phase. This completes the proof.

Note, however, that this immense drawback is due to the special definition
of Plateau. In particular, we can transform the landscape in a way that
does not influence the (1+1) EA with standard bit mutations at all but is
important for the asymmetric (1+1) EA. This leads to a function where
we can prove upper bounds on the expected optimization time of the two
algorithms of equal order.

Theorem 8. For even n we define a01 := 010101 · · ·01 ∈ {0, 1}n. The
expected optimization time of the asymmetric (1+1) EA on Plateaua01

is
O(n3).

Proof. It follows from the result on OneMaxa (Theorem 3) that some point
on the plateau will on average be found within the first O(n log n) steps.
Then, the plateau cannot be left again. For each i ∈ {0, . . . , n − 1} and
some search point x on the plateau the following holds. If it is possible to
create search points x+i, x−i on the plateau out of x such that the Hamming
distance to the unique global optimum is increased or decreased by i, resp.,
then x+i and x−i are reached with equal probability. This is due to the

18

choice of a01 since |x+i|1 = |x−i|1. Furthermore, the choice of a01 implies
that |x|1 = n/2 − O(1) yielding a probability of Θ(1/n) to flip any bit in x.

By these arguments, an upper bound O(n3) on the expected optimization
time can be shown analogously to the results in Jansen and Wegener [7].

6 Conclusions and Future Work

We presented a mutation operator for bit strings that flips bits with a prob-
ability that depends on the number of one-bits. The operator is designed in
a way that on average the number of one-bits is not changed. This helps to
bias the search towards areas of the search space with bit strings containing
either very few zero-bits or very few one-bits. Such a mutation operator is
motivated by applications where good solutions are known or at least thought
of having this property.

We presented a rigorous and detailed analysis of this mutation operator by
comparing it with standard bit mutation flipping each bit independently
with probability 1/n. For OneMax, a speed-up of order log n is proved.
For Needle, there is even an exponential advantage for the asymmetric
mutation operator.

For the class of unimodal functions we proved the same general upper bound
as known for standard bit mutations. Furthermore, we demonstrated exem-
plarily for one unimodal function that this upper bound can be tight.

Contrarily, we demonstrated a clear weakness of the asymmetric bit muta-
tions on a function where an unbiased random walk on a plateau is needed
in order to be successful and showed that there is an exponential gap be-
tween the performance of this asymmetric mutation operator and standard
bit mutations. However, a simple transformation of the landscape lets both
mutation operators lead to polynomial expected optimization times for this
objective function.

We believe that our analysis draws a clear picture of the advantages and
disadvantages that come with the asymmetric mutation operator. However,
many questions remain open. Clearly, the result on Needle is weak. While
discussing that there is some bias towards the “end” of the search space we

19

have not been able to give good bounds on the size of this bias. More precise
results would be useful to extend our result on success probabilities to a result
on the expected optimization time without restarts. Furthermore, there are
other interesting example functions where a careful analysis of the effects of
asymmetric mutations may be worthwhile.

While motivated by practical applications, our presentation is purely theoret-
ical. It would be interesting to compare the performance of the asymmetric
mutation operator in applications where one suspects that good solutions
have only a few bits with value zero or one.

References

[1] Stefan Droste, Thomas Jansen, Karsten Tinnefeld, and Ingo Wegener.
A new framework for the valuation of algorithms for black-box optimiza-
tion. In Foundations of Genetic Algorithms 7 (FOGA), pages 253–270,
San Francisco, CA, 2003. Morgan Kaufmann.

[2] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis
of the (1+1) evolutionary algorithm. Theoretical Computer Science,
276:51–81, 2002.

[3] Stefan Droste, Thomas Jansen, and Ingo Wegener. Upper and
lower bounds for randomized search heuristics in black-box op-
timization. Theory of Computing Systems, 2005. To appear.
http://www.springerlink.com/index/10.1007/s00224-004-1177-z.

[4] Stefan Droste and Dirk Wiesmann. Metric based evolutionary algo-
rithms. In Proceedings of the Third European Conference on Genetic
Programming (EuroGP 2000), pages 29–43, 2000.

[5] Josselin Garnier, Leila Kallel, and Marc Schoenauer. Rigorous hitting
times for binary mutations. Evolutionary Computation, 7(2):173–203,
1999.

[6] Christian Igel and Marc Toussaint. A no-free-lunch theorem for non-
uniform distributions of target functions. Journal of Mathematical Mod-
elling and Algorithms, 3(4):313–322, 2004.

20

[7] Thomas Jansen and Ingo Wegener. Evolutionary algorithms — how to
cope with plateaus of constant fitness and when to reject strings of the
same fitness. IEEE Transactions on Evolutionary Computation, 5:589–
599, 2001.

[8] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[9] Frank Neumann and Ingo Wegener. Randomized local search, evolution-
ary algorithms, and the minimum spanning tree problem. In Genetic and
Evolutionary Computation Conference (GECCO 2004), pages 713–724.
Springer, 2004. LNCS 3102.

[10] Ingo Wegener. Simulated annealing beats metropolis in combina-
torial optimization. In Proceedings of the 32nd International Col-
loquium on Automata, Languages and Programming (ICALP 2005),
2005. To appear. Technical report: http://eccc.uni-trier.de/eccc-
reports/2004/TR04-089.

A Technical Lemmas

Definition 3. Let pz(i) denote the probability to mutate exactly i out of z
zero-bits. Let qz(i) denote the probability to mutate exactly i out of n − z
one-bits. Let B+

z denote the event that the number of zero-bits is increased
from z by at least 1 in one mutation. Analogously, let B−

z denote the event
that the number of zero-bits is decreased from z by at least 1 in one mutation.

Clearly,

pz(i) = qn−z(i) =

(

z

i

)(

1

2z

)i(

1 −
1

2z

)z−i

holds. Due to our definitions of pz(i) and qz(i), we have the following prob-

21

abilities:

Prob
(

B+
z

)

=

n−z
∑

i=1

min{i−1,z}
∑

j=0

pz(j)qz(i)

Prob
(

B−
z

)

=
z
∑

i=1

min{i−1,n−z}
∑

j=0

pz(i)qz(j)

Lemma 2. For any z ≥ bn/2c and i ≥ 2

pz(1) ≤ pz+1(1)

pz(i) ≥ pz+1(i)

qz(1) ≥ qz+1(1)

qz(i) ≤ qz+1(i)

hold.

Proof. Since we have pz(i) = qn−z(i) for all z and i, it suffices to prove the
statements on pz(i). We consider pz+1(i)/pz(i) for some z > bn/2c and some
i < z − 1.

pz+1(i)

pz(i)
=

(

z+1
i

)

(

1
2(z+1)

)i (

1 − 1
2(z+1)

)z+1−i

(

z
i

) (

1
2z

)i (
1 − 1

2z

)z−i

=
z + 1

z − i + 1
·

(

z

z + 1

)i

·

(

z + 1/2

z + 1
·

z

z − 1/2

)z−i

·
z + 1/2

z + 1

=
z + 1

z − i + 1
·

(

z(z + 1/2)

(z + 1)(z − 1/2)

)z

·

(

z − 1/2

z + 1/2

)i

·
z + 1/2

z + 1

=
z − 1/2

z − i + 1
·

(

z(z + 1/2)

(z + 1)(z − 1/2)

)z

·

(

z − 1/2

z + 1/2

)i−1

Note that (z(z + 1/2)/((z + 1)(z − 1/2)))z converges to 1 from above. Due
to our restriction to cases with z > bn/2c we have z large and may ignore
this term. Since i is bounded above by z, ((z−1/2)/(z +1/2))i−1 is bounded
below by 1/e. Clearly, (z − 1/2)/(z− i +1) is increasing with i and becomes

22

larger than e for i ≥ (1 − 1/e)z + 1 + 1/(2e). Thus, for such values of i the
proof is complete. Using i < (1 − 1/e)z + 1 + 1/(2e) yields a better lower
bound on ((z − 1/2)/(z + 1/2))i−1 and we can iterate our argument. We see
that we are looking for a smallest value of i such that pz+1(i)/pz(i) ≥ 1 holds.
For i = 1 we get

pz+1(1)

pz(1)
=

z − 1/2

z
·

(

z(z + 1/2)

(z + 1)(z − 1/2)

)z

< 1

For i = 2 we have

pz+1(2)

pz(2)
=

z − 1/2

z − 1
·

(

z(z + 1/2)

(z + 1)(z − 1/2)

)z

·
z − 1/2

z + 1/2
> 1

completing the proof.

Lemma 3. For z > bn/2c, Prob (B+
z) ≥ Prob (B−

z) holds.

Proof. Since we are looking for an asymptotic result that is valid for suffi-
ciently large n, we may assume that z is sufficiently large. This allows us to
use the limits of terms for n → ∞ as approximation.

The number of flipping zero-bits is binomially distributed with parameters z
and 1/(2z). Since z is sufficiently large, this distribution can be approximated
by the Poisson distribution with parameter λ = 1/2. This yields pz(i) ≈
1/(2i · e1/2 · i!) and we see that pz(i) decreases with i exponentially fast. The
number of flipping one-bits is binomially distributed with parameters n − z
and 1/(2(n − z)). The approximation of this distribution by the Poisson
distribution is only valid if z is not too large. However, clearly qz(i) decreases
with i exponentially fast, too. Thus, whether Prob (B+

z) is larger or smaller
than Prob (B−

z) is determined by the first few terms of the sum.

We have

pz(i) ≈
1

2i · e1/2 · i!

and compare this with

qz(i) =

(

n − z

i

)(

1

2(n − z)

)i(

1 −
1

2(n − z)

)n−z−i

23

for small values of i. Clearly,

qz(i) >
1

2i · i!
·

(

n − z − i

n − z

)i−1(

1 −
1

2(n − z)

)n−z−i

holds. We know that (1 − 1/(2(n − z)))n−z−i > e−1/2 holds. For i = 1, we
have qz(1) > pz(1) as an immediate consequence. We know from Lemma 2
that with increasing values of z this tendency increases. This implies that
Prob (B+

z) grows with z for z ≥ n/2.

24

