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Abstract

The (141) Evolution Strategy (ES), a simple, mutation-based evolutionary algo-
rithm for continuous optimization problems, is analyzed. In particular, we consider
the most common type of mutations, namely Gaussian mutations, and the 1/5-rule
for mutation adaptation, and we are interested in how the runtime, which we de-
fine as the number of function evaluations, to obtain a predefined reduction of the
approximation error depends on the dimension of the search space.

The most discussed function in the area of ES is the so-called SPHERE-function
given by SPHERE: R” — R with x +— x "Iz (where I € R™ " is the identity ma-
trix), which also has already been the subject of a runtime analysis. This analysis is
extended to arbitrary positive definite quadratic forms (PDQFs) that induce ellip-
soidal fitness landscapes which are “close to being spherically symmetric” Namely,
all functions & — x ' Qz are covered, where Q € R™ " is positive definite such that
its condition number, which equals the ratio of the largest of the n eigenvalues of
Q to the smallest one, is O(1).

We show that indeed the order of the runtime does not change compared to
SPHERE. Namely, we prove that any (141) ES using isotropic mutations needs Q(n)
function evaluations to halve the approximation error in expectation and yet with an
overwhelming probability. On the other hand, also with an overwhelming probability
O(n) function evaluations suffice to halve the approximation error when a (1+1) ES
uses Gaussian mutations adapted by a 1/5-rule.
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research center “Computational Intelligence” (SFB 531)



1 Introduction

Methods for solving continuous optimization problems (search space R") are
usually classified into first-order, second-order, and zeroth-order methods de-
pending on whether they utilize the gradient (the first derivative) of the
objective function, the gradient and the Hessian (the second derivative), or
neither of the two.? Zeroth-order methods are also called derivative-free or
direct search methods. Newton’s method is a classical second-order method.
First-order methods are commonly (sub)classified into Quasi-Newton, steep-
est descent, and conjugate gradient methods. Classical zeroth-order methods
try to approximate the gradient in order to plug this estimate into a first-
order method. Finally, amongst the “modern” zeroth-order methods, evolu-
tionary algorithms (EAs) come into play. EAs for continuous optimization,
however, are usually subsumed under the term evolution(ary) strategies (ESs).
Although its obvious, we should note here that, in general, we cannot expect a
zeroth-order method to out-perform first-order methods or even second-order
methods.

In cases when information about the gradient is not available, for instance if
f relates to a property of some workpiece and is given by simulations or even
by real-world experiments, first-order (and also second-order) methods just
cannot by applied. As the approximation of the gradient usually involves Q(n)
f-evaluations, a single optimization step of a classical zeroth-order method is
computationally intensive, especially if f is given implicitly by simulations. In
practical optimization, especially in mechanical engineering, this is often the
case, and particularly in this field EAs become more and more widely used.
However, the enthusiasm in practical EAs has led to an unclear variety of very
sophisticated and problem-specific EAs. Unfortunately — from a theoretician’s
point of view — the development of such EAs is solely driven by practical
success and the aspect of a theoretical analysis is left aside. In other words,
— concerning EAs — theory has not kept up with practice, and thus, we should
not try to analyze the algorithmic runtime of the most sophisticated EA en
vogue, but concentrate on very basic, or call them “simple”, EAs in order to
build a sound and solid basis for EA-theory.

Such a theory has been developed successfully since the mid-1990s for discrete
search spaces, essentially {0, 1}"; cf. Wegener (2001) and Droste et al. (2002).
Recently, first results for non-artificial but well-known problems have been ob-
tained, e. g. for the maximum matching problem by Giel and Wegener (2003),

2 Note that here “continuous” relates to the search space rather than to f, and
that, unlike in mathematical programming, throughout this paper “n” denotes the
number of dimensions of the search space and not the number of optimization steps;
“d” generally denotes a distance in the search space.



for the minimum spanning-tree by Neumann and Wegener (2004), and for the
partition problem by Witt (2005).

The situation for continuous evolutionary optimization is different. Here, the
vast majority of the results are based on empiricism, i. e., experiments are per-
formed and their outcomes are interpreted. Also convergence properties of EAs
have been studied to a considerable extent (e.g. Rudolph (1997), Greenwood
and Zhu (2001), Bienvenue and Francois (2003)). A lot of results have been
obtained by analyzing a simplifying model of the stochastic process induced
by the EA, for instance by letting the number of dimensions approach infinity.
Unfortunately, such results rely on experimental validation as a justification
for the simplifications/inaccuracies introduced by the modeling. In particular
Beyer has obtained numerous results that focus on local performance mea-
sures (progress rate, fitness gain; cf. Beyer (2001)), i.e., the effect of a single
mutation (or, more generally, of a single transition from one generation to the
next) is investigated. Best-case assumptions concerning the mutation adapta-
tion in this single step then provide estimates of the maximum gain a single
step may yield. However, when one aims at analyzing the (141) ES as an al-
gorithm, rather than a model of the stochastic process induced, a different,
more algorithmic approach is needed. In 2003 a first theoretical analysis of
the algorithmic runtime, given by the number of function evaluations, of the
(1+1) ES using the 1/5-rule was presented (Jégerskiipper, 2003). The func-
tion/fitness landscape considered therein is the well-know SPHERE-function,
given by SPHERE(z) := Y7, 2? = o' Iz, and the multi-step behavior that
the (1+1) ES bears when using the 1/5-rule for the adaptation of the mutation
strength is rigorously analyzed. As mentioned in the abstract, the present ar-
ticle will extend this result to a broader class of functions, where we are going
to apply differential geometry in the analysis of fitness landscapes, which was
already suggested by Beyer (1994).

Finally note that, regarding the approximation error, for unconstrained opti-
mization it is generally not clear how the runtime can be measured (solely)
with respect to the absolute error of the approximation. In contrast to discrete
and finite problems, the initial error is generally not bounded, and hence, the
question how many steps it takes to get into the e-ball around an optimum does
not make sense without specifying the starting conditions. Hence, we must con-
sider the runtime with respect to the relative improvement of the approxima-
tion. Given that the (relative) progress that a step yields becomes steady-state,
considering the number of steps/ f-evaluations to halve the approximation er-
ror is a natural choice. For the SPHERE-function, Jégerskiipper (2003) gives
a proof that the 1/5-rule makes the (14+1) ES perform ©(n) steps to halve
the distance from the optimum and, in addition, that this is asymptotically
the best possible w.r.t. isotropically distributed mutation vectors, i.e., for

any adaptation of isotropic mutations, the expected number of f-evaluations
is Q(n).



The Algorithm

We will concentrate on the (1+1) evolution strategy ((1+1) ES), which dates
back to the mid-1960s (cf. Rechenberg (1973) and Schwefel (1995)). This sim-
ple EA uses solely mutation due to a single-individual population, where here
“individual” is just a synonym for “search point”. Let ¢ € R™ denote the cur-
rent individual. Given a starting point, i. e. an initialization of ¢, the (1+1) ES
performs the following evolution loop:

(1) Choose a random mutation vector m € R", where the distribution of m
may depend on the course of the optimization process.

(2) Generate the mutant ¢’ € R" by ¢ := ¢+ m.

(3) IF f(¢') < f(e) THEN ¢’ becomes the current individual (¢ := ¢’)
ELSE ¢ is discarded (¢ unchanged).

(4) IF the stopping criterion is met THEN output ¢ ELSE goto 1.

Since a worse mutant (w.r.t. the function to be minimized) is always dis-
carded, the (141)ES is a randomized hill climber, and the selection rule is
called elitist selection. Fortunately, for the type of results we are after we need
not define a reasonable stopping criterion. How the mutation vectors are gen-
erated must be specified, though. Originally, the mutation vector m € R" is
generated by generating a Gaussian mutation vector m € R™ each component
of which is independently standard normal distributed first; subsequently, this
vector is scaled by the multiplication with a scalar s € R+g, i.e. m = s-m.
Gaussian mutations are the most common type of mutations (for the search
space R") and, therefore, will be considered here. Let || denotes the Eu-
clidean length of a vector € R", i.e. its I2-norm. The crucial property of a
Gaussian mutation is that m, and with it m, is isotropically distributed, i.e.,
m/ |m/| is uniformly distributed upon the unit hypersphere and the length of
the mutation, namely the random variable |m/|, is independent of the direction

The question that naturally arises is how the scaling factor s is to be cho-
sen. Obviously, the smaller the approximation error, i.e., the closer ¢ is to
an optimum point, the shorter m needs to be for a further improvement of
the approximation to be possible. Unfortunately, the algorithm does not know
about the current approximation error, but can utilize only the knowledge ob-
tained by f-evaluations (precisely for this reason, the optimization scenario
is also called black-box optimization). Based on experiments and rough calcu-
lations for two function scenarios (namely SPHERE and a corridor function),
Rechenberg proposed the 1/5-(success-)rule. The idea behind this adaptation
mechanism is that in a step of the (1+1) ES the mutant should be accepted
with probability 1/5. Hereinafter, a mutation that results in f(c¢’) < f(e) is
called successful, and hence, when talking about a mutation, success probabil-



ity denotes the probability that the mutant ¢/ = ¢ + m is at least as good
as c. Obviously, when elitist selection is used, the success probability of a step
equals the probability that the mutation is accepted in this step. If every step
was successful with probability 1/5, we would observe that on the average
one fifth of the mutations are successful. Thus, the 1/5-rule works as follows:
The optimization process is observed for n steps without changing s; if more
than one fifth of the steps in this observation phase have been successful, s
is doubled, otherwise s is halved. Naturally, various implementations of the
1/5-rule can be found in the literature, yet in fact, one result of Jagerskiipper
(2003) is that the order of the runtime is indeed not affected as long as the ob-
servation lasts ©(n) steps and the scaling factor s is multiplied by a constant
greater than 1 resp. by a positive constant smaller than 1. Also the proofs
presented here remain valid for such implementations of the 1/5-rule; the pa-
rameters n, 2, and 1/2 are chosen merely for notational convenience. We can
even substitute any positive constant strictly smaller than 1/2 for the “1/5”

The state of the art in mutation adaptation, however, seems to be the covari-
ance matriz adaptation (CMA) (Hansen and Ostermeier, 1996) where s-B-m
makes up the mutation vector with a matrix B € R"*™ which is also adapted.
Unlike B = ¢ -1 for some scalar ¢, the mutation vector is not isotropically dis-
tributed. Obviously, an algorithmic analysis of CMA is a much more complex
task — apparently, too complex at present.

The Function Scenario

In this section we will have a closer look at the fitness landscape under consid-
eration. Note that, as minimization is considered, “function value” (“f-value”)
will be used rather than “fitness”. Since the optimum function value is 0, the
current approximation error is defined as f(c), the f-value of the current in-
dividual. As mentioned in the abstract, we are going to consider the fitness
landscapes induced by positive definite quadratic forms (PDQFs).

At first glance, one might guess that mixed terms (e.g. 3x;x2) may crucially
affect the fitness landscape induced by a PDQF x" Qz. However, this is not
the case: First note that we can assume @ to be symmetric (by balancing
Qi; with Qj; for i # j since they affect only the term (Q;;+Qj:) xij xj; in
the quadratic function to be black-box-optimized). Furthermore, any sym-
metric matrix can be diagonalized since it has n eigen vectors. Namely, eigen-
decomposition yields Q = RDR™ for a diagonal matrix D and an orthogonal
matrix® R.

3 An orthogonal matrix R corresponds to an orthonormal transformation, i.e. a
(possibly improper) rotation; then R~ is the corresponding “anti-rotation?



Thus, the quadratic form equals ' RDR 'z, and since 'R = (R'z)T,
we have (R'z)'D(R'z). As R" = R™' for an orthogonal matrix, the
quadratic form equals (R™'a)" D(R ). Thus, investigating ' Qx using
the standard basis for R" (given by I) is the same as investigating ' Dx
using the orthonormal basis given by R. Finally note that the inner product
is independent of the orthonormal basis that we use (because (Rz)' (Rx) =
2'R'"Rxr = 2" R"'Rx = ' Ix = " x). In short, we can assume the ba-
sis to coincide with Q’s principal axes. Consequently, we can assume in the
following that @ is a diagonal matrix each entry of which is positive (Q’s
canocial form). In other words, when talking about PDQFs we are talking
about functions of the form f,(x) = X", & - ;? with & > 0, and we can even
assume & > --- > &,. In fact, &,...,&, are the n eigenvalues of Q (which
need not necessarily be distinct). Then @Q’s condition number equals & /&,.

For a given f-value of ¢, the corresponding level set is defined as {x |
f(x) = ¢} C R™ and the lower level set is given by {z | f(x) < ¢} C R™.
For instance, the level set defined by SPHERE = ¢? forms the hypersphere
with radius ¢ centered at the origin, and the corresponding lower level set
forms the corresponding open hyper-ball. Furthermore, for a non-empty set
M C R™\ {0} we let sup, ,cr{|2|/ |y|} denote the bandwidth of the set.
Note that 1 is the smallest possible bandwidth, then all vectors in M are of
the same length. The level sets of SPHERE have bandwidth 1, for instance.

The level set Eg defined by Y7 &-2;* = ¢* > 0 forms a hypersurface, namely
a hyper-ellipsoid, and since &§ > --- > &, min{|x| | * € Ep} = ¢/VE&
and max{|z| | * € Ep} = ¢/\/&, so that the level sets of a PDQF have
bandwidth /&;/&,. Note the relationship between this bandwidth and Q’s
condition number, namely, the condition number equals the square of the
bandwidth. We call the fitness landscape induced by a PDQF close to being
spherically symmetric if the bandwidth (and with it the condition number)
is O(1), i.e., if the n eigenvalues are in [a, k - a] for some a > 0 (which may
depend on n) and a constant £ > 1. We may also use the notion PDQF
of/with bounded bandwidth in such cases.

In the next section some of the results presented by Jégerskiipper (2003), which
will be used here, will be shortly restated. In Section 3 the complete class of
fitness landscapes induced by PDQF's of bounded bandwidth are investigated.
We end with some concluding remarks in Section 4.

2 Preliminaries

In this section some notions and notations are introduced. Furthermore, the
results obtained for the SPHERE-scenario in (Jagerskiipper, 2003) that we will



use are recapitulated; for more details cf. (Jagerskiipper, 2002).

Definition 1 A probability p(n) is exponentially small in n if p(n) <
exp(—g(n)) for a function g(n) that is Q(n®) for a constant € > 0. An event
A(n) happens with overwhelming probability (w. o. p.) with respect to n
if 1—P{A(n)} is exponentially small in n.

A statement Z(n) holds for n large enough if (3ny € N)(Vn > ng) Z(n).

Recall the following asymptotics when g(n), h(n) > 0 for n large enough:

x g(n) = O(h(n)) if there exists a positive constant x such that g(n) < k-h(n)
for n large enough,

« g(n) = Q(h(n)) if h(n) = O(g(n))
* g(n) = O(h(n)) if g(n) is O(h(n)) as well as Q(h(n)),
* g(n) = poly(n) if g(n) = O(n") for some constant x,
* g(n) = o(h(n)) if g(n)/h(n) — 0 as n — oo,

* g(n) = w(h(n)) if h(n) = o(g(n)).

As we are interested in how the runtime (defined as the number of f-evalua-
tions) depends on n, the dimensionality of the search space, all asymptotics
are w.r.t. this parameter (unless stated differently).

Let ¢ € R™\ {0} denote a search point and m a scaled Gaussian mutation.
Furthermore, we let A := |¢| — |c + m| denote the spatial gain of a mutation
towards the origin, the optimum for SPHERE. Since SPHERE(c) = |c|*, we
have SPHERE(c + m) < SPHERE(c) <= A > 0, i.e., there is progress in
the objective space iff there is progress towards the (unique) optimum in the
search space. The analysis of the (1+1) ES for SPHERE has shown that

A m|={
P{A>0]|m|=0(}>¢ = (=0(c|/Vn),

for a constant € € (0, %) for n large enough

i.e., the mutant of ¢ is closer to a predefined point (here the origin) with
probability €2(1) iff the length of the isotropic mutation vector is at most an
O(1/+/n)-fraction of the distance between ¢ and this point. On the other hand,

A m|={ -
PIA>0||m|=(} <1/2—¢ = (=Q(c|/Vn),

for a constant ¢ € (0, %) for n large enough

in other words, the mutant obtained by an isotropic mutation of ¢ is closer
to a predefined point (here again the origin) with a constant probability
strictly smaller than 1/2 iff the length of the mutation vector is at least an



Q(1/+/n)-fraction of the distance between ¢ and this point. (The actual con-
stant e correlates with the constant in the O-notation resp. in the Q-notation.)

Since |m/, the length of a Gaussian mutation, is y-distributed with n degrees
of freedom, the expected length of the mutation vector m equals s - E[|m|] =
s-y/n-(1=6(1/n)). Moreover, with £ := E[|m|] we have P{||m| — 7| > 67} <
672/(2n — 1) for 6 > 0, in other words, there is only small deviation in the
length of a Gaussian mutation; e. g., with probability 1 —O(1/n) the mutation
vector’s actual length differs from its expected length by no more than +1%.
This implies that — when scaled Gaussian mutations are used — the following
three events/conditions are equivalent

s = O(|¢[ /n)

t=0O(lef/vn)

3 constant € > 0 such that P{A > 0} € [¢,1/2 — €] for n large enough,
i.e., P{A >0} is Q(1) as well as 1/2 — Q(1)

* X X

This equivalence will be of great help in the upcoming reasonings.

Concerning the (expected) spatial gain towards the optimum, recall that for
SPHERE a mutation is accepted by elitist selection iff A > 0, i.e., negative
gains are zeroed out so that the expected spatial gain of a step is E [A -1y AZO}} .

For scaled Gaussian mutations, we know that E [A 1y AZO}} is O({/+/n). More-

over, we know that E[A - Tias0y| is O(Je| /n) for any isotropic mutation, i.e.,
not only for an arbitrarily scaled Gaussian mutation, but for any distribution
of /my|.

On the other hand, for scaled Gaussian mutations E [A Lasoy | s = O(|c| /n)]

is Q(¢/y/n),i.e. Q(|e| /n). In other words, the distance from the optimum is ex-
pected to decrease by an ©(1/n)-fraction if s is chosen/adapted appropriately.
Furthermore, in this situation for any constant x > 0 the distance decreases
(at least) by an x/n-fraction with probability €(1).

Concerning the mutation adaptation by the 1/5-rule for SPHERE, note that
during an observation phase (in which the scaling factor s is kept unchanged)
the success probabilities are non-increasing since the distance from the op-
timum is non-increasing. Hence, if P{A > 0} is smaller than, say, 0.1 in the
first step of a phase then the expected number of successful steps (of the n
steps) in this phase is smaller than 0.1n and, by Chernoff bounds, w. 0. p. less
than 0.2n steps are observed so that s is halved. Analogously, if P{A > 0}
is larger than, say, 0.3 in the last step of a phase then the expected number
of successful steps in this phase is larger than 0.3n and, again by Chernoff
bounds, w. 0. p. more than 0.2n steps are observed so that s is doubled. This
can be used to show that w.o. p. the 1/5-rule is able to keep the scaling factor



optimal up to constant factors, i.e. s = ©(|c| /n), for an arbitrary polynomial
number of steps, implying that in each of these steps P{A > 0} is (1) as well
as 1/2 — Q(1).

3 Fitness Landscapes that are Close to Being Spherically Symmet-
ric (bounded bandwidth/condition number)

In this section we are going to formally prove that “slightly deforming” SPHERE
does not affect the order of the algorithmic runtime of a (1+1)ES using
isotropic mutations.

As we have already noted in the introduction of the fitness landscape, the
level set 4 forms a hyper-ellipsoid. When we want to utilize the results for
SPHERE, we need to know what the maximum and the minimum curvature
at points in Fy2 are. Since §; > - -+ > &, it is sufficient to consider the plane
curve defined by the intersection of Fy2 with the x1-x,-plane. Let I denote this
intersection, which forms a plane curve. All points in I satisfy {23 +&,22 = ¢?,

i.e. x, = \/(¢2 — & - 2%) /& as a function of x1 € [—¢/\/&1,¢/+/&1]. Since the

curvature at a point in I (as a function of x;) equals

i _ €6 S
v ’ — . L2 )
(1+ (i—if)z) / (€n - P24 (&1 — &) - & - 23)3/2

the maximum curvature of the plane curve I equals &;/(v/€, - ¢) at the point
0,...,0,¢/v&,), which has maximum distance from the optimum/the ori-
gin w.r.t. all points in Fg. Analogously, the minimum curvature equals
&/ (V& - ¢) at the point (¢/+/1,0,...,0), which has minimum distance from
the optimum w.r.t. all points in Fye.

In particular, this result on the curvature tells us that for any c in Ey2, there
is a hypersphere ST > ¢ with radius ¢ - /£, /, such that the lower level set
E_ 2 lies completely inside ST (i.e. STNE_42 = 0 and E_ 4 is a subset of the
open hyper-ball Bt whose missing boundary is ST), and that there is another
hyper-sphere S~ 3 ¢ with radius ¢ - /&, /& such that the open ball B~ whose
missing boundary is S~ is a subset of the lower level set E_,2. Note that, for
PDQFs with level sets of bounded bandwidth, the radii of S* and S~ are of
the same order, namely O(|c|). This will be crucial in the following,.

Now consider a mutation ¢’ := ¢+ m. Then ¢’ is as good as c iff ¢’ € E2 and
better than ¢ iff ¢’ € E_ 2. Hence, the mutation is accepted iff ¢’ € E< 2 :=
Egp U E_4. As we have just seen, ¢ € Ecyp = ¢ € BY U ST, and therefore



we obtain

E[A Tjeen_ )]
E [A ’ ]l{c’ is at least as close to the center of ST as c}}

_ E{A -lgas0) | SPHERE(c) = ¢2£1/§ﬂ

E[A - Tiyen<siep]

IA

for the expected spatial gain — independent of the distribution of |m/, i.e., in
particular for any given scaling factor s for a Gaussian mutation.

As noted in the preliminaries, the results for SPHERE have shown that in such a
situation the expected spatial gain is O(radius of ST/n),i.e. O((¢/n)vE /&),
independent of how the distribution of |m/| is chosen.* However, we are inter-
ested in how fast the f-value reduces during a run of the (14+1) ES rather than
the distance from the optimum point. Naturally, we obtain an upper bound
if we assume that the spatial gain is realized completely along the component
with the heaviest weight &;. Hence, for an f-value of ¢ we assume that the
search were located at ¢ = (¢/+/&1,0,...,0) and that the mutant were located

at ¢ = (¢/V& — e (¢/n)VE1 /&, 0, ..., 0) for some positive e = O(1). Then

/ _ . ¢ _¢'5'\/€_12
flieh = & <\/£—1 €, )

B , (1 2-¢ 2.4
= &0 <€_n§n+n2§%>

SN (é—f;)
e o)

Obviously, this upper bound is useful only when & /£, = o(n). One reason
for this is that the maximum radius of curvature, which we have just used
for the upper bound, is ¢ - /& /&,, whereas the maximum radius of Eg is

only ¢/v/&,, i.e., the radius of ST is by a factor of /& /&, larger.® However,
for PDQFs of bounded bandwidth we have (by definition) & < k- &, for a
positive constant k, i.e. £/, = O(1), so that the upper bound on a step’s
maximum expected f-gain of O((f(c)/n)(&1/&,)) becomes O(f(c)/n) — which
is the same order as for SPHERE. Consequently, we obtain the same asymptotic
lower bound on the runtime.

4 In fact, the expected gain is maximum if the RV |m/| is concentrated on a certain
value that is ©(radius of S*/\/n).
® Notice that this factor equals the bandwidth of (the level sets of) the PDQF.

10



Theorem 2 Let a (1+1) ES using isotropic mutations minimize o PDQF of
bounded bandwidth in R™, i.e., the corresponding condition number is O(1).
Then — independently of the mutation adaptation — the number of steps to
reduce the approximation error to a 2~°-fraction, 1 < b = poly(n), is Q(b - n)
in expectation and yet w. o. p.

PROOF. Assume that the optimization starts at ¢ € R", and recall that
the f-value is non-increasing during the optimization (due to elitist selec-
tion). Then even when |m/| is chosen optimally, the expected f-gain of a step
is O(f(c)/n) as we have just seen. Hence, there is a constant x > 0 such
that the total expected f-gain in k := Kk - n steps is greater than f(c¢)/5 but
smaller than f(c)/4. By Markov’s inequality, with a probability of at least
1/2, the total gain in these k steps is smaller than f(¢)/2. In other words,
with a probability of at least 1/2 more than k steps are necessary to halve
the approximation error, and consequently, the expected number of steps to
halve the approximation error is larger than k- 1/2 = Q(n). By iterating this
argument using the linearity of expectation, we obtain a bound of Q(b-n) on
the expected number of steps to halve the approximation error b times.

The next step is to apply Hoeffding’s bound to the total gain which a sequence
of steps yields. Unfortunately, the RVs corresponding to the single-step gains
are not independent (which is not an issue above because of the linearity of
expectation). Recall the assumption that |m| were chosen optimally in each
and every step; then the optimal choice for |m/| in the second step depends on
the gain realized in the first step, for instance. However, also part of our best
case assumption is that ¢ is respectively located at a point (in the respective
level set) where the curvature is minimum (so that the radius of the sphere
that we use in the estimate, namely ST, is maximum, which again results in
maximum expected gain). As the f-value is non-increasing, we thus obtain an
upper bound on the total gain of k subsequent steps by adding up the gain
of k independent instances of the first step. Therefore, let X1, ..., X} denote
independent instances of the RV corresponding to the f-gain in the first step,
and let X := X7+ -+ X;. If 0 < X; < z > 0, then Hoeffding (1963) tells
us that P{X > E[X] + v} < exp{—2(v/2)?/n} for v > 0. With v := E[X] this
inequality becomes P{X > 2E[X]|} < exp{—2(E[X]/2)?/n} =: p, and hence,
the probability that k steps suffice to halve the approximation error is not only
bounded by 1/2 (as we have seen above) but also by p. If we can show that
(E[X]/2)?* = Q(n'"¢) for some constant € > 0, then p is exponentially small
so that the arguments used above (for the bound on the expected number of
steps) yields that b-k = Q(b-n) steps are necessary (to halve the approximation
error b times) not only in expectation but also w.o.p.

As we know from SPHERE that w.o.p. A = O(|c| /n'™?) for any positive
constant §, substituting “n'=%” for “n” in the estimation of f(c’), which pre-
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cedes Theorem 2 on the preceding page, yields that a step’s f-gain is w.o0.p.
O(f(e)/n'=°)(&1/&,)), i-e. O(f(c)/n'=?)), for any constant § > 0. Thus, when
considering a polynomial number of steps, w. 0. p. in all these steps the f-gain
is O(f(c)/n'=%)), respectively. We obtain

EXV = (g ) = o)

which implies (as we have already seen above) that p is in fact exponentially
small — and with it the probability to halve the approximation error within
k steps. O

In the preceding lower-bound proof we assume optimal adaption of the scal-
ing factor. Consequently, the concrete adaptation mechanism is irrelevant, and
moreover, the arguments for halving the approximation error can simply be
iterated to obtain a lower bound on the runtime necessary to reduce the ap-
proximation error to a certain fraction. For an upper bound on the runtime,
however, precisely these two aspects are the crucial points in an analysis.

Theorem 3 Let a (1+1) ES using Gaussian mutations adapted by a 1/5-rule
minimize a PDQF with bounded bandwidth in R", i. e., the corresponding con-
dition number is O(1). If the initialization is such that the success probability
of the mutation in the first step is (1) as well as 1/2— (1), then w. o. p. the
1/5-rule maintains this property for an arbitrary polynomial number of steps.

PROOF. The crucial property that will help us with the analysis is the
bounded bandwidth. It implies that, for a given f(c)-value of ¢?, either s is
O(|e| /n) or it is not, independent of where the current search point ¢ is located
in the ellipsoidal level set Ey:. Thus, we can switch back and forth between
the assumptions that ¢ is located at minimum or at maximum distance from
the optimizer (w.r.t. the given f-value). Equivalently (cf. page 8), either s
is such that the probability of generating a better mutant is 2(1) as well as
1/2 —Q(1), or it is not — wherever c is located in Ee.

For a fixed scaling factor s, we let p. := P{f(c) < f(c)} denote the success
probability (of the mutation in this step) as well as

e = max P{f(2) < f(@)} and pi™:= min P{f(2) < f()};
L (e) TELf(e)

we may drop the subscript “c” in unambiguous situations. Thus, p € [e,1/2—¢]
for a constant € > 0 implies &’ < p™» < p < pma* < 1/2 — ¢’ for a constant
g’ > 0 (because of the boundedness).
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During a phase in a run of the (141) ES the scaling factor is kept unchanged,
and since elitist selection is used, i. e. the f-value is non-increasing, p™** as well
as p™" are non-increasing during a phase — although p may increase from one
step to another within a phase. This enables us to apply the same reasoning
to p™a resp. p™® which was applied to the success probability in the analysis
of the minimization of SPHERE. This reasoning will be recapitulated in short
in the following.

We are going to show that (w.o.p. for an arbitrary polynomial number of
steps) p™® = Q(1), i.e., it does not drop below a constant positive threshold,
and that p™® = 1/2 — (1) on the other hand.

Let pg;y denote the success probability in the first step of the ith phase. Assume
that the mutation strength s is large such that ¢ > p™ = (1) for a constant
¢, which we will choose appropriately small later, and n large enough. Since
p™?* is non-increasing and p < p™® during a phase, in each step of this phase
p < g, and hence, we expect at most an e-fraction of the steps in this phase to
be successful. By Chernoff bounds, w. o. p. less than a 2e-fraction of the steps
are successful so that the scaling factor s is halved (we choose 2¢ < 1/5),
resulting in a larger success probability — when comparing p(;41) with the
success probability in the last step of the ™" phase. The crucial question is,
however, whether Pl is at least P If this is the case, then p™™ in the
last step of the i*® phase is the (lower) threshold for the success probability we
are aiming at (since p™® = Q(1) = p™ = Q(1) because of the boundedness).
Here is the point where the choice of € comes into play. The (upper bound on
the) (expected) number of successful steps in the phase is proportional to e,
and since only successful steps can result in a gain, by choosing a smaller e
we can make the phase’s total gain smaller. All in all, we can choose € small
enough such that the increase of the success probability due to the halving
of s (over)balances the (potential) decrease due to the phase’s (potential)
spatial gain towards the optimum. It remains to show that our choice satisfies
e = (1). To this end we can use the lower bound on the runtime we have
already shown. Namely, the proof of Theorem 2 on page 11 tells us that the
spatial gain of a phase (of O(n) steps) is such that after the phase the distance
is at least a constant fraction of the initial one. This implies that the success
probability at the end of the phase is also at least a constant fraction of the
initial one, i.e., if it is (1) in the first step, then it is (1) also in the last
step of the phase. This observation finishes the 2(1)-threshold on the steps’
success probabilities.

Fortunately, the upper threshold of 1/2 — (1) on the steps’ success proba-
bilities is easer to show. Assume that the mutation strength s is small such
that in the last step of the ;'™ phase the success probability is large, say,
p™n € [0.3,0.4]. Since p > p™® > 0.3 and during a phase (in which s is
kept unchanged) p™® is non-increasing, we expect at least 30% of the steps
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in the 5" phase to be successful. By Chernoff bounds, w.o. p. more than 20%
successful steps are observed so that s is doubled, resulting in a larger muta-
tion strength and, as a consequence, in a smaller p™" in the first step of the
(4+1)"™ phase — compared to the last step of the j' phase, yet also compared
to p‘(?-i)n, the success probability in the first step of j* phase, because p™® is
non-increasing during a phase. Then Py s the upper threshold we are aiming
at. To see that p{ji™ is at most 1/2 — (1), recall that due to the boundedness
prit =1/2—-Q(1) = pm*> =1/2 —Q(1), and that due to the upper bound on
the gain of a phase, we have p‘(?-i)n = 1/2 — Q(1) if in the last step of the j®
phase p™® = 1/2 — (1) (because the distance at the end of the phase is at
least a constant fraction of the distance at the beginning).

All together we have shown that w.o.p. in each of an arbitrary polynomial
number of steps the success probability is £2(1) as well as 1/2 — Q(1). O

Interestingly — and fortunately —, in the preceeding proof of that the 1/5-rule
works, we merely need that the gain of a phase is not too large. However, hav-
ing proved that the 1/5-rule works, we can now show that the gain of a phase
is large enough to obtain an upper bound on the runtime that asymptotically
matches the more general (w.r.t. the adaptation) lower bound obtained in
Theorem 2 on page 11.

Theorem 4 Let a (1+1) ES using Gaussian mutations adapted by a 1/5-rule
minimize a PDQF with bounded bandwidth in R", 1. e., the corresponding
condition number is O(1). If the initialization is such that s = ©O(|c| /n),
then the number of steps to reduce the approximation error to a 2~°-fraction,
1 <b=poly(n), is O(b-n) w. o.p.

PROOF. First note that the assumption on the initialization implies that
Py is (1) as well as 1/2 — (1) and that Theorem 3 on page 12 tells us that
this also holds (at least w.o.p.) for an arbitrary polynomial number of steps.
Hence, s = O(|c| /n) in all these steps.

Analogously to the arguments preceding Theorem 2 on page 11, we have
f(d) < fle) = € E<p2 <= € B~ U S, and hence, we obtain

E[A Tyey<ren] = E[A Tieer ]
> E [A ’ ]l{c’ is at least as close to the center of S~ as c}}

_ E{A -1 {as0) | SPHERE(c) = ¢2£n/£ﬂ

for the expected spatial gain of a step — for any distribution of |m/|, i.e., in
particular for scaled Gaussian mutations.
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As noted in the preliminaries, the results for SPHERE have shown that the
spatial gain is Q(radius of S™/n), i.e. Q((¢/n)v/E,/&1) which is Q(¢/n) be-
cause of the boundedness, in expectation as well as with probability Q(1), if
the scaling factor s is such that S~ is hit with a probability that is (1) as
well as 1/2 — (1), which is actually the case as we have seen. Moreover, even
when such a spatial gain is realized completely along the component with the
lightest weight &,,, it corresponds to an f-gain of an Q(1/n)-fraction. Thus,
each step reduces the approximation error by an €(1/n)-fraction with prob-
ability €2(1). By Chernoff bounds, in a phase of ©(n) steps, the number of
steps each of which does actually reduce the f-value by an Q(1/n)-fraction
is Q(n) w.o.p. Consequently, w.o.p. the approximation error/the f-value is
reduced by a constant fraction within a phase. In particular, w. o. p. a constant
number of phases, i.e. O(n) steps, suffice to halve the approximation error,
so that finally in O(b) phases, i.e. O(b - n) steps, the approximation error is
reduced to a 27°-fraction w.o.p. O

4 Conclusion

Based on the results on how the (141) ES minimizes the well-known SPHERE-
function when using isotropic mutations, we have extended these results to
a broader class of functions, namely to all positive definite quadratic forms
with bounded bandwidth/condition number. The lower bound holds for any
(141) ES as long as isotropic mutations are used. The upper bound, however,
applies to Gaussian mutations adapted by a 1/5-rule.

Naturally, the results carry over to functions that are translations (w.r.t. the
search space) of a considered quadratic function f, namely to functions g(x) =
f(x—x*) for a fixed translation vector * € R™. Rather than considering the
distance from the origin (e.g.“|c|”), we merely must consider the distance
from the optimum point * (e.g.“|c — x*|”) in all arguments/conditions. The
implications for functions that are translations w.r.t. the objective space,
namely g(x) = f(x) + k for some constant x € R, are also straight forward.
Since the minimum value equals x in that case, however, we can no longer use
the current function value as the measure of the approximation error. Either
we use g(x) — k, or we restrict ourselves to the approximation error w.r.t. the
search space, i.e., to the distance from the optimum search point.
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