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Abstract

Linear Discriminant Analysis (LDA) performs well for classifica-
tion of business phases — even though the premises of an LDA are not
met. As the variables are highly correlated there are numerical as well
as interpretational shortcomings. By transforming the classification
problem to a regression setting both problems can be addressed by
a computer-intensive prediction oriented method which also improves
the classification performance.

1 Introduction

A vast amount of methods have been developed for classification. Despite its
age the Linear Discriminant Analysis developed by R.A. Fisher in 1936 does
perform well even in situations, where the underlying premises like normally
distributed data with constant covariance matrices over all classes are not
met. So it is not exceptional for the problem at hand, classification of business
phases, that Weihs and Garczarek (2002) show the good performance of LDA.
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As LDA, however, includes matrix inversion it may run into problems in
high dimensional situations or when the variables are highly correlated like
macroeconomic variables. To overcome this problem, Hastie et.al. (1995)
utilize the fact that LDA is equivalent to canonical correlation analysis and
optimal scoring and therefore can be transformed into a regression problem.
They use a penalty term for the within-covariance matrix as well as smooth-
ing of the estimates. As such a penalty term is not directly linked to the
classification problem, Luebke and Weihs (2003) propose a projection on la-
tent factors optimized for classification. By using latent factors, Luebke and
Weihs (2004a) also obtain better predictions than e.g. Partial Least Squares
in a linear regression model. In the present paper, both ideas are combined
to obtain a Prediction Optimal Classification (POC) criterion to evaluate
projection matrices for predictive classification.

The optimal solution, i.e. the corresponding projection matrix, is found
by Simulated Annealing, the flexibility of which allows to include cost terms
for deviations of estimators from zero so variable selection or measurement
of importance can be included in the method.

The paper is organized as follows: In the next section we introduce the
underlying scoring function of the classification problem which is minimized
by Simulated Annealing. In section 3 the implementation of the Simulated
Annealing Algorithm is described. A performance criterion for time related
data is proposed in section 4. The data and the results of the new method
are shown section 5. After that an outlook on future work will be given as
well as some concluding remarks.

2 Optimal Scoring with Latent Factors

Linear Discriminant Analysis is a statistical method for classification. In
LDA the classification is based on the calculation of the posterior probabili-
ties of a trial point. The class with the highest posterior probability is chosen.
To calculate the posterior probability it is assumed that the data comes from
a multivariate normal distribution where the classes share a common covari-
ance matrix but have different mean vectors. Hastie et.al. (1995) show that
LDA is equivalent to canonical correlation analysis and optimal scoring. So
LDA can be seen as a special linear regression. One of the problems in LDA
is that the estimated covariance matrix of the data points has to be inverted
for the classification. Especially in a high dimensional problem or when the



variables are highly correlated this can cause numerical problems. In the pa-
per of Hastie et.al. (1995) they try to overcome possible numerical problems
by using a penalty term. This may not be optimal as the covariance ma-
trix is transformed away from singularity without using information in the
data. In the new method the data is first projected on (few) latent factors
guaranteeing the invertibility of the optimal scoring matrices.

Assume that there are n observations with p variables in the predictor
space and k classes. Let

e X ¢ IR™*P: Predictor variables.
e Y € R™**: Indicator matrix of the classes.

The basic idea is as follows: Assign [ < k— 1 scores to the classes and regress
these scores on X. We are looking for scores (of the k classes) and a suitable
regression of these scores on the predictor variables so that the residuals are
small for the true class and large for the wrong. The average squared residual
function is:

ASR(H, M) = %HYH—XMH?, (1)
where
o H c IR**! is the score matrix of the classes,
e M € IRP*! is the regression parameter matrix, and
e || - ||? is the Frobenius matrix norm.
To avoid trivial solutions the constraint
H'Y'Y/n)H = I, (2)

is used.
To tackle the numerical problems in calculating M so called latent factors
are derived. Latent factors are linear combinations of the original predictor
variables Z = XG with G € IRP*!,l < p. It can be shown that in a latent
factor model an optimal solution can be found with at most [ latent factors
if [ is the number of response variables (Luebke and Weihs, 2004b).

In order to avoid numerical problems these latent factors must fulfill the
side-condition that they are orthonormal, i.e.

7'7 = (XG)(XG) = 1. (3)
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In the regression context latent factors (i.e. Reduced Rank Regression)
turned out to be quite an improvement over the ordinary least squares re-
gression (see for example Frank and Friedman (1993)).

With latent factors Z instead of the original X the ordinary least squares
estimator of the regression coefficient M on Z is:

~

M= (Z'2)"'Z'YH = Z'YH. (4)

Note that we made use of the side-condition (3) guaranteeing the invertibility
of (Z'7). With Z = XG we would like to have XM = ZM and thus the

estimator of M is M = GM. So equation (1) leads to:
1
ASR(H,G) = EHYH - X(G(XG)YH)|* (5)

As in general |AB|| # ||A|| || B]| it is necessary in minimizing (5) to optimize
G and H together.

Suppose that the regression matrix M and the score matrix H are esti-
mated on a training set X, Y and that it is crucial how these estimators will
perform on ny future values X,. The point prediction of the future response
values is:

3701\;1)(,1/ = XOMX,Y- (6)

With a known test set Xg, Yy the loss in ny (new) observations can be mea-
sured by

1 N —
L=—|YoH = Yo H|. (7)
Ny

Note that instead of the Frobenius norm also a more robust norm can be
used.

Usually one is not only interested in the performance of the estimator for
some observations but also in the “general” or average performance. The
corresponding mean loss (mean squared error of prediction) is defined as:

1 A~ —_—
MSEP = n—Ey‘XEYO|XO||YOH — YoH|?

0
1 A .

= n—EY\XEY0|XOHYbHX,Y — XoMxy|?
0
1 A . .

= —Byix By |[Yolxy — Xo(GxyGxy X'Y)Hxy|?  (8)
0



Equation (8) shows that the MSEP can be seen again as a function of the
projection matrix GG and scoring matrix H. So by using different G and H
— and taking care of the side-condition — different MSEP can be achieved.
Estimation of MSEP can be done by bootstrap methods or cross-validation.

After the calculation of G and H the classification can then take place
by means of the linear map of the data X:

n(z) = XM, n(X)eR™ (9)

Let 77* be the mean of the linear map of observations from class k. Then the
assigning of observations is obtained by

¢ = argmin Z wi(n(@); = 7f)%, (10)

where 7; is the i-th column of n and w; is the weight corresponding to the
i-th dimension of the linear map space. If different a-priori probabilities of
the classes are given, equation (10) is adapted, for example by subtracting
—2logmy, with 7 as the a-priori class probability.

Hastie et.al. (1995) show that if the weight is calculated as

1

YT =)

(11)
with 7? being the mean squared residual of the i-th optimally scored fit,
then the distance in (10) is proportional to the Mahalanobis distance in the
original feature space X.

3 Optimizing Prediction Criteria in the La-
tent Factor Model

As described in the previous section the objective functions ASR (5) and
therefore L (7) and MSEP (8) can be described as functions of G and H, with
G fulfilling the side-condition (3) and H the side-condition (2). In Prediction
Optimal Classification one of these cost functions is minimized by applying a
simulated annealing (SA) algorithm to the vectorized projection and scoring
matrices (vec(G)',vec(H)"). The choice of the cost function depends on the
problem: If (5) is used the prediction purpose is neglected, with (8) a general
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prediction purpose is evaluated but a time related structure in the data is
not used which can be incorporated in (7).

Simulated annealing was already applied successfully to a Reduced Rank
Regression in order to get optimal predictions (Luebke and Weihs, 2004a). To
fulfill the side-conditions, new trial points are adapted to the requirements of
the side-condition. This is done by a QR decomposition of the appropriate
matrix product. (In a QR decomposition a matrix A is decomposed into
A = QR with Q being orthonormal and R a triangle matrix.) As with the
QR decomposition the image space is unchanged and just an orthonormal
basis (@) is constructed, it is a suitable tool for the given problem. Thus in
order to fulfill (2) a new trial point H (generated by the transition function
in the SA algorithm) is updated to a trial point H by

(Y'Y/n)iH = QyRy (12)
H = HR;', (13)

The same procedure is applied to a trial point G to fulfill (3).

The implementation of the SA algorithm is based on the one described in
Press et.al. (1992). So the algorithm is a stochastic version of the well-known
Nelder-Mead Simplex method (Nelder and Mead, 1965). The Nelder-Mead
(or downhill simplex) method is transforming a simplex of m+ 1 points in an
m dimensional problem. The functional values are calculated and the worst
point is reflected through the opposite face of the simplex. If this trial point
is best the new simplex is expanded further out. If the function value is worse
than the second highest point the simplex is contracted. If no improvement
at all is found the simplex is shrunk towards the best point. This procedure
terminates when the differences in the function values between the best and
worst points are small.

The implemented simulated annealing algorithm can be summarized as fol-
lows:

1. Build a random start simplex on (vec(G)',vec(H)')'. Set the start
temperature ¢y to e.g. 1.

2. Add to the function values f = ASRV LV MSEP (5, 7, 8) of the
points in the simplex a random number so that fiem,(simplex) =
f(simplex) + t|log(u)|, where u is uniformly distributed over (0, 1).
So the (simulated) deterioration of performance is random and propor-
tional to t.



3. According to the Nelder-Mead transition function generate a trial point
using the temporary function values fiemp.

4. Adapt the trial point to the side conditions by a QR decomposition.

5. Accept the new trial point according to Nelder-Mead with the function
value fremp(trial) = f(trial) — t|log(u)| of the trial point. So a better
trial point is always accepted and a worse trial point is accepted with
a certain probability.

6. Repeat step 2-5 sufficiently often (e.g. 100 times). Reduce the temper-
ature according to the cooling scheme, e.g. t,c, = 0.8%44.

7. Repeat step 2-6 sufficiently often, for example 50 times.

4 FError Rates for Time Related Data

In business phase classification one is interested in a reliable result of the
predicted classes for e.g. the next 6 quarters. Therefore in order to evaluate
a classification method it is necessary to look at the so-called “Ex-Post-Ante”
which measures the retrospective prediction performance:

g?(t—i—pre’T) [{Cﬁééf} (14)
min(pre, T — t)

epa(t; pre) =
where
e ¢;, ¢; are the true and estimated class of observation number i.

e pre is the number of successive observations of which the classes should
be predicted.

e {1is the last observation from which the classification model is estimated.

e T is the last observation from which the class is given.

An estimator for the misclassification rate for the next pre observation is
then given by

T—1
erry, = Zw(t)epa(t;pre). (15)
t=to

At least two different weights w(t) are possible:
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Method | érrc | érrr
LDA | 0.222 | 0.150
POC | 0.196 | 0.132

Table 1: Estimated Error Rates on B3 Data

1. Constant with the number of training observations: w(t)c = 7=

2. Increasing with the number of training observations: w(t)r = T%lt

Zt:to
where t is the first observation where the Ex-Post-Ante error rate is calcu-
lated. w(:)r gives more weight to error rates which are calculated recently
so it may be more suitable for the problem at hand.

5 Application to Business Phase Classifica-
tion

The data set consists of 13 economic variables with quarterly observations
from 1961/2 to 2004/2 (see Heilemann and Miinch (1996)) of the German
business cycle. The German business cycle is classified in a four phase
scheme: upswing, upper turning point, downswing and lower turning point.
The classes are given until 7' = 2002/4, so estimation of the Ex-Post-Ante
error (14) can only be done until ¢ = 2002/3. A prediction interval length
of pre = 6 quarters was used and we started for LDA at ty = 10 which is
1963/3.

As POC is splitting the training data into a training and a test set to
evaluate the loss it needs more data: The first estimation of optimal pro-
jection and score matrices was possible at 1967/2 (see also Figure 1). For
Estimation of the error rates of LDA and POC t; in (15) was set to 1967/2,
so both error series have the same length. Table 1 shows that POC is out-
performing LDA with a constant weight (er7¢) as well as with a weight that
increases with the amount of training data (érrs). The time series of the
“Ex-Post-Ante” rates (Figure 1) shows very interesting results: One can see
the reunification of Germany (1990) which of course changes the business
cycle so the phases could not be predicted by the classification methods —
especially the yearly changes can be considered as outliers. Also the start of



the oil-crisis (oil price increases after 1971) and the second oil-crisis (1979)

causes problems for classification methods.
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Figure 1: Comparison of Ex-Post-Ante Error Rates

6 Conclusion and outlook

The new prediction pursuit projection method for classification (POC) based
on a simulated annealing algorithm outperforms the classical LDA (and
therefore a lot of other classification methods) in business phase classifica-
tion. Also the proposed error estimation by “Ex-Post-Ante” rates produces
time series of error rates which agree with the economic knowledge and can
be interpreted.

The flexibility of simulated annealing can be used by adding cost terms
or using a more robust matrix norm for residual evaluation — both options
are included in our program. So a lot of tuning is possible by these meta-
parameters. On the other hand there is no theoretic knowledge about the



choice of these parameters so more research in this area is necessary.
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