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Abstract

This paper surveys selected applications of the Lorenz curve and related stochastic
orders in economics and econometrics, with a bias towards problems in statistical
distribution theory. These include characterizations of income distributions in terms
of families of inequality measures, Lorenz ordering of multiparameter distributions
in terms of their parameters, probability inequalities for distributions of quadratic
forms, and Condorcet jury theorems.

Keywords: Lorenz curve, Lorenz order, majorization, income distribution, income
inequality, statistical distributions, characterizations, Condorcet jury theorem.
AMS classification: 60E15, 62P20, 62E15.

1 Introduction

100 years ago, in June 1905, a short article entitled

Methods of Measuring the Concentration of Wealth

appeared in the Publications of the American Statistical Association (the forerunner of the
Journal of the American Statistical Association), proposing a simple method, subsequently
called the Lorenz curve, for visualizing distributions of income or wealth with respect to
their inherent “inequality” or “concentration.” Its author, Max Otto Lorenz, was about
to complete his Ph.D. dissertation at the University of Wisconsin. This article apparently
remained his only publication in a scientific journal, and it made him famous. A short
biography of M.O. Lorenz is available in Kleiber and Kotz (2003, pp. 263–265).
According to Derobert and Thieriot (2003), the term “Lorenz curve” occurs for the first
time in King (1912), a statistics textbook written for economists and social scientists.
However, it was not until the early 1970s that interest in the Lorenz curve increased
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substantially, at least in the English-language statistical and economic literature, triggered
by the seminal papers of Atkinson (1970) and Gastwirth (1971). They presented the welfare-
economic implications of Lorenz-curve comparisons (Atkinson) and a simple definition of
the Lorenz curve for fairly general distributions (Gastwirth). It did not hurt that both were
published in highly regarded journals. Among the first contributions of this new wave were
Sen’s (1973) Radcliffe lectures at the University of Warwick, Fellman’s (1976) analysis
of transformations, and Jakobsson’s (1976) and Kakwani’s (1977) studies of progressive
taxation.
In the statistical literature, an important paper is due to Goldie (1977) who studied the
asymptotics of the Lorenz curve in what nowadays would be called an empirical-process
framework. At about the same time, the Lorenz ordering found a multitude of applica-
tions in theoretical statistics, often in the form of the more restrictive majorization order-
ing, among them inequalities for power functions in multivariate analysis. See Marshall
and Olkin (1979) and Tong (1988, 1994). The monographs of Arnold (1987) and Csörgő,
Csörgő and Horvath (1986) further popularized the concept among statisticians, leading
to numerous applications, notably in reliability theory.
The Current Index of Statistics, for the year 2004, provides some 140 papers with the
keywords “Lorenz curve” or “Lorenz order,” while the 2004 version of EconLit, the Amer-
ican Economic Association’s electronic database, provides some 200 hits just for the years
1969–present. Presumably more than 500 methodological papers have been written in the
last 50 years in statistical and econometric journals, not to mention numerous publications
of an applied nature that do not list “Lorenz curve” as a keyword.
In view of this large number of publications it appears impossible to provide a compre-
hensive view in a short article such as the present one. Instead, this paper tries to sur-
vey selected applications of the Lorenz curve and of the closely connected Lorenz and
majorization orderings in economics and econometrics. My survey is somewhat biased to-
wards statistical distribution theory. In particular, the two classical topics related to the
Lorenz curve are not covered at all: economic disparity measures and taxation problems.
For surveys of these I refer to Mosler (1994) and to Arnold (1990) and Lambert (2001),
respectively.

2 Lorenz curves and the Lorenz order

To draw the Lorenz curve of an n-point empirical distribution x = (x1, . . . , xn), xi ≥ 0,∑n
i=1 xi > 0, say of household income, one plots the share L(k/n) of total income received

by the k/n · 100% of the poorest households, k = 0, 1, 2, . . . , n, and interpolates linearly.
In the discrete (or empirical) case the Lorenz curve is therefore defined in terms of the
n + 1 points

L

(
k

n

)
=

∑k
i=1 xi:n∑n
i=1 xi:n

, k = 0, 1, . . . , n, (1)

where xi:n denotes the ith smallest income, and a continuous curve L(u), u ∈ [0, 1], is given
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by

L(u) =
1

nx̄


bunc∑
i=1

xi:n + (un− bunc)xbunc+1:n

 , 0 ≤ u ≤ 1,

where bunc denotes the largest integer not exceeding un.
The appropriate definition of the Lorenz curve for a general distribution follows easily
by recognizing the expression (1) as a sequence of standardized empirical incomplete first

moments. In view of E(X) =
∫ 1

0
F−1

X (t) dt, where the quantile function F−1
X is defined as

the pseudoinverse of the cumulative distribution function (CDF), FX ,

F−1
X (t) = sup{x |FX(x) ≤ t} , t ∈ [0, 1], (2)

equation (1) may be rewritten in the form

LX(u) =
1

E(X)

∫ u

0

F−1
X (t) dt , u ∈ [0, 1]. (3)

Hence any distribution supported on the non-negative halfline with a finite and positive
first moment admits a Lorenz curve. Following Arnold (1987), I shall occasionally denote
the set of all random variables with distributions satisfying these conditions by L.
It is a direct consequence of (3) that the Lorenz curve has the following properties:

• L is continuous on [0, 1], with L(0) = 0 and L(1) = 1,

• L is increasing, and

• L is convex.

Conversely, any function possessing these properties is the Lorenz curve of a certain sta-
tistical distribution (Thompson, 1976). It is also worth noting that the Lorenz curve itself
may be considered a CDF on the unit interval. By construction, the quantile function as-
sociated with this “Lorenz-curve distribution” is also a CDF. It is sometimes referred to
as the Goldie curve, after Goldie (1977) who studied its asymptotic properties.
Among Italian statisticians, the representation (3) in terms of the quantile function was
used as early as 1915 by Pietra who was not aware of Lorenz’s contribution. It has later
been popularized by Piesch (1967, 1971) in the German-language literature. However, it
was not until Gastwirth’s 1971 Econometrica article that interest increased substantially
in the English-language statistical literature.
Incidentally, the definition given above is not Lorenz’s original definition. Obviously, there
are four variants of the basic idea (see Figure 1): Lorenz used the graph (L(u), u), an in-
creasing but concave function. Chatelain (1907), in what would seem to be an independent
discovery of the Lorenz curve employed, up to some scaling, (u, L(1−u)). King (1912) also
used Chatelain’s version, while Chatelain (1910) himself soon switched to (u, 1−L(1−u)),
without mentioning Lorenz’s pioneering work. On combinatorial grounds, it would be of
some interest to determine a source proposing the form (u, 1 − L(u)), but I have been
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Figure 1: Lorenz curves, historical and modern, for x = (1, 3, 5, 11).

unable to locate such work. However, this variant coincides, under certain conditions, with
the common version of a tool known as the receiver-operating-characteristic (ROC) curve
in biostatistics. Further information on the history of the Lorenz curve may be found in
Derobert and Thieriot (2003).
The definition of the Lorenz curve suggests to compare entire distributions by comparing
the corresponding Lorenz curves. By construction, the diagonal of the unit square cor-
responds to the Lorenz curve of a society in which everybody receives the same income
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and hence serves as a benchmark case against which actual income distributions may be
measured. Indeed, virtually every software package that provides this graphical display by
default also plots the diagonal of the unit square.
There are several variants of this idea: For two vectors x = (x1, . . . , xn), y = (y1, . . . , yn)
of identical length n satisfying

∑n
i=1 xi =

∑n
i=1 yi, one may define

x ≥M y :⇐⇒
n∑

i=n−j

xi:n ≥
n∑

i=n−j

yi:n, j = 0, 1, . . . , n.

This is the majorization ordering introduced by Hardy, Littlewood and Pólya (1929). It
has found a multitude of applications in statistics and applied mathematics, see the famous
text by Marshall and Olkin (1979) for a comprehensive survey. If

∑n
i=1 xi 6=

∑n
i=1 yi there

are several options. The Lorenz curve proceeds via rescaling of the data, i.e. the transfor-
mation (x1, . . . , xn) 7→ (x1/

∑n
i=1 xi, . . . , xn/

∑n
i=1 xi), thereby extending majorization in

two directions, permitting (i) scale-free comparisons – in economic terms, currencies or in-
flation play no role – and (ii) comparisons of populations of different sizes (the “population
principle” of economic inequality measurement). Finally, a general definition based on (3)
permits comparisons of fairly arbitrary distributions, provided the corresponding random
variables are non-negative with positive expectations:

Definition 1 For X1, X2 ∈ L, the random variable X1 is said to be at least as unequal (or
variable) as X2 in the Lorenz sense if L1(u) ≤ L2(u) for all u ∈ [0, 1]. That is,

X1 ≥L X2 :⇐⇒ L1 ≤ L2. (4)

It is convenient to use the notations X1 ≥L X2 and F1 ≥L F2 simultaneously. Economists
usually prefer to denote the situation where L1 ≤ L2 as X2 ≥L X1, because the distribution
F2 is, in a certain sense, associated with a higher level of economic welfare (Atkinson,
1970). Here I shall use the form (4) which appears to be the common one in the statistical
literature.
It is clear from (4) that the Lorenz order is a partial order, it is scale free in the sense that

X1 ≥L X2 ⇐⇒ a ·X1 ≥L b ·X2, for all a, b > 0.

3 Characterizations

Since any distribution is characterized by its quantile function it follows from (3) that
the Lorenz curve characterizes a distribution in L up to a scale parameter (e.g., Iritani
and Kuga, 1983). As mentioned above, the Lorenz curve itself may be considered a CDF
on the unit interval. This implies, inter alia, that this “Lorenz-curve distribution”—having
bounded support—can be characterized by the sequence of its moments. Furthermore, these
“Lorenz-curve moments” characterize the underlying distribution up to a scale parameter.
This characterization is due to Aaberge (2000). Below I present a slightly different account,
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following Kleiber and Kotz (2002), which relates the problem to the moment problem of
order statistics.
What are the moments of the “Lorenz-curve distribution”? Denote by XL a random variable
supported on [0, 1] with CDF L. Then

E(Xk
L) = k

∫ 1

0

uk−1{1− L(u)}du.

It is not difficult to see that

E(XL) =
G

2
+

1

2
,

where

G = 2

∫ 1

0

(u− L(u))du = 1− 2

∫ 1

0

L(u)du (5)

is the Gini coefficient, perhaps the most widely used measure of income inequality (Gini,
1914). The Gini index is a relative measure of income inequality since it depends only
on income shares. A sizable number of alternative representations are available. For the
characterizations of interest here, the expression

G = 1− E(X1:2)

E(X)
= 1−

∫∞
0
{1− F (x)}2 dx

E(X)
, (6)

presumably due to Arnold and Laguna (1977), is the most appropriate.
Kakwani (1980) proposed a one-parameter family of generalized Gini indices by introducing
different weighting functions for the area under the Lorenz curve,

Gn = 1− n(n− 1)

∫ 1

0

L(u)(1− u)n−2 du,

here n is a non-negative integer. The traditional Gini coefficient is obtained for n = 2.
Donaldson and Weymark (1980, 1983) and Yitzhaki (1983) have arrived at the same family
from different considerations. These authors also defined a family of ‘equally-distributed-
equivalent-income functions’ of the form

Ξn = −
∫ ∞

0

x d{(1− F (x))n},

which may be rewritten as Ξn =
∫∞

0
{1− F (x)}n dx. Muliere and Scarsini (1989) observed

that Ξn equals E(X1:n) and that

Gn = 1− Ξn

E(X)
= 1− E(X1:n)

E(X)
. (7)

Equation (7) is a direct generalization of (6).
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This shows that the Lorenz-curve moments are closely related to moments of order sta-
tistics. Furthermore, it suggests to reduce the characterization in terms of Lorenz-curve
moments to the well-known moment problem of order statistics. Specifically, let X1, . . . , Xn

be a sample of size n from a distribution with the CDF F and define the order statistics
Xi:n in the ascending order by

X1:n ≤ X2:n ≤ . . . ≤ Xn:n.

The moment problem of order statistics inquires to what extent the CDF F is uniquely
determined by (a subset of) the first moments of all of its order statistics

{E(Xi:n) | i = 1, 2, . . . , n; n = 1, 2, 3, . . .}. (8)

It follows from

E(Xi:n) = i

(
n

i

)∫ 1

0

F−1(u) ui−1(1− u)n−i du

that E|Xi:n| ≤ c·E|X|, for some c > 0; thus a finite mean of the parent distribution assures
the existence of the first moment of any order statistic. This implies that characterizations
in terms of the moments of order statistics are of interest for heavy-tailed distributions of
the Pareto type, for which only a few moments exist and, consequently, no characterization
in terms of (ordinary) moments is feasible. Many parametric models for the size distribution
of personal income are of this type, see Kleiber and Kotz (2003) for a recent survey.
In view of the familiar recurrence relation (David, 1981, p. 46)

(n− i) E(Xi:n) + i E(Xi+1:n) = n E(Xi:n−1)

it is not necessary to know the whole array (8), one merely requires one moment for each
sample size, e.g. the sequence of expectations of minima E(X1:n) will suffice. The basic
characterization result is thus as follows:

Lemma 2 Let E|X| < ∞. For n = 1, 2, 3, . . ., let i(n) be an integer with 1 ≤ i(n) ≤ n.
Then, F is uniquely determined by the sequence {E(Xi(n):n) |n = 1, 2, 3, . . .}.

The most natural choices for i(n) are either 1 or n. Many refinements of this fundamental
result are available in the literature, see e.g. Kamps (1998) for further details.
Lemma 2 yields the following characterization via the moment problem of order statistics:

Theorem 3 Any F ∈ L is characterized, up to a scale, by its sequence of generalized Gini
indices, {Gn}.

Various extensions of this theorem are discussed by Kleiber and Kotz (2002).
As an example, consider the exponential distribution with scale parameter λ. Its CDF
is F (x) = 1 − e−λx, x ≥ 0, λ > 0, and therefore E(X1:n) = λ/n, hence the sequence
{Gn |Gn = 1− 1/n} characterizes the family of exponential distributions up to a scale.
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4 The Lorenz order within parametric families of in-

come distributions

Parametric models for the size distribution of personal income have been of interest to
econometricians and applied statisticians for more than a hundred years. An income
distribution has the property that its CDF F is supported on the positive halfline, i.e.
supp(F ) ⊆ [0,∞). Atkinson’s (1970) classic paper has created much interest in stochastic
orders for the comparison of income distributions such as the Lorenz order. It is there-
fore quite surprising that only fairly recently attempts have been made to characterize the
Lorenz order within common parametric families of income distributions.
For one- and two-parameter models this is straightforward, and it is well-known that the
Lorenz order is linear within the Pareto and log-normal families. Indeed, for the Pareto
distribution, with CDF F (x) = 1 − (x/x0)

−α, x ≥ x0 > 0, quantile function F−1(u) =
x0(1 − u)−1/α, 0 < u < 1, and mean E(X) = αx0/(α − 1) (which exists if and only if
α > 1), it follows that

L(u) = 1− (1− u)1−1/α, 0 < u < 1. (9)

Hence Lorenz curves from Pareto distributions with a different α never intersect. Specifi-
cally,

X1 ≥L X2 ⇐⇒ α1 ≤ α2.

For the lognormal distribution, with CDF Φ((log x − µ)/σ), where x > 0, µ ∈ R, σ > 0,
and Φ is the CDF of the standard normal distribution, the Lorenz curve is given by

L(u) = Φ(Φ−1(u)− σ2), 0 < u < 1.

It follows that X1 ≥L X2 if and only if σ2
1 ≥ σ2

2.
Within three- and four-parameter families the Lorenz order is no longer linear, however.
The first results for a three-parameter family are due to Taillie (1981), who studied the
generalized gamma distribution. More than a decade later, Wilfling and Krämer (1993)
obtained results for the popular Singh-Maddala (1976) family, and Kleiber (1996) consid-
ered the even closer fitting Dagum (1977) distributions. These distributions are special
cases of a four-parameter distribution, the generalized beta distribution of the second kind
(hereafter: GB2) introduced by McDonald (1984) and Venter (1983) in econometrics and
actuarial sciences, respectively. In empirical applications, the GB2 distribution has been
found to outperform its competitors, sometimes by wide margins, see Bordley, McDonald
and Mantrala (1996) for a comparative study including some 15 distributions.
The GB2 distribution has the density

fGB2(x) =
a xap−1

bap B(p, q) [1 + (x/b)a]p+q
, x > 0, (10)
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where B(·, ·) is the beta function and all four parameters a, b, p, q are positive. The parame-
ter b is a scale parameter, the others are shape parameters. Note that a GB2 distribution
has finite mean — and, therefore, admits a Lorenz curve — if and only if aq > 1. For
further details and more than twenty other distributions related to the GB2, see Kleiber
and Kotz (2003).
As of early 2005, a complete characterization of the Lorenz ordering within the GB2 family
of distributions is still unavailable. The most general result is as follows (Kleiber, 1999):

Theorem 4 Let X1, X2 be in L, with Xi ∼ GB2(ai, bi, pi, qi), i=1,2. Then

(a) a1 ≤ a2, a1p1 ≤ a2p2, and a1q1 ≤ a2q2 imply X1 ≥L X2.

(b) X1 ≥L X2 implies a1p1 ≤ a2p2 and a1q1 ≤ a2q2.

This leaves open constellations of the type a1 ≤ a2, p1 ≥ p2, and q1 ≥ q2, but a1p1 ≥ a2p2

and a1q1 ≥ a2q2. However, Theorem 4 encompasses complete characterizations for all
subfamilies of the GB2, thereby providing a unified approach to most commonly consid-
ered income distribution functions. Specifically, for the Singh-Maddala distribution, with
SM(a, b, q) ≡ GB2(a, b, 1, q), Theorem 4 yields

X1 ≥L X2 ⇐⇒ a1 ≤ a2 and a1q1 ≤ a2q2,

for the Dagum distribution, with D(a, b, p) ≡ GB2(a, b, p, 1), it implies

X1 ≥L X2 ⇐⇒ a1 ≤ a2 and a1p1 ≤ a2p2,

for the beta distribution of the second kind, with B2(b, p, q) ≡ GB2(1, b, p, q), we have

X1 ≥L X2 ⇐⇒ p1 ≤ p2 and q1 ≤ q2,

whereas for the log-logistic distribution, with LL(a, b) ≡ GB2(a, b, 1, 1) the condition is

X1 ≥L X2 ⇐⇒ a1 ≤ a2.

The proof of part (a) of Theorem 4 utilizes a representation of the GB2 distribution as the
distribution of the ratio of two independent generalized gamma variates and Taillie’s (1981)
Lorenz ordering results for that distribution. Necessity is proved via properties of regularly
varying functions, see Kleiber (2000, 2002) for further details. Indeed, a comparison of (10)
and Theorem 4 (b) reveals that aq determines the rate of decrease of the density in the
upper tail, while ap does likewise for the lower tail. Figure 2 provides an illustration for
two Dagum distributions: the more unequal distribution is associated with heavier tails,
as is to be expected from Theorem 4 (b).
Incidentally, Theorem 4 also has applications in a reliability context: the GB2 distribution
is the distribution of the order statistics from a log-logistic parent distribution, hence Theo-
rem 4 provides conditions for the Lorenz ordering of order statistics from that distribution,
see Kleiber (2004) for further details.
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Figure 2: Two Dagum distributions: X1 ∼ D(3, 1, 2) (dashed), X2 ∼ D(4, 1, 2) (solid),
hence X1 ≥L X2.

5 Some probability inequalities in econometrics

A problem in statistical distribution theory that is of considerable interest in econometrics
is the distribution of quadratic forms in normal random variables. Suppose x ∼ N (0, In),
A ∈ Rn×n and consider Q(x) := x>Ax. What is the distribution of Q? From the theory of
linear models it is well known that
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A> = A and A2 = A ⇐⇒ Q(x) ∼ χ2(rk(A)).

What if A is not an idempotent matrix? This occurs, inter alia, in connection with the
Durbin-Watson test, where A is the difference of two positive semidefinite matrices.
The problem may be rewritten in the form

Q(x) =
n∑

j=1

λjx
2
j

where the xj ∼ N (0, 1) are i.i.d.and the λj are the eigenvalues of A. If these eigenvalues
are distinct, the distribution of Q is not available in closed form and must be determined
numerically. However, it is possible to obtain qualitative results using the Lorenz curve, or
rather the majorization ordering.
Suppose now that A is p.s.d., hence λj ≥ 0, j = 1, . . . , n. A classical inequality due to
Okamoto (1960) states that

Theorem 5 Suppose Xj ∼ N (0, 1) are i.i.d. and λj ≥ 0. Then

P

(
n∑

j=1

λjX
2
j ≤ x

)
≤ P

(
Y ≤ x/λ̃

)
, (11)

where Y ∼ χ2
n and λ̃ := (

∏n
j=1 λj)

1/n is the geometric mean of the λj.

Note that the RHS of (11) is a chi-square probability and therefore easily computed.
In view of λ̃ = exp( 1

n

∑n
j=1 log λj) and the basic majorization inequality

(log λ1, . . . , log λn) ≥M (log λ̃, . . . , log λ̃), the inequality (11) suggests that a generaliza-
tion of Okamoto’s inequality in terms of majorization might be available. The following
result is due to Marshall and Olkin (1979, p. 303):

Theorem 6 Suppose Xj ∼ N (0, 1), i.i.d., and aj, bj > 0. Suppose further
(log a1, . . . , log an) ≥M (log b1, . . . , log bn). Then

P

(
n∑

j=1

ajX
2
j ≤ x

)
≤ P

(
n∑

j=1

bjX
2
j ≤ x

)
.

This Theorem says that the probability P
(∑n

j=1 ajX
2
j ≤ x

)
is decreasing in

(log a1, . . . , log an), in the sense of majorization, hence the more variable the vector of
logarithms of the eigenvalues of A is, the more likely is Q to take on extreme values. Fur-
ther majorization inequalities and bounds in terms of the harmonic mean of the λj are
discussed by Tong (1988).
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6 Condorcet jury theorems

A further problem in statistical distribution theory involving the Lorenz curve, or rather
the Lorenz order, is concerned with bounds for the CDF of the sum of heterogeneous
Bernoulli variables. This has an interesting application in the theory of social choice.
Consider a panel of jurors facing a binary choice. One of the alternatives is assumed to be
correct. Being experts, the jurors are able to do better than a fair coin, that is, they are
able to identify the correct alternative with a probability exceeding 1/2.
In his Essai sur l’application de l’ analyse à la probabilité des décisions rendues à la plu-
ralité des voix, Condorcet (1785) expressed the belief that these jurors, utilizing a simple
majority rule, would be likely to make the correct decision. Mathematical formulations
substantiating this belief have become known as Condorcet jury theorems (CJTs) in social
choice and (theoretical) political science, see Grofman and Owen (1989) and Boland (1989)
for surveys and further references.
Suppose the random variable Xi indicates whether the ith expert makes the correct deci-
sion, where pi = P (Xi = 1), for i = 1, . . . , n. Define S :=

∑n
i=1 Xi, the random variable

indicating the number of correct decisions. Clearly, if pi ≡ p for all i and the experts decide
independently,

hn(p) := P (S ≥ k) =
n∑

i=k

(
n

i

)
pi(1− p)n−i.

In order to avoid ties, it is convenient to suppose that the jury size is odd, n = 2m + 1.
Hence the majority rule corresponds to k = m + 1, and the quantity of interest is

h2m+1(p) := P (S ≥ m + 1) =
2m+1∑
i=m+1

(
2m + 1

i

)
pi(1− p)2m+1−i.

The classical form of the CJT is as follows:

• hn(p) > p, i.e., with a majority voting system, we are more likely to arrive at the
correct decision with a panel of experts of equal competence p than with a single
individual of competence p.

This is the simplest and most popular form of the CJT. At least two generalizations would
seem to be of interest: the first substitutes homogeneity with varying competence, the
second allows for correlation. I shall confine myself to the first.
The experts now have different abilities to identify the correct alternative, that is, pi does
not necessarily equal pj, i 6= j. The pis are collected in a vector, p := (p1, . . . , pn). A
convenient reference point is provided by the average expert competence, p̄.
Perhaps surprisingly, this setting invokes the following classical inequality due to Hoeffding
(1956):
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Lemma 7 Let k > 0 be an integer and suppose p̄ ≥ k/n. Then

P (S ≥ k) ≥
n∑

i=k

(
n

i

)
p̄i(1− p̄)n−i.

With k = m + 1 this yields Boland’s (1989) generalization of the CJT:

Theorem 8 Suppose n ≥ 3, p̄ ≥ 1/2 + 1/(2n). Then

hn(p) := hn(p1, . . . , pn) > p̄.

A panel of experts with average competence p̄ will therefore do better than a single expert
with competence p̄.
How is all this related to the Lorenz order? The preceding theorem suggests that, in view
of the basic majorization inequality p = (p1, . . . , pn) ≥M (p̄, . . . , p̄), it might be true that
p1 ≥M p2 implies hn(p1) ≥ hn(p2). Indeed there is some such result, but the details are
more involved. A more general version depends on a refinement of Hoeffding’s inequality
due to Gleser (1975):

Lemma 9 Suppose p1 ≥M p2. Then

P (S ≤ k|p1) ≤ P (S ≤ k|p2), k ≤ bnp̄− 2c,

Note that, for p2 = (p̄, . . . , p̄), the Lemma yields Hoeffding’s result. As discussed by Gleser,
the more stringent condition k ≤ bnp̄− 2c cannot be removed in the general case.
Lemma 9 yields

Theorem 10 Suppose n ≥ 7 and p̄ ≥ 1/2 + 5/(2n). Then p1 ≥M p2 implies

hn(p1) ≥ hn(p2).

The majorization approach yields further insights for CJTs, among them results for super-
majority voting rules, see Kleiber (2005) for further discussion.

7 Generalized Lorenz curves

The Lorenz curve is only a partial order, so what does one do if two Lorenz curves intersect?
The most widely used alternative to the Lorenz order is the generalized Lorenz order, due
to Shorrocks (1983) and Kakwani (1984). It is defined in terms of the generalized Lorenz
curve, GLX , where

GLX(u) = E(X) · LX(u) =

∫ u

0

F−1
X (t)dt, 0 ≤ u ≤ 1, (12)

13



and suggests to prefer a distribution F over another distribution G if its generalized Lorenz
curve is nowhere below the generalized Lorenz curve of G. This is denoted as F ≥GL

G. (Note that this definition represents a reversal of the inequality defining the Lorenz
order in section 2. For the purposes of this section, this is more convenient than the
standard version.) Generalized Lorenz curves are nondecreasing, continuous and convex,
with GLF (0) = 0 and GLF (1) = µF < ∞. Thistle (1989a) shows that a distribution
is uniquely determined by its generalized Lorenz curve. Also, from e.g. Thistle (1989b),
generalized Lorenz dominance is equivalent to second-order stochastic dominance, denoted
here as SD(2), where F ≥SD(2) G if and only if

∫ x

0
F (t) dt ≤

∫ x

0
G(t) dt for all x ∈ R+.

Being defined in terms of the Lorenz curve, the generalized Lorenz order encompasses
inequality (equity) aspects, being scaled by E(X), it also encompasses size (efficiency)
aspects. It is therefore of interest to pursue decompositions of the generalized Lorenz order
into these equity and efficiency aspects. The Lorenz curve provides a natural tool for
measuring equity. One way to study efficiency, in a global sense, is to consider the classical
stochastic order (more familiar as first-order stochastic dominance, or SD(1), in economics),
where F ≥SD(1) G if F (x) ≤ G(x) for all x. In the terminology of welfare economics,
F ≥SD(1) G means that the distribution F is ranked higher than G by all social welfare
functions with increasing utility, while F ≥SD(2) G means that F is ranked higher than G
by all social welfare functions with increasing and concave utility.
Kleiber and Krämer (2003) provide the following result:

Theorem 11 Suppose F, G are income distributions supported on the positive halfline with
finite expectations. Then the following are equivalent:

(a) F ≥GL G.

(b) There exists an income distribution H1, with µH1 = µG, such that F ≥SD(1) H1 ≥L G.

(c) There exists an income distribution H2, with µH2 = µF , such that F ≥L H2 ≥SD(1) G.

As an illustration, consider the gamma distribution, with density

f(x) =
λα

Γ(α)
xα−1 e−λ x , x > 0,

where λ > 0, α > 0. Suppose F ∼ Ga(α, λ) and G ∼ Ga(β, ν), respectively. Taillie (1981)
shows that F ≥L G if and only if α ≥ β. From e.g. Ramos, Ollero and Sordo (2000, pp.
290-291) we moreover have that λ > ν and α/λ ≥ β/ν imply F ≥GL G, whereas λ ≤ ν and
α ≥ β imply F ≥SD(1) G. Now suppose F ∼ Ga(20,5) and G ∼ Ga(10,4), hence F ≥GL G.
Then H1 may be chosen as Ga(15,6), whereas H2 could be Ga(12,3), for example. The
generalized Lorenz curves of all these distributions are depicted in Figure 3.
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Figure 3: Generalized Lorenz curves for two gamma distributions: Ga(20,5) (top) and
Ga(10,4) (bottom). Two intermediate generalized Lorenz curves (dashed) as described in
Theorem 11: H1 ∼ Ga(15,6) (left panel), H2 ∼ Ga(12,3) (right panel).

8 Conclusion

Evidently, the Lorenz curve and the associated Lorenz order have considerable further po-
tential in theoretical and applied economics. On the theoretical side, it would be interesting
to explore generalizations of majorization inequalities to the Lorenz case, for example in
the context of Condorcet jury theorems.
On the practical side, what appears to be lacking is a suite of tools for distributional
analysis in a major statistical software package. As of early 2005, there are several stand-
alone tools for distributional analyses that require the use of an additional statistics package
for more standard tasks. I am currently working on an add-on package for the R language
(R Development Core Team, 2005) that allows for the analysis of Lorenz curves and the
fitting of size distributions while at the same time giving access to a large number of
standard tools.

15



References

Aaberge, R. (2000). Characterizations of Lorenz curves and income distributions. Social
Choice and Welfare, 17, 639–653.

Arnold, B.C. (1983). Pareto Distributions. Fairland, MD: International Co-operative Pub-
lishing House.

Arnold, B.C. (1987). Majorization and the Lorenz Order. Lecture Notes in Statistics 43,
Berlin and New York: Springer.

Arnold, B.C. (1990). The Lorenz order and the effects of taxation policies. Bulletin of
Economic Research, 42, 249–264.

Arnold, B.C., and Laguna, L. (1977). On generalized Pareto distributions with applica-
tions to income data. International Studies in Economics No. 10, Dept. of Economics,
Iowa State University, Ames, Iowa.

Atkinson, A.B. (1970). On the measurement of inequality. Journal of Economic Theory,
2, 244–263.

Boland, P.J. (1989). Majority systems and the Condorcet jury theorem. The Statistician,
38, 181–189.

Bordley, R.F., McDonald, J.B., and Mantrala, A. (1996). Something new, something old:
Parametric models for the size distribution of income. Journal of Income Distribution,
6, 91–103.
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Siebeck).

Pietra, G. (1915). Delle relazioni fra indici di variabilità, note I e II. Atti del Reale Istituto
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