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Chapter 1

Introduction

Unquestionably, the need of dimension reduction procedures in statistical data analy-

sis has never been more important than in today’s time. Due to increased computing

power and storage capacity of computers, the amount of data along with the number of

surveyed variables in studies are often larger than ever before. Consider, for example,

studies in the field of Bioinformatics or Epidemiology dealing with microarray data.

When analyzing microarray data, we often face up to thousands of genes, representing

regressor variables, but only very small sample sizes, as described by Tibshirani (2000)

or Dettling and Bühlmann (2004) for example. The latter authors also refer to this

as the “small sample size n, large predictor dimension p-phenomenon.” But data sets

consisting of fewer regressor variables can also pose severe problems in the data analy-

sis step, which is the case in the often cited Boston Housing data set by Harrison and

Rubinfeld (1978) that consists of 14 variables and n = 506 observations. The arising

problem is known as the curse of dimensionality describing the following phenomena.

As the dimension p of the regressor space increases, the space becomes sparser unless

the amount of data, the number of observations n, grows exponentially. Consequently,

nonparametric regression procedures used for fitting regression models will fail to esti-

mate an underlying regression function g sufficiently well, as they crucially depend on

data observations having neighboring observations nearby in the regression space.
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1 Introduction

As a remedy, often an appropriate lower dimensional subspace of the original regressor

space is sufficient for fitting a regression function. These subspaces can be obtained by

identifying K < p important linear combinations of the regressor variables.

Sliced Inverse Regression (Sir) by Li (1991) is a dimension reduction pro-

cedure that aims at estimating such a subspace, spanned by important linear com-

binations of regressor variables. Other well-known dimension reduction procedures

estimating so-called dimension reduction subspaces of the regressor space include Sir

ii by Li (1991), Save (Cook and Weisberg (1991), Cook (2000)), Principal Hessian

Directions (Li (1992)) or more recently Mave by Xia et al. (2002). The main focus

of this thesis though will only be on the dimension reduction procedure Sir.

Because ultimately the estimation of a regression curve or link function relies cru-

cially on the correct identification of the linear combinations that span the dimension

reduction subspace, robustness properties of a dimension reduction procedure become

crucial to understand. That is, it is important to consider just how sensitive Sir

and its subspace estimates are to data contamination. Unfortunately, there has been

disagreement over the robustness properties of Sir.

Although Li (1991) pursues the argument that Sir is robust against outlying ob-

servations, other researchers including Hilker (1997), Gather et al. (2002) and Pren-

dergast (2004) have demonstrated that the procedure is sensitive to certain types of

data contamination which may influence the subspace estimate. Li (1991) justified

his argument by pointing out that the influence of outlying observations within the

response variable y is limited as y is incorporated in the Sir procedure only in a slicing

step (see Chapter 3). Regarding the regressor variables x, he argues that x-values are

typically fixed design points. However, as noted by Prendergast (2004), we are often

faced with high dimensional data sets that are not the result of a designed experiment.

Hence, we are obliged to be concerned about contamination of the data, in particular

as such observations often remain undetected due to the high dimensionality of the

data set [cf. Rousseeuw and Leroy (1987)]. Cook and Critchley (2000) reach the con-

clusion that outlying observations only result in additional linear combinations to the
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1 Introduction

true subspace. While this certainly may be true for some situations and particular

types of contamination, we will show that outlying observations can indeed lead to

the loss of important linear combinations of the subspace as well as the inclusion of

false information (see Chapter 4). Bond (1999) also investigated the robustness of Sir

focusing on the robustness of the procedure under violations of distributional assump-

tions. His study revealed that Sir is “fairly robust, not being affected by even fairly

sizable perturbations when the response function was well behaved.” We argue that

these differing findings may arise because the type of contamination plays a significant

role in the study of robustness of Sir. Single data points may not yield a bad estimate

of a dimension reduction subspace simply if the points lie far away from the main bulk

of the data. The direction in which outlying data points may play a more decisive and

important role [cf. Hilker (1997), Gather et al. (2002)].

The focus of this thesis is placed on a detailed investigation of the robustness

properties of Sir. In particular, we emphasize on the finite sample behavior of the Sir

procedure under data contamination, considering various types of contamination (i.e.,

directions of contamination) which may produce a worst case subspace estimate. We

wish to demonstrate that the data contamination scenarios that produce bad subspace

estimates in Sir depend also on the covariance structure of the regressor variables as

well as the knowledge of the dimension K of the final dimension reduction subspace.

Starting point is the dissertation of Hilker (1997), which provided a first thorough

investigation of the robustness of Sir particulary focusing on a breakdown point defi-

nition. While this study of Hilker concentrated on the estimation of the first dimension

reduction direction, we extend our study to all directions of the dimension reduction

subspace. That is, we wish to consider the effect of data contamination on the entire

dimension reduction subspace estimate as a whole, not single dimension reduction di-

rections or vectors. As the dissertation of Prendergast (2004) offers first results on a

definition of the influence function for Sir, we shall keep the main focus of our work

on a possible definition of a finite sample breakdown point for Sir.

The thesis is organized as follows.
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1 Introduction

In Chapter 2 we provide a review of necessary basic algebraic terminology allowing us

to define distance measures between Rp-vector subspaces. Our findings cumulate in an

adequate metric on Rp-subspaces that is based on the Frobenius norm. We will discuss

its main properties and establish its suitability compared to other distance measures

based on angles and so-called gap functions.

A review of the Sir procedure is given in Chapter 3. Because the procedure has been

thoroughly presented in various sources in the literature, we will restrict our review

only to details necessary for the investigation of the robustness properties.

The main theoretical contributions regarding the behavior of the Sir procedure under

data contamination are presented in Chapter 4. We begin with a discussion of the

meaning of the notion of breakdown with respect to Sir and dimension reduction

procedures in general. This includes a review of previous approaches found in the

literature, including those of Hilker (1997) and Becker (2001). We continue with a

thorough analysis of the sensitivity of Sir, where a distinction of four different scenarios

and data contamination schemes is necessary. We distinguish whether the dimension

K of the dimension reduction subspaces to be estimated by the Sir procedure is known

or unknown. A second decisive factor in the sensitivity analysis turns out to be the

knowledge regarding the covariance matrix of the regressor variables. That is, we shall

see that types of data contamination that cause Sir to yield an erroneous subspace

estimate can change depending on whether the covariance of the regressors is known

or not.

Chapter 5 contains the description of a simulation study used to numerically support

our theoretical findings presented in the previous Chapter 4. The results of the simu-

lation study concerning data contamination with Sir are presented and summarized.

The concept of breakdown & groups established by Davies and Gather (2002,

2005a) offers by far the most insightful analysis regarding breakdown of a statistical

functional. In Chapter 6 we examine the extent to which the theory of breakdown

& groups can be applied to the case of dimension reduction functionals, in particular
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to functionals of the Sir-type. We find that Sir-type functionals are difficult to place

in the framework of breakdown & groups, because a geometrically meaningful

metric on subspaces (i.e., the parameters) is complicated to formulate under conditions

required in Davies and Gather (2002, 2005a). As hinted by Davies and Gather (2004,

2005b), an alternative definition of breakdown can be applied to dimension reduction

functionals which may statistically be more meaningful and accurate than a definition

based on common breakdown point theory, since this requires no metric on subspaces

to be specified.

Conclusions and recommendations for possible research extending the results found in

this thesis are given in Chapter 7.

Some supporting technical arguments and results are provided in the Appendix.

5



Chapter 2

Preliminaries

This chapter focuses on Euclidian vector spaces Rp and developing metrics to measure

the distance between subspaces of Rp. In Section 2.1, a review is given of the basic

properties of vector spaces and orthogonal projection matrices. Section 2.2 develops a

metric for Rp-subspaces based on the Frobenius matrix norm that has many desirable

qualities for quantifying the distance between subspaces. For example, this subspace

metric is often simple to compute and to geometrically interpret. We use this metric to

formulate most of the finite sample breakdown results in Chapter 4. For completeness

in Section 2.3, we discuss other general metrics which are possible for Rp-subspaces,

namely gap functions (Section 2.3.1) and angles (Section 2.3.2). We argue that the

Frobenius norm-based subspace metric is more attractive than these other alternatives

for subspace metrics. Section 2.4 illustrates the Frobenius norm-based metric with

some examples. In Section 2.5, further properties of the Frobenius norm-based subspace

metric are developed for later use, including the invariance of the metric (Section 2.5.1)

and bounds on the maximal values of the metric (Section 2.5.2).
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2 Preliminaries

2.1 Vector Spaces

We begin by recalling some basic definitions involving Euclidean vector spaces V =

Rp, p ≥ 1 and subspaces as well as basis vectors which span them. Although these

definitions concern basic algebraic elements, we feel that their review is worthwhile

because Sir is concerned with estimating a vector subspace. The familiar reader may

not hesitate to skip this section.

Definition 2.1 (Schott, 1995) Let V denote a collection of p× 1 vectors satisfying

the following two properties

P1. If x1 ∈ V and x2 ∈ V, then x1 + x2 ∈ V.

P2. If x ∈ V and α is a real-valued scalar, then αx ∈ V.

Then V is called a vector space in p-dimensional space.

Properties P1 and P2 are generally known as the closure properties for vector addition

and scalar multiplication, respectively. In particular, the Euclidean vector space V =

Rp consists of all p-dimensional vectors with p real-valued components.

Definition 2.2 (Schott, 1995) Let {x1, . . . , xn} be a set of p× 1 vectors in a vector

space V. This set is called a basis of V if it spans the vector space V (i.e. any

vector in v ∈ V can be expressed as a linear combination of {x1, . . . , xn} by v =∑n
i=1 αixi for real-valued scalars) and the vectors x1, . . . , xn are linearly independent

(i.e. if 0 =
∑n

i=1 αixi, then each αi = 0). Although this basis is not uniquely defined

for a vector space, the number of vectors n in the basis is unique and is referred to as

the dimension of the vector space V, denoted by dim(V) = n.

Definition 2.3 (Schott, 1995) Let V be a vector space spanned by a basis

{x1, . . . , xn}. A space S is called a subspace of V (S ⊂ V) if it is spanned by a

set {y1, . . . , yK},K ≤ n, where any yi, i = 1, . . . ,K is a linear combination of the

xi
′s, i = 1, . . . , n and y1, . . . , yK are linearly independent. The number of linearly inde-

pendent vectors K spanning S corresponds to the dimension of the subspace S.

7



2 Preliminaries

Definition 2.4 (Meyer, 2000) Let S1 and S2 be subspaces of a vector space V. The

sum of S1 and S2 is defined as the set of all possible sums of vectors from S1 with

vectors from S2. That is

S1 ⊕ S2 = {s1 + s2 | s1 ∈ S1 and s2 ∈ S2}.

Subspaces S1 and S2 generate a new subspace S1 ⊕S2 = S̃ and for two sets S1 and S2

of vectors spanning S1 and S2, respectively. It follows that S1 ∪ S2 spans S1 ⊕S2 = S̃.

In our studies of Sir and Euclidean vector subspaces, we will often refer to the orthog-

onal complement of a vector subspace. Two (nonzero) Euclidean vectors x and y are

said to be orthogonal if the cosine of the angle between the vectors,

cos θ =
x>y

‖x‖‖y‖
, (2.1)

equals zero. This leads to a general definition of orthogonality between Euclidean

vectors (i.e. x and y are orthogonal if x>y = 0) and the notion of the orthogonal

complement of a subspace, described in the following.

Definition 2.5 (Schott, 1995) Let S be a Euclidean vector subspace of V = Rp, p ≥

1. The orthogonal complement of S, denoted by S⊥, is the collection of all vectors in Rp

that are orthogonal to every vector in S; that is S⊥ = {x ∈ Rp : x>y = 0 for all y ∈

S}.

In particular, assuming we have V = Rp, then if S is a vector subspace of Rp its

orthogonal complement S⊥ is also a vector subspace of Rp and it holds that V = Rp =

S ⊕S⊥ (cf. Schott (1995), Theorem 2.15, p.56). It also holds that if a vector subspace

S of Rp is of dimension K, then the dimension of S⊥ is p − K (cf. Schott (1995),

Theorem 2.16, p.56).

Our study of the robustness properties of Sir relies heavily on the notation of vector

space projections and projection matrices involving Euclidean vector spaces V = Rp,

p ≥ 1. We review some necessary definitions in the following.
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2 Preliminaries

Definition 2.6 (Fraleigh & Beauregard, 1990) Let S be a vector subspace of Rp

with basis vectors s1, . . . , sK, K ≤ p, and let x be an arbitrary vector in Rp. A vector

x̃ ∈ Rp is said to be the projection of x onto S if and only if two properties hold:

P1. x̃ ∈ S, i.e., x̃ =
K∑

i=1

aisi, for some ai ∈ R, i = 1, . . . ,K.

P2. the vector x̃− x is orthogonal to S, i.e., s>(x̃− x) = 0 for any s ∈ S.

A p × p matrix PS is said to be the orthogonal projection matrix of the vector

space S if PSx = x̃ gives the projection of an arbitrary vector x ∈ Rp onto S.

Let S ⊂ Rp be a vector subspace with basis vectors in p×K matrix form S = [s1 · · · sK],

K ≤ p, whereby rank(S) = dim(S). To ease the exposition to follow, we will use a small

abuse of notation and refer to either PS (i.e., subscripted by the matrix S) or PS (i.e.,

subscripted by the subspace S spanned by the columns of S) as the projection matrix

for the subspace S. This will cause no confusion because a subspace S is completely

characterized both by its projection matrix PS = PS and by its basis. We will often

make use of the following basic properties of projection matrices, which can be found

in Schott (1995) or verified from Definition 2.6.

Properties of Projection matrices for a Euclidean Vector Space S ⊂ Rp:

P1. The matrix PS is uniquely defined (although basis vectors S may not be) and

may be written PS = PS = S(S>S)−1S>, where K = rank(S) for a matrix S

with columns that are basis vectors spanning S.

P2. For any x ∈ Rp, the projection PSx = x̃ of x onto S is unique.

P3. PS is symmetric and also idempotent, i.e. P>
S = PS and P 2

S = PS .

P4. dim(S) = rank(S) = tr(PS).

P5. If S̃ is a further subspace of S, namely S̃ ⊂ S ⊂ Rp, then the projection matrix

of the subspace S ∩ S̃⊥ = {x ∈ Rp : x ∈ S, ∀s ∈ S̃, x>s = 0} equals PS − P
eS .

P6. If x ∈ Rp and S ⊂ Rp, then ‖x‖2
2 = ‖PSx‖2

2 + ‖(Ip−PS)x‖2
2, where Ip denotes the

p× p identity matrix.

9



2 Preliminaries

2.2 Defining distances between subspaces of Rp

2.2.1 Metrics

Any attempt to formulate breakdown concepts for dimension reduction procedures, like

Sir, will require us to develop a distance measure, or a metric, defined on subspaces

of Rp. We next recall the properties of a metric, defined on a general set of objects X.

Definition 2.7 (Mathieu, 1998) Let X be a nonempty set. A nonnegative mapping

d : X ×X → Rp is called a metric on X, if the following properties hold

P1. ∀x, y ∈ X : d(x, y) = d(y, x).

P2. ∀x, y, z ∈ X : d(x, y) ≤ d(x, z) + d(z, y).

P3. ∀x, y ∈ X : d(x, y) = 0 ⇔ x = y.

Under P1.-P3., the combination (X, d) is called a metric space.

A set X coupled with a metric d determines a metric space (X, d). For every normed

space (X, ‖ · ‖) consisting of a set X and a norm ‖ · ‖, it is possible to define a metric

space in a natural way by the distance measure d(x, y) := ‖x− y‖, x, y ∈ X.

2.2.2 A metric induced by the Frobenius norm F

It is well known that an examination of the robustness of a statistical procedure re-

quires the definition of an appropriate metric on a parameter space (see Davies &

Gather (2002, 2005a)). The main aim of a Sir-type method is to estimate a (di-

mension reduction) subspace of Rp spanned by certain p-dimensional basis vectors

β1, . . . , βK. This subspace, span(β1, . . . , βK), may be considered as the parameter of

interest in a parameter space consisting of all possible subsets of Rp. Therefore, the

10
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study of the robustness properties of Sir requires a suitable metric to assess distances

between given Rp-subspaces. Using an appropriately defined metric, we can quantify

the amount of data contamination required to cause Sir to produce an erroneous and

worst-case estimate of span(β1, . . . , βK) (i.e., so-called breakdown). In the following,

we define a useful metric on subspaces of Rp based on the concept of orthogonal pro-

jection matrices, which are common in the statistical literature for formulating ideas of

subspaces and distances (e.g. Krzanowski (1979), Golub and Van Loan (1985), Crone

and Crosby (1995) or Ferré (1998)).

Al previously noted, a vector subspace S ⊂ Rp is completely characterized by its

unique p×p projection matrix, PS . That is, there is an injective mapping, or one-to-one

correspondence, from the set of Rp-subspaces to the set of p × p real-valued matrices

defined by S 7→ PS , with unique inverse PS 7→ S. This suggests that we can naturally

judge the distance between two spaces S and S̃ ⊂ Rp by appropriately quantifying the

distance between the corresponding matrices PS and P
eS . Such an approach allows us

a geometrically attractive and mathematically tractable way to compare and measure

distances between subspaces of Rp, which may be applicable even to Rp-subspaces of

different dimensions. In fact, the comparison of subspaces of different dimensions can

be especially useful and practical for a meaningful and logical concept of breakdown

of a dimension reduction procedure. The idea is that projection matrices allow a

comparison of the distance between Rp-subspaces of different “dimensions” through

matrices which are of the same size or “dimension” (namely p× p). This can be seen

easily in the following.

Suppose matrices S = [s1, . . . , sK], si ∈ Rp for i = 1, . . . ,K and S̃ = [s̃1, . . . , s̃K∗ ],

s̃i ∈ Rp for i = 1, . . . ,K∗ constitute an orthonormal basis for the (column) vector

subspaces S and S̃ of Rp, respectively. Hence, the subspaces S and S̃ are of dimensions

K and K∗ respectively, where K,K∗ ≤ p and it may hold that K 6= K∗. Even for the

K 6= K∗ case, the corresponding projection matrices PS = S(S>S)−1S> and P
eS =

S̃(S̃>S̃)−1S̃> will naturally be p × p matrices. To induce a suitable metric between

two vector spaces S and S̃ of Rp, we will use the following two-step approach based on

11
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p× p matrices:

1. compute the difference PS − P
eS

2. apply a matrix norm on PS − P
eS to measure the closeness of PS and P

eS .

The idea is that we obtain a distance measure between vectors spaces, that has all the

necessary properties of a metric, by using a metric on a special matrix PS − P
eS . For

quantifying vector space distances in terms of projection matrix differences, we contend

that a good choice of a matrix norm is the Frobenius norm defined below.

Definition 2.8 (Stewart & Sun, 1990) Let S ∈ Rm×n be an m × n matrix with

components indexed by sij, i = 1, . . . ,m; j = 1, . . . , n. The Frobenius norm of S is

defined as

‖S‖F =

√√√√ m∑
i=1

n∑
j=1

|sij|2 =
√

tr(SS>).

Stewart & Sun (1990, Chapter II, Section 2.1) describe basic properties of the norm

‖ · ‖F and we state some useful properties of ‖ · ‖F in the Appendix (see Lemma 7.4)

for later use and reference.

We now give a precise definition of a metric F between two vector spaces S and

S̃ ⊂ Rp based on the Frobenius norm.

Definition 2.9 (Frobenius norm-based metric definition on subspaces) Let

matrices S = [s1, . . . , sK], si ∈ Rp for i = 1, . . . ,K and S̃ = [s̃1, . . . , s̃K∗ ], s̃i ∈ Rp for

i = 1, . . . ,K∗ represent an orthonormal basis for the (column) vector subspaces S and

S̃, respectively. The distance between S and S̃ using the Frobenius norm ‖ · ‖F is then

defined by

F(S, S̃) = ‖PS − P
eS‖F =

[
tr
{
(PS − P

eS)(PS − P
eS)
>}] 1

2

= [tr(P 2
S − PSP eS − P

eSPS + P 2
eS)]

1
2

= [tr(PS) + tr(P
eS)− 2tr(PSP eS)]

1
2

= [rank(S) + rank(S̃)− 2tr(PSP eS)]
1
2 (2.2)

= [dim(S) + dim(S̃)− 2tr(PSP eS)]
1
2 .

12



2 Preliminaries

Because all si, i = 1, . . . ,K and s̃i, i = 1, . . . ,K∗ are orthonormal, the unique projection

matrices onto the vector spaces S and S̃ are given by PS = S(S>S)−1S> = SS> and

P
eS = S̃(S̃>S̃)−1S̃> = S̃S̃>, respectively.

In the above definition of F we use the property that the trace of a projection matrix

PS equals the rank or dimension of the subspace S. The metric F also inherently

incorporates the term tr(PSP
eS), which may be viewed as a measure of the closeness of

two subspaces S and S̃, a nonnegative numerical measure of what both subspaces have

in common. Lemma 7.3 shows that tr(PSP
eS) ≥ 0 and this trace equals zero only if the

Rp-subspaces S and S̃ are orthogonal, sharing only the zero vector 0p ∈ Rp in common.

As the size or dimension of the intersection S ∩ S̃ increases, so will the corresponding

trace tr(PSP
eS) term. Krzanowski (1979) used this same trace quantity for assessing the

closeness when studying the subset of principal components in multivariate analysis.

However, the trace tr(PSP
eS) does not constitute a metric by failing to satisfy a triangle

inequality. The form in (2.2) however ensures that F immediately defines a metric on

vector spaces; see Section 2.2.1. This fact is also illustrated in the following properties.

Metric Properties of F: For vector spaces S, S̃, T ⊂ Rp, it holds that

P1. F(S, S̃) ≥ 0 (nonnegativity).

P2. F(S, S̃) = 0 ⇐⇒ PS = P
eS ⇐⇒ S = S̃ (identifiability).

P3. F(S, S̃) = F(S̃,S) (symmetry).

P4. F(S, S̃) ≤ F(T ,S) + F(T , S̃) (triangle inequality).

The second property above also holds true up to an orthogonal transformation of the

vector space S or equivalently an orthogonal transformation of the basis vectors S (in

matrix form) of S; the invariance of the metric F to orthogonal transformations of

subspaces follows from the invariance of the Frobenius matrix norm ‖ · ‖F to orthog-

onal transformations of either the rows or columns of a matrix (see Lemma 7.4(d) in

13
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the Appendix for this matrix norm property). We shall further detail the invariance

property of F in Section 2.5.1.

Using the Frobenius matrix norm, Paige (1984) proposed a distance measure on

subspaces S, S̃ ⊂ Rp of the same dimension dim(S) = dim(S̃) = K given by a metric:

min
K×K orthonormal Q

‖S − S̃Q‖F = ‖(PS − P
eS)S‖F,

where the columns of the p × K matrices S, S̃ must constitute orthonormal bases of

S and S̃, respectively, and the minimum above is achieved at the K × K orthogonal

matrix Q = S̃>S yielding the equality above. We remark that Stewart & Sun (1990,

Chapter II, Section 4) consider this metric along with others on Rp-subspaces of the

same dimension which we will describe in Section 2.3.

For measuring distances between subspaces in hypothesis tests with principal-

component regression, Crone & Crosby (1995) also employed a metric similar to

F. Given the principal components associated with the K largest eigenvalues of

two different p × p sample covariance matrices and writing those K principal com-

ponents as the columns of two p × K matrices A and B of rank K, these au-

thors use
(
K − tr[A(A>A)−1A>B(B>B)−1B>]

)1/2
as the distance between the two

K-dimensional subspaces of Rp given by the column spaces of matrices A and B. Ap-

plying (2.2) to the column space of matrices A and B gives the above distance measure

of Crone & Crosby (1995), scaled by a factor of
√

2:

(
K − tr[A(A>A)−1A>B(B>B)−1B>]

) 1
2 =

F(col(A), col(B))√
2

.

Hence, (2.2) may be viewed as a generalization of the special subspace metric of Crone

& Crosby (1995) which allows us to accommodate general subspaces of Rp that may

not have the same fixed dimension.

14
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2.3 General distance measures

To further frame the choice of the subspace metric defined in (2.2), we shall briefly

explain some other general distance measures between vector spaces which have been

introduced in the literature. (We refer the interested reader to Stewart & Sun (1990)

and Meyer (2000) for more details.)

There are two possible approaches for developing subspace metrics: either through

gap functions between subspaces or through angles between subspaces. We will find

that our subspace metric F(·, ·) from (2.2) is related to so-called gap functions in

Section 2.3.1 and in fact all subspace metrics based on gap functions are equivalent

(i.e. they lead to the same topology on the set of all possible Rp-subspaces). In

Section 2.3.2, we argue that F(·, ·) is more appropriate and tractable than angles to

measure distances between subspaces.

2.3.1 Gap functions

The first approach to define an appropriate distance measure between two vector sub-

spaces as in our case is to begin with the definition of the distance between a point

and a subspace.

Definition 2.10 (Stewart & Sun, 1990) Let S denote a subspace of Rp and b a

point in Rp. By ν we denote an arbitrary vector norm on Rp. The ν-distance between

S and b with respect to the norm ν is then defined as

distν(b,S) = min
s∈S

ν(b− s). (2.3)

Considering the special case of the Euclidian vector norm (ν(·) = ‖ · ‖2) on Rp, the

above distance (2.3) can be expressed as

dist2(b,S) = min
s∈S

‖b− s‖2 = ‖b− PSb‖2 = ‖(I− PS)b‖2,
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which corresponds to the orthogonal distance between b and the subspace S or equiva-

lently the distance between b and its projection onto S [cf. Meyer (2000)]. We can then

extend the orthogonal distance (2.3) between a point b and a subspace S to formulate

the distance between two subspaces S and S̃ by the following computations

dist2(S, S̃) = max
s∈S

‖s‖2=1

dist2(s, S̃)

= max
s∈S

‖s‖2=1

‖(I− P
eS)s‖2

= max
s∈S

‖s‖2≤1

‖(I− P
eS)s‖2 (2.4)

= max
‖x‖2=1

x∈Rp

‖(I− P
eS)PSx‖2. (2.5)

Equation (2.4) can be justified because for a nonnegative function f : V → R defined

on a vector space V such that f(αx) = αf(x) for some scalar α ≥ 0

max
‖x‖2=1

f(x) = max
‖x‖2≤1

f(x)

holds; (2.5) follows because {s ∈ S : ‖s‖2 ≤ 1} = {PSx : x ∈ Rp, ‖x‖2 = 1}.

It should be noted that the orthogonal distance dist2(S, S̃) corresponds actually

to a directed distance from S to the subspace S̃, which may not necessarily equal the

orthogonal distance dist2(S̃,S) from S̃ to S (i.e. reversing the order S̃,S). Hence,

using the orthogonal distance dist2(·, ·) from (2.5) to quantify the maximal degree of

separation between two subspaces requires both directed distance values dist2(S, S̃)

and dist2(S̃,S) to be incorporated in a more complete distance measure, the so-called

gap [cf. Meyer (2000), p. 453]:

gap2(S, S̃) = max
{

dist2(S, S̃), dist2(S̃,S)
}

. (2.6)

Note that the gap measure (2.6) above grew out of orthogonal distance considerations

(2.4) between a point and a subspace based on the Euclidean vector norm (ν(·) = ‖·‖2)

on Rp. A more general definition for distances between subspaces S and S̃ ⊂ Rp, based

on the gap concept, can be formulated by beginning with an arbitrary vector norm ν

on Rp.
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Definition 2.11 (Stewart & Sun, 1990) Let S and S̃ denote two subspaces of Rp.

The gap between S and S̃ with respect to a vector norm ν on Rp is defined as

gapν(S, S̃) = max

max
s∈S

ν(s)=1

distν(s, S̃), max
es∈ eS

ν(es)=1

distν(s̃,S)

 (2.7)

with distν(·, ·) defined as in (2.3).

We recall that the subspace metric F from Definition 2.9 involved applying the Frobe-

nius matrix norm ‖ · ‖F to the difference of the projection matrices PS − P
eS . For

defining alternative metrics between Rp- subspaces S and S̃, we may note an interest-

ing connection between the gap function based on the Euclidean vector norm (2.6)

and another matrix norm applied to the difference in projection matrices PS −P
eS (but

not the Frobenius matrix norm). The spectral norm or matrix 2-norm defined on a

q × p real-valued matrix A is given as

‖A‖2 = max
x∈Rp,‖x‖2=1

‖Ax‖2 =

√
largest eigenvalue of A>A. (2.8)

It can be shown that the gap based on the Euclidean vector norm (2.6) can be re-

formulated in terms of the matrix 2-norm (2.8) applied to the difference of projection

matrices for two subspaces S and S̃ of Rp:

gap2(S, S̃) = ‖PS − P
eS‖2. (2.9)

In considering numerical methods for matrix computations, Golub and Van Loan (1985)

apply this same distance measure (2.9) on subspaces S, S̃ ⊂ Rp. The metric (2.9) on

subspaces resembles the metric F from Definition 2.9 by applying the spectral norm

(2.8), rather than the Frobenius norm, on the difference of projection matrices PS−P
eS .

We remark that the subspace metrics in (2.2), Definition 2.9 and (2.9) are special

cases of a more general framework given in Stewart and Sun (1990, Chapter II, The-

orem 4.7) for defining subspace metrics. Namely, with any matrix norm νm for p × p

matrices, the function

ρνm(S, S̃) ≡ νm(PS − P
eS) (2.10)
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yields a metric ρνm on subspaces of Rp [cf. Stewart & Sun (1990), Chapter II, The-

orem 4.7; though these authors consider only Rp-subspaces of the same dimension].

Possibilities for subspace metrics ρνm(S, S̃) in (2.10) could also involve a norm νm(A)

on p× p matrices A defined by

νm(A) = ‖A‖q = max
x∈Rp,‖x‖q=1

‖Ax‖q

based on a Hölder vector norm ‖·‖q for q ∈ N∪{∞}; note again that (2.8) is equivalent

to using ‖ · ‖2 in (2.10). However, all subspace metrics defined by gap functions (2.10),

including F, are in some sense equivalent because of the equivalence of matrix norms

[cf. Stewart and Sun (1990), Chapter II, Section 4]. In particular, if νm and ν̃m are

p × p matrix norms defined by ‖A‖F or ‖A‖q for any q ∈ N ∪ {∞}, then there exist

positive constants α, β > 0 such that

α

β
· ρνm(S, S̃) ≤ ρ

eνm(S, S̃) ≤ β

α
· ρνm(S, S̃)

for all subspaces S, S̃ ⊂ Rp. This follows because ανm(A) ≤ ν̃m(A) ≤ βνm(A) holds

for some constants α, β > 0 for choices of matrix norms νm, ν̃m from ‖ · ‖F or ‖ · ‖q,

q ∈ N∪{∞}. We refer to Lemma 7.4 for an example involving the matrix norms ‖ · ‖F

and ‖ · ‖2. Hence, subspace metrics ρνm based on a Hölder matrix norm νm = ‖ · ‖q,

q ∈ N ∪ {∞}, will generate the same topology as F in (2.2) on subspaces of Rp.

2.3.2 Angles

A common and perhaps more intuitive distance measure to gauge the separation be-

tween subspaces are angles. The major drawback from employing angles as appropriate

measures, however, is that they often do not constitute a metric between subspaces.

Furthermore, angles as distance measures for vector subspaces of Rp in higher dimen-

sions p are not as straightforward or appropriate as in lower dimensional spaces R2 or

R3, and certainly can be more difficult to visualize.

There are often several choices of angles between subspaces that are available to

quantify the distance between subspaces but the suitability of a subspace angle type
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may depend on whether the considered subspaces S and S̃ are of the same dimension

or whether the subspaces S and S̃ are complementary (i.e., S = S̃⊥, Rp = S ⊕ S̃ for

S, S̃ ⊂ Rp). We shall also see that the subspace metrics we have established so far,

like (2.2) and (2.9), incorporate angles automatically in their computation and thus

actually incorporate more angular information on subspaces than one might think at

first glance. These types of considerations are the topic of discussion in this section.

For Rp-subspaces S and S̃, a first type of angle to measure the separation of the

subspaces is the so-called minimal angle. The minimal angle θmin between subspaces

S and S̃ is defined as the value 0 ≤ θmin ≤ π/2 which satisfies

cos θmin = max
s∈S,es∈ eS

‖s‖2=‖es‖2=1

s>s̃. (2.11)

If PS and P
eS are the orthogonal projection matrices onto S and S̃, respectively, then

the minimal angle can be computed as cos θmin = ‖PSP eS‖2, applying the matrix 2-norm

from (2.8). From the definition of the minimal angle, it is clear that two Rp-subspaces

S and S̃ will satisfy cos θmin = 0 if the two spaces are complementary. However, it

always holds that cos θmin = 1 (the maximal value) whenever two Rp-subspaces S and

S̃ have a nontrivial intersection S ∩ S̃ 6= {0p} [cf. Meyer (2000), p. 452]. It is then

less obvious how to interpret cos θmin as a distance measure if the two subspaces S and

S̃ ⊂ Rp are non-complementary whenever p > 2. Hence, the application of this type

of angle can become rather limited.

While the cos θmin in (2.11) is defined as the minimal angle, sin θmax describes the

so-called maximal angle θmax between Rp subspaces S and S̃, which unlike the

minimal angle fulfills all properties of a metric. It turns out that the sine function of

the maximal angle is equal to the gap function defined in (2.6), which takes on values

between 0 and 1; that is, the maximal angle between two subspaces S and S̃ ⊂ Rp

corresponds to the number 0 ≤ θmax ≤ π/2 satisfying

sin θmax = gap2(S, S̃) = ‖PS − P
eS‖2. (2.12)

While the minimal angle can measure the degree of closeness between two nontrivial

complementary subspaces, the maximal angle is most suitable for subspaces of equal
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dimension. This is because of the following properties of sin θmax, given by Meyer (2000)

[p. 454]:

‖PS − P
eS‖2 = sin θmax =


1 if dim(S) 6= dim(S̃),

1 if dim(S) = dim(S̃),S ∩ S̃⊥ 6= 0p,

c < 1 if dim(S) = dim(S̃),S ∩ S̃⊥ = 0p.

Hence, (2.9) and (2.12) are equal to 1 (the maximal value) whenever two Rp-subspaces

S and S̃ have unequal dimension and this metric also equals 1 whenever S and S̃⊥

share a non-zero vector in common.

We find that neither minimal nor maximal angles are appropriate as a measure of

the amount of separation between two general subspaces. For example, if S and S̃

are Rp-subspaces of unequal dimension that have a nontrivial intersection, then the

minimal angle θmin = 0 and the maximal angle θmax = π/2, but neither number may

convey the desired information of the closeness of the two subspaces.

To formulate angle values as a comprise between the extremes θmin and θmax, the so-

called principal or canonical angles have been derived in the literature to assess

the distance between two subspaces. Canonical angles were also used for example by

Hilker (1997) to measure the distance between contaminated subspace estimates in the

study of Sir. For nonzero subspaces S and S̃ ⊂ Rp with m = min{dimS, dim S̃},

the principal angles between S = S1 and S̃ = S̃1 are recursively defined to be the

numbers 0 ≤ θi ≤ π/2 such that

cos θi = max
s∈Si,es∈ eSi

‖s‖2=‖es‖2=1

s>s̃ = s>i s̃i, i = 1, . . . ,m,

where ‖si‖2 = ‖s̃i‖2 = 1, Si = s⊥i−1∩Si−1, S̃i = s̃⊥i−1∩S̃i−1 with S1 = S, S̃1 = S̃. It then

holds that θmin = θ1 ≤ · · · ≤ θm ≤ θmax with θm = θmax in the case of dimS = dim S̃

[cf. Meyer (2000), p. 456]. Hence, the principal angles may be viewed as intermediate

angles between θmin and θmax. The limitation of the principal angles as a measure

of closeness between subspaces in the context of this paper becomes obvious because

principal angles do not constitute a metric. Although they allow for a comparison of
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subspaces of different dimensions, the number of principal angles that can be computed

is at most m = min{dimS, dim S̃}, which is limited by the size or dimension of the

smallest subspace in the comparison of two subspaces S and S̃.

To facilitate mathematical computation and geometrical interpretation, we prefer

to use the metric F over (2.9) or other gap functions (2.10). This choice of a distance

measure F also has desirable invariance properties with respect to orthogonal trans-

formations; see Section 2.5.1. By using F, we also avoid the complicated geometrical

framework given by James (1954), who developed an approach for describing distribu-

tions of k-dimensional subspaces of Rp based on manifolds and differential geometry.

An appealing feature of the metric F is that the metric, in some sense, agrees with

our geometrical intuition of the closeness between subspaces, while still constituting a

metric. We next illustrate this quality with some numerical examples.

2.4 Numerical examples of F

We begin this section with a numerical example. For the purpose of illustration we

consider a simple example.

Example 2.1 Let V = R8 denote a vector space spanned by unit vectors ei, i = 1, . . . , 8

with ei containing the entry 1 in the ith position and 0 everywhere else. Hence, ‖ei‖ = 1

and e>i ej = 0 for i 6= j. Furthermore, we denote by S a subspace of R8, which for

simplicity is spanned by five of the basis vectors, namely e1, . . . , e5 (K = 5). Suppose

that a second subspace S̃ is spanned by some sub-collection of the vectors e1, . . . , e8.

(With regard to our application in Sir (see Chapter 3), S and S̃ could represent the

true and the estimated dimension reduction spaces, respectively.) We indicate by ol

the number of overlapping directions between S and S̃ or the numbers of vectors

among {e1, . . . , e8} that are common to both S and S̃. We use nol to denote the

number of nonoverlapping directions between S and S̃ or the number of vectors
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dim(S) dim( eS) ol directions nol directions F(S, eS)

5 8 5 3
√

3

5 7 5 2
√

2

5 7 4 3
√

4

5 6 5 1
√

1

5 6 4 2
√

3

5 6 3 3
√

5

5 5 5 0
√

0

5 5 4 1
√

2

5 5 3 2
√

4

5 5 2 3
√

6

5 4 4 0
√

1

5 4 3 1
√

3

5 4 2 2
√

5

5 4 1 3
√

7

5 3 3 0
√

2

5 3 2 1
√

4

5 3 1 2
√

6

5 3 0 3
√

8

5 2 2 0
√

3

5 2 1 1
√

5

5 2 0 2
√

7

5 1 1 0
√

4

5 1 0 1
√

6

Table 1: Computations of Frobenius norm based metric

between subspaces of R8

among {e1, . . . , e8} that are in the span of S̃ but not in the span of S. In the first

two columns of Table 1 the dimensions for S and S̃ are listed. Applying the metric

introduced in Definition 2.9, the distances in Table 1 between S and S̃ are obtained.

Obviously, the metric becomes only zero, when S and S̃ are spanned by the same set

of vectors, while it takes on its maximal distance
√

8, when S and S̃ are completely

orthogonal to each other.

Example 2.2 (subspaces spanned by lines in Rp, i.e., of dimension 1)

It is helpful to consider some simple cases to illustrate that the vector space met-

ric F agrees with geometric intuition in a sense. For example, suppose two vector

spaces S and S̃ ⊂ Rp correspond to two lines spanned by normalized vectors s1 and

22



2 Preliminaries

s̃1, respectively (i.e., ‖s1‖ = ‖s̃1‖ = 1). In this special case, the cosine of the an-

gle θ = cos−1(s>1 s̃1) between the vectors s1 and s̃1, namely s>1 s̃1, embodies a com-

mon and intuitively appealing measure of the closeness of the lines S = span(s1) and

S̃ = span(s̃1), corresponding to the minimal angle defined in (2.11). Applying the

metric F to these 1-dimensional spaces, we find here that

F(S, S̃) =
√

2 ·
[
1− cos2(θ)

]1/2
=
√

2 · [1− (s>1 s̃1)
2]1/2 =

√
2 · sin θ.

That is, the metric F incorporates the same natural measure of distance between two

lines in terms of the cosine of the canonical angle cos(θ) = s>1 s̃1 formed by the lines.

When cos(θ) = 1, we have that the lines S and S̃ are the same and the metric F(S, S̃) =

0 reflects this aspect as well by assuming a value of zero; at the other extreme, when

the lines are orthogonal s>1 s̃1 = 0, the spaces S and S̃ are further apart and the metric

F(S, S̃) =
√

2 reflects this difference in distance as well.

In this case with two subspaces spanned by normalized vectors s1 and s̃1 ∈ Rp, it is

interesting to contrast the computation of F with the evaluation of the matrix-2 norm

based metric using its definition in (2.9). If p = 2, we can explicitly determine (2.9)

as the square root of the largest root of the characteristic polynomial det(A−λIp), with

A = (s1s
>
1 − s̃1s̃

>
1 )2 and p× p identity matrix Ip, given by

λ2 − λtr(A) + det(A) = 0 (if p = 2).

In the case of p = 2, it can be verified through direct computation that det(A) =

(tr(A)/2)2, so that the above characteristic polynomial is

0 = λ2 − λtr(A) + det(A)

= (λ− tr(A)

2
)2,

which has a single root at

λ =
tr(A)

2
≥ 0.
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The square root of this λ- value is the value of the metric (2.9):

sin θmax = gap2(S, S̃)

=

√
tr(A)

2

=
√

1− cos2(θ)

=
F(S, S̃)√

2
.

That is, we find that the distance between S = span(s1) and S̃ = span(s̃1) by the

spectral metric (2.9) equals F(S, S̃)/
√

2 and cos−1(s>1 s̃1) = θ = θmax. Even for this

simple case, we see the computation of the distance (2.9) using the definition is much

more involved and here embodies the same information as F in terms of the canonical

angle cos−1(s>1 s̃1) between S and S̃.

2.5 Further properties of the metric F

2.5.1 Invariance

A first desirable property of the subspace metric F is its invariance to orthogonal

transformations of a subspace S ⊂ Rp. Because a dimension reduction procedure like

Sir attempts to estimate the dimension reduction space span(β1, . . . , βK) ⊂ Rp only

up to an orthogonal transformation of the vectors βi, this invariance of the subspace

metric F is particularly important. To demonstrate invariance for transformation of the

columns (or rows) of a matrix, define matrices S = [s1, . . . , sK], si ∈ Rp for i = 1, . . . ,K

and S̃ = [s̃1, . . . , s̃K∗ ], s̃i ∈ Rp for i = 1, . . . ,K∗ as orthonormal bases for the (column)

subspaces S and S̃, respectively, and let QK and QK∗ denote K × K and K∗ × K∗

orthogonal matrices, respectively. Write SQK and S̃QK∗ ⊂ Rp to denote the subspaces

spanned by the columns SQK and S̃QK∗ . Then, it is straightforward to verify the

invariance of F to orthogonal transformations of subspace basis vectors:

F(S,SQK) = 0, F(S, S̃) = F(SQK, S̃QK∗).
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That is, the Rp-subspaces S and SQK (or SQK and S̃QK∗) are the same (unaffected

by the orthogonal transformation of the columns of the matrix S) which the metric

F(·, ·) captures by declaring the distance between S and SQK to be zero.

The above equalities follow directly from the preservation of projection matrices under

orthogonal matrix transformations:

PSQK = SQK(Q>
KS>SQK)−1Q>

KS> = SQK[Q>
K(S>S)−1QK]Q>

KS>

= S(S>S)−1S> = PS .

If Q is a p × p orthogonal matrix and QS, QS̃ denote the column spaces spanned by

QS and QS̃, it also holds that F(S, S̃) = F(QS,QS̃) for invariance to transformations

of the row space.

It is important that any metric between subspaces recognizes that orthogonal trans-

formations do not affect the subspace so that this invariance which the metric F(·, ·)

possesses is really a minimal condition to require of a subspace metric.

2.5.2 Upper bounds

To explain some further properties of the vector space metric F, we first give an upper

bound to the metric.

Lemma 2.1 Let S, S̃ be two vector subspaces of Rp. The Frobenius norm-based metric

F(S, S̃) = [dim(S) + dim(S̃)− 2tr(PSP eS)]
1
2 is bounded from above by

F(S, S̃) ≤ √
p.

Proof. Applying (2.2) and Lemma 7.3, we find that

F(S, S̃) ≤ [dim(S) + dim(S̃)]
1
2 . (2.13)

We now consider two cases to establish Lemma 2.1:
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Case 1: dim(S) + dim(S̃) ≤ p,

Case 2: dim(S) + dim(S̃) > p.

Case 1: In the first case, Lemma 2.1 follows easily from (2.13).

Case 2: To handle the second case, note that F(S, S̃) = F(S⊥, S̃⊥), which follows

from the fact that PS + PS⊥ = Ip = P
eS + P

eS⊥ , where Ip denotes the identity matrix of

rank p. Taking traces of the two matrix sums, we find

2p = tr(PS) + tr(PS⊥) + tr(P
eS) + tr(P

eS⊥)

= dim(S) + dim(S⊥) + dim(S̃) + dim(S̃⊥).

Consequently, if dim(S)+dim(S̃) > p, it must be the case that dim(S⊥)+dim(S̃⊥) < p.

Then, Lemma 2.1 follows easily from F(S, S̃) = F(S⊥, S̃⊥) = [dim(S⊥) + dim(S̃⊥) −

2tr(PS⊥P
eS⊥)]

1
2 ≤ √

p and Lemma 7.3. 2

We can show that the metric F agrees with the intuition that two vector subspaces

S, S̃ in Rp should be maximally distant if one space is the orthogonal complement of

the other in Rp (see also Example 2.1, Section 2.4). The following result establishes

this property of F.

Theorem 2.1 Let S, S̃ be two vector subspaces of Rp. The Frobenius norm-based

metric F(S, S̃) will take on its maximum value F(S, S̃) =
√

p if and only if S̃ = S⊥.

Proof. In the following, we suppose spaces S and S̃ ⊂ Rp are each spanned by an

orthonormal basis S = [s1, . . . , sK] and S̃ = [s̃1, . . . , s̃K∗ ], respectively, where K,K∗ ≤ p.

Write PS , P
eS and PS⊥ to denote the corresponding projection matrices onto S, S̃ and

S⊥, respectively.

If S̃ = S⊥, it follows that P
eS = Ip−PS = PS⊥ and PSP eS = 0 and dim(S)+dim(S̃) =

p. Applying these facts in (2.2), we find F(S, S̃) =
√

p, which is the maximal distance

between the vector subspaces S and S̃ by Lemma 2.1.
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We now suppose F(S, S̃) =
√

p and show that S̃ = S⊥. We can first argue that

dim(S) + dim(S̃) = p holds. That is, if dim(S) + dim(S̃) < p, it would follow that

F(S, S̃) <
√

p by (2.2) and Lemma 7.3, which is a contradiction. Likewise, if dim(S)+

dim(S̃) > p, we would again have a contradiction by F(S, S̃) = F(S⊥, S̃⊥) <
√

p by

(2.2) and Lemma 7.3.

Consequently, we proceed assuming that F(S, S̃) =
√

p and dim(S) + dim(S̃) = p,

from which it follows that tr(PSP eS) = 0 by (2.2). Writing A = S>S̃ = L∆M> using

the singular value decomposition from Lemma 7.2, we can express

0 = tr(PSP eS) = tr(AA>) =
K′∑
i=1

δ2
i ,

where K′ represents the rank of AA> and δ2
1, . . . , δ

2
K′ are the nonnegative eigenvalues of

AA>. Consequently, each δi = 0 for i = 1, . . . ,K′, which implies that the K×K∗ matrix

∆ = 0K×K∗ has only zero entries and also that S>S̃ = A = 0K×K∗ . Then it follows that

the spaces S and S̃ are orthogonal. By this orthogonality and dim(S) + dim(S̃) = p,

we have S̃ = S⊥. 2

In some of the robustness studies to follow, it is also useful to know the maximal

possible distance between two vector spaces S, S̃ ⊂ Rp w.r.t. the metric F, conditioned

on the additional information (restriction) that these spaces have the same size or

dimension. We give a modification of Lemma 2.1 to frame the largest value of F(S, S̃)

in this case.

Lemma 2.2 Suppose S and S̃ ⊂ Rp are subspaces both of dimension K ≤ p. Then the

intersection of S and S̃ is at least of dimension max{0, 2K−p}. That is, dim(S∩S̃) ≥

max{0, 2K − p}.

Proof. Define a vector subspace U = {s + s̃ : s ∈ S, s̃ ∈ S̃} = S ⊕ S̃ ⊂ Rp. By

Theorem 4.4.19 of Meyer, (2000), it holds that

dim(S ∩ S̃) = dim(S) + dim(S̃)− dim(U) = 2K − dim(U) ≥ 2K − p,

using dim(U) ≤ p. The claim now follows. 2
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Theorem 2.2 Suppose two vector spaces S and S̃ ⊂ Rp are each spanned by an or-

thonormal basis S = [s1, . . . , sK] and S̃ = [s̃1, . . . , s̃K], K ≤ p, so that dim(S) =

dim(S̃) = K. Then, the metric based on the Frobenius norm is bounded by

F(S, S̃) ≤
√

2
(
K −max{0, 2K − p}

)
.

When 2K ≤ p, then F(S, S̃) =
√

2K if and only if the subspaces S and S̃ are orthogonal;

when 2K > p, then F(S, S̃) =
√

2
(
K − {2K − p}

)
if and only if the subspaces S ∩ (S ∩

S̃)⊥ and S̃ ∩ (S ∩ S̃)⊥ are orthogonal.

Proof. To establish the claim we need to consider two cases: 2K ≤ p and 2K > p.

Case 1. Consider 2K ≤ p. Since tr(PSP eS) ≥ 0 by Lemma 7.3 and K = tr(PS) =

tr(P
eS), it follows that

F(S, S̃) =
[
dim(S) + dim(S̃)− 2tr(PSP eS)

] 1
2 ≤

√
2K,

by the definition of F in (2.2). It also follows easily that F(S, S̃) =
√

2K if and only if

tr(PSP eS) = 0, which is equivalent to the subspaces S and S̃ being orthogonal to each

other by Lemma 7.3.

Case 2. Assume here 2K > p. Let d = dim(S ∩ S̃) and define a p × d matrix A

with orthonormal columns that are basis vectors for the intersection subspace S ∩ S̃.

If PA denotes the projection matrix for S ∩ S̃, then it follows from Definition 2.6 that

PS − PA and P
eS − PA are the projection matrices for the subspaces S ∩ (S ∩ S̃)⊥ and

S̃ ∩(S∩S̃)⊥, respectively (i.e, after removing vectors common to both S and S̃). Then,

F(S, S̃) =
[
dim(S) + dim(S̃)− 2tr(PSP eS)

] 1
2

=
[
2K − 2tr

(
[PS − PA + PA][P

eS − PA + PA]
)] 1

2

=
[
2K − 2tr

(
[PS − PA][P

eS − PA] + PA

)] 1
2

=
[
2K − 2d− 2tr

(
[PS − PA][P

eS − PA]
)] 1

2 , (2.14)

using above that PSPA = PA = P
eSPA, since S ∩ S̃ is a subset of both S and S̃, and

PA is idempotent with d = rank(A) = tr(PA). Because tr
(
[PS − PA][P

eS − PA]
)
≥ 0 by
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Lemma 7.3 (namely, PS−PA and P
eS−PA are the projection matrices) and d ≥ 2K−p

by Lemma 2.2, we now find in (2.14) that

F(S, S̃) ≤
√

2
(
K − {2K − p}

)
.

It also stands from (2.14) that F(S, S̃) =
√

2
(
K − {2K − p}

)
if and only if tr

(
[PS −

PA][P
eS − PA]

)
= 0 (and d = 2K − p), which is equivalent to the orthogonality of the

subspaces S ∩ (S ∩ S̃)⊥ and S̃ ∩ (S ∩ S̃)⊥ by Lemma 7.3. 2

Remark. The distinction between the result above and the one in Lemma 2.1 is that,

if 2K > p, then the vector spaces S and S̃ ⊂ Rp must have a nonempty intersection,

namely I = S ∩ S̃ 6= ∅. In this case, it is clear that S and S̃ cannot be completely

orthogonal. However, the proof shows that, when 2K > p, the spaces S and S̃ are most

distant w.r.t. the F metric when spaces S ∩I⊥ and S̃ ∩I⊥ (after removing any vectors

contained in both S and S̃) are orthogonal. In a sense, this agrees with geometric

intuition. On the other hand, if 2K ≤ p, we find that S and S̃ are most distant w.r.t.

the F metric, namely F(S, S̃) =
√

2K, when these spaces are orthogonal (but S ∪ S̃

may not necessarily span all of Rp).
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Chapter 3

Sliced Inverse Regression – A

Review

Consider the task of estimating a nonparametric regression function g based on ob-

served data points (xi, yi), i = 1, . . . , n of a random vector (X, Y ) ∈ Rp × R, where Y

denotes the response variable and X = (X1, . . . , Xp)
> is a vector of regressor variables.

That is, we wish to understand an underlying model

Y = g(X, ε) (3.1)

that explains the response Y in terms of the regressors X up to an error term ε which

is independent of X. A common difficulty that can arise is the so-called curse of

dimensionality introduced by Bellman (1961) (see also Friedman (1991), Gather &

Becker (2001)) which describes the dilemma that the volume of a p-dimensional space

grows exponentially as a function of the dimension p. As an immediate consequence, it

becomes more difficult to accurately estimate a function g(·) because more data (xi, yi)

is needed in order to fill the space Rp × R densely enough to fit the function g.

Fortunately, it often turns out that an appropriate subspace of the original regressor

space Rp is sufficient for an adequate fit of g. Such a subspace can be obtained by
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identifying important linear combinations of the regressor variables, B>X, using a p×K

matrix of linearly independent column vectors B = [β1, . . . , βK] for some K < p, such

that the dimension of the essential regressor space is reduced from p to K. Li (1991)

introduced a procedure for identifying such important linear combinations, i.e. the

vectors B, called Sliced Inverse Regression (Sir). The theoretical properties of

the procedure have been originally developed by Li and Duan (1987) and Duan and

Li (1991). Once the linear combinations of the regressors, B>X, are identified, these

can be used to fit a regression model to predict the response variable Y .

The underlying idea of Sir is to model p one-dimensional regression problems in-

stead of one p-dimensional regression problem and thus avoiding the curse of dimen-

sionality. This is done by considering the inverse regression curve E(X|Y ) rather than

the usual curve E(Y |X) considered in multiple regression. Under some model assump-

tions, important linear combinations of the regressor variables B>X correspond to

those which are needed to linearly span and completely explain the inverse regression

curve E(X|Y ) in the Rp space.

In contrast to other dimension reduction procedures, Sir is not able to identify the

directions β1, . . . , βK itself, which are also not unique, but the Rp-subspace spanned

by the directions B = span(β1, . . . , βK). This subspace is unique and B is called ef-

fective dimension reduction subspace and vectors β1, . . . , βK are referred to as

effective dimension reduction vectors or directions (henceforth denoted as

the e.d.r. subspace and e.d.r. directions, respectively). The identification of the e.d.r.

subspace with Sir is possible via a principal component analysis of a particular covari-

ance matrix V = Cov[E(Z|Y )] involving the conditional expectation E(Z|Y ), where

Z = Σ−1/2(X−E(X)) denotes the standardized regressor vector with Σ = Cov(X). By

conducting a spectral decomposition of V (principal component analysis), directions

with high variability in the random vector E(X|Y ) can be recognized as the eigen-

vectors of V corresponding to the largest eigenvalues of V . These eigenvectors of V

can be used to provide meaningful linear combinations B = [β1, . . . , βK] of the regres-

sor variables X. The eigenvectors of V , corresponding to the largest K eigenvalues,
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correspond to the standardized e.d.r. directions, which we will denote by η1, . . . , ηK.

Undoing the standardization will then yield the actual e.d.r. directions β1, . . . , βK,

whereby βi = Σ−1/2ηi for i = 1, . . . ,K.

In the following section, we will explain the Sir procedure in more detail. Later

sections of the dissertation will focus on the robustness properties of Sir against data

contamination. It should be noted that, since the development of Sir by Li (1991),

other dimension reduction procedures have been proposed for identifying important

linear combinations B = [β1, . . . , βK] of the regressor variables X, or more precisely

the space B ⊂ Rp spanned by B. These include, for example, Save (Cook, 2000) or

Mave (Xia et al.). However, we shall give here a detailed study of the robustness of

Sir.

3.1 Description of the model

To ease the discussion, we give a precise definition of a spectral decomposition of a

symmetric matrix such as required in Sir to identify the eigenvalues and eigenvectors

of the matrix V .

Definition 3.1 (A normalized spectral decomposition) A symmetric p× p real-

valued matrix A may be uniquely written as

A =

p∑
i=1

λiηiη
>
i , λi ∈ R, ηi ∈ Rp, η>i ηj =

 1 if i = j,

0 otherwise.

Unless stated otherwise, we will adopt the convention that ηi, i = 1, . . . , p will be referred

to as the normalized eigenvectors of A; λi, i = 1, . . . , p are said to be the corresponding

eigenvalues of A.

The above definition is a version of the spectral decomposition theorem (cf. Schott,

1995, Theorem 4.2). Of course, when a symmetric matrix A is nonnegative definite, it

holds that each eigenvalue λi ≥ 0 is nonnegative in the above spectral decomposition.
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Before continuing to state the Sir procedure we proceed with reviewing necessary

assumptions for Sir. We begin with the statistical model that is assumed to describe

the relationship between the response variable Y and the p regressor variables X =

(X1, . . . , Xp)
>.

Model 3.1 Assume a nonlinear regression function f : RK+1 → R of form

Y = f(β>1 X, . . . , β>KX, ε) = f(B>X, ε) (3.2)

describing the functional relationship between the response variable Y ∈ R and p re-

gressor variables X = (X1, . . . , Xp)
> ∈ Rp. The following assumptions hold for the

above model:

- µ = E(X) denotes the expected value of X and Σ = Cov(X) the corresponding

covariance matrix. We assume that Σ is positive definite.

- ε ∈ R denotes an error term, independent of the regressor variables X.

- β1, . . . , βK ∈ Rp are the (linearly independent) e.d.r. directions spanning the

e.d.r. subspace B = span(β1, . . . , βK).

We shall note that the functions g in (3.1) and f in Model 3.1 describing the relation-

ship between X and Y and B>X and Y , respectively, will typically not be identical.

Furthermore, Sir does not attempt to fit the regression model f , it solely estimates

the e.d.r. subspace B. Once an estimate for B is obtained the model fit is attempted

in a separate step.

As we have already pointed out Sir is based on the inverse regression curve E(X|Y )

instead of E(Y |X). Li (1991) showed that under certain conditions, which we will state

below, the standardized inverse regression curve Σ−1/2(E(X|Y )−E(X)) falls in the lin-

ear subspace spanned by the directions Σ1/2β1, . . . , Σ
1/2βK. The reason for this can be

found in the property that the expected value of an arbitrary linear combination of the

regressor variables X conditioned on β>1 X, . . . , β>KX is again linear in the conditional

vectors, which Li formalized in the following condition.
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Condition 3.1 (Li, 1991) For any b ∈ Rp, the conditional expectation

E(b>X|β>1 X, . . . , β>KX) is linear in β>1 X, . . . , β>KX; that is, for some constants

c0, c1, . . . , cK, we have

E(b>X|β>1 X, . . . , β>KX) = c0 + c1β
>
1 X + . . . + cKβ>KX.

It can be shown that Condition 3.1 is fulfilled if in the assumed Model 3.1, the random

vector X ∈ Rp is characterized by a non-degenerate elliptically symmetric distribution;

see e.g. Li (1991), Duan and Li (1991) or Hilker (1997). For more detailed discussions

on this assumption we refer to Diaconis and Freedman (1984), Eaton (1986) or Cook

and Weisberg (1991), Hall and Li (1993) or Kötter (2000).

Condition 3.1 ensures that the centered inverse regression curve E(X|Y ) − E(X)

lies in the linear subspace spanned by Σβi, i = 1 . . . ,K, stated in the next theorem and

proved by Li (1991).

Theorem 3.1 (Li, 1991) For the assumed Model 3.1 under Condition 3.1, the cen-

tered inverse regression curve E(X|Y ) − E(X) is contained in the linear subspace

spanned by Σβi, i = 1 . . . ,K, where Σ = Cov(X).

This property also holds true if the centered inverse regression curve E(X|Y )−E(X) is

standardized, which can be explained as follows. It can be shown that, under Model 3.1

and Condition 3.1, the p × p covariance matrix V = Cov[Σ−1/2E(X|Y )] admits the

following spectral decomposition

V = Cov[Σ−1/2E(X|Y )] =
K∑

i=1

λiηiη
>
i (3.3)

with eigenvalues 0 < λK ≤ · · · ≤ λ1 and corresponding K orthonormal eigenvectors

{ηi}Ki=1; see Li (1991) and Duan and Li (1991). The eigenvectors η1, . . . , ηK, correspond-

ing to the positive eigenvalues of V , are again referred to as the standardized e.d.r. di-

rections. Li (1991) shows that the standardized regression curve Σ−1/2(E(X|Y )−E(X))

is spanned by η1, . . . , ηK, as summarized in the next result.
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Corollary 3.1 (Li, 1991) Assume that Z = Σ−1/2(X−E(X)) has been standardized.

Then under the Model 3.1 and Condition 3.1, the standardized inverse regression curve

E(Z|Y ) is contained in the linear space generated by the standardized e.d.r. directions

η1, . . . , ηK.

It follows from Theorem 3.1 and Corollary 3.1 that the actual e.d.r. directions are then

βi = Σ−1/2ηi, i = 1, . . . ,K, using the normalized eigenvectors (3.3) of V .

As an alternative to the covariance matrix V = Cov[Σ−1/2E(X|Y )], Li (1991) sug-

gests a covariance matrix approximation based on slicing. The range of the response

variable is divided into H consecutive and disjoint intervals (slices), denoted by Ii,

i = 1, . . . , H. The slices yield sliced proportions pi = P(Y ∈ I) and sliced means

µi = E(X|Y ∈ Ii) ∈ Rp, i = 1, . . . , H, where
∑H

i=1 piµi = µ = E(X). Then, the

covariance matrix V = Cov[Σ−1/2E(X|Y )] is replaced with a step-wise approximation

V = Σ−1/2

H∑
i=1

pi(µi − µ)(µi − µ)>Σ−1/2

using the same notation V as a small notational abuse. The idea is that this alternative

covariance matrix formulation V is often easier to estimate with data.

3.2 Sir with known subspace dimension K

We have now set all the necessary groundwork to give an explicit description of the

Sir procedure consisting of the following six steps. Assume we have observed data

points (X, Y )n = ((x1, y1), . . . , (xn, yn)) with xi ∈ Rp and yi ∈ R for i = 1, . . . , n and

the dimension of the e.d.r. subspace K is known.

1. Standardization of x1, . . . , xn yielding observations

zi = Σ̂−1/2(xi − x), i = 1, . . . , n,

where x denotes the arithmetic mean and Σ̂ = 1
n

n∑
i=1

(xi − x)(xi − x)> the sample

covariance matrix.
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2. Order observations of the response variable from smallest to largest y(1), . . . , y(n)

and place the corresponding z1, . . . , zn into H slices Ih with nh, h = 1, . . . , H,

denoting the number of observations within each slice; namely,

y(1), . . . , y(n1) ∈ I1; y(n1+1), . . . , y(n1+n2) ∈ I2; · · · y(n1+···+nH−1+1), . . . , y(n) ∈ IH .

3. Computation of the sliced means

m̂h =
1

nh

∑
i : yi∈Ih

zi, h = 1, . . . , H.

4. Computation of the covariance matrix of the sliced means

V̂ =
1

n

H∑
h=1

nhm̂hm̂
>
h =

H∑
h=1

p̂hm̂hm̂
>
h ,

where p̂h denotes the slice sample proportion. Conduct a (weighted) principal

component analysis yielding ordered eigenvalues λ̂1 ≥ · · · ≥ λ̂p with correspond-

ing eigenvectors η̂1, . . . , η̂p.

5. The eigenvectors corresponding to the K largest eigenvalues of V̂ are used to

estimate K e.d.r. directions

β̂i = Σ̂−1/2η̂i, i = 1, . . . ,K.

6. The estimate of the e.d.r. subspace is

B̂ = span(β̂1, . . . , β̂K).

With B̂ = span(β̂1, . . . , β̂K) in hand, one can attempt to fit a model for f .

Modification for Sir with known covariance structure of X

We also note that there is a possible modification to the above steps in the Sir pro-

cedure, depending on what information is available. In particular, if the covariance

structure of the regressor variable X is known and E(X) = µ ∈ Rp, Cov(X) = Σ are

available, then replace x with µ and Σ̂ with Σ in Steps 1 and 5 above.
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3.3 Sir with unknown subspace dimension K

In most practical applications of Sir, the dimension K of the dimension reduction

subspace is unknown and must be estimated from the data (X,Y )n = {(xi, yi)}n
i=1.

That is, the data must be used to first find an estimate K̂ of K and then obtain an

estimated e.d.r. subspace B̂
bK ⊂ Rp spanned by the first K̂ e.d.r. directions, namely

B̂
bK = span(β̂1, . . . , β̂bK).

Assuming that the regressor variables X ∈ Rp follow a multivariate normal distri-

bution (X ∼ N (µ, Σ)), Li (1991) suggests the following procedure for estimating K.

This method involves performing consecutive hypothesis tests based on the ordered

eigenvalues λ̂1 ≥ · · · ≥ λ̂p from the Sir procedure, where the covariance structure µ, Σ

of X maybe known or unknown. For 0 < α < 1, let χ2
ν,α denote the upper α quantile

of a chi-square distribution χ2
ν with ν degrees of freedom; that is P(χ2

ν ≥ χ2
ν,α) = α.

Li (1991)’s procedure for estimating K:

1. Pick a level of significance α and set j = 0.

2. Using the test statistic tj = n
∑p

i=j+1 λ̂i, test the hypotheses Hj
0 : K = j versus

Hj
1 : K > j by rejecting Hj

0 if tj > χ2
(p−j)(H−j−1),α.

3. If Hj
0 is rejected, set j = j + 1 and repeat Step 2; otherwise set K̂ = j.

Hence, the estimated dimension K̂ of the e.d.r. subspace is determined by the eigen-

values that are significantly large. The estimate K̂ of K must be substituted in Steps

5 and 6 of the Sir procedure in Section 3.2. Alternative methods for estimating K in

Sir have been proposed by Ferré (1998), Schott (1994), or Velilla (1998), for example.

Schott proposes a test procedure that relaxes Li’s assumption of a normally distributed

regressor vector X to X following an elliptically symmetric distribution. But all meth-

ods for estimating K involve considerations of the eigenvalues λ̂1 ≥ · · · ≥ λ̂p of V̂ from

Step 4 in the Sir procedure. More detailed information on these and further methods
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can be found in Holland-Letz (2001) who carried out a comparative study assessing

their performance with respect to the correct determination of K.

As the fit of a model for f heavily relies on the subspace estimate B̂, the robustness

of the Sir procedure is of crucial interest. In particular it appears decisive to assess

the influence of one or more observations (xi, yi), i = 1, . . . , n on the estimate B̂ of the

e.d.r. subspace. We will approach this task in the next chapter.
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Chapter 4

A Sensitivity Analysis of Sliced

Inverse Regression

Throughout this chapter we wish to investigate the sensitivity (robustness) of the Sir

procedure with respect to contamination of the data. We suppose that Sir produces an

estimate B̂ of the e.d.r. subspace B ⊂ Rp based on a sample (X, Y )n = {(xi, yi)}n
i=1 ⊂

Rp × R of size n. We then wish study the robustness of Sir when one or more ob-

servations in (X,Y )n are replaced with maliciously contaminated values, producing a

contaminated subspace estimate B̂∗. In order to assess this influence of contamination,

we quantify the discrepancy of B̂ and B̂∗ based on a suitable metric. Consequently, the

case we are treating here is the finite sample case.

We begin with a review of previous work in this area in Section 4.1.1, which can

mainly be attributed to Hilker (1997), Becker (2001) and Gather et al. (2002). A

discussion clarifying what we regard as complete failure of the Sir procedure shall

then be considered. We will then continue with a summary of the most important

and interesting results and discuss them in more detail with supporting proofs and

arguments throughout the rest of Chapter 4.
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4.1 Breakdown of Sir

Sir pursuits a dimension reduction of a p-dimensional regressor space by producing

a K-dimensional (K < p) subspace estimate B̂ without any loss of information re-

garding the functional relationship of the response variable Y with the p regressors

X = (X1, . . . , Xp)
>. Hence, the parameter of interest with Sir (and other dimension

reduction procedures like Save (cf. Cook, 2000)) is a subspace of Rp. In the following

we will define any failure of Sir with respect to the final subspace estimate and not with

respect to any of the individual estimators and respective estimates that are integrated

into the steps of the Sir procedure, as done in a first approach by Hilker (1997).

4.1.1 Review of previous breakdown definitions

Hilker (1997) was the first to approach the problem of defining a finite sample break-

down point for Sliced Inverse Regression. He established a definition which is

based on the idea of considering the breakdown behavior of all individual functionals

the Sir procedure consists of. As seen in Chapter 3, there are four different functionals

involved when estimating the e.d.r. subspace B: two location functionals, say T1 and

T2, as well as two scatter functionals, say C1 and C2. Functionals T1 and C1 are used

in the standardization step of the procedure, while T2 is used for estimating the sliced

means in Step 3 and C2 for estimating the covariance matrix of the sliced means prior

the principal component analysis. In the Sir procedure in Chapter 3, the original

location and scatter functionals T1, C1, T2 and C2 applied to the data correspond to the

sample mean x, sample covariance Σ̂, sliced sample means m̂h, and sample covariance

V̂ of the sliced sample means.

Among Hilker’s findings is the important result (see also Gather et al. (2001)) that

the location functional T1 in the standardization step does not influence the estimation

of the e.d.r. subspace regardless of any potential contamination. For this reason,

Hilker argued that focusing on the remaining functionals T2, C1 and C2 is sufficient when
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studying the breakdown behavior of Sir. The findings by Hilker can be summarized as

follows (see also Becker (2001)). Hilker characterized the breakdown behavior of Sir by

trying to identify the weakest link in terms of robustness among the individual location

and scatter functionals T2, C1 and C2 required in the steps of Sir. It is well-known that

many functionals based on sample means and covariances are notoriously non-robust.

Hilker (1997) formulated that breakdown of Sir could be caused by the breakdown

of a scatter functional C1 in the standardization step, which happens when either the

largest eigenvalue of the covariance estimate of Σ (produced by C1) converges to infinity

or the smallest eigenvalue converges to zero [cf. Lopuhaä and Rousseeuw (1991)]. A

detailed discussion of this can be found in Hilker’s dissertation (p. 93 ff.) but also

in Becker (2001, p. 53). Regardless of the behavior of C1, Hilker suggested that

Sir could also break down if the scatter functional C2 breaks down, which happens

when the largest eigenvalue of the covariance matrix estimate of the sliced means,

obtained from C2, becomes arbitrarily large; see Becker (2001, p. 50). Note that the

location functional T2 also contributes to the covariance estimate based on C2 and is also

assessed in terms of the breakdown. Finally, Hilker formulated that a third potential

incidence of breakdown could occur when the largest eigenvalue of C2-based covariance

estimate becomes arbitrarily close to zero. Considering the smallest eigenvalue of C2

is not meaningful, because, due to the nature of the procedure, we can have less than

H < p slices resulting in the smallest eigenvalue being equal to zero by default; see

also Hilker (1997) and Becker (2001).

Hilker’s breakdown definition is based on a combination of the breakdown causes

described above, where he defined the breakdown point of Sir as the minimum of the

three breakdown points associated with the above breakdown cases (Hilker (1997), Def-

inition 5.10). Becker (2001) advances this definition by recognizing, that following the

philosophy of Stromberg and Ruppert (1992), it would probably be more meaningful

to look at “the performance of the procedure as a whole.” By this, Becker proposes

that the definition of breakdown should be formulated with respect to the final prod-

uct of the Sir procedure, namely the estimated subspace itself, rather than looking at

breakdown in terms of individual estimators involved in the steps of Sir. According
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to Becker, breakdown should more naturally correspond to the situation in which the

“subspace is estimated completely wrongly.” Although this approach is also hinted at

by Hilker (1997), he did not pursue it.

Up to this point, we have not mentioned the distance measures on e.d.r. directions,

which both Hilker (1997) and Becker (2001) address. To measure the distance between

two sets of estimates of e.d.r. directions, based on uncontaminated and contaminated

data, both Hilker and Becker proposed using canonical correlations, as originally in-

troduced by Li (1991) to assess the closeness of e.d.r. directions. In particular, when

the reduction subspace dimension K is known, they suggested examining the small-

est canonical correlation between uncontaminated estimates of the e.d.r. directions

and estimates based on (k-replacement) contaminated data; see Hilker (1997). In fact,

Becker gives a first definition of the “correlation breakdown point” based on this small-

est canonical correlation when K is known; see Becker (2001), Definition 4.13. If the

smallest canonical correlation becomes zero this implies that at least one estimated

e.d.r. direction under contamination must be orthogonal to the e.d.r. subspace es-

timated without contamination and this is what she defines to be the finite sample

breakdown of the Sir procedure. Becker (2001) later extends her finite sample break-

down definition to reflect estimation of the entire e.d.r. subspace under consideration

(not just e.d.r. directions), which will shall discuss in the next section.

4.1.2 Issues in formulating failure for Sir

As already noted, a fair discussion regarding the robustness of the Sir procedure should

be preceded by clarifying first how the procedure can fail. In order to do so, it helps

to first discuss some situations that could possibly represent an erroneous estimate B̂

of the true e.d.r. subspace B ⊂ Rp. This task, however, is not as straightforward as it

may first appear. Connected to the difficulty of defining erroneous subspace estimates,

a further complication is that we require a means to help judge how far off a subspace

estimate B̂ might be from the true e.d.r. subspace B. Of course, one way to assess the
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discrepancy or distance between B and an estimate B̂ (or between two estimates of B

based on uncontaminated and contaminated data) is through a metric D defined on

Rp-subspaces. However, it can be hard to reach a common consensus on a meaningful

metric to use.

Listed below, we consider possible erroneous estimates B̂ for the e.d.r. subspace

B and discuss issues surrounding these. By K, we denote the dimension of the e.d.r.

subspace B.

Worst case subspace estimation, K known

Suppose the dimension K of the true e.d.r. subspace B ⊂ Rp is known. In the extreme

cases, if K is known to be 0 or p, there can be no problems in estimating the reduction

subspace, since then either B = 0p or Rp holds. But suppose that 1 ≤ K < p is known

and B̂ represents an estimate also with dim(B̂) = K. What type of estimate B̂ should

be considered as the worst case estimate of B possible? Becker (2001, p. 55) suggests

the following “extreme position” as the worst case estimate. She essentially states that

we could consider a K-dimensional subspace estimate B̂ as being extremely distant

from the true e.d.r. subspace B if the following two conditions hold:

C1. the dimension d = dim(I) of the intersection I = B̂ ∩ B is minimal, namely

d = max{0, 2K − p} (see Lemma 2.2);

C2. after removing the intersection I, the subspaces B̂∩I⊥ and B∩I⊥ are orthogonal,

where I⊥ represents the orthogonal complement of I.

(Technically, Becker (2001) considers the sets B̂ \ I and B \ I, not B̂ ∩ I⊥ and B ∩I⊥,

but the first two sets are not Rp-subspaces, e.g., these do not contain 0p.) Note that

this notion of maximal distance from Becker agrees completely with the mathematical

formulation of maximal distance between two K-dimensional subspaces of Rp based on

the Frobenius norm-based subspace metric F in Definition 2.9. By Theorem 2.2, K-

dimensional subspaces B and B̂ ⊂ Rp are maximally distant with respect to the metric

F if F(B, B̂) =
√

2
(
K −max{0, 2K − p}

)
which is equivalent to the two conditions
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listed above from Becker (2001). Hence, we tend to agree with Becker’s concept of

worst case estimation of B when K is known since this agrees with both geometrical

intuition and a mathematically precise metric on subspaces.

Worst case subspace estimation, K unknown

Suppose now that the dimension K of B is unknown and must be estimated, K̂.

1. Obviously, a subspace estimate B̂ of B will be wrong if K̂ 6= K. But what would

be a worst case estimate? When estimating an e.d.r. subspace, a question arising

is, whether to equally treat the underestimation and overestimation of K. If one

wishes to define breakdown of Sir through a metric to assess distances between

Rp-subspaces, then underestimation of K should, in many cases, be just as er-

roneous as overestimation, because a metric must be symmetric. On the other

hand, one would expect that overestimating K may not be as bad as underesti-

mation if the resulting subspace estimate B̂ contains the true reduction subspace

B (i.e., B ⊂ B̂) because overestimation of K does not cause any loss of informa-

tion. At the same time, overestimation incorporates some false information in

the sense that parts of the orthogonal complement of the e.d.r. subspace B might

be included in the resulting estimate B̂. In the end, the issue of whether over-

estimation or underestimation of K is negative for Sir can only be answered by

examining the consequences for estimating the link function f . However, the Sir

procedure itself is really only focused on estimating the e.d.r. subspace B itself

and we would like to investigate the robustness properties of Sir independent of

fitting the link function f .

2. In the extreme cases that the estimated subspace dimension K̂ = 0 or p, can

we consider this as breakdown? Becker (2001, p. 57) suggests that this is one

possibility, especially since we would expect the true subspace dimension should

satisfy K < p if dimension reduction is at all possible. However, it is conceivable,

though extreme, that true subspace dimension satisfies K = 0 or p, if there is no

relationship between the regressors and the response or if no dimension reduction

is possible. In this case, estimates K̂ = 0 or p might be allowable.
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3. As Becker (2001, p.58) discusses, a formulation of a worst case estimate B̂ of

B, where the dimension dim(B̂) = K̂ is estimated, should reflect what vectors B̂

and B have in common. She suggests using canonical correlations for this. It is

geometrically clear that two Rp-subspaces B̂ and B should have little in common,

or be most distant, if these subspaces are orthogonal. The most extreme case

of distance would involve B̂ = B⊥, so that B̂ is the orthogonal complement of

B and contains essentially all Rp-vectors that cannot be spanned in any part by

vectors in B. In fact, we could consider using the Frobenius subspace metric to

capture this notion. By Theorem 2.1, we find that two subspaces B̂ and B of

Rp are maximally distant in terms of the metric F, i.e., F(B, B̂) =
√

p, if and

only if B̂ = B⊥. Hence, in the case that K is unknown, we could define extreme

failure occurring whenever the estimate B̂ consists of the orthogonal complement

of B and essentially contains the largest amount of subspace information that is

contrary to B.

4. It should not be forgotten that the estimated eigenvalues of V̂ in step 4 of the

Sir procedure (see Section 3.2) play an important role in defining worst case

subspace estimates. The relative sizes of these estimated eigenvalues determine

the estimated e.d.r directions and hence the subspace estimate B̂. In addition,

as discussed in Section 3.3, estimation of K is often based on the estimated

eigenvalues of V̂ . Davies and Gather (2004, 2005b) remind us that eigenvalues

are central in formulating the robustness of principal component analysis, which

Sir involves. Indeed, the studies of the effect of data contamination on Sir, given

in Sections 4.2-4.4, always begin with considering the eigenvalues of V̂ under

contamination. It is possible as well to formulate breakdown in terms of the

estimated eigenvalues of V = Cov[E(Σ−1/2X|Y )]. For example, if all eigenvalues

of the estimate V̂ of V are equal, then it becomes impossible to estimate the

most influential e.d.r directions needed for any estimate B̂. We could consider

this situation to be a breakdown of Sir as well. This is essentially a point made

by Davies and Gather (2004, 2005b).
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Again, breakdown in the area of robust statistics is commonly understood as worst case

behavior of a statistical procedure in the sense of infinite bias. From the suggestions

of Becker (2001) and our understanding of the subspace metric F from Definition 2.9,

when K is known a worst case behavior of Sir can be linked to the estimation of a

maximally distant subspace B̂ from the true e.d.r. subspace B ⊂ Rp with respect to

the metric F, namely F(B, B̂) =
√

2
(
K −max{0, 2K − p}

)
. This again implies that

two K-dimensional subspaces B and B̂ have little in common through an intersection I

of the smallest possible dimension dim(I) = max{0, 2K − p} and remaining subspace

portions B ∩ I⊥, B̂ ∩ I⊥ that are orthogonal.

When K is unknown, the worst case behavior of Sir appears to be geometrically

linked to the estimation of the orthogonal complement B̂ = B⊥ of the true e.d.r.

subspace B ⊂ Rp. We can use the metric F from Definition 2.9 to reflect this because

the metric assumes its maximal value F(B, B̂) =
√

p when the orthogonal complement

of B is estimated.

This should lead us to the thought that in the finite sample case, when we consider

contaminating a data set (X, Y )n by replacing certain observations with corrupted val-

ues, failure of the procedure can considered as estimation of the orthogonal complement.

More precisely, we could say a subspace estimate based on contaminated data differs

maximally from an uncontaminated estimate if the two subspaces have a minimal in-

tersection I (of dimension max{0, 2K− p} when K is known and of dimension 0 when

K is unknown) and non-interesting portions of both subspaces that are orthogonal.

This formulation appears to geometrically capture the worst case estimation scenario

in both cases where the true subspace dimension K may be known or unknown. In

particular, whether K is known or unknown, the metric F from Definition 2.9 provides

maximal distances between subspaces that are consistent with this idea of estimation

of the orthogonal complement as illustrated in Section 2.5.2. Also, F has the advan-

tage over using single canonical correlations to measure subspace distance, because it

constitutes a true metric.
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4.2 Discussion of main results

Throughout Sections 4.3 and 4.4 we will investigate in detail the sensitivity of Sir

against contaminated data. We will look at the type of contamination that is necessary

in order to obtain erroneous (orthogonal) estimates. Already in Hilker (1997), Gather et

al. (2002) and Prendergast (2004), it can be found that the influence of a contaminated

data point highly depends on the direction in which it is placed.

Mainly, there are two factors that influence a subspace estimate B̂ of the true e.d.r.

subspace B ⊂ Rp.

1. knowledge of the dimension K of the e.d.r. subspace B: The relevance of this

issue is obvious. If K is known, the procedure will not under- or overestimate

the dimension of B. In the vast majority of all applications however, K will be

unknown and thus constitutes the more realistic case.

2. knowledge of the covariance structure of the regressor variables Cov(X) = Σ

and E(X) = µ: As indicated in the findings of Hilker (1997) and Gather et

al. (2002), contamination schemes that cause damaging subspace estimates in

Sir can change depending on whether Cov(X) = Σ and E(X) = µ are known or

not.

For this reason we will distinguish the following cases in our robustness study and

we summarize some of our main findings in Sections 4.3 and 4.4. Suppose B̂ ⊂ Rp

denotes a subspace estimate of B based on a sample (X, Y )n = {(xi, yi)}n
i=1 ⊂ Rp ×R,

obtained from applying Sir with H slices (min{K, p} ≤ H). We denote an estimate K̂

of K = dim(B) based on (X,Y )n.

- Case I: K, Σ (µ) are known.

If 1 ≤ K < p is known, we can replace k = min{K, p−K} observations in (X, Y )n

to obtain a contaminated subspace estimate that is maximally distant (orthogo-

nal) from B̂ in terms of the Frobenius norm-based subspace metric F, given that
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K is known. The contamination scheme involves replacing a regressor variable xi

with a contaminated value x̃i = tmβ̃i across k different slices, i.e., one contami-

nated x-value per slice. To define the k-contaminated x-values, we use a scaling

factor tm > 0 determining the magnitude of contamination and k-directions of

contamination {β̃i}k
i=1 given by β̃i = Σ1/2βi, where {βi}k

i=1 are orthonormal vec-

tors in {Σ1/2v : v ∈ B̂⊥}. In the case Σ = Ip, the p × p identity matrix, then

the directions of contamination are orthogonal to the uncontaminated subspace

estimate B̂. See Section 4.3.1.

- Case II: K is known, Σ (µ) is unknown.

If 1 ≤ K < p is known, the estimate B̂ from the uncontaminated data (X, Y )n

is spanned by uncontaminated estimates {β̂i}Ki=1 of the first K e.d.r. directions.

Again, we can replace k = min{K, p − K} observations in (X, Y )n to obtain a

contaminated subspace estimate that is maximally distant (orthogonal) from B̂

in terms of the Frobenius norm-based subspace metric F, given that K is known.

We use the same contamination scheme as above (i.e., k different slices) with

the exception that the k directions of contamination {β̃i}k
i=1 must be a size k

subcollection of the K uncontaminated e.d.r. direction estimates {β̂i}Ki=1. That

is, contamination is in the direction of the uncontaminated estimates {β̂i}Ki=1

when Σ is unknown. See Section 4.3.2.

- Case III: K is unknown, Σ (µ) is known.

Suppose the uncontaminated estimate of K satisfies 1 ≤ K̂ < p. We can replace

k = p− K̂ observations in (X, Y )n so that, under this contamination, the largest

k contaminated eigenvalues computed in Step 4 of the Sir procedure explode in

size, while the remaining p− k contaminated eigenvalues are bounded. Because

the contaminated estimate of the subspace dimension depends on the largest

contaminated eigenvalues, we can force the contaminated subspace estimate to

have dimension k = p−K̂ as well as force this subspace estimate to be orthogonal

to the uncontaminated B̂. That is, by replacing k = p − K̂ observations in

(X, Y )n, we can obtain a contaminated subspace estimate that is the orthogonal
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complement of B̂ and so maximally distant (orthogonal) from B̂ in terms of the

Frobenius subspace metric F. The contamination scheme is essentially the same

as in Case I above, replacing x-observations in k = p − K̂ different slices and

using the same contamination directions. See Section 4.4.1.

- Case IV: K, Σ (µ) are unknown.

When the uncontaminated dimension estimate is 1 ≤ K̂ < p, we can replace k =

K̂ observations in (X, Y )n so that the resulting contaminated subspace estimate

is a subspace of B̂⊥, the orthogonal complement of the uncontaminated estimate

B̂. The contamination scheme is essentially the same as in Case II above,

replacing x-observations in k = K̂ different slices. But for the k directions of

contamination, we use all k = K̂ uncontaminated e.d.r. directions {β̂i}bKi=1 used

to span B̂. Under this contamination, it is very difficult to control the sizes

of the contaminated eigenvalue estimates in the Sir procedure (unlike Case

III). Hence, the contaminated estimate of subspace dimension is problematic to

directly manage. However, it is possible to show that the contaminated subspace

estimate must be orthogonal to B̂ and must then have dimension less than or

equal to p − K̂. In essence, the contaminated subspace estimate has nothing

in common with B̂ (i.e., is orthogonal), but may not correspond to the entire

orthogonal complement of B̂. See Section 4.4.2.

As in finite sample studies of Hilker (1997) and Gather et al. (2002), we find that

directions of contamination that are harmful to Sir differ depending on whether

Cov(X) = Σ is known or not. Contamination in the direction of the uncontaminated

e.d.r. direction estimates β̂i is harmful when Σ is unknown, whereas contamination

orthogonal to uncontaminated direction estimates is worst when Σ is known. Indeed,

the sensitivity of Sir depends on both the knowledge of the covariance structure Σ and

of the dimension K of the true e.d.r. subspace B. Hence, our work in the following

Sections 4.3-4.4 fully supports and extends the results of Hilker (1997) and Gather et

al. (2002).

We finally note that, according to Cook and Critchley (2000), outliers present in a
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data set can only cause an overestimation of the number of directions of the subspace

in Sir, which supposedly should not be dangerous in estimating the key ingredients of

the true e.d.r. subspace. In Sections 4.3 and 4.4, we are able to show that this is not

the case.

Throughout the remainder of this Chapter, we assume that the Sir procedure can

be applied to a given uncontaminated data set (X, Y )n = {(xi, yi)}n
i=1 ∈ Rp ×R under

consideration. Essentially, we suppose that H slices can be identified from the data

(X, Y )n ∈ Rp × R, which always holds true if the y-observations are all distinct.

4.3 Sensitivity Analysis when K is known

In the case that 1 ≤ K < p is known, the estimated reduction subspace B̂ ⊂ Rp

computed from the data (X, Y )n = {(xi, yi)}n
i=1 has dimension K. Suppose that we

replace k ≤ n arbitrary data points in (X, Y )n to obtain a contaminated data sample

(X, Y )n,k. Applying the Sir-procedure with (X,Y )n,k given the known dimension K,

we would produce a contaminated estimate of the reduction subspace B̂k spanned by

K independent vectors based on (X, Y )n,k.

To judge the effect of data contamination on dimension reduction subspace esti-

mation, we consider measuring the distances between K-dimensional subspaces B̂ (es-

timated e.d.r. subspace using uncontaminated data (X, Y )n) and B̂k (e.d.r. subspace

estimated by contaminating k data points (X, Y )n,k) with the metric F. The worst-case

contamination scenario would cause the subspaces B̂ and B̂k to be most distant under

the measure F.

When K is known, we can quantify the worst-case scenario under contamination,

for dimension reduction as

F(B̂, B̂k) =
√

2
(
K −max{0, 2K − p}

)
=


√

2K if 2K ≤ p,√
2(p−K) if 2K > p,

(4.1)
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using Theorem 2.2. That is, B̂ and B̂k are maximally distant in terms of the subspace

metric F.

We are now prepared to define a finite sample breakdown point for Sir-type dimen-

sion reduction procedures, in the case that the dimension K of reduction is known.

Definition 4.1 Finite sample breakdown point in dimension reduction (K

known). Let (X, Y )n,k denote a contaminated sample found by replacing 1 ≤ k ≤

n data points in a data set (X,Y )n = {(xi, yi)}n
i=1 ⊂ Rp × R with arbitrary values

{(x̃ij , ỹij)}k
j=1. For fixed 1 ≤ K < p, let B̂ and B̂k ⊂ Rp denote estimates of K-

dimensional e.d.r subspaces based on a given dimension reduction procedure (e.g., Sir)

applied to (X, Y )n and (X, Y )n,k, respectively. The finite sample breakdown point

of the dimension reduction procedure is defined as

εfsbp,K((X, Y )n, F,K) =

min

{
k

n
: 1 ≤ k ≤ n, sup

(X,Y )n,k

F(B̂, B̂k) =
√

2
(
K −max{0, 2K − p}

)}

under the metric F for the data constellation (X, Y )n.

The value εfsbp,K represents the percentage of contamination in a data set (X, Y )n

necessary to cause a dimension reduction procedure to breakdown with a maximal

distance (4.1) between the subspace estimate under contamination and the estimate

produced from an original, uncontaminated sample. Note that in the cases that K = 0

or K = p is known, the finite sample breakdown point definition above is not applicable

because breakdown in these extreme cases is not even possible; when K = 0 or K = p,

it is known that the e.d.r. subspace estimate should be B̂ = 0p or B̂ = Rp, respectively.
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4.3.1 K known – Σ known case

The following lemma is useful for determining the limiting behavior of eigenvectors

corresponding to a sequence of non-negative definite covariance matrices. Since the

estimated reduction space in Sir corresponds to (scaled) estimated eigenvectors, we

shall exploit the result to understand the influence of data contamination on Sir in

the case of a known covariance structure. We note that Lemma 4.8 of Hilker (1997)

follows as a special case of Lemma 4.1 here (i.e., K = 1), but our result is geometrically

stronger and more comprehensive in terms of the convergence of subspaces spanned by

convergent eigenvectors.

In the following lemma, we use |A| to denote the cardinality of a finite set A.

Lemma 4.1 Let {tm}∞m=1 be a positive, increasing real sequence such that tm −→ ∞

as m −→ ∞. For every m ≥ 1, let Mm be a symmetric, nonnegative definite p × p

matrix with ordered eigenvalues 0 ≤ λm,p ≤ · · · ≤ λm,1 and corresponding orthonormal

eigenvectors ηm,i, i = 1, . . . , p. Assume that

lim
m→∞

Mm

tm
=

k∑
i=1

ci · βiβ
>
i (4.2)

for some 0 < ck ≤ · · · ≤ c1 and orthonormal collection of vectors βi ∈ Rp, i = 1, . . . , k,

k ≤ p. Furthermore, suppose that there are g ≤ k distinct values among {c1, . . . , ck},

denoted by 0 < c̃g < · · · < c̃1. For each j = 1, . . . , g, define an index set C̃j = {i :

ci = c̃j}, write B̃j and Ñm,j to denote p×|C̃j| matrices with columns formed by vectors

βi, i ∈ C̃j and ηm,i, i ∈ C̃j, respectively; denote projection matrices for B̃j and Ñm,j as

P
eBj

and P
eNm,j

, respectively.

(a) Then, for each j = 1, . . . , g,

lim
m→∞

P
eNm,j

= P
eBj

.
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There exists a sequence of k × k orthogonal matrices

Q∗
m =


Ñ>

m,1B̃1 0| eB1|×| eB2| 0| eB1|×| eB3| · · · 0| eB1|×| eBg |

0| eB2|×| eB1| Ñ>
m,2B̃2 0| eB2|×| eB3| · · · 0| eB2|×| eBg |

...
...

. . . · · · ...

0| eBg |×| eB1| 0| eBg |×| eB2| 0| eBg |×| eB3| · · · Ñ>
m,gB̃g


such that, as m −→∞,

[
Ñm,1 · · · Ñm,g

]
Q∗

m −→
[
B̃1 · · · B̃g

]
.

(b) Let Nm and B denote subspaces of Rp spanned by ηm,i and βi vectors, i = 1, . . . , k,

respectively. Then, as m −→∞,

PNm =
k∑

i=1

ηm,iη
>
m,i −→

k∑
i=1

βiβ
>
i = PB.

There exists a sequence Qm of k × k orthogonal matrices such that, as m −→∞,

[
ηm,1 · · · ηm,k

]
Qm −→

[
β1 · · · βk

]
.

(c) For i = 1, . . . , p,

lim
m→∞

λm,i

tm
=

 ci if i = 1, . . . , k,

0 otherwise.

Remark. We make a few comments on the above result before beginning its proof.

Under the matrix convergence from (4.2), Lemma 4.1 states that the ordered eigenval-

ues of Mm (scaled by tm), as well as the corresponding eigenvectors, converge to those

of the matrix
∑k

i=1 ci · βiβ
>
i . While the first k ordered eigenvalues of Mm converge

directly to the corresponding ordered eigenvalues of the limiting matrix
∑k

i=1 ci · βiβ
>
i

by part (c), the convergence of the eigenvectors of Mm is not direct; that is, we cannot

generally say that ηm,i → βi (i = 1, . . . , k). But instead, by Lemma 4.1 (b), the first

k orthonormal eigenvectors of Mm converge to those of the limiting matrix, namely

β1, . . . , βk, up to an orthogonal transformation. Consequently, the space Nm spanned

by the k vectors ηm,i (corresponding to the k largest eigenvalues of Mm) converges as
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m → ∞ to the space B spanned by the eigenvectors βi, i = 1, . . . , k of the limiting

matrix (4.2). As an implication of this, direct componentwise convergence of the first

k eigenvectors of Mm of the form ηm,i → βi (i = 1, . . . , k) can be achieved in fact if

the first k eigenvalues of (4.2) are all distinct ck < · · · < c1, or equivalently if g = k

and |C̃j| = 1 for all j = 1, . . . , g. In part (a), we also find that if there are g distinct

eigenvalues among {ci}k
i=1 in (4.2) then, up to an orthogonal transformation, g differ-

ent collections of eigenvectors of Mm must converge to those collections of βi vectors

in (4.2) which share a common ci eigenvalue. Because the limiting matrix in (4.2) has

rank k, part (c) of Lemma 4.1 reflects that the smallest p−k eigenvalues of the matrix

Mm must converge to zero, ensuring the rank of Mm properly converges to k.

Proof. We separately treat the proofs of parts (a)-(c) for clarity.

Proof of (c).

We begin by establishing part (c) first. Note that the symmetric matrix Mm/tm has or-

dered eigenvalues λm,i, i = 1, . . . , p, which correspond to the orthonormal eigenvectors

ηm,i. Also, the limiting matrix
∑k

i=1 ciβiβ
>
i from (4.2) has ordered positive eigenvalues

c1 > · · · > ck > 0 along with an eigenvalue 0 with multiplicity p− k (i.e., exactly p− k

times does 0 appear as an eigenvalue), corresponding to p− k additional orthonormal

eigenvectors, say βk+1, . . . , βp, that span the orthogonal complement of span{βi}k
i=1,

i.e.,
∑k

i=1 ciβiβ
>
i + 0

∑p
i=k+1 βiβ

>
i . By Rouché’s theorem [Stewart and Sun (1990), p.

167], which states that eigenvalues are continuous under matrix convergence, it holds

that the ordered eigenvalues of Mm/tm must converge to those of the limiting matrix

(4.2) so that

lim
m→∞

λm,i

tm
=

 ci if i = 1, . . . , k,

0 otherwise

follows for i = 1, . . . , p. In particular, the convergence of the first k ordered eigenvalues

of Mm/tm implies that

lim
m→∞

λm,i

tm
= c̃i, i ∈ C̃j, j = 1, . . . , g. (4.3)

Proof of (a).

For each j = 1, . . . , g, note that P
eNm,j

=
∑

i∈ eCj
ηm,iη

>
m,i and P

eBj
=
∑

i∈ eCj
βiβ

>
i by
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the orthonormal property of the vectors ηm,i and βi, respectively. It also holds that

Mm =
∑p

i=1 λm,i · ηm,iη
>
m,i and

∑k
i=1 ci · βiβ

>
i =

∑g
j=1 c̃jP eBj

. The matrix Mm can be

rewritten as

Mm = tm

k∑
i=1

ciβiβ
>
i + Rm, (4.4)

where the remainder matrix Rm is defined by subtraction, i.e. Rm = Mm −

tm
∑k

i=1 ciβiβ
>
i . Let tm · r+

m,0 denote the sum of the absolute entries of Rm; that is,

if the p × p matrix Rm has entries denoted by Rm,ij, i = 1, . . . , p, j = 1, . . . , p, then

tm · r+
m,0 =

∑p
i=1

∑p
j=1 |Rm,ij|. Because any component of ηm,i is less than or equal to

1 in absolute value by ‖ηm,i‖ = 1 for i = 1, . . . , k, we may bound

|η>m,iRmηm,i| ≤ tm · r+
m,0, i = 1, . . . , k, where lim

m→∞
r+
m,0 = 0 (4.5)

follows from limm→∞ Rm/tm = 0p×p.

To establish the claim in part (a), it suffices to show that: for any j = 1, . . . , g,

lim
m→∞

‖(Ip − P
eBj

)ηm,i‖ = 0, i ∈ C̃j, (4.6)

denoting the p×p identity matrix as Ip above. From (4.6), it follows that limm→∞(Ip−

P
eBj

)ηm,i = 0p for any i ∈ C̃j and fixed j = 1, . . . , g implying that, when m is large, we

have ηm,i ≈ P
eBj

ηm,i for all i ∈ C̃j for a given j = 1, . . . , g.

Because components of ηm,i are bounded by 1 from ‖ηm,i‖ = 1, we find that, if (4.6)

holds for a given j = 1, . . . , g, then

lim
m→∞

(Ip − P
eBj

)P
eNm,j

= lim
m→∞

∑
i∈ eCj

(Ip − P
eBj

)ηm,iη
>
m,i = 0p×p (4.7)

holds as well. Because Ñ>
m,iÑm,i = I| eCj | (the |C̃j| × |C̃j| identity matrix), P

eBj
= B̃jB̃

>
j

and P
eNm,j

= Ñm,iÑ
>
m,i, we find (4.7) is in turn equivalent to

0| eCj |×| eCj | = lim
m→∞

Ñ>
m,j(I| eCj | − P

eBj
)P

eNm,j
Ñm,j = lim

m→∞
(I| eCj | − AmA>

m), (4.8)

where Am = Ñ>
m,jB̃j for a given j = 1, . . . , g. By Rouché’s theorem again, all |C̃j|

eigenvalues of AmA>
m must converge to 1 as m →∞ so that

supm ‖Am‖2
2 = supm (largest eigenvalue of AmA>

m) ≤ C

supm ‖A−1
m ‖2

2 = supm 1/(smallest eigenvalue of AmA>
m) ≤ C

(4.9)
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for some real 0 < C < ∞. In addition, since det(Am) = det(A>
m), we have

1 = lim
m→∞

det(AmA>
m) = lim

m→∞
det(Am) · det(A>

m) = lim
m→∞

[
det(Am)

]2
,

which shows that limm→∞ det(Am) = 1 so that Am is nonsingular for large m and A−1
m

exists eventually. Then, applying Lemma 7.4 with (4.8) and (4.9), we find

lim
m→∞

‖I| eCj | − A>
mAm‖F = lim

m→∞
‖A−1

m Am(I| eCj | − A>
mAm)‖F

= lim
m→∞

‖A−1
m (I| eCj | − AmA>

m)Am‖F

≤ lim
m→∞

‖A−1
m ‖F · ‖(I| eCj | − AmA>

m)‖F · ‖Am‖F

≤ lim
m→∞

|C̃j|‖A−1
m ‖2 · ‖(I| eCj | − AmA>

m)‖F · ‖Am‖2

≤ |C̃j| · C · lim
m→∞

‖(I| eCj | − AmA>
m)‖F

= 0,

so that limm→∞(I| eCj | − A>
mAm) = 0| eCj |×| eCj | and hence

0p×p = lim
m→∞

B̃j(Ip − A>
mAm)B̃>

j

= lim
m→∞

P
eBj
− P

eBj
P

eNm,j
P
eBj

= lim
m→∞

[
(Ip − P

eNm,j
)P

eBj

]>[
(Ip − P

eNm,j
)P

eBj

]
,

because Ip−P
eNm,j

and P
eBj

are symmetric, idempotent matrices. This last limit shows

that, if (4.6) holds for a given j = 1, . . . , g, then

lim
m→∞

(Ip − P
eNm,j

)P
eBj

= 0p×p, (4.10)

holds in addition to the counterpart result in (4.7). From (4.7) and (4.10), we find the

following limit of the quadratic form

lim
m→∞

(P
eBj
− P

eNm,j
)>(P

eBj
− P

eNm,j
) = lim

m→∞

[
(Ip − P

eNm,j
)P

eBj
+ (Ip − P

eBj
)P

eNm,j

]
= 0p×p

so that

lim
m→∞

(P
eNm,j

− P
eBj

) = 0p×p (4.11)
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is valid whenever (4.6) holds for a given j = 1, . . . , g. This shows the first claim in

part (a) of Lemma 4.1. The second claim in Lemma 4.1(a) then follows using[
Ñm,1 · · · Ñm,g

]
Q∗

m =
[
P

eNm,1
B̃1 · · ·P eNm,g

B̃g

]
,

so that the limiting matrix

lim
m→∞

[
Ñm,1 · · · Ñm,g

]
Q∗

m = lim
m→∞

[
P

eNm,1
B̃1 · · ·P eNm,g

B̃g

]
=

[
P
eB1

B̃1 · · ·P eBg
B̃g

]
=

[
B̃1 · · · B̃g

]
,

because P
eBj

B̃j = B̃j for j = 1, . . . , g.

Proof of (4.6). We use an induction argument on j to establish (4.6). We first show

that (4.6) holds for j = 1 and any i = 1, . . . , |C̃1| (that is, i ∈ C̃1).

Using the orthonormal property of the eigenvectors of Mm, (4.4) and (4.5), we find

for i ∈ C̃1:

0 ≤ λm,i

= η>m,iMmηm,i

≤ tm

g∑
`=1

c̃` · η>m,iP eB`
ηm,i + |η>m,iRmηm,i|

≤ tm

g∑
`=1

c̃` · ‖P eB`
ηm,i‖2 + tm · r+

m,0 (4.12)

≤ tmc̃1

g∑
`=1

‖P
eB`

ηm,i‖2 + tm · r+
m,0

= tmc̃1η
>
m,iPBηm,i + tm · r+

m,0

≤ tmc̃1 + tm · r+
m,0,

where the last inequality follows from:

η>m,iPBηm,i ≤ η>m,iPBηm,i + η>m,i(Ip − PB)ηm,i = η>m,iηm,i = 1.

Because c̃1 = ci for i ∈ C̃1 and

lim
m→∞

tm · r+
m,0

tm
= 0, lim

m→∞

λm,i

tm
= ci = c̃1
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by (4.3) and (4.5), we may conclude that

lim
m→∞

g∑
`=1

‖P
eB`

ηm,i‖2 = 1, (4.13)

from the previous inequalities in (4.12). We aim now to show that for i ∈ C̃1

lim
m→∞

‖P
eB1

ηm,i‖2 = 1 (4.14)

follows from (4.13). If g = 1, this is clearly true. For the case that g > 1, it suffices to

establish for a fixed i ∈ C̃1,

lim
m→∞

‖P
eB`

ηm,i‖2 = 0, ` = 2, . . . , g, (4.15)

or equivalently, (because the sequence ‖P
eB`

ηm,i‖2 ≤ ‖ηm,i‖2 = 1 is bounded by the

Cauchy-Schwartz inequality) that any convergent subsequence a`,n = ‖P
eB`

ηmn,1‖2 of

‖P
eB`

ηm,i‖2 converges to 0, for any ` = 2, . . . , g. Suppose (4.15) does not hold and,

for some `∗ ∈ {2, . . . , g}, there exists a subsequence a`∗,n such that a`∗,n −→ c 6= 0 as

n −→∞. Note that c ∈ (0, 1] from 0 ≤ a`∗,n ≤ 1 and that by (4.13): i ∈ C̃1,

lim
n→∞

g∑
`=1
` 6=`∗

‖P
eB`

ηmn,i‖2 = lim
n→∞

(
g∑

`=1

‖P
eB`

ηmn,i‖2 − a`∗,n

)
= 1− c.

Using (4.12), we can produce bounds

λmn,i

tmn

≤ c̃`∗a`∗,n + c̃1

g∑
`=1
` 6=`∗

‖P
eB`

ηmn,1‖2 +
tmn · r+

mn,0

tmn

≤ c̃1 + r+
mn,0.

Taking limits as n →∞, we then find c̃1 ≤ c · c̃`∗ + (1− c) · c̃1 ≤ c̃1, implying c̃1 = c̃`∗ .

This is a contradiction because c̃`∗ < c̃1 for `∗ 6= 1 by assumption. Hence, we have now

established that (4.14) holds or equivalently that (4.6) holds with j = 1.

If g = 1, we have immediately that (4.6) holds. For the case g > 1, we now use a

strong induction step to show that, if (4.6) holds for any j ≤ j∗ for some fixed j∗ where

1 ≤ j∗ ≤ g − 1 (the induction assumption), then (4.6) also holds for j = j∗ + 1. For

any j with j ≤ j∗, if (4.6) holds then limm→∞(P
eBj
−P

eNm,j
) = 0p×p follows from (4.11).
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Let r+
m,j denote the sum of the absolute entries of P

eBj
−P

eNm,j
, j = 1, . . . , g. Again, the

components of the eigenvectors ηm,i are bounded by 1, so that we may majorize

|η>m,i(P eBj
− P

eNm,j
)ηm,i| ≤ r+

m,j, i ∈ C̃j, where lim
m→∞

r+
m,j = 0, j ≤ j∗, (4.16)

noting that limm→∞ r+
m,j = 0 follows for j ≤ j∗ from limm→∞(P

eBj
− P

eNm,j
) = 0p×p by

the induction assumption that (4.6) and (4.11) hold for j ≤ j∗.

Now let j = j∗ + 1 and i ∈ C̃j∗+1, or equivalently, 1 ≤ i−
∑j∗

`=1 |C̃`| ≤ |C̃j∗+1|. By

steps analogous to (4.12) using (4.16), η>m,iηm,i = 1 and P
eNm,j

ηm,i = 0p for j ≤ j∗ and

i ∈ C̃j∗+1, we can argue for i ∈ C̃j∗+1,

0 ≤ λm,i

= η>m,iMm,iηm,i (4.17)

≤ tm

j∗∑
`=1

c̃` · η>m,i

[
(P

eB`
− P

eNm,`
) + P

eNm,`

]
ηm,i

+tm

g∑
`=j∗+1

c̃` · η>m,iP eB`
ηm,i + |η>m,iRmηm,i| (4.18)

≤ tm

g∑
`=j∗+1

c̃` · ‖P eB`
ηm,i‖2 + tm ·

j∗∑
`=0

c̃` · r+
m,` (c̃0 = 1)

≤ tmc̃j∗+1

g∑
`=j∗+1

‖P
eB`

ηm,i‖2 + tm

j∗∑
`=0

c̃` · r+
m,`

≤ tmc̃j∗+1 + tm

j∗∑
`=0

c̃` · r+
m,`.

Above we used c̃j∗+1 > c̃j > 0 for j > j∗. From (4.3), (4.5), (4.16) and c̃j∗+1 = ci for

i ∈ C̃j∗+1, it follows for i ∈ C̃j∗+1 that

lim
m→∞

j∗∑
`=0

c̃` · r+
m,` = 0, lim

m→∞

λm,i

tm
= ci = c̃j∗+1,

and we find in (4.18) that

lim
m→∞

g∑
`=j∗+1

‖P
eB`

ηm,i‖2 = 1, i ∈ C̃j∗+1. (4.19)
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To finish the induction argument, we wish to show that for i ∈ C̃j∗+1

lim
m→∞

‖P
eBj∗+1

ηm,i‖2 = 1

now follows from (4.19). If g = j∗+1, this is immediate and, for the case that g > j∗+1,

we can establish for i ∈ C̃j∗+1

lim
m→∞

‖P
eB`

ηm,i‖2 = 0, ` = j∗ + 2, . . . , g,

with arguments completely analogous to (4.15) involving subsequences. (If for some

`∗ ∈ {j∗ + 2, . . . , g} and i ∈ C̃j∗+1, there exists a non-null subsequence bmn,`∗ =

‖P
eB`∗

ηmn,i‖2 with limn→∞ bmn,`∗ = c ∈ (0, 1], then we may deduce from (4.18) and

(4.19) by taking limits as n → ∞ that c̃j∗+1 ≤ c · c̃`∗ + (1 − c) · c̃j∗+1 ≤ c̃j∗+1, a

contradiction since c̃`∗ < c̃j∗+1.) The proof of (4.6) by induction is now complete.

Proof of (b). The convergence in part (b) follows immediately from the result in part (a)

and

PNm =

g∑
j=1

P
eNm,j

, PB =

g∑
j=1

P
eBj

by orthogonality. 2

Data contamination

Suppose the model assumption

Y = f(B>X, ε)

with µ = E(X) and Σ = Cov(X) can be justified and (X,Y )n = {(x1, y1), . . . , (xn, yn)}

is a sample of size n of (X, Y ) with yi 6= yj for all i 6= j. When the dimension 1 ≤ K < p

of the reduction subspace and the covariance structure Σ, µ are known, a dimension

reduction procedure of the Sir-type applied to (X, Y )n yields e.d.r. directions β̂i =

Σ−1/2η̂i, i = 1, . . . ,K derived from the orthonormal eigenvectors η̂i, i = 1, . . . ,K of

V̂ = Σ−1/2

H∑
h=1

p̂h(xh − µ)(xh − µ)>Σ−1/2 (4.20)
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corresponding to the K largest, ordered eigenvalues λ̂K ≤ · · · ≤ λ̂1 of (4.20). The

estimated reduction space B̂ is spanned by the vectors β̂1, . . . , β̂K.

Recall that, in the Sir procedure, the sample observations of {(xi, yi)}n
i=1 are or-

dered by the y−responses (y(i) ≤ y(i+1)) and grouped into slices Ii, i = 1, . . . , H as

determined by the rankings of the response variable:

y(1), . . . , y(n1) ∈ I1; y(n1+1), . . . , y(n1+n2) ∈ I2; · · · y(n1+···+nH−1+1), . . . , y(n) ∈ IH .

We shall exploit the slices in the contamination scheme as follows, noting K ≤ H.

Let {tm}∞m=1 denote a sequence of positive scaling factors such that tm → ∞ as

m →∞. For each m and scaling factor tm, we create a contaminated sample, denoted

by (X, Y )n,k
m , by replacing k observations in the uncontaminated data (X, Y )n. Denote

the index of the first observation in each slice Ih as 1h = 1 +
∑h−1

i=1 ni, h = 1, . . . , H.

WLoG suppose the first observation of each of the first k ≤ H slices I1, . . . , Ik is

replaced by arbitrary observations

(x̃1h,m, ỹ1h
), h = 1, . . . , k,

where the y-values remain unchanged, ỹ1h
= y1h

, h = 1, . . . , k and thus observations

assigned to a slice Ih, h = 1, . . . , H stay the same. The contamination of the x-values

is assumed to be of the following structure:

x̃1h,m = tmβ̃h+ṽh, β̃h, ṽh ∈ Rp, h = 1, . . . , k; (4.21)

with

β̃>h Σ−1β̃j = δhj, h, j = 1, . . . , k, (4.22)

where δhj denotes the Kronecker delta function above (e.g., δhj = 1 if j = h and

otherwise 0). Again, under this k−observation replacement scheme, we obtain the

contaminated sample as (X, Y )n,k
m .

Computing a version of (4.20) based on (X, Y )n,k
m yields a contaminated estimate

V̂m of Cov(E(Σ−1/2X|Y )) with ordered eigenvalues 0 ≤ λ̂m,p ≤ · · · ≤ λ̂m,1 and corre-

sponding orthonormal eigenvectors η̂m,i, i = 1, . . . , p of V̂m. An application of the Sir
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method to (X, Y )n,k
m results in an estimate B̂k,m of the dimension reduction subspace

spanned by an appropriate choice of vectors β̂m,i = Σ−1/2η̂m,i, i = 1, . . . ,K.

With the established Lemma 4.1, we can now study the effect of this type of con-

tamination on the eigenvectors of V̂m in determining estimates of e.d.r. directions. The

following theorem quantifies the result.

Theorem 4.1 Under the k-slice contamination scheme of Section 4.3.1, 1 ≤ k ≤

min{p, H}, and with known E(X) = µ and Cov(X) = Σ, suppose that a Sir-dimension

reduction procedure is applied to the contaminated sample (X, Y )n,k
m with resulting or-

dered eigenvalues 0 ≤ λ̂m,p ≤ · · · ≤ λ̂m,1 and corresponding orthonormal eigenvectors

η̂m,i, i = 1, . . . , p of an estimated covariance matrix V̂m.

(a) Let N̂m and Σ−1/2B̃ denote subspaces of Rp spanned by {η̂m,h}k
h=1 and {Σ−1/2β̃h}k

h=1

vectors, respectively. Then, as m −→∞,

P
bNm

=
k∑

h=1

η̂m,hη̂
>
m,h −→

k∑
h=1

(Σ−1/2β̃m,h)(Σ
−1/2β̃m,h)

> = PΣ−1/2 eB.

(b) If the number of observations in the first k slices, namely {nh}k
h=1, are ordered

n(1) ≤ · · · ≤ n(k), then

lim
m→∞

λ̂m,h

t2m
=


1

n(k−h+1)n
if h = 1, . . . , k,

0 otherwise.

(c) For h ∈ {1, . . . , k}, let N̂m,h and Σ−1/2B̃h denote subspaces of Rp spanned by

{η̂m,j : 1 ≤ j ≤ k, n(k−j+1) = n(k−h+1)} and {Σ−1/2β̃j : 1 ≤ j ≤ k, nj = n(k−h+1)},

respectively. As m −→∞,

P
bNm,h

=
∑

1≤j≤k,
n(k−j+1)=n(k−h+1)

η̂m,hη̂
>
m,h −→

∑
1≤j≤k,

nj=n(k−h+1)

(Σ−1/2β̃m,h)(Σ
−1/2β̃m,h)

> = PΣ−1/2 eBh
.

(d) There exists a sequence Qm of orthogonal k × k matrices such that

lim
m→∞

[
η̂m,1 · · · η̂m,k

]
Qm =

[
Σ−1/2β̃1 · · ·Σ−1/2β̃k

]
.
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(e) Let Σ−1/2N̂m and Σ−1B̃ denote the subspaces of Rp spanned by {β̂m,h =

Σ−1/2η̂m,h}k
h=1 and {Σ−1β̃h}k

h=1, respectively. Then

lim
m→∞

PΣ−1/2 bNm
= PΣ−1 eB.

Remark. We start again with a few comments on the above results before proceeding

with the proof. Under the k-slice contamination scheme of Section 4.3.1, a contam-

inated covariance matrix V̂m results in place of (4.20) by using the corrupted data

(X, Y )n,k
m . This matrix has orthonormal eigenvectors η̂m,p, . . . , η̂m,1 associated with

the ordered eigenvalues λ̂m,p ≤ · · · ≤ λ̂m,1. In particular, the k largest eigenvalues

of V̂m correspond to the eigenvectors {η̂m,h}k
h=1. Part (a) of Theorem 4.1 states that

Rp-space N̂m spanned by the contaminated eigenvectors {η̂m,h}k
h=1 converges to the Rp-

space B̃ spanned by {Σ−1/2β̃h}k
h=1 based on the k directions of contamination {β̃h}k

h=1

satisfying (4.22) (i.e., the respective projection matrices converge). In matrix form,

Theorem 4.1(d) states that, up to an orthogonal transformation, the contaminated

eigenvectors {η̂m,h}k
h=1 converge to {Σ−1/2β̃h}k

h=1. Consequently, the space Σ−1/2N̂m

spanned by contaminated first k e.d.r. directions {Σ−1/2η̂m,h}k
h=1 (i.e., transforming

the eigenvectors {η̂m,h}k
h=1 associated with the k largest eigenvalues of V̂m, where we

note that k may not necessarily equal K) converges to the space Σ−1B̃ spanned by

{Σ−1β̃h}k
h=1 in Theorem 4.1(e). This result is crucial because it reveals how the k-

slice contamination scheme of Section 4.3.1 can be used to control vectors spanning

the e.d.r. subspace. In part (b) of Theorem 4.1, we find that, after contaminating k

slices, the k largest eigenvalues of the contaminated matrix V̂m “explode” and grow

infinitely large at a rate faster than the remaining p−k eigenvalues of V̂m. (In the case

where the covariance structure Σ of X is known but the dimension K of the true e.d.r.

subspace is unknown, this result implies that we can carefully control the dimension of

the estimated e.d.r. subspace, as well as the space itself under contamination by de-

termining how many eigenvalues are large; see Section 4.4.2.) Finally, Theorem 4.1(c)

states that, because the eigenvectors {η̂m,h}k
h=1 associated with the k largest eigenval-

ues of V̂m are determined in the limit by the contamination among the first k slices

by Theorem 4.1(b), we find that the space spanned by certain sub-collections of the
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eigenvectors {η̂m,h}k
h=1 converges to the space spanned by certain sub-collections of

the eigenvectors {Σ−1/2β̃h}k
h=1 and both collections of eigenvectors are determined by

the number of observations {nh}k
h=1 in the first k slices. Namely, collections of slices

have the same number of observations nh correspond to collections of eigenvectors that

converge.

Proof: Using the known µ, Σ values with the sample (X,Y )n,k
m , the estimated covari-

ance matrix V̂m can now be written in two parts:

V̂m = Σ−1/2

k∑
h=1

p̂h(xh,m − µ)(xh,m − µ)>Σ−1/2 + Σ−1/2

H∑
h=k+1

p̂h(xh − µ)(xh − µ)>Σ−1/2

with

xh =
1

nh

∑
i:yi∈Ih

xi, h = k + 1, . . . , H;

xh,m =
1

nh

x̃h,m +
1

nh

nh∑
i=2

xi

(4.21)
=

tm
nh

β̃h +
1

nh

(
ṽh +

nh∑
i=2

xi

)
=

tm
nh

β̃h + vh + µ, h = 1, . . . , k,

where vh = n−1
h

(
ṽh +

∑nh

i=2 xi

)
− µ. With some algebra, we express

V̂m =
k∑

h=1

p̂hΣ
−1/2

( tm
nh

β̃h + vh

)( tm
nh

β̃h + vh

)>
Σ−1/2 + S

=
k∑

h=1

(
p̂h

n2
h

t2mβhβ
>
h +

p̂h

nh

tmβhv
>
h Σ−1/2 +

p̂h

nh

tmΣ−1/2vhβ
>
h

)
+ S, (4.23)

βh = Σ−1/2β̃h, S = Σ−1/2
( k∑

h=1

p̂hvhv
>
h +

H∑
h=k+1

p̂h(xh − µ)(xh − µ)>
)
Σ−1/2.

Note that the term S does not depend on the contaminated observations. Because

lim
m→∞

1

t2m

( k∑
h=1

p̂htmβhv
>
h Σ−1/2 + p̂htmΣ−1/2vhβ

>
h + S

)
= 0p×p,

and p̂h = nh/n, it holds that

lim
m→∞

V̂m

t2m
= lim

m→∞

k∑
h=1

p̂h

n2
h

βhβ
>
h =

k∑
h=1

1

nhn
(Σ−1/2β̃h)(Σ

−1/2β̃h)
>.
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Note that the vectors βh = Σ−1/2β̃h, h = 1, . . . , k, are orthonormal by (4.22). There-

fore, parts(a)-(d) of Theorem 4.1 now follow directly from applying Lemma 4.1, noting

that 1
n(k)

≤ · · · ≤ 1
n(1)

.

To prove part (e), write p × k matrices N̂m =
[
η̂m,1 · · · η̂m,k

]
Qm and B̃ =

[
β̃1 · · · β̃k

]
.

We now aim to show that

lim
m→∞

(N̂>
mΣ−1N̂m)−1 = (B̃>Σ−2B̃)−1. (4.24)

From (4.24) and

lim
m→∞

Σ−1/2N̂m = Σ−1B̃ (4.25)

from part (d), the result in part (e) follows directly:

lim
m→∞

PΣ−1/2 bNm
= lim

m→∞
Σ−1/2N̂m(N̂>

mΣ−1N̂m)−1N̂>
mΣ−1/2

= Σ−1B̃(B̃>Σ−2B̃)−1B̃>Σ−1

= PΣ−1 eB.

Because Σ−1 is symmetric and positive definite, we may write Σ−1 = Q>DQ, where

Q is a p × p orthogonal matrix and D is a p × p positive diagonal matrix. Define a

p × k matrix N̂∗
m = QN̂m and note that the columns of N̂∗

m are orthonormal vectors

(i.e., (N̂∗
m)>(N̂∗

m) = Ik). To finish the proof, we use some properties of the Frobenius

‖A‖F and spectral ‖A‖2 norms of a symmetric k× k matrix A. These norms are given

in Definition 2.8 and (2.8), respectively. From Lemma 7.4, we have

‖A‖2 ≤ ‖A‖F ≤
√

k · ‖A‖2.

In addition, if B is a k×k matrix, then ‖AB‖F ≤ k ·‖A‖F‖B‖F. Using these properties,

we let Cm = (N̂>
mΣ−1N̂m)−1 = [(N̂∗

m)>D(N̂∗
m)]−1 and C = (B̃>Σ−2B̃)−1 and write

tr
[
(Cm − C)>(Cm − C)

]
= ‖Cm − C‖2

F

= ‖Cm(C−1
m − C−1)C‖2

F

≤ k · ‖Cm‖2
2 · ‖C−1

m − C−1‖2
F · ‖C‖2

F

= k · ‖C‖2
F · ‖D−1‖2

2 · tr
[
(C−1

m − C−1)>(C−1
m − C−1)

]
,
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where above, because Cm is symmetric,

‖Cm‖2
2 = largest eigenvalue of CmC>

m

= largest eigenvalue of
[
(C−1

m )(C−1
m )
]−1

= largest eigenvalue of
[
(N̂∗

m)>D(N̂∗
m)(N̂∗

m)>D(N̂∗
m)
]−1

= largest eigenvalue of
[
(N̂∗

m)>D2(N̂∗
m)
]−1

= largest eigenvalue of [D2]−1

= ‖D−1‖2
2.

By (4.25), limm→∞(C−1
m − C−1) = 0k×k so that it follows that limm→∞ tr

[
(Cm −

C)>(Cm − C)
]

= 0 or, equivalently, that limm→∞(Cm − C)>(Cm − C) = 0k×k. This

proves (4.24) and part (e). 2

In accordance with Definition 4.1, we can now set an upper bound on the finite sam-

ple breakdown point of a Sir-type procedure, based on a known covariance structure

Σ, µ.

Corollary 4.1 For a given 1 ≤ K < p, suppose the Sir procedure seeks to estimate a

K-dimensional subspace of Rp based on H ≥ min{K, p − K} data slices with a size n

data sample (X, Y )n and known values of E(X) = µ, Cov(X) = Σ. Then,

(i) there exists a sequence (X,Y )n,k
m , m ∈ N, of contaminated data sets and associated

subspace estimates B̂m,k, found by replacing k = min{K, p−K} observations in (X, Y )n,

where

lim
m→∞

F(B̂, B̂m,k) =
√

2(K −max{0, 2K − p}),

where B̂ is the subspace estimate based on (X, Y )n.

(ii) the finite sample breakdown point of Sir, under Definition 4.1, satisfies

εfsbp,K((X,Y )n, F,K) ≤ min{K, p−K}
n

.

Remark. We make a few comments on the nature of the proof and the contamination

scheme used. Uncontaminated data (X, Y )n produces a K−dimensional estimate B̂ ⊂
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Rp of the reduction space, when the dimension K of reduction is known. If B̂m,k ⊂ Rp

represents a corrupted K−dimensional estimate of the reduction subspace, based on

replacing k observations in (X, Y )n under the contamination scheme in Section 4.3.1,

then the maximal distance F(B̂, B̂m,k) between the corrupted and uncorrupted subspace

estimates is given in (4.1). There are the two possible cases for this distance, depending

on whether 2K ≤ p or 2K > p.

If 2K ≤ p, the subspace estimates B̂, B̂m,k are maximally distant under F if these

estimates are orthogonal. In this case, by appropriately replacing k = K observations in

the first K slices, we can obtain a contaminated estimate B̂m,k=K that is arbitrarily close

to being orthogonal to the uncontaminated estimate B̂ (in the sense that P
bBP bBm,K

≈

0p×p).

If 2K > p, the subspace estimates B̂ and B̂m,k must have a non-empty intersection

that is at least of dimension 2K− p by Lemma 2.2. In this case, subspaces B̂ and B̂m,k

are maximally distant under F if the intersection B̂ ∩ B̂m,k is as minimal as possible

(e.g., dim(B̂∩B̂m,k) = 2K−p) and, after removing the intersection, the remaining parts

of both subspaces B̂ ∩ (B̂ ∩ B̂m,k)
⊥ and B̂m,k ∩ (B̂ ∩ B̂m,k)

⊥ are orthogonal. Here we

can replace k = p−K observations to obtain a contaminated sample and an estimate

B̂m,k=p−K for which dim(B̂ ∩ B̂m,p−K) ≈ 2K − p and P
bB∩( bB∩ bBm,k)⊥P

bBm,p−K∩( bB∩ bBm,k)⊥ ≈

0p×p, ensuring enough contamination to force a breakdown of the dimension reduction

procedure.

Proof. Let B̂ ⊂ Rp denote the K-dimensional reduction subspace determined from

the uncontaminated data; B̂ ⊂ Rp is spanned by the scaled eigenvectors β̂1 =

Σ−1/2η̂1, . . . , β̂K = Σ−1/2η̂K associated with the K largest eigenvalues of (4.20) com-

puted with (X,Y )n. To establish a bound on εfsbp,K, we consider two possible cases:

2K ≤ p or 2K > p. For each case, we examine the finite sample breakdown point under

different contamination schemes which satisfy (4.21) and (4.22).

Case I: 2K ≤ p. Here we use the contamination routine described in Section 4.3.1

to obtain a contaminated sample upon replacing K observations in (X, Y )n. Choose
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orthonormal β1, . . . , βK ∈ Σ1/2B̂⊥ = {Σ1/2v : v ∈ B̂⊥} ⊂ Rp, which is possible because

dim(Σ1/2B̂⊥) = dim(B̂⊥) = p − dim(B̂) = p − K ≥ K. Following Section 4.3.1,

replace the first observation in the first K slices with contaminated values (x̃1h,m, ỹ1h
) =

(x̃1h
, y1h

) to obtain a sequence of contaminated samples (X, Y )n,K
m for m ∈ N, where

x̃1h,m = tmβ̃h with β̃h = Σ1/2βh, for h = 1, . . . ,K. Note that the vectors {β̃h}Kh=1 satisfy

(4.22).

After computing a covariance estimate V̂m based on (X, Y )n,K
m in (4.20), an applica-

tion of the Sir method to (X,Y )n,K
m results in an estimated K-dimensional reduction

subspace B̂m,K ⊂ Rp spanned by the scaled eigenvectors β̂m,1 = Σ−1/2η̂m,1, . . . , β̂m,K =

Σ−1/2η̂m,K of V̂m associated with the K largest eigenvalues of V̂m. Let Σ−1B̃ ⊂ Rp

denote the subspace spanned by Σ−1β̃1 = Σ−1/2β1, . . . , Σ
−1β̃K = Σ−1/2βK. It follows

from Theorem 4.1 (e) (with k = K) that

lim
m→∞

P
bBm,K

= PΣ−1 eB

and so

lim
m→∞

F(B̂, B̂m,K) = lim
m→∞

√
2K − 2tr(P

bBP bBm,K
)

=
√

2K − 2tr(P
bBPΣ−1 eB) = F(B̂, Σ−1B̃)

by the continuity of matrix trace and multiplication operations in (2.2). Because

Σ−1B̃ ⊂ B̂⊥, it holds that PΣ−1 eBP bB = 0p×p by orthogonality. From this and 2K ≤ p,

the subspaces B̂ and Σ−1B̃ are maximally distant K-dimensional subspaces under F by

(4.1), namely F(B̂, Σ−1B̃) =
√

2K. By Definition 4.1, we conclude

εfsbp,K((X, Y )n, F,K) ≤ K
n

=
min{K, p−K}

n
.

Case II: 2K > p. Again we use the contamination scheme from Section 4.3.1, but

replace k = p−K observations in (X, Y )n for a contaminated sample. Choose orthonor-

mal β1, . . . , βp−K vectors which span Σ1/2B̂⊥ ⊂ Rp, noting dim(Σ1/2B̂⊥) = dim(B̂⊥) =

p − K. To obtain a sequence of contaminated samples (X,Y )n,p−K
m , m ∈ N, we re-

place the first observation in the first k = p − K slices with contaminated values

(x̃1h,m, ỹ1h
) = (x̃1h

, y1h
) where x̃1h,m = tmβ̃h with β̃h = Σ1/2βh, for h = 1, . . . , p−K.
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The Sir procedure, applied to (X, Y )n,p−K
m , again results in an estimated K-

dimensional reduction subspace B̂m,p−K ⊂ Rp spanned by the Σ−1/2-scaled eigenvectors

β̂m,1, . . . , β̂m,K of a covariance estimate V̂m (associated with the K largest eigenvalues

λ̂m,1 ≥ · · · ≥ λ̂m,K of V̂m). Write B̂(1)
m,p−K and B̂(2)

m,p−K to denote the Rp-subspaces

spanned by vectors {β̂m,h}p−K
h=1 and {β̂m,h}Kh=p−K+1, respectively. By orthogonality, we

may write

P
bBm,p−K

= P
bB(1)
m,p−K

+ P
bB(2)
m,p−K

.

Because B̂ and B̂m,p−K are K−dimensional subspaces of Rp, the dimension of the inter-

section B̂∩B̂m,p−K is at least 2K−p by Lemma 2.2, for all m ∈ N. Because the projection

matrix for B̂m,p−K ∩ (B̂ ∩ B̂m,p−K)⊥ is P
bBm,p−K∩( bB∩ bBm,p−K)⊥ = P

bBm,p−K
− P

bB∩ bBm,p−K
and

P
bBP bB∩ bBm,p−K

= P
bB∩ bBm,p−K

from B̂ ∩ B̂m,p−K ⊂ B̂ , it follows that for all m ∈ N:

tr(P
bBP bBm,p−K

) = tr
[
P
bB
(
(P

bBm,p−K
− P

bB∩ bBm,p−K
) + P

bB∩ bBm,p−K

)]
= tr

[
P
bB(P bBm,p−K∩( bB∩ bBm,p−K)⊥ + P

bB∩ bBm,p−K
)
]

= tr(P
bBP bBm,p−K∩( bB∩ bBm,p−K)⊥) + tr(P

bB∩ bBm,p−K
)

≥ tr(P
bB∩ bBm,p−K

) ≥ 2K − p (4.26)

using Lemma 7.3. We note as well that

tr(P
bBP bB(2)

m,p−K
) ≤ rank(P

bB(2)
m,p−K

)

= tr(P
bB(2)
m,p−K

)

= tr(P
bBm,p−K

− P
bB(1)
m,p−K

)

= tr(P
bBm,p−K

)− tr(P
bB(1)
m,p−K

) (4.27)

= rank(P
bBm,p−K

)− rank(P
bB(1)
m,p−K

) = 2K − p.

Let Σ−1B̃ ⊂ Rp denote the subspace spanned by Σ−1β̃1 = Σ−1/2β1, . . . , Σ
−1β̃p−K =

Σ−1/2βp−K. From Theorem 4.1 (e) (with k = p−K), it follows directly that

lim
m→∞

P
bB(1)
m,p−K

= PΣ−1 eB.
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By this and (4.26)-(4.28), we find

2K − p ≤ lim
m→∞

tr(P
bBP bBm,p−K

)

= lim
m→∞

tr
[
P
bB(P bB(1)

m,p−K
+ P

bB(2)
m,p−K

)
]

≤ lim
m→∞

tr(P
bBP bB(1)

m,p−K
) + 2K − p

= lim
m→∞

tr(P
bBPΣ−1 eB) + 2K − p

= 2K − p,

using above P
bBPΣ−1 eB = 0p×p by orthogonality since Σ−1B̃ = B̂⊥. Hence,

limm→∞ tr(P
bBP bBm,p−K

) = 2K − p and so we finally derive

lim
m→∞

F(B̂, B̂m,p−K) = lim
m→∞

√
2K − 2tr(P

bBP bBm,p−K
) =

√
2(p−K).

The limiting value
√

2(p−K) of F(B̂, B̂m,p−K) is the maximal distance between two

K-dimensional subspaces of Rp under F by (4.1) in the considered case 2K > p. By

Definition 4.1, we may conclude

εfsbp,K((X, Y )n, F,K) ≤ p−K
n

=
min{K, p−K}

n
. 2

4.3.2 K known – Σ unknown case

Here we establish a bound on the finite sample breakdown point of Sir in the case that

the dimension 1 ≤ K < p of the reduction subspace is known, but the components of

the covariance structure Cov(X) = Σ, E(X) = µ are unknown and require estimation.

As in Section 4.3.1, let (X, Y )n = {(xi, yi)}n
i=1 ⊂ Rp × R denote an uncontam-

inated sample of size n. We estimate the unknown mean µ and variance Σ with

x =
∑n

i=1 xi/n and Σ̂ =
∑n

i=1(xi − x)(xi − x)>/n, respectively. Based on (X, Y )n, a

Sir-type procedure results in a K−dimensional reduction subspace estimate B̂ based on

β̂1 = Σ̂−1/2η̂1, . . . , β̂K = Σ̂−1/2η̂K, where η̂1, . . . , η̂K are the eigenvectors corresponding

to the K largest eigenvectors λ̂1 ≥ · · · ≥ λ̂K of

V̂ = Σ̂−1/2

H∑
h=1

p̂h(xh − x)(xh − x)>Σ̂−1/2. (4.28)
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Equivalently, β̂1, . . . , β̂K can be determined as the eigenvectors corresponding to the K

largest eigenvectors of

Ṽ = Σ̂−1

H∑
h=1

p̂h(xh − x)(xh − x)>, (4.29)

since V̂ η̂i = λ̂iη̂i if and only if Ṽ β̂i = λ̂iβ̂i, i = 1, . . . ,K.

In our subsequent study of the breakdown properties of Sir, we use a contamination

scheme similar to Section 4.3.1 to obtain a contaminated sample (X, Y )n,k
m based on

replacing k observations among the first k slices Ii, i = 1, . . . , H.

To establish a bound on the breakdown point of Sir, we will make use of the

following results.

Lemma 4.2 Let M0 be a p× p positive definite matrix and let {tm}∞m=1 be a positive,

increasing real sequence such that tm → ∞ as m → ∞. For i = 1, . . . , k < p, let

βi 6= 0p, ui ∈ Rp, ci > 0 ∈ R such that {βi}k
i=1 are linearly independent; define βm,i =

βi + (ui/tm) and let

Mm,i = M0 + t2m

i∑
j=1

cjβm,jβ
>
m,j, m ∈ N.

(a) Then, for each i = 1, . . . , k and m ∈ N, the matrix Mm,i is positive definite with

an inverse given by

M−1
m,i = M−1

m,i−1 −
ci · t2m ·M−1

m,i−1βm,iβ
>
m,iM

−1
m,i−1

1 + ci · t2m · β>m,iM
−1
m,i−1βm,i

(4.30)

where Mm,0 = M0 for m ≥ 1. Furthermore, for i = 1, . . . , k:

M−1
∞,i ≡ lim

m→∞
M−1

m,i = M
−1/2
0

(
Ip − P

M
−1/2
0 Bi

)
M

−1/2
0 ,

lim
m→∞

t2m ·M−1
m,iβm,i =

M−1
∞,i−1βi

ci · β>i M−1
∞,i−1βi

, (4.31)

where Bi = [β1 · · · βi] represents a p× i matrix and M−1
∞,0 ≡ M−1

0 .

(b) Let βm =
∑k

i=1 βm,i/k and Mm = Mm,k + t2m
∑k

i=1 c̃i(βm,i − βm)(βm,i − βm)> for

c̃i > 0, i = 1, . . . , k. Then, Mm is positive definite and satisfies

lim
m→∞

M−1
m = M

−1/2
0

(
Ip − P

M
−1/2
0 Bk

)
M

−1/2
0
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with sup
m

t2m‖M−1
m βm,i‖ < ∞ for i = 1, . . . , k.

Remark. The above results imply that, because of the contamination/pertubation of

M0 to Mm (or Mm,k), the limit of M−1
m is not positive definite. In fact, the contami-

nation vectors {βi}k
i=1 span the nullspace of the limiting inverse matrix limm→∞ M−1

m .

That is, for v ∈ Rp, we find (limm→∞ M−1
m,k)v = 0p if and only if v ∈ span({βi}k

i=1).

Proof. We prove part (a) of the lemma first. Given the form of M−1
∞,i−1 in (4.31) (with

M−1
∞,0 ≡ M−1

0 and P
M
−1/2
0 B0

≡ 0p×p), we note that

β>i M−1
∞,i−1βi > 0 ⇐⇒ (Ip − P

M
−1/2
0 Bi−1

)
M

−1/2
0 βi 6= 0p

⇐⇒ M
−1/2
0 βi 6∈ span({M−1/2

0 βj}i−1
j=1) (4.32)

⇐⇒ βi 6∈ span({βj}i−1
j=1), i = 1, . . . , k.

Because {βi}k
i=1 are linearly independent, we have that βi 6∈ span({βj}i−1

j=1) for each

i = 1, . . . , k and the denominator of (4.31) is well-defined, if the form of each M−1
∞,i

holds as claimed.

We use a proof by induction. Consider i = 1 first. Then, Mm,1 is positive definite

from the fact that for v 6= 0p ∈ Rp, i = 1,

v>Mm,iv = v>Mm,i−1v + t2m · ci · (v>βm,i)
2 ≥ v>Mm,i−1v > 0 (4.33)

by the positive definiteness of Mm,i−1. One can verify directly that M−1
m,1 in (4.30)

satisfies Mm,1M
−1
m,1 = Ip. The limiting properties of M−1

m,1 follow immediately upon

noting that, for i = 1,

M−1
m,iβm,i =

M−1
m,i−1βm,i

1 + ci · t2m · β>m,iM
−1
m,i−1βm,i

(4.34)

and P
M
−1/2
0 B1

= M
−1/2
0 β1β

>
1 M

−1/2
0 /(β>1 M−1

0 β1).

We show now that the claim holds for a given i = 2, . . . , k, under the induction as-

sumption that Mm,i−1 is positive definite with inverse M−1
m,i−1 that has the two claimed

limiting properties. If Mm,i−1 is positive definite, Mm,i is positive definite by the same
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argument as in (4.33) and, since multiplying the matrix (4.30) by Mm,i yields the iden-

tity matrix Ip, the matrix in (4.30) must be M−1
m,i. Because M−1

∞,i−1 ≡ limm→∞ Mm,i−1

exists by the induction hypothesis with form given by (4.31), βiM
−1
∞,i−1β

>
i > 0 and

(Ip − P
M
−1/2
0 Bi−1

)
M

−1/2
0 βi 6= 0p hold by (4.32) under the induction assumption, and

limm→∞ βm,i = βi, we can deduce that

lim
m→∞

M−1
m,i = M−1

∞,i−1 −
M−1
∞,i−1βiβ

>
i M−1

∞,i−1

β>i M−1
∞,i−1βi

= M−1
∞,i−1 −M

−1/2
0 P

(Ip−P
M
−1/2
0 Bi−1

)M
−1/2
0 βi

M
−1/2
0

= M
−1/2
0

(
Ip − P

M
−1/2
0 Bi−1

− P
(Ip−P

M
−1/2
0 Bi−1

)M
−1/2
0 βi

)
M

−1/2
0

= M
−1/2
0

(
Ip − P

M
−1/2
0 Bi

)
M

−1/2
0 .

The last equality above follows from the fact that P
M
−1/2
0 Bi−1

+ P
(Ip−P

M
−1/2
0 Bi−1

)M
−1/2
0 βi

is the orthogonal projection matrix for the Rp-subspace spanned by vectors

{M−1/2
0 Bi−1, (Ip−P

M
−1/2
0 Bi−1

)M
−1/2
0 βi} (i.e., the sum of the two projection matrices is

symmetric and idempotent since P
M
−1/2
0 Bi−1

P
(Ip−P

M
−1/2
0 Bi−1

)M
−1/2
0 βi

= 0p×p holds by or-

thogonality). Because the two collections of vectors {M−1/2
0 Bi−1, (Ip − P

M
−1/2
0 Bi−1

)βi}

and M
−1/2
0 Bi span the same subspace of Rp, it must be the case that P

M
−1/2
0 Bi

=

P
M
−1/2
0 Bi−1

+ P(Ip−P
M
−1/2
0 Bi−1

)βi
by the uniqueness of projection matrices. Likewise, we

find (4.34) holds for i using the formula of M−1
m,i so that limm→∞ t2m · M−1

∞,iβm,i again

follows by the induction assumption. This completes the proof by induction of part (a).

To establish part (b), define M̃m,0 = Mm,k and β̃m,i = βm,i − βm,

M̃m,i = M̃m,0 + t2m

i∑
j=1

c̃jβ̃m,jβ̃
>
m,j, i = 1, . . . , k.

Note that each M̃m,i, i = 1, . . . , k, is positive definite (e.g., v>M̃m,iv > 0, v 6= 0p ∈ Rp)

because Mm,k = M̃m,0 is positive definite from part (a) and M̃m,i − M̃m,0 is clearly

nonnegative definite. For each i = 1, . . . , k, the inverse M̃−1
m,i satisfies

M̃−1
m,i = M̃−1

m,i−1 −
c̃i · t2m · M̃−1

m,i−1β̃m,iβ̃
>
m,iM̃

−1
m,i−1

1 + c̃i · t2m · β̃>m,iM̃
−1
m,i−1β̃m,i

(4.35)
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upon replacing
{
Mm,i, Mm,i−1, βm,i, ci

}
with counterparts

{
M̃m,i, M̃m,i−1, β̃m,i, c̃i

}
in

(4.30). Because Mm = M̃m,k, it suffices to show that for each i = 0, 1, . . . , k,

lim
m→∞

M̃−1
m,i = M

−1/2
0

(
Ip − P

M
−1/2
0 Bk

)
M

−1/2
0 ≡ M−1

∞,k;

sup
m

t2m · ‖M̃−1
m,iβm,j‖ < ∞, j = 1, . . . , k. (4.36)

Again we proceed with an induction argument to show (4.36). For i = 1, . . . , k, let

Bi− denote the p× (k − 1) matrix that results from removing the column βi from Bk.

For any j = 1, . . . , k, we can rewrite Mm,k = (M0 + t2m
∑k

`=1
` 6=j

c`βm,`β
>
m,`) + cjβm,jβ

>
m,j

so that the jth term, involving cjβm,jβ
>
m,j, appears as the last (i.e., kth) term in the

sum Mm,k. Treating the jth term cjβm,jβ
>
m,j as the (final) kth term in the sum Mm,k,

it follows from the form of inverses in part (a) and (4.31) that for any j = 1, . . . , k,

lim
m→∞

t2m ·M−1
m,kβm,j =

M
−1/2
0

(
Ip − P

M
−1/2
0 Bj−

)
M

−1/2
0 βj

cj · β>j M
−1/2
0

(
Ip − P

M
−1/2
0 Bj−

)
M

−1/2
0 βj

6= 0p, (j = 1, . . . , k),

where the last inequality follows from (4.32). Hence, (4.36) holds for i = 0 with

M̃m,0 = Mm,k.

Now assuming (4.36) holds for some i ∈ {0, 1, . . . , k − 1}, we show (4.36) holds for

i + 1. Under the induction assumption and

β̃m,i+1 = −
k∑

j=1
j 6=i+1

1

k
βm,j +

(
1− 1

k

)
βm,i+1,

we find

sup
m

t2m · ‖M̃−1
m,iβ̃m,i+1‖ ≤

k∑
j=1

max

{
1− 1

k
,
1

k

}
· sup

m
t2m · ‖M̃−1

m,iβm,j‖ < ∞, (4.37)

which implies

lim
m→∞

M̃−1
m,iβ̃m,i+1 = 0p, 1 ≤ sup

m
{1 + c̃i+1 · t2m · β̃>m,i+1M̃

−1
m,iβ̃m,i+1} ≤ C < ∞ (4.38)

for some C > 0 so that

lim
m→∞

c̃i+1 · t2m · M̃−1
m,iβ̃m,i+1β̃

>
m,i+1M̃

−1
m,i

1 + c̃i+1 · t2m · β̃>m,i+1M̃
−1
m,iβ̃m,i+1

= 0p×p.
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From this last limit and limm→∞ M̃−1
m,i = M−1

∞,k by the induction assumption, we find

limm→∞ M̃−1
m,i+1 = M−1

∞,k from (4.35). Finally, using the inverse in (4.35), recognizing

that (4.36) holds for i under the induction assumption, and applying (4.37)-(4.38), we

find that for any j = 1, . . . , k:

sup
m

t2m · ‖M̃−1
m,i+1βm,j‖ ≤ sup

m
t2m · ‖M̃−1

m,iβm,j‖

+
c̃i+1

C
·
(

sup
m

t2m · ‖M̃−1
m,iβ̃m,i+1‖

)
·
(

sup
m

t2m · β̃>m,i+1M̃
−1
m,iβm,j

)
≤ sup

m
t2m · ‖M̃−1

m,iβm,j‖

+
c̃i+1

C
·
(

sup
m

t2m · ‖M̃−1
m,iβ̃m,i+1‖

)2

· sup
m
‖βm,j‖

< ∞.

Hence, we find (4.36) holds for i + 1 which completes the induction proof of part (b).

2

The following is a generalization of Lemma 4.18 of Hilker (1997).

Lemma 4.3 Let {Mm}∞m=1 be a sequence of p× p matrices, each having p real eigen-

values. Suppose limm→∞ Mm = W
∑k

i=1 uiv
>
i , where W is a p × p matrix and

ui, vi 6= 0p ∈ Rp, W>vi = 0p, i = 1, . . . , k.

Let ηm ∈ Rp, ‖ηm‖ = 1 denote an arbitrary normalized eigenvector of Mm with

corresponding eigenvalue λm, m ≥ 1. Then,

(a) limm→∞ λm = 0.

(b) If the vectors {Wui}k
i=1 are linearly independent, then limm→∞ η>mvi = 0 for i =

1, . . . , k.

Proof. To begin, we shall establish part (a). Let M = W
∑k

i=1 uiv
>
i . We first note

that all p eigenvalues of M must be zero. To see this, let λ denote an arbitrary

real eigenvalue of M with corresponding eigenvector v (possibly complex) such that
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v>v = 1, where v denotes the complex conjugate of v. Because M2 = 0p×p from

v>i W = 0>p for i = 1, . . . , k and Mv = λv, we have

0 = v>0p = v>0p×pv = v>M2v = v>M(Mv) = v>(Mv)λ = v>vλ2 = λ2,

implying λ = 0.

Writing λm,1, . . . , λm,p to denote the p real eigenvalues of Mm, the Ostrowski-Elsner

Theorem [cf. Stewart and Sun (1990), p. 170] states that we can bound the maximum

difference between the eigenvalues {λm,i}p
i=1 of Mm and the eigenvalues (all zero) of

the limiting matrix M as

max
1≤i≤p

|λm,i| = max
1≤i≤p

|λm,i − 0| ≤ (2p− 1) (‖M‖F + ‖Mm‖F)
1− 1

p ‖Mm −M‖
1
p

F .

Because limm→∞ Mm = M and the Frobenius matrix norm is continuous, we have from

the above inequality that limm→∞ max1≤i≤p |λm,i| = 0. This establishes part (a).

To show part (b), it suffices to show that, for any subsequence {mj}∞j=1 of {m}∞m=1,

there exists a further subsequence {mjn}∞n=1 of {mj}∞j=1 such that limn→∞ v>i ηmjn
= 0

for each i = 1, . . . , k. By the Bolzano-Weierstrass theorem, there exists a convergent

subsequence {mjn}∞n=1 of {mj}∞j=1 such that limn→∞ ηmjn
= c ∈ Rp, ‖c‖ = 1.

Note ‖ηm‖ = 1 is bounded and Mmηm = λmηm, for all m ≥ 1. As m →∞, we find

that

Mηm = −(Mm −M)ηm + λmηm → 0p

follows from limm→∞ λm = 0 and limm→∞(Mm −M) = 0p×p. From the above limit of

Mηm, it stands that

0p = lim
n→∞

Mηmjn
=

k∑
i=1

ai ·Wui,

where ai = v>i c = limn→∞ v>i ηmjn
, i = 1, . . . , k. Because {Wui}k

i=1 are linearly inde-

pendent, it must be the case that each ai = 0 or, equivalently, limn→∞ η>mjn
vi = 0 for

i = 1, . . . , k. This completes the proof of part (b). 2
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Data contamination

To establish a bound on the finite sample breakdown point of Sir in the case of an

unknown covariance structure, we use k-slice (replacement) contamination scheme as

in Section 4.3.1 with the following exception. Instead of (4.22), the contamination

of the x-values is here assumed to be of the following structure: x̃1h,m = tmβ̃h + ṽh,

β̃h, ṽh ∈ Rp for h = 1, . . . , k, where

{β̃h}k
h=1 are linearly independent. (4.39)

This provides a contaminated sample (X, Y )n,k
m based on replacing the first observation

in the first k slices.

To estimate the unknown covariance Σ using the data (X, Y )n,k
m , we compute the

sample covariance matrix Σ̂m of (X, Y )n,k
m which can be algebraically rewritten as

Σ̂m =
n− k

n
Σ̂∗ +

n− k

n2

k∑
h=1

(x̃1h,m − x∗)(x̃1h,m − x∗)>

+
k

n2

k∑
h=1

(x̃1h,m − xk,m)(x̃1h,m − xk,m)>,

for

Σ̂∗ =
1

n− k

∑
i6=1h

h∈{1,...,k}

(xi − x∗)(xi − x∗)>, x∗ =
1

n− k

∑
i6=1h

h∈{1,...,k}

xi, xk,m =
1

k

k∑
h=1

x̃1h,m.

For our purposes, it is helpful to further rewrite Σ̂m as

Σ̂m = S +
n− k

n2
t2m

k∑
h=1

βh,mβ>h,m +
k

n2
t2m

k∑
h=1

(βh,m − βm)(βh,m − βm)> (4.40)

where

S =
n− k

n
Σ̂∗, βm =

1

k

k∑
h=1

βh,m, βh,m = β̃h +
ṽh − x∗

tm
, h = 1, . . . , k.

Because we determine the dimension reduction space by multiplying K normalized

eigenvectors of (4.28) by Σ̂−1/2, or equivalently by finding K eigenvectors of Ṽ from
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(4.29), it is important to understand how these matrices behave in the presence of data

contamination. The next result addresses this point.

In the following, let B̃ ⊂ Rp denote the space spanned by {β̃h}k
h=1 and write x∗h =∑

i6=1h:yi∈Ih
xi/(nh− 1) to denote the sample mean of the uncontaminated observations

in the hth slice, h = 1, . . . , k.

Theorem 4.2 Under the k-slice contamination scheme described in (4.39) (see also

Section 4.3.1), 1 ≤ k ≤ min{p, H}, suppose a contaminated sample (X, Y )n,k
m yields an

estimate Σ̂m of Σ as well as a p× p matrix Ṽm from (4.29). Assuming the matrix S is

positive definite in (4.40), it holds that:

lim
m→∞

Σ̂−1
m = S−1/2

(
Ip − PS−1/2 eB

)
S−1/2, (4.41)

lim
m→∞

1

tm
Ṽm = S−1/2

(
Ip − PS−1/2 eB

)
S−1/2

k∑
h=1

nh − 1

nhn
(x∗h − x∗)β̃>h . (4.42)

Remark. For the case that the covariance matrix Σ of the regressor variables X is

unknown, the above Theorem has powerful implications as to how k-slice contamina-

tion will influence the e.d.r. subspace resulting from the Sir procedure under con-

tamination. The behavior of the inverse of the covariance matrix Σ̂−1
m , estimated

from contaminated data (X, Y )n,k
m , is key because this matrix appears in the con-

taminated matrix version Ṽm of (4.29), where Ṽm in turn is used for obtaining the

contaminated e.d.r directions as its eigenvectors. In the limiting form of contamina-

tion (i.e., as tm → ∞), the positive definite inverse matrix Σ̂−1
m actually degenerates

to a singular matrix in (4.41). But more importantly, the null space of limm→∞ Σ̂−1
m

is precisely the space spanned by the k linearly independent directions of contamina-

tion {β̃h}k
h=1 from (4.39). That is, the orthogonal complement of the column space of

limm→∞ Σ̂−1
m = S−1/2

(
Ip − PS−1/2 eB

)
S−1/2 is exactly the Rp-space span({β̃h}k

h=1). The

significance of this result is the following. Suppose β̂m represents an estimated e.d.r.

direction arising from the Sir procedure applied to the contaminated data (X, Y )n,k
m .

The vector β̂m is an eigenvector of Ṽm, i.e.,

Σ̂−1
m cm = Ṽmβ̂m = λmβ̂m,
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where cm ∈ Rp is given by

cm = Σ̂−1
m

(
k∑

h=1

p̂h(xh,m − xm)(xh,m − xm)> +
H∑

h=k+1

p̂h(xh − xm)(xh − xm)>

)
β̂m,

involving the contaminated sample means from the first k slices {xh,m}k
h=1 and the

contaminated overall sample mean xm. Hence, we expect the e.d.r. direction β̂m to

be in the column space of Σ̂−1
m so that limm→∞ β̂m should be in the column space of

limm→∞ Σ̂−1
m and therefore orthogonal to the directions of contamination {β̃h}k

h=1 from

(4.39). In fact, the limit (as m →∞) of any eigenvector of Ṽm, or equivalently Ṽm/tm,

can be expected to be in the column space of S−1/2
(
Ip − PS−1/2 eB

)
S−1/2 by (4.42) and

hence orthogonal to span({β̃h}k
h=1).

Proof. The result in (4.41) follows immediately from applying Lemma 4.2(b) to the

form of Σ̂m in (4.40).

To establish (4.42), we first note that the matrix Ṽ from (4.29) can be generally

rewritten in a form more suitable for our purposes. With some algebra, it holds that

n∑
i=1

(xi−x)(xi−x)> =
H∑

h=1

Sh+
H∑

h=1

nh(xh−x)(xh−x)>, Sh =
∑

i:yi∈Ih

(xi−xh)(xi−xh)
>,

so that upon division by the sample size n, we have

Σ̂ =
1

n

(
H∑

h=1

Sh

)
+

H∑
h=1

p̂h(xh − x)(xh − x)>,

from which it follows that

Ṽ = Σ̂−1

H∑
h=1

p̂h(xh − x)(xh − x)> = Ip − Σ̂−1

(
1

n

H∑
h=1

Sh

)
.

Now consider computing a version Ṽm of Ṽ under contamination. Under the k-

slice contamination scheme, the sums Sh for h = k + 1, . . . , H remain unchanged and

are not functions of m. However, under contamination affecting the first observation

(x̃1h,m, ỹ1h
= y1h

) in the first k-slices (h = 1, . . . , k), we may write contaminated

versions, say {Sh,m}k
h=1, of the first k sums {Sh}k

h=1 as a function of {x̃1h,m}k
h=1 by

Sh,m = S∗h +
nh − 1

nh

t2m

(
βh,m +

x∗ − x∗h
tm

)(
βh,m +

x∗ − x∗h
tm

)>
, h = 1, . . . , k,
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with S∗h =
∑

i6=1h:yi∈Ih
(xi−x∗h)(xi−x∗h)

> for h = 1, . . . , k, and βh,m as defined in (4.40).

Hence, writing

Em = Ip −
1

n
Σ̂−1

m

(
k∑

h=1

S∗h +
H∑

h=k+1

Sh

)
, uh = x∗ − x∗h, h = 1, . . . , k,

we can compute the contaminated Ṽm as

Ṽm = Ip − Σ̂−1
m

(
1

n

k∑
h=1

Sh,m +
1

n

H∑
h=k+1

Sh

)

= Em − Σ̂−1
m

k∑
h=1

nh − 1

nhn
t2m

(
βh,m +

x∗ − x∗h
tm

)(
βh,m +

x∗ − x∗h
tm

)>
= Em −

k∑
h=1

nh − 1

nhn

(
t2mΣ̂−1

m βh,m + tmΣ̂−1
m uh

)(
βh,m +

uh

tm

)>
.

Upon division by m, we have

1

tm
Ṽm =

1

tm
Em −

k∑
h=1

nh − 1

nhn

(
tmΣ̂−1

m βh,m + Σ̂−1
m uh

)(
βh,m +

uh

tm

)>
.

Applying Lemma 4.2 with the form of Σ̂m in (4.40), we have that

lim
m→∞

1

tm
Σ̂−1

m = 0p×p, lim
m→∞

tmΣ̂−1
m βh,m = 0p, lim

m→∞
uh

(
βh,m +

uh

tm

)>
= uhβ̃

>
h ,

so that limm→∞ Em/tm = 0p×p and the form of limm→∞ Ṽm/tm follows from using the

limit of Σ̂−1
m . 2

In accordance with Definition 4.1, we can now derive an upper bound on the finite

sample breakdown point of a Sir-type procedure with an unknown covariance structure

and known dimension K of reduction. To derive the bound, we will require the following

mild definition of a breakdown pattern with respect to the data (X, Y )n. The breakdown

pattern implies that the constitution of the data (X, Y )n allows for k observations to

be replaced in order to a sequence of contaminated data sets (X, Y )n,k
m , m = 1, 2, . . .

which has some mild properties.

For all practical purposes and to facilitate the proofs, we may consider again a

k-replacement contamination scheme that involves corrupting the first observation in
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each of the first k ≤ H slices in the (X, Y )n. However, to allow for more generality in

applying the breakdown result, the breakdown pattern definition shall detail conditions

for which a more general k-replacement contamination scheme (X, Y )n,k
m will ensure

breakdown in the sense that the maximal distance F(B̂, B̂m,k) between the uncorrupted

B̂ and corrupted B̂m,k subspace estimates, based on (X,Y )n and (X, Y )n,k
m , can be

obtained as m →∞.

Definition 4.2 (Breakdown pattern for given K and unknown covariance.)

Suppose that a size n data sample (X,Y )n yields a K-dimensional subspace of Rp

based on Sir-estimated e.d.r. directions β̂1, . . . , β̂K, where 1 ≤ K < p. Let k =

min{K, p−K}. The sample (X, Y )n is said to satisfy a breakdown pattern for given

K and unknown E(X) = µ, Cov(X) = Σ if, there exists

1. some arbitrary selection of k slices from the available H slices, denoted by indices

{hj}k
j=1 ⊂ {1, . . . , H};

2. some arbitrary selection of k observations from (X, Y )n involving a single obser-

vation, denoted (xihj
, yihj

), chosen from each of the above k selected slices with

indices {hj}k
j=1: i.e., yihj

∈ Ihj
for each j = 1, . . . , k;

3. some arbitrary selection of k e.d.r. directions, denoted {β̂ij}k
j=1, from the e.d.r.

directions β̂1, . . . , β̂K estimated from (X, Y )n;

4. a positive real sequence {tm}∞m=1 such that tm →∞ as m →∞;

such that:

(i) for any real constants {aj}k
j=1,

k∑
j=1

aj ·
nhj

− 1

nhj

(x∗−hj
− x∗−) ∈ span{β̂ij}k

j=1 only if a1 = · · · = ak = 0,
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and

S− =
1

n

n∑
i=1

i6∈{ih1
,...,ihk

}

(xi − x∗−)(xi − x∗−)> is positive definite,

where

x∗−hj
=

1

nhj
− 1

∑
i:yi∈Ihj

i6=ihj

xi, j = 1, . . . , k; x∗− =
1

n− k

n∑
i=1

i6∈{ih1
,...,ihk

}

xi,

denote the sample mean x∗−hj
of the hjth slice after deleting the selected observa-

tion xihj
(j = 1, . . . , k) along with the overall sample mean x∗− and a covariance

estimate S− of Σ after deleting the k selected observations {xihj
}k

j=1 from (X, Y )n;

(ii) for some size k subset β̂m,`1 , . . . , β̂m,`k
of the first K Sir-estimated e.d.r. directions

from the contaminated data (X,Y )n,k
m , found by replacing (xihj

, yihj
) ∈ (X, Y )n

with (x̃ihj
, yihj

) where

x̃ihj
= tmβij + ṽj, ṽj ∈ Rp, j = 1, . . . , k, (4.43)

then the p× k matrix Bm = [β̂m,`1 · · · β̂m,`k
] satisfies

lim inf
m→∞

det(B>
mBm)∏k

j=1 ‖β̂j,m‖2
≥ C, (4.44)

for some C > 0.

Note: If the first k slices are selected (i.e., hj = j for j = 1, . . . , k) and the first

observation in each slice is selected (i.e., xihj
= x1j

for j = 1, . . . , k) to satisfy (i)-

(ii) in the above definition, then the k-replacement contamination scheme (4.43) is the

same as (4.39) and x∗−hj
= x∗j for j = 1, . . . , k, x∗− = x∗, S− = S, where x∗j , x∗, S

correspond to the quantities appearing in (4.42) of Theorem 4.2.

Using the first k slice replacement scheme (4.39), the condition (i) in Definition 4.2

may be expressed as: for any real constants {aj}k
j=1,∑k

h=1 ah · nh−1
nh

(x∗h − x∗) ∈ span{β̂ij}k
j=1 only if a1 = · · · = ak = 0,

and the p× p matrix S from (4.40) is positive definite.

(4.45)
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For the K = 1 case involving contamination of the first observation in the first slice,

Definition 4.2 (specifically, (4.45)) is an alternative, but equivalent, formulation of

the conditions required in Gather et al. (2002) and Hilker (1997) for studying errors in

direction estimation with unknown covariance structure. In addition, (4.44) is a weaker

version of a similar condition used in Hilker (1997, Corollary 4.20). Both (4.45) and

(4.44) are technical conditions that facilitate the proof for the breakdown point, given

K and unknown covariance Cov(X) = Σ. Again the main point of the contamination

used here is that regressor observations are contaminated by corrupting observations

located in different slices (4.43), but for discussion purposes it suffices to consider

contamination (X, Y )n,k
m using the first observation in the first k slices as in (4.39).

We now give a bound on the breakdown point.

Corollary 4.2 For a given 1 ≤ K < p, suppose the Sir procedure seeks to estimate a

K-dimensional subspace of Rp based on H ≥ min{K, p − K} data slices with a size n

data sample (X, Y )n and unknown values of E(X) = µ, Cov(X) = Σ. Provided that

the data (X, Y )n satisfies the Breakdown Pattern Definition 4.2,

(i) there exists a sequence (X,Y )n,k
m , m ∈ N, of contaminated data sets and associated

subspace estimates B̂m,k, found by replacing k = min{K, p−K} observations in (X, Y )n,

where

lim
m→∞

F(B̂, B̂m,k) =
√

2(K −max{0, 2K − p}),

where B̂ is the subspace estimate based on (X, Y )n.

(ii) the finite sample breakdown point of Sir, under Definition 4.1, satisfies

εfsbp,K((X,Y )n, F,K) ≤ min{K, p−K}
n

.

Remark. We again make a few comments on the nature of the proof and the contam-

ination scheme used.

The dimension K of the reduction subspace is known and the uncontaminated data

(X, Y )n produces a K−dimensional estimate B̂ ⊂ Rp of the reduction subspace, while
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B̂m,k ⊂ Rp represents a corrupted K−dimensional estimate of the reduction subspace,

based on replacing k observations in (X, Y )n. WloG and to ease our discussion, we

can assume that we shall contaminate the first observation in each of the first K slices

as in the contamination plan of (4.39). The maximal distance F(B̂, B̂m,k) between the

corrupted and uncorrupted subspace estimates is again given in (4.1). There are the

two possible cases for this distance, depending on 2K ≤ p or 2K > p.

If 2K ≤ p, the subspace estimates B̂, B̂m,k are maximally distant under F if these

estimates are orthogonal. If the uncontaminated data (X, Y )n are in the breakdown

pattern, we replace k = K observations with contaminated vectors as in (4.39), where

the directions of contamination correspond to β̂1, . . . , β̂K, namely the Sir-estimated

e.d.r. directions from (X, Y )n. Using Theorem 4.2, we show that this approach shall

yield a contaminated estimate B̂m,k=K of the e.d.r. subspace that is arbitrary close to

being orthogonal to the uncontaminated estimate B̂ (in the sense that P
bBP bBm,K

≈ 0p×p).

If 2K > p, the subspace estimates B̂, B̂m,k must have a non-empty intersection that is

at least of dimension 2K − p by Lemma 2.2. In this case, subspaces B̂ and B̂m,k are

maximally distant under F if the intersection B̂ ∩ B̂m,k is as minimal as possible (i.e.,

dim(B̂ ∩ B̂m,k) = 2K − p) and, after removing the intersection, the remaining parts of

both subspaces B̂ ∩ (B̂ ∩ B̂m,k)
⊥ and B̂m,k ∩ (B̂ ∩ B̂m,k)

⊥ are orthogonal. Here we can

replace k = p− K observations to obtain a contaminated sample and a contaminated

e.d.r. subspace B̂m,k=p−K by choosing k = p − K < K directions from among the K

uncontaminated estimates β̂1, . . . , β̂K to serve as the directions of contamination under

the scheme (4.39). Using Theorem 4.2 again with this contamination plan, we can

show dim(B̂ ∩ B̂m,p−K) ≈ 2K− p and P
bB∩( bB∩ bBm,k)⊥P

bBm,p−K∩( bB∩ bBm,k)⊥ ≈ 0p×p in the limit

(as m → ∞). Hence, this contamination approach provides enough contamination to

force breakdown of the Sir dimension reduction procedure.

Proof. Let B̂ ⊂ Rp denote the K-dimensional reduction subspace determined from

the uncontaminated data; B̂ ⊂ Rp is spanned by the scaled eigenvectors β̂1 =

Σ−1/2η̂1, . . . , β̂K = Σ−1/2η̂K associated with the K largest eigenvalues of (4.20) com-

puted with (X, Y )n. To establish a bound on εfsbp,K, we consider two possible cases:
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2K ≤ p or 2K > p. For each case, we examine the finite sample breakdown point under

different contamination schemes.

Case I: 2K ≤ p. Because the data (X, Y )n satisfy the breakdown pattern Definition 4.2

by assumption, we can get a contaminated sequence (X, Y )n,k
m , m ∈ N, as in (4.43)

by picking k = min{K, p − K} = K slices from among the available H slices, one

observation from each of these K slices and all K e.d.r. directions β̂1, . . . , β̂K. WloG we

assume that the contamination scheme (4.39), with k = K contamination directions

β̃h = β̂h, h = 1, . . . ,K, can be used to obtain (X,Y )n,k
m under Definition 4.2; that is, we

assume that the first k = K slices and the first observation in each slice {x1h
}Kh=1 may

be used so that (4.44) and (4.45) hold; if this choice does not satisfy Definition 4.2,

then other slices and observations may be used for contamination under (4.43) and the

arguments require only notational modifications.

The contaminated data yields a subspace estimate B̂m,K based on eigenvectors

β̂1,m, . . . , β̂K,m corresponding to the largest K eigenvalues of the contaminated matrix

Ṽm (computed from using (X, Y )n,K
m in (4.29)).

Under the first k = K replacement scheme (4.39), we now apply the results in

Lemma 4.3(b) and Theorem 4.2 using conditions (4.44) and (4.45) (since again we

assume the data (X,Y )n are in a breakdown pattern involving the first observation from

the first k = K slices). We may first assume that the matrix S from (4.40) is positive

definite under condition (4.45). Consequently, we may apply (4.42) in Theorem 4.2 to

find

lim
m→∞

Ṽm

tm
= S−1/2

(
Ip − PS−1/2 eB

)
S−1/2

k∑
h=1

nh − 1

nhn
(x∗h − x∗)β̃>h

where B̃ denotes the Rp-subspace spanned by the directions of contamination {β̃h =

β̂h}Kh=1.

We now wish to apply Lemma 4.3(b) treating k = K, Mm = Ṽm/tm, W =

S−1/2
(
Ip − PS−1/2 eB

)
S−1/2, uh = nh−1

nhn
(x∗h − x∗) and vh = β̃h = β̂h (h = 1, . . . ,K)

in the notation of Lemma 4.3. With this notation, it holds that W>vh = Wvh = 0p
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for each h = 1, . . . ,K since vh = β̃h ∈ B̃ so that PS−1/2 eBS
−1/2vh = S−1/2vh. To apply

Lemma 4.3(b) to Mm = Ṽm/tm, we need to show that the collection {Wuh}Kh=1 of vec-

tors are linearly independent. Suppose, for some real constants a1, . . . , aK, it holds that∑K
h=1 ahWuh = W

∑K
h=1 ahuh = 0p, implying that (

∑K
h=1 ahuh)

>W (
∑K

h=1 ahuh) = 0

or equivalently that((
Ip − PS−1/2 eB

)
S−1/2

(
K∑

h=1

ahuh

))>((
Ip − PS−1/2 eB

)
S−1/2

(
K∑

h=1

ahuh

))
= 0;

this in turn implies that

(
Ip − PS−1/2 eB

)
S−1/2

(
K∑

h=1

ahuh

)
= 0p ⇒ S−1/2

(
K∑

h=1

ahuh

)
∈ S−1/2B̃,

so that
K∑

h=1

ahuh ∈ B̃ = span{β̃h}Kh=1 = span{β̂h}Kh=1.

But because uh = nh−1
nhn

(x∗h − x∗) for h = 1, . . . ,K, the above statement can only hold

if a1 = · · · = aK = 0 by condition (4.45). Hence, the vectors {Wuh}Kh=1 are linearly

independent.

Now note that each vector in {β̂∗h,m = β̂h,m/‖β̂h,m‖}Kh=1 is an eigenvector of Ṽm/tm

in (4.42) and is normalized so that ‖β̂∗h,m‖ = 1 for each h = 1, . . . ,K. Hence, applying

Lemma 4.3(b) to Mm = Ṽm/tm, we have that for each eigenvector in {β̂∗h,m}Kh=1 of

Ṽm/tm that

lim
m→∞

β̃>j β̂∗h,m = lim
m→∞

β̂>j β̂∗h,m = 0 h = 1, . . . ,K; j = 1, . . . ,K. (4.46)

Define a p × K matrix B∗
m = [β̂∗1,m β̂∗2,m · · · β̂∗K,m] so that the column space of B∗

m

is contaminated e.d.r. subspace B̂m,K and P
bBm,K

= B∗
m(B∗>

m B∗
m)−1B∗>

m . Let B =

[β̂1 β̂2 · · · β̂K] be a p×K matrix with columns defined by the K uncontaminated e.d.r.

directions so that P
bB = B(B>B)−1B>.

By (4.44), there exists some C > 0 (not depending on m) and some N ∈ N such

that, for m ≥ N ,

det(B∗>
m B∗

m) =
det(B>

mBm)∏K
j=1 ‖β̂j,m‖2

≥ C

2
,
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and limm→∞ B>B∗
m = 0K×K by (4.46), so that

lim
m→∞

B>P
bBm,K

= 0K×K

follows from Lemma 7.5.

Hence, limm→∞ P
bBP bBm,K

= 0p×p so that

lim
m→∞

F(B̂, B̂m,K) = lim
m→∞

√
2K − 2tr(P

bBP bBm,K
) =

√
2K

by the continuity of matrix trace operations. By Definition 4.1, we conclude

εfsbp((X, Y )n, F,K) ≤ K
n

=
min{K, p−K}

n
.

Case II: 2K > p. Because the data (X, Y )n satisfy the breakdown pattern Defini-

tion 4.2 by assumption, we can again get a contaminated sequence (X,Y )n,k
m , m ∈ N,

as in (4.43) by picking k = min{K, p − K} = p − K slices from among the available

H slices, one observation from each of these p − K slices and selecting p − K < K

e.d.r. directions, say {β̂ij}
p−K
j=1 , from among the K uncontaminated β̂1, . . . , β̂K. WloG

we may assume β̂ij = β̂j for j = 1, . . . , p−K, i.e., the first p−K uncontaminated e.d.r.

directions are chosen. WloG we also assume that the contamination scheme (4.39),

with k = p − K contamination directions β̃h = β̂h, h = 1, . . . , p − K, can be used to

obtain (X, Y )n,k
m under Definition 4.2; that is, we assume that the first k = p−K slices

and the first observation in each slice {x1h
}p−K

h=1 may be used so that (4.44) and (4.45)

hold (where (4.45) uses β̂ij = β̂j for j = 1, . . . , p−K).

The contaminated data yields a subspace estimate B̂m,p−K based on eigenvectors

β̂m,1, . . . , β̂m,K corresponding to the largest K eigenvalues of the contaminated matrix

Ṽm (computed from using (X, Y )n,p−K
m in (4.29)).

Define a p × (p − K) matrix B(1) = [β̂1 β̂2 · · · β̂p−K] using the p − K directions of

contamination (i.e., the first p − K uncontaminated e.d.r. directions used in (4.45)).

With the same essential arguments of Case I by replacing B there with B(1) (i.e.,

applying Lemma 4.3(b) and Theorem 4.2 using condition (4.45) and then using (4.44)

with Lemma 7.5), it can be shown that

lim
m→∞

B(1)>P
bBm,p−K

= 0(p−K)×(p−K).
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From this, if B̂(1) ⊂ B̂ denotes the column space of B(1) with corresponding projection

matrix P
bB(1) = B(1)(B(1)>B(1))−1B(1)>, we have

lim
m→∞

P
bB(1)P bBm,p−K

= 0p×p. (4.47)

The subspace B̂ ∩ B̂(1)⊥ ⊂ B̂, consisting of the B̂-vectors orthogonal to B̂(1), has pro-

jection matrix P
bB∩ bB(1)⊥ = P

bB − P
bB(1) . We note that tr(P

bBP bBm,p−K
) ≥ 2K − p by (4.26)

and

tr(P
bB∩ bB(1)⊥P

bBm,p−K
) ≤ rank(P

bB∩ bB(1)⊥)

= tr(P
bB∩ bB(1)⊥)

= tr(P
bB − P

bB(1))

= tr(P
bB)− tr(P

bB(1))

= rank(P
bB)− rank(P

bB(1)) = 2K − p.

Then by (4.47), we have that

2K − p ≤ lim
m→∞

tr(P
bBP bBm,p−K

)

≤ lim
m→∞

tr
(
(P

bB(1)⊥ + P
bB∩ bB(1)⊥)P

bBm,p−K

)
≤ lim

m→∞
tr
(
P
bB(1)P bBm,p−K

)
+ lim

m→∞
tr
(
P
bB∩ bB(1)⊥P

bBm,p−K

)
≤ lim

m→∞
tr
(
P
bB(1)P bBm,p−K

)
+ 2K − p

≤ 0 + 2K − p.

Hence, limm→∞ tr(P
bBP bBm,p−K

) = 2K − p and so

lim
m→∞

F(B̂, B̂m,p−K) = lim
m→∞

√
2K − 2tr(P

bBP bBm,p−K
) =

√
2(p−K).

The limiting value
√

2(p−K) of F(B̂, B̂m,p−K) is the maximal distance between two

K-dimensional subspaces of Rp under F by (4.1), in the considered case 2K > p. By

Definition 4.1, we may conclude

εfsbp,K((X, Y )n, F,K) ≤ p−K
n

=
min{K, p−K}

n
. 2
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4.4 Sensitivity Analysis when K is unknown

A careful examination of Sir is required to determine how contamination could possibly

influence an estimate K̂ of K as well as the estimated subspace B̂
bK. Given a data set

(X, Y )n, we may replace k data points in (X, Y ) to obtain a contaminated data set

(X, Y )n,k
m . Applying Sir to (X, Y )n,k

m yields a corrupted dimension estimate K̂k and

subspace estimate B̂
bKk

. To measure the effect of data contamination on the subspace

estimation, we consider the distances between the subspaces B̂
bK ⊂ Rp (estimated

e.d.r. subspace using uncontaminated data (X, Y )n) and B̂
bKk
⊂ Rp (e.d.r. subspace

estimated by contaminating k data points (X, Y )n,k
m ) with the metric F. The worst-

case contamination scenario would cause the subspaces B̂
bK and B̂

bKk
to be most distant

under the measure F and we could refer to this occurrence as the breakdown of the

dimension reduction procedure.

When K is unknown, we can quantify the breakdown for dimension reduction, or

worst-case scenario in contamination with respect to the subspace metric F, as

F(B̂
bK, B̂

bKk
) =

√
p (4.48)

using Theorem 2.1. Breakdown occurs when subspace estimates with and without

contamination, B̂
bK and B̂

bKk
, are maximally distant in terms of the subspace distance

measure F. In fact, the corrupted and uncorrupted subspace estimates must be distant

to the largest extent possible for Rp subspaces. That is, breakdown in (4.48) requires

B̂
bKk

to be the orthogonal complement of B̂
bK in Rp, i.e., B̂

bKk
= B̂⊥

bK . In contrast, when K

is known, then the maximal distance between subspace estimates (4.1) may be much

smaller than (4.48) when K is unknown. In fact, in the case that 2K > p, two dimension

K subspace estimates must have a sizable intersection by Lemma 2.2, so that there are

limits to the amount of separation between subspace estimates. This is not the case

when K is unknown and worst case contamination now implies a subspace estimate

based on k-replacement must be the orthogonal complement of the subspace estimated

by the uncorrupted data.
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We are now prepared to define a finite sample breakdown point for Sir-type dimen-

sion reduction procedures, in the case that the dimension K of reduction is unknown.

This requires a modification of the finite sample breakdown Definition 4.3 when K is

known, because again the notation of worst case contamination has changed.

Definition 4.3 Finite sample breakdown point in dimension reduction (K

unknown). Let (X, Y )n,k
m denote a contaminated sample found by replacing 1 ≤ k ≤

n data points in a data set (X,Y )n = {(xi, yi)}n
i=1 ⊂ Rp × R with arbitrary values

{(x̃ij , ỹij)}k
j=1. Let B̂

bK and B̂
bKk
⊂ Rp denote reduction subspace estimates, of estimated

dimensions 0 ≤ K̂ ≤ p and 0 ≤ K̂k ≤ p, based on a given dimension reduction

procedure (e.g., Sir) applied to (X,Y )n and (X,Y )n,k
m , respectively. The finite sample

breakdown point of the dimension reduction procedure is defined as

εfsbp((X, Y )n, F) = min

{
k

n
: 1 ≤ k ≤ n, sup

(X,Y )n,k

F(B̂
bK, B̂

bKk
) =

√
p

}

under the metric F for the data constellation (X, Y )n.

The finite sample breakdown point definition in Definition 4.3 quantifies the amount

of data in (X, Y )n that need to be corrupted so that the resulting subspace estimate

is completely orthogonal (i.e., the orthogonal complement) of the subspace estimated

intended by the original data. Clearly, this type of data contamination entails a dra-

matic, and arguably the most drastic departure from the subspace estimate of the

original data.

Using Definition 4.3, we next examine the robustness of Sir when the dimension

of the reduction space must be estimated. In Section 4.4.1, we handle the case that

the covariance structure of the regressor variables is known. The robustness of Sir in

applications of an unknown covariance structure and unknown dimension K is detailed

in Section 4.4.2.
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4.4.1 K unknown – Σ known case

To study the robustness of Sir, suppose some data (X,Y )n produces a subspace esti-

mate B̂
bK = span(β̂1, . . . , β̂bK), based on the first K̂ e.d.r. directions for some estimate

K̂ < p of K. Typically, we would expect K̂ ≥ 1 to hold, but K̂ = 0 is also allowed in

the following discussion, in which case B̂
bK = 0p ∈ Rp.

We shall use the k-replacement scheme from Section 4.3.1 to obtain a sequence of

contaminated samples (X, Y )n,k
m , m ∈ N, as follows. Let k = p−K̂ ≤ H and, following

(4.21), replace the first observation (x1h
, y1h

) in each of the first p − K̂ slices with

(x̃1h
, y1h

) for

x̃1h,m = tmβ̃h + ṽh, β̃h, ṽh ∈ Rp, h = 1, . . . , k;

where {tm}∞m=1 is a positive real sequence such that tm →∞ as m →∞. Furthermore,

we suppose the p−K̂ contamination directions have form β̃h = Σ1/2βh, h = 1, . . . , p−K̂,

where {βh}
p−bK
h=1 is an orthonormal basis for (span(Σ1/2β̂1, . . . , Σ

1/2β̂
bK))⊥, the orthogonal

complement of the space Σ1/2B̂
bK. Hence, the vectors {β̃h}p−bK

h=1 satisfy (4.22).

We remark that the choice of contaminating the first p − K̂ is again somewhat

arbitrary and is made here for simplicity. The important idea of contamination is to

contaminate a single observation in each of k = p − K̂ different slices in a manner

analogous to the above mentioned contamination scheme.

Computing (4.23) (with k = p − K̂) based on (X,Y )n,k
m yields a contaminated

estimate V̂m of Cov(E(Σ−1/2X|Y )) and we shall make the weak assumption that S in

(4.23) (with k = p− K̂) is positive definite throughout our discussion. The matrix V̂m

has ordered eigenvalues λ̂m,p ≤ · · · ≤ λ̂m,1 and corresponding orthonormal eigenvectors

η̂m,i, i = 1, . . . , p of V̂m and contaminated e.d.r. directions β̂m,i = Σ−1/2η̂m,i, i =

1, . . . , K̂. We now need an estimate K̂m,k based on (X, Y )n,k
m to produce a contaminated

subspace estimate B̂
bKm,k

= span(β̂m,1, . . . , β̂m,bKm,k
), where k = p− K̂.

Controlling the estimate K̂m,k of the subspace B̂
bKm,k

dimension is in general quite

difficult, because this depends on the size of the eigenvalues λ̂m,p ≤ · · · ≤ λ̂m,1 as well
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as the testing criterion suggested by Li (1991). That is, a determination of the exact

magnitude of all p contaminated eigenvalues {λ̂m,i}p
i=1 (as a function of m) seems out

of reach. At the same time, we give meaning to the sizes of the eigenvalues, and rate

their importance, by an arbitrarily chosen significance level used in testing, as pointed

out in Ferré (1998). The task of precisely managing the effect of contamination on the

estimate K̂m,k is then nearly impossible if one does not have the exact critical values

needed to test for the dimension of the subspace estimate and in addition one cannot

exactly find the eigenvalues to compare against these critical values.

However, we aim to show that the above contamination scheme involving a replace-

ment of k = p − K̂ observations forces the first p − K̂ eigenvalues {λ̂m,p}p−bK
h=1 of V̂m to

become arbitrarily large while the last K̂ eigenvalues {λ̂m,p}p

h=p−bK+1
are bounded and

therefore relatively much smaller. This is the most precise result possible that we can

expect to achieve in terms of the behavior of the eigenvalues under the contamination.

Note that an explosion of the only first p−K̂ would suggest that the contaminated

(X, Y )n,k
m , m ∈ N, should lead to a dimension estimate K̂m,k where K̂m,k = p − K̂ for

large m. If one chooses K̂m,k = p− K̂ as m → ∞ as the contaminated data (X, Y )n,k
m

suggests, resulting the contaminated subspace estimate B̂
bKm,k

can be shown to be

nearly equal to the orthogonal complement of the uncontaminated subspace estimate

B̂
bK; namely, for large m, it holds that P

bB
bK
P
bB
bKm,k

≈ 0p×p (i.e., B̂
bK and B̂

bKm,k
are nearly

orthogonal) and dim(B̂
bK) + dim(B̂

bKm,k
) = K̂ + (p− K̂) = p.

We summarize this finding in the following theorem.

Theorem 4.3 For a given data set (X, Y )n with known values of E(X) = µ, Cov(X) =

Σ, suppose the Sir procedure yields an estimated reduction subspace B̂
bK ⊂ Rp with an

estimated dimension 0 ≤ K̂ < p, where H ≤ p slices are used in Sir. Then, there

exists a sequence (X, Y )n,k
m , m ∈ N, of contaminated data sets and associated subspace

estimates B̂
bKm,k

⊂ Rp, found by replacing k = p−K̂ observations in (X,Y )n, for which

the following hold.
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4 A Sensitivity Analysis of Sliced Inverse Regression

(i) the ordered eigenvalues 0 ≤ λ̂m,p ≤ · · · ≤ λ̂m,1 of V̂m from applying the Sir procedure

to (X,Y )n,k
m satisfy

limm→∞ λ̂m,h = ∞ h = 1, . . . , p− K̂,

supm λ̂m,h ≤ C, h = p− K̂ + 1, . . . , p,

for some C > 0;

(ii) there exists α∗ ∈ (0, 1) such that if Li (1991)’s testing procedure with significance

level α ∈ (0, α∗] is used to estimate the subspace dimension K̂m,k, then

lim
m→∞

K̂m,k = p− K̂, lim
m→∞

F(B̂
bK, B̂

bKm,k
) =

√
p.

Remark. To control the Type I error in Li (1991)’s testing procedure for the dimension

of the subspace estimate B̂
bK, one should usually choose α to be small in accordance

with the condition of Theorem 4.3. This implies that, for many data sets (X, Y )n, it

would hold that

εfsbp((X, Y )n, F) ≤ p− K̂
n

,

where K̂ is the estimated subspace dimension based on (X, Y )n.

Proof. Through the proof, we use the contamination discussed at the beginning of

(4.4.1).

We establish part (a) of the theorem first. By (4.23) with k = p−K̂, we may write

V̂m = t2m

p−bK∑
h=1

p̂h

n2
h

(
βh + Σ−1/2nhvh

tm

)(
βh + Σ−1/2nhvh

tm

)>
+ S,

where we assume S from (4.23) is positive definite so that eigenvalues of V̂m are positive,

i.e., 0 < λ̂m,p ≤ · · · ≤ λ̂m,1.

By part (b) of Theorem 4.1, we have that for the first p − K̂ eigenvalues h =

1, . . . , p− K̂,

lim
m→∞

λ̂m,h

t2m
=

1

n(p−bK−h+1)

> 0 ⇒ lim
m→∞

λ̂m,h = ∞.
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As for the last K̂ eigenvalues λ̂m,p−bK+1, . . . , λ̂m,p, note that by Lemma 4.2, because S

is positive definite and the vectors {βh}
p−bK
h=1 are linearly independent, it holds that

lim
m→∞

V̂ −1
m = S−1/2(Ip − PS−1/2B)S−1/2,

where B = [β1 · · · βp−bK] denotes a p× (p− K̂) matrix. Note that

rank(S−1/2(Ip − PS−1/2B)S−1/2) = rank(Ip − PS−1/2B)

= tr(Ip − PS−1/2B)

= tr(Ip)− tr(PS−1/2B)

= p− rank(PS−1/2B) = K̂.

Hence, if 0 ≤ sp ≤ · · · ≤ s1 denote the ordered eigenvalues of S−1/2(Ip−PS−1/2B)S−1/2,

then 0 < s
bK ≤ · · · ≤ s1 while 0 = sp = · · · = s

bK+1. By Rouché’s theorem [Stewart and

Sun (1990), p. 167], the ordered eigenvalues 0 < 1/λ̂m,1 ≤ · · · ≤ 1/λ̂m,p of V̂ −1
m must

converge to those of S−1/2(Ip − PS−1/2B)S−1/2 as m →∞, namely

lim
m→∞

1

λm,i

= sp−i+1, i = 1, . . . , p,

which implies

lim
m→∞

λm,h =
1

sp−h+1

> 0 ⇒ sup
m
|λm,h| ≤ Ch, h = p− K̂ + 1, . . . , p,

for some Ch > 0, h = p − K̂ + 1, . . . , p. By setting C = maxp−bK+1≤h≤p Ch, part (a) is

now established.

To show part (b), we use the value of C above and find the α∗ ∈ (0, 1) such that

χ2
bK(H−p+bK−1),α∗

= nCK̂. This is possible by the continuity of the chi-square distribution.

(In the event that K̂ = 0, set α∗ = 1 and χ2
0,α∗ ≡ 0.)

Now we choose a level of significance α ∈ (0, α∗] in order apply Li (1991)’s test to

choose a dimension estimate K̂m,k based on the contaminated data (X, Y )n,k
m , m ∈ N

where k = p− K̂. By the result in part (a), we have that there exists an N ∈ N such

that λ̂h,m > χ2
(p−h+1)(H−h),α for h = 1, . . . , p− K̂ and m ≥ N . Hence, for m ≥ N ,

th−1 ≥ λh,m > χ2
(p−h+1)(H−h),α h = 1, . . . , p− K̂,
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implying that p ≥ K̂m,k ≥ p− K̂. By part (a), it holds that for all m ∈ N,

tp−bK = n

p∑
j=p−bK+1

λ̂j,m ≤ nCK̂ = χ2
bK(H−p+bK−1),α∗

,

so that we fail to reject the hypothesis Hp−bK
0 : K = p−K̂ and conclude that K̂m,k ≤ p−K̂

for all m ∈ N. Hence, for m ≥ N , we have K̂m,k = p− K̂.

Therefore, we have immediately that limm→∞ K̂m,k = p − K̂ and also that, for

m ≥ N , B̂
bKm,k

= span(β̂m,1, . . . , β̂m,bKm,k
) = span(β̂m,1, . . . , β̂m,k), where k = p− K̂. By

Theorem 4.1(e) with k = p− K̂,

lim
m→∞

P
bB
bKm,k

= lim
m→∞

Pspan(bβm,1,...,bβm,k) = Pspan(Σ−1 eβ1,...,Σ−1 eβk) = P
bB⊥
bK
,

where span(Σ−1β̃1, . . . , Σ
−1β̃k) = span(Σ−1/2β1, . . . , Σ

−1/2βk) = B̂⊥
bK and P

bB
bK
P
bB⊥
bK

=

0p×p. Finally, we have

lim
m→∞

F(B̂
bK, B̂

bKm,k
) = lim

m→∞

√
K̂ + K̂m,k − 2tr(P

bB
bK
P
bB
bKm,k

)

=

√
K̂ + (p− K̂)− 2tr(P

bB
bK
P
bB⊥
bK
)

=
√

p.

This establishes part (b) of the theorem. 2

4.4.2 K unknown – Σ unknown case

Again we suppose some data (X,Y )n produces a subspace estimate B̂
bK =

span(β̂1, . . . , β̂bK), based on the first K̂ e.d.r. directions for some estimate 1 ≤ K̂ < p

of K. The estimated e.d.r. directions correspond to eigenvectors of the matrix Ṽ from

(4.29) because Σ must be estimated by Σ̂.

We shall use the k-replacement scheme from (4.39) in Section 4.3.2 to obtain a

sequence of contaminated samples (X, Y )n,k
m , m ∈ N, as follows. Let k = K̂ ≤ H and,
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following (4.39), replace the first observation (x1h
, y1h

) in each of the first k = K̂ slices

with (x̃1h
, y1h

) for

x̃1h,m = tmβ̂h + ṽh, ṽh ∈ Rp, h = 1, . . . , K̂; (4.49)

where {tm}∞m=1 is a positive real sequence such that tm →∞ as m →∞. That is, we

contaminate in each of the K̂ directions {β̂h}bKh=1 estimated from the uncontaminated

sample. We shall also assume that (4.45) holds after setting K = K̂ and k = K̂ in

Definition 4.2. (More generally, we may assume that the uncontaminated data (X, Y )n

satisfy the breakdown pattern in Definition 4.2 after setting K = K̂ and k = K̂ in that

definition; the choice of contaminating the first observation in each of the first k = K̂

slices is just a special case of contamination in which the conditions of Definition 4.2

simplify to the condition (4.45).)

The contaminated sample (X, Y )n,k
m , with k = K̂, yields an estimate Σ̂m of Σ

as well as a p × p matrix Ṽm from (4.29). This matrix Ṽm has ordered eigenvalues

0 ≤ λ̂m,p ≤ · · · ≤ λ̂m,1 and corresponding eigenvectors β̂m,i, i = 1, . . . , p, which are all

p contaminated e.d.r. directions.

We find an estimate K̂m,k based on (X, Y )n,k
m to produce a contaminated subspace

estimate B̂
bKm,k

= span(β̂m,1, . . . , β̂m,bKm,k
), where again k = K̂. However, unlike in the

case where Σ is known (and K unknown) from Section 4.4.1, we have no apparent way

to control the size of the contaminated eigenvalues 0 ≤ λ̂m,p ≤ · · · ≤ λ̂m,1 when Σ is

unknown. In Section 4.3.2 we developed some strong results on the behavior of eigen-

vectors Ṽm (i.e., the contaminated e.d.r. directions) under contamination when Σ is

unknown, but none of these results indicate the behavior of the eigenvalues of Ṽm under

contamination. In fact, the simulation study of Chapter 5 will show that, under various

types of contamination (similar to what we consider here), contaminated eigenvalues

of Ṽm may differ largely or very slightly from the eigenvalues of the uncontaminated

matrix Ṽ from (4.29) used to produce estimates K̂ and B̂
bK. That is, it is very difficult

to control the contaminated estimate K̂m,k of the reduction subspace dimension.

The best result on the effect of contamination when Σ and K are unknown can be
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summarized as follows. With the k = K̂−contamination scheme described above (i.e.,

in the direction of {β̂h}bKh=1), we can construct a sequence of contaminated data sets

(X, Y )n,k
m , m ∈ N with corresponding Rp-subspace estimates B̂

bKm,k
where it holds that

P
bB
bK
P
bB
bKm,k

≈ 0p×p (i.e., B̂
bK and B̂

bKm,k
are nearly orthogonal) and dim(B̂

bKm,k
) ≤ p− K̂

for large m. That is, the contaminated subspace estimate B̂
bKm,k

must be essentially a

subset of the orthogonal complement of the uncontaminated subspace estimate B̂⊥
bK for

large m, which has rank p − K̂. Of course, this result is not as strong as saying that

dim(B̂
bKm,k

) = p − K̂ in addition to P
bB
bK
P
bB
bKm,k

≈ 0p×p for large m, which was possible

in Section 4.4.1 (known Σ). Consequently, the contaminated subspace estimate B̂
bKm,k

might not correspond to the entire orthogonal complement of the uncontaminated

subspace estimate B̂⊥
bK for large m. However, contamination can still drastically alter the

subspace estimate intended by the uncontaminated data (X, Y )n by actually causing

a subspace estimate orthogonal to B̂
bK.

We summarize the result in the following theorem.

Theorem 4.4 For a given data set (X, Y )n with unknown values of E(X) = µ,

Cov(X) = Σ, suppose the Sir procedure yields an estimated reduction subspace

B̂
bK ⊂ Rp with an estimated dimension 1 ≤ K̂ < p, where H ≤ p slices are used in

Sir. Provided that the data (X, Y )n satisfy the breakdown pattern Definition 4.2 (set-

ting K = K̂, k = K̂ in this Definition) then, there exists a sequence (X, Y )n,k
m , m ∈ N,

of contaminated data sets and associated subspace estimates B̂
bKm,k

⊂ Rp, found by

replacing k = K̂ observations in (X,Y )n, for which the following hold.

(i) For some N ∈ N, the contaminated estimate K̂m,k of the dimension of B̂
bKm,k

satisfies

K̂m,k ≤ p− K̂, m ≥ N.

(ii) B̂
bKm,k

is orthogonal to B̂
bK as m →∞, namely

lim
m→∞

P
bB
bK
P
bB
bKm,k

= 0p×p.

Remark. If the uncontaminated data (X, Y )n produces an estimate K̂ = 0 (no rela-

tionship between X and Y ), results (i) and (ii) in the above theorem still hold.
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Proof. Because the data (X, Y )n satisfy the breakdown pattern Definition 4.2 (setting

K = K̂, k = K̂), WloG we assume that we may contaminate the first observation in

each of the first k = K̂ slices as in (4.49) so that (4.45) holds with K = K̂, k = K̂.

Now repeating the proof of Case I of Corollary 4.2 with K̂ substituted for K and

setting k = K̂ in that proof, we find that part (ii) above follows.

To show part (i), we note that

tr
(
(Ip − P

bB
bK
)P

bB
bKm,k

)
≤ tr(Ip − P

bB
bK
) = p− tr(P

bB
bK
) = p− K̂,

so that by the result in part(i) it holds that

lim sup
m→∞

K̂m,k = lim sup
m→∞

rank(P
bB
bKm,k

)

= lim sup
m→∞

tr(P
bB
bKm,k

)

= lim sup
m→∞

tr

(
P
bB
bK
P
bB
bKm,k

+ (Ip − P
bB
bK
)P

bB
bKm,k

)
= lim sup

m→∞
tr(P

bB
bK
P
bB
bKm,k

) + lim sup
m→∞

tr

(
(Ip − P

bB
bK
)P

bB
bKm,k

)
≤ lim sup

m→∞
tr(P

bB
bK
P
bB
bKm,k

) + p− K̂

= 0 + p− K̂ = p− K̂. (4.50)

For each m ∈ N, define bm = sup{K̂m,k, K̂m+1,k, K̂m+2,k, . . .} and note that

lim supm→∞ K̂m,k = infm bm by definition; see the Appendix. Suppose we make

the assumption that for all m ∈ N, it holds that bm ≥ p − K̂ + 0.5 in which

case lim supm→∞ K̂m,k = infm bm ≥ p − K̂ + 0.5; this is a contradiction of

(4.50). Hence, it must be the case that there exists an N ∈ N such that

sup{K̂N,k, K̂N+1,k, K̂N+2,k, . . .} = bN < p − K̂ + 0.5 so that K̂m,k < p − K̂ + 0.5

for m ≥ N . Because K̂m,k ∈ N is an integer, we have K̂m,k ≤ p− K̂ for m ≥ N which

shows part (i) of the theorem. 2
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Chapter 5

A Simulation Study

Our objective of Chapter 4 was a thorough investigation of the finite sample behavior of

Sir under the presence of some type of data contamination. An important conclusion

to be drawn from the results obtained during this investigation can be summarized as

follows. Not every type of data contamination is necessarily damaging the estimation

of the e.d.r. subspace. As it turns out, the knowledge of the covariance matrix Σ

and of the dimension K of the e.d.r. subspace profoundly determine how harmful a

certain type of data contamination essentially is for the e.d.r. subspace estimation.

While one type of contamination causes estimates of e.d.r. directions orthogonal to

the actual e.d.r. directions when Σ is known, this type of contamination will not effect

the estimates when Σ is unknown and vice versa.

We want to proceed now with a simulation study to support our theoretical findings

from Chapter 4. In particular, we wish to verify our results regarding the amount

and the type of data contamination that is necessary to cause e.d.r. directions to be

estimated orthogonal to the actual e.d.r. directions.
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5 A Simulation Study

5.1 Simulation Design

We will look at two different statistical models. Both models have been investigated in

similar form before: once in the dissertation of Hilker (1997, p.171), and also in the dis-

sertation of Bond (1999, p.108). We assume the regressor space to be four-dimensional

X = (X1, X2, X3, X4)
>, where each regressor variable represents an independent ob-

servation from a standard normal distribution (i.i.d. Xi ∼ N (0, 1), i = 1, . . . , 4). Note

that the mean and covariance of the regressor variables X are given by E(X) = µ = 04

and Cov(X) = Σ = I4. Observations for the response variable Y are determined with

respect to Model 1 and Model 2 given below.

Model 1:

Y = X1 + X2 + X3 + X4. (5.1)

Hence, we have K = 1 with e.d.r. direction β1 = (1, 1, 1, 1)>.

Model 2:

Y =
X1

0.5 +
√
|1.5 + X2|

. (5.2)

Hence, we have K = 2 with e.d.r. directions β1 = (1, 0, 0, 0)> and β2 =

(0, 1, 0, 0)>.

The corresponding e.d.r. subspaces for Model 1 and Model 2 are one- and two-

dimensional, K = 1 and K = 2, respectively. For simplicity, we neglected an additional

error term ε (see (3.1)) in both models. From each model, we consider taking samples

(X, Y )n ∈ R4×R of size n = 100, where some of these points will be replaced with cor-

rupted values. We will consider applying Sir to contaminated samples using H = 10

slices, Ih, h = 1, . . . , H.

As described in Sections 4.3.1 and 4.3.2, contamination involving corrupted obser-

vations spread out in different slices can be damaging Sir. For both Models 1 and 2,

we consider various amounts of contamination by replacing either one, two or three

observations in a generated data set (X, Y ) ∈ R4 ×R with contaminated x-values. To
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obtain three replacement-contamination points, we shall replace the x-value of the first

x-observation x1h
in each of the first three slices according to the following structure

x̃1h,m = tmβ̃h, β̃h ∈ R4, h = 1, 2, 3,

where β̃h denotes the direction of contamination and tm > 0 is a selected scaling factor.

To obtain one, two or three contamination points, we may use {x̃11,m}, {x̃11,m, x̃12,m}

or {x̃11,m, x̃12,m, x̃13,m}. We continue by precisely stating possible directions β̃h of con-

tamination for Models 1 and 2.

Direction of contamination when Σ is unknown:

When Σ is unknown and has to be estimated, contaminated data points affect

potential e.d.r. direction estimates if the contamination is placed in the direction

of the e.d.r. directions itself; see Section 4.4.2. For Model 1 this corresponds to a

contamination in the direction of

β̃1 = β1 = (1, 1, 1, 1)>.

Hence, the replacement of one observation x11,m in one slice by x̃11,m is sufficient in

order to estimate β1 orthogonal to itself.

The e.d.r. subspace for Model 2 is spanned by the vectors

β1 = (1, 0, 0, 0)> and β2 = (0, 1, 0, 0)>.

Consequently, effective contamination leading to estimates orthogonal to both β1 and

β2 is possible if two observations x11,m, x12,m in two distinct slices are replaced by

x̃11,m, x̃12,m, respectively, using contamination β̃h = βh, h = 1, 2, in the directions of

the two actual e.d.r. directions.

Direction of contamination when Σ is known:

For simplicity, we are assuming that the covariance matrix Σ corresponds to

the identity matrix I4. Effective contamination now has to involve orthonormal
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contamination directions that are orthogonal to the actual e.d.r. directions in order to

estimate directions orthogonal to the true e.d.r directions. Because the e.d.r. subspace

of Model 1 is of dimension one, the orthogonal complement of span(β1) ⊂ R4 is of

dimension three. By the results in Section 4.4.1, Sir will yield a three-dimensional

e.d.r. subspace orthogonal to span(β1) if we replace three distinct observations

x11,m, x12,m, x13,m in three different slices with contaminated versions x̃11,m, x̃12,m, x̃13,m;

the contaminated points should involve three different contamination directions

{β̃h}3
h=1 which are orthonormal and also orthogonal to β1. Three orthonormal vectors

orthogonal to β1 are for example given by

β̃1 =

(
1√
2
,− 1√

2
, 0, 0

)>
, β̃2 =

(
0, 0,− 1√

2
,

1√
2

)>
and

β̃3 =

(
1√
4
,

1√
4
,− 1√

4
,− 1√

4

)>
.

Hence, contamination of three distinct observations, one for each of the above direc-

tions β̃1, β̃2 and β̃3 and each placed in a different slice is sufficient in order to estimate

the complete orthogonal complement of span(β1) = span((1, 1, 1, 1)>). By contaminat-

ing only one or two observations according to β̃1 or β̃2, only parts of the orthogonal

complement will be estimated.

For Model 2, vectors that are orthonormal to the e.d.r. directions β1 = (1, 0, 0, 0)> and

β2 = (0, 1, 0, 0)> are given by

β̃1 = (0, 0, 1, 0)> and β̃2 = (0, 0, 0, 1)>.

By contaminating two distinct observations {x̃1h,m}2
h=1 in two different slices using β̃1

and β̃2, respectively, Sir will estimate the orthogonal complement of the e.d.r. subspace

spanned by β1 and β2.

Furthermore, the magnitude of contamination, denoted by tm is also of interest to us.

For fixed directions of contamination β̃h, we shall increase the magnitude tm WLoG

according to the following values

tm = 100, tm = 101, tm = 102, tm = 104, tm = 106 and tm = 108.
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For each model we will again vary the amount of contamination. For example,

when Σ = I4 is known, contamination for Model 1 in one, two or three directions is

meaningful, while for Model 2 contamination in at most two directions has an important

effect for Sir.

performance criteria:

After replacing observations in a generated data set (X, Y ) ∈ R4 × R with one, two

or three contaminated points {x̃1h,m}3
h=1, an application of Sir will yield estimated

e.d.r directions β̂1, . . . , β̂4 with corresponding eigenvalues 0 ≤ λ̂4 ≤ · · · ≤ λ̂1. To assess

the quality of these estimated e.d.r. directions under contamination, we evaluate the

vector product β̂>i β1 for i = 1, . . . , 4, (and in addition β̂>i β2 for Model 2). Because we

normalized the estimated e.d.r. directions as well as the actual e.d.r. directions, these

vector products correspond to the cosine of the angle between them, i.e we compute

as previously defined in (2.1)

cos θ = cos(β̂>i ∠βj) = β̂>i βj for i = 1, . . . , 4; j = 1, 2,

where ‖β̂i‖ = 1 = ‖βj‖ The cosine of the angle should be close to 0 when both vectors

are orthogonal to each other and approximately 1 or -1 when they span the same

direction.

The reason for choosing cos θ as a performance criteria in this simulation study

rather than the previously introduced Frobenius norm-based metric is that by applying

F to the subspace estimates, we obtain information on how far apart the subspace

estimates are. Information on the behavior of individual e.d.r. directions however

is lost. We feel that using cos θ at this point will give more insight to the effect of

contamination on individual e.d.r. directions apart from any definition of breakdown

on subspaces.

For each model (Model 1 or 2), contamination amount (one, two or three points

from {x̃1h,m}3
h=1), and magnitude tm, we conducted M = 1000 simulation runs in which

we generated data sets (X, Y )n of sample size n = 100, contaminated the data and
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computed β̂>i βj = cos(β̂>i ∠β1), i = 1, . . . , 4 (and in addition cos(β̂>i ∠β2) for Model 2);

the values of | cos(β̂>i ∠β1)| and | cos(β̂>i ∠β2)| were then averaged over the M = 1000

runs and reported in the subsequent tables. Using the absolute value makes sense as

the cosine of the angle can take on the value 1 when vectors span the same direction.

Average values of the ordered eigenvalues {λ̂i}4
i=1 were also tabulated.

For purposes of comparison, we also computed average values of |β̂>i β1|, |β̂>i β2|, and

λ̂i (i = 1, . . . , 4) for uncontaminated data sets (X, Y )n of sample size n = 100, using

M = 1000 simulation runs.

5.2 Simulation results when Σ is unknown

We will proceed next with a summary of the most important results obtained in the

simulation study when the covariance matrix Σ is unknown. The main results for both

Models are numerically summarized in Tables 2 through 6.

• Table 2 displays the results of the simulation study for Model 1. We contami-

nated the first observation of the first slice in the direction of β1 = (1, 1, 1, 1)>.

Evidently, the contamination has an effect on all estimated eigenvalues λ̂1, . . . , λ̂4,

although this effect is strongest for λ̂1; the only significant eigenvalue for Model 1.

As we increase the magnitude of the contamination by letting tm tend to larger

values, we can observe that all estimated eigenvalues converge and remain ap-

proximately unchanged. This implies that the magnitude tm has a relatively

small effect on the eigenvalues compared to the direction of contamination β1.

This agrees with results in Section 4.4.2 that the size of contaminated estimated

eigenvalues λ̂i are difficult to control via the magnitude of contamination tm.

• With respect to the estimated e.d.r. directions we find in Table 2, that Sir cor-

rectly estimates the true e.d.r. direction β1 = (1, 1, 1, 1)> with β̂1 when there is

no contamination. However, by the contamination of one observation, Sir is not
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able to correctly estimate β1 any longer. Not only is the estimate of the first e.d.r.

direction, β̂1, almost orthogonal to β1, i.e. | cos(β̂>1 ∠β1)| ≈ 0.0204 for tm = 102,

the remaining directions β̂2, β̂3 and β̂4 are estimated orthogonally to β1 as well.

This essentially supports the finding in Theorem 4.4(ii); an estimated e.d.r. space

under contamination will be orthogonal to the direction of contamination β1 (or

the space spanned by the uncontaminated estimate β̂1). Furthermore we can

see that, contrary to the eigenvalues, the magnitude of contamination tm yields

estimates for β1, . . . , β4 that tend to be increasingly orthogonal to β1 and thus

the magnitude has an effect on the e.d.r. directions.

Therefore, a legimitate conclusion is, that due to the contamination of one ob-

servation in the direction of β1 = (1, 1, 1, 1)>, Sir is not able to recover the true

e.d.r. direction β1 for Model 1 any longer.

• Tables 3 to 6 summarize our findings obtained for Model 2. In Table 3 the

results for the estimated eigenvalues λ̂1, . . . , λ̂4 are displayed when we contami-

nated exactly one observation in the direction of β1 = (1, 0, 0, 0)> and a second

in the direction of β2 = (0, 1, 0, 0), each placed in a different slice. The results

are similar to the ones obtained before for Model 1. Again we find that the

largest eigenvalue λ̂1 shows the greatest amount of change under contamination

and appears to decrease the most relative to the uncontaminated value of λ̂1.

Obviously the contamination itself does have an effect on the estimated eigen-

values, the magnitude tm however does not, as the average eigenvalue estimates

remain fairly unchanged for increasing values of tm. Once more, the size of the es-

timated eigenvalues under contamination are difficult to directly control through

the magnitude of contamination.

• In Table 4 we contaminated only one observation. The left side of the table

shows the estimated eigenvalues when we contaminated the first observation of

the first slice in the direction of β1, while on the right hand side, results are

presented when the contamination of the first observation of the first slice was

placed in the direction of β2. An interesting observation to be made here is the
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following. We find in Table 4 that a contamination in the direction of β1 results

in a contamination of all estimated eigenvalues λ̂1, . . . , λ̂4 as they all decrease in

value and similar to what we have seen earlier (where the corrupted estimate λ̂1

again exhibits the most change). However, a contamination in the direction of β2

causes very little change in λ̂1 while the remaining estimates λ̂2, . . . , λ̂4 decrease

only slightly. This may seem somewhat surprising in the sense that the behavior

of estimated eigenvalues from Sir under contamination is not symmetric with

respect to the direction of contamination. Hence, the direction of contamination

in Model 2 seems to play a role in determining eigenvalue estimates.

• Tables 5 and 6 outline the results on the estimated e.d.r. directions under con-

tamination corresponding to the eigenvalues found in Tables 3 and 4. Without

contamination, Sir appears to correctly estimate β1 but is somewhat less suc-

cessful in estimating second true e.d.r. direction β2. The contamination of two

observations in the directions of β1 and β2, respectively caused Sir to estimate

all directions orthogonal to β1 and β2. That is, none of the estimated e.d.r. direc-

tions, regardless of the significance of the corresponding eigenvalues, are elements

of the true e.d.r. subspace spanned by β1 and β2; this again supports the theo-

retical findings in Section 4.4.2.

In Table 6 we displayed numerical results on the e.d.r direction estimates obtained

from using one contaminated observation in the direction of β2 = (0, 1, 0, 0)>.

Just as Sir was able to accurately estimate λ̂1 under this form of contamination

(Table 4), the procedure could also recover β1 as well through the contaminated

estimate β̂1 (i.e., the absolute value of the cosine of the angle | cos(β̂>1 ∠β1)| as-

sumed values always fairly close to one). More interesting to us are the results

on the right hand side of Table 6. Because of the contamination in the direction

β2, we find that all contaminated estimates {β̂i}4
i=1 are orthogonal to the true

e.d.r. direction β2.

The conclusion we can draw from this first part of our simulation study where

we assumed Σ to be unknown, is that the findings support the theory established in
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Section 4. In particular we were able to verify the claims made in Theorem 4.2 and The-

orem 4.4. When the covariance matrix Σ is unknown, we are not really able to control

the size of the contaminated eigenvalues from the contaminated covariance matrix Ṽm

version of (4.29) through the magnitude of contamination tm. While explicit control of

estimated e.d.r. directions can be made through contamination (i.e. the eigenvectors of

Ṽm), we cannot make general statements regarding the contaminated eigenvalues from

Sir under the same form of contamination as contaminated eigenvalues may differ only

slightly from their uncontaminated counterparts.
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5.3 Simulation results when Σ is known

Under the assumption that the covariance matrix Σ = I4 is known and this is accounted

for when applying the Sir procedure, the conducted simulation study yielded the

following results numerically summarized in Tables 7 through 12.

• Tables 7 through 9 display the results that we obtained for Model 1. We started

with investigating the behavior of Sir under the contamination of exactly one

observation, where we chose again WLoG the first observation of the first slice

and contaminated it in the direction of β̃1 = (1/
√

2,−1/
√

2, 0, 0)>, which is or-

thonormal with respect to the true e.d.r. direction β1 = (1, 1, 1, 1)> (see Table 7).

A main result from Chapter 4 was that for the case when Σ is known, a contam-

ination of k slices causes the k largest eigenvalues of the contaminated matrix

V̂m version of (4.20) to “explode” and to grow infinitely large at a rate faster

than the remaining p − k eigenvalues of V̂m; see Theorem 4.1(b) and the subse-

quent remark to Theorem 4.1. The under contamination estimated eigenvalues

in Table 7 clearly seem to support this finding. Not only is the first estimated

eigenvalue affected by the contamination itself, as the magnitude tm increases

we have indeed that λ̂1 grows infinitely large at a rate faster than the remaining

three eigenvalues λ̂2, λ̂3 and λ̂4. The same effect can be observed in Table 8

and Table 9, where we contaminated two and three observations, respectively.

In Table 8, we contaminated the first observation of the first slice in the direc-

tion of β̃1 = (1/
√

2,−1/
√

2, 0, 0)> and the first observation of the second slice

in the direction of β̃2 = (0, 0,−1/
√

2,−1/
√

2)>. Now, the estimated first two

eigenvalues λ̂1 and λ̂2 grow infinitely large as tm increases while λ̂3 and λ̂4 remain

bounded. Table 9 differs from the previous two tables only with respect to an

additionally contaminated observation replaced in the third slice in the direction

of β̃3 = (1/
√

4, 1/
√

4,−1/
√

4,−1/
√

4)>. The effect on the eigenvalues is essen-

tially the same. In addition to λ̂1 and λ̂2 we have now also λ̂3 growing infinitely

large as tm increases.
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5 A Simulation Study

• The right hand sides of Tables 7 through 9 display the results regarding the

estimated e.d.r. directions under contamination. In each table, as more contam-

inated points are used (involving orthonormal directions of contamination with

respect to β1), we find that contaminated direction estimates β̂i corresponding to

exploding eigenvalues λ̂i are orthogonal to the true e.d.r. direction β1. This sup-

ports our findings in Theorem 4.1(c), which stated that eigenvectors associated

with the k largest eigenvalues of the contaminated covariance matrix V̂m (under

k-replacement contamination) converge to vectors spanned by the k (orthonor-

mal) directions of contamination (i.e., orthogonal to the true e.d.r. subspace

span(β1)).

• The results for Model 2 are summarized in Tables 10 through 12. In Table 10,

we display the contaminated eigenvalue estimates after contaminating two ob-

servations (WLoG, the first observation in the first two slices) in the directions

β̃1 = (0, 0, 1, 0)>, β̃2 = (0, 0, 0, 1)> which are orthonormal with respect to the two

true e.d.r directions β1 = (1, 0, 0, 0)>, β2 = (0, 1, 0, 0)> in Model 2. As the mag-

nitude of contamination tm increase, we find that the two largest contaminated

eigenvalues explode in value because of the contamination of two data points; the

smallest two eigenvalues remain bounded in value. Table 10 also shows that, if

only one contamination point is used in the direction β̃1 = (0, 0, 1, 0)>, then only

one (the largest) contaminated eigenvalue explodes in size, while the remaining

three contaminated eigenvalues are much smaller and essentially bounded.

Table 11 shows that, when two directions β̃1 = (0, 0, 1, 0)>, β̃2 = (0, 0, 0, 1)> of

contamination are used, the contaminated direction estimates β̂1, β̂2 correspond-

ing to the two largest (exploding) contaminated eigenvalues are determined by

β̃1, β̃2 and so are orthogonal to the two true e.d.r directions β1 = (1, 0, 0, 0)>,

β2 = (0, 1, 0, 0)> in Model 2. This would imply that a contaminated subspace

estimate span(β̂1, β̂2), if determined by the two clearly significant contaminated

eigenvalues, would be orthogonal to the true e.d.r. subspace span(β1, β2) ⊂ R4.

Table 12 shows that, if one direction β̃1 = (0, 0, 1, 0)> of contamination is
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5 A Simulation Study

used, then this determines the direction of contaminated direction estimate β̂1

corresponding to the largest, exploding contaminated eigenvalue given in Ta-

ble 10. Consequently, the two true e.d.r. directions β1, β2 are orthogonal to

span(β̂1) ≈ span((0, 0, 1, 0)>).
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5 A Simulation Study
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Chapter 6

Quantitative Concepts for

Dimension Reduction Procedures of

the SIR-Type

After studying the effects of contaminated data on Sir in the finite sample case in

Chapter 4 and defining a version of a finite sample breakdown point for the Sir di-

mension reduction procedure, we will focus now on some more general issues regarding

the robustness of Sir at the level of population distributions.

In assessing robustness of a statistical functional (an estimator or test statistic) such

as Sir at the population distribution level, one distinguishes between qualitative and

quantitative robustness. While qualitative robustness provides information about the

robustness of a functional against some type of contamination in general, quantitative

robustness measures the degree of robustness of the functional. We will discuss both

types of robustness in the context of the Sir procedure but focus mainly on quantitative

robustness.

Qualitative robustness of a functional is linked to the equicontinuity of the func-

tional. This property can be regarded as a minimal robustness condition. It is some-

what limited, because it does not permit comparisons between different qualitatively
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6 Quantitative Concepts for Dimension Reduction Procedures of the SIR-Type

robust estimators. That is, qualitative robustness gives no indication of the level of

robustness. We note that the expectation functional, for example, is not qualitatively

robust [see Hampel et al. (1986)] so that many classical statistical procedures, based

on the mean, must also lack the property of qualitative robustness. Because the Sir

procedure is mean-based, we can expect Sir to fail to be qualitatively robust as well. In

addition, Davies & Gather (2004, 2005b) discuss that Principal Components and

hence the Sir functional which is based on covariance matrix estimates and principal

components is not even a continuous functional. Consequently, one could suspect Sir

to have limited robustness.

The breakdown point and the influence function of an estimator belong to the class

of quantitative measures of robustness. The breakdown point was originally introduced

by Hampel (1968, 1971) and later also by Huber (1981) and Donoho & Huber (1983)

in a finite sample version. Also of importance is the influence function, established

first by Hampel (1971). Many other common measures can be introduced, such as the

maxbias curve, the gross-error sensitivity, and the asymptotic variance for example [cf.

Hampel, et al. (1986)]. In addition, Hampel et al. (1986, p.99) point out that if a

functional possesses a positive breakdown point, it will generally be also qualitatively

robust.

The main points of Chapter 6 can be summarized as follows.

• In Section 6.1, we will focus on the breakdown point of Sir at the level of prob-

ability distribution contamination. However, this discussion also has relevance

for the finite sample breakdown of Sir (i.e., contamination of the empirical dis-

tribution, say Pn, of a particular data set (x1, y1), . . . , (xn, yn) ∈ Rp × R). We

shall review the recent work of Davies and Gather (2002, 2005a) which is crucial

for understanding if a meaningful breakdown point can be formulated for a sta-

tistical functional, like Sir. In essence, Davies and Gather propose a framework

for a statistical functional that is required in finding a non-trivial upper bound

for the breakdown point. This framework includes, among other issues involving

metrics, the existence of a rich group equivariance structure.
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6 Quantitative Concepts for Dimension Reduction Procedures of the SIR-Type

The most important finding of the results here is that a group equivariance struc-

ture does in fact exist for Sir, as shown in Section 6.1.1. However, the Sir

functional and subspace estimation in general does not fit into the framework of

Davies and Gather (2002, 2005a) because an unbounded metric seemingly cannot

be defined on the parameter space in Sir (which consists of vector subspaces of

Rp). Consequently, a meaningful breakdown concept for Sir, involving a break-

down point with an upper bound of 1/2, cannot be obtained. The implication of

this may be that the entire concept of breakdown has limited value for Sir.

• Section 6.2 discusses a new and alternative breakdown point concept of Davies

and Gather (2004, 2005b) which can be successfully applied to Sir as well as any

dimension reduction functional.

• For completeness, in Section 6.3, we review the recent work of Prendergast (2004)

in developing the influence function of Sir. The findings of Prendergast (2004)

are relevant here because these further confirm the finite sample breakdown be-

havior of Sir, presented in Chapter 4 as well as the work of Hilker (1997) and

Gather, Hilker and Becker (2002).

6.1 Breakdown Set-up of Davies & Gather

The relationship between a concept of Breakdown and the existence of a group

structure was introduced by Davies and Gather (2002, 2005a). They show that under

a certain framework involving groups and metrics, which we shall explore in more detail

in the following, a nontrivial upper bound for the breakdown point of a functional T can

be derived. Up to this point, their work constitutes by far the most insightful one on

breakdown. However, as Davies and Gather (2002) note, there exist earlier references

in the literature observing a connection between an underlying group equivariance

structure of a functional to its robustness properties; see He and Simpson (1993).
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To provide a general description of the breakdown results of Davies and Gather, we

first provide the key ingredients beginning with the group structure. Let (X , B(X ))

be a measurable sample space and P be a family of non-degenerate probability mea-

sures on (X , B(X )) that are of primary interest. Let Θ be some parameter space and

T : (X , B(X ),PΘ) −→ Θ a functional. Let G denote a group of measurable transfor-

mations on the sample space X with elements g : X → X , where for any P ∈ P and

any g ∈ G we set P g = P g(B) = P (g−1(B)). For n ∈ N, n ≥ 2 and g ∈ G, we define

gn(·) = g(gn−1(·)). The group G of data transformations induces a group HG acting

on the parameter space Θ by HG = {hg : g ∈ G} where hg : Θ → Θ such that T is

called equivariant w.r.t. G if and only if T (P g) = hg(T (P )).

The breakdown results of Davies and Gather also require two (pseudo)metrics, d

and D, respectively defined on the spaces of probability distributions P and parameters

Θ. We denote a pseudometric on P by d, i.e. d : P × P −→ [0,∞), which should

satisfy the following two properties

sup
P,Q∈PΘ

d(P, Q) = 1 (6.1)

and

d(αP + (1− α)Q1, αP + (1− α)Q2) ≤ 1− α (6.2)

for any P, Q1, Q2 ∈ PΘ and α ∈ (0, 1). Condition (6.2) is a technical condition (needed

in the proof of Theorem 6.1 below). A suitable pseudometric on the parameter space

Θ is given by D, where D : Θ×Θ −→ [0,∞) should satisfy

sup
θ1,θ2∈Θ

D(θ1, θ2) = ∞. (6.3)

Figure 1 below displays the connection between the equivariance structure of a func-

tional T on the sample space and the induced equivariance structure on the parameter

space, as introduced by Davies and Gather (2002).

Before proceeding further, we define a subset of G of special interest by

G1 =
{

g ∈ G : lim
n→∞

inf
θ

D (θ, hgn(θ)) = ∞
}

. (6.4)
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Figure 6.1: Group and Parameter Equivariance Structures
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The collection G1 is the set of all transformations g ∈ G for which the induced trans-

formation hg causes θ and hgn(θ) to become maximally distant in the limit (i.e., upon

iteratively applying a transformation g of the sample space X and the corresponding

transformation hg of the parameter space) with respect to the pseudometric D. We

shall denote the restriction of a transformation g ∈ G to a set B ∈ B by g|B and define

∆(P ) = sup{P (B) : B ∈ B, g|B = ι|B for some g ∈ G1}, (6.5)

where ι ∈ G denotes an identity mapping, i.e. ι(x) = x for x ∈ X . Hence, the quantity

∆(P ) represents the largest probability measure of a set B ∈ B for which some g ∈ G1

from (6.4) maps the elements of B to itself, like the identity function.

For clarity in our notation and discussion, we repeat the breakdown point definitions

of Davies and Gather (2002, 2005a).

Definition 6.1 (Davies & Gather, 2002, 2005a) The breakdown point

ε∗(T , P, d, D) of a functional T at a distribution P with respect to a pseudometrics

d and D is defined by

ε∗(T , P, d, D) = inf{ε > 0| sup
d(P,Q)<ε

D(T (P ), T (Q)) = ∞}.

The finite sample breakdown point (fsbp) of T at a sample xn with respect to a

pseudometric D is defined by

fsbp(T , xn, D) =
1

n
min{k ∈ {1, . . . , n}| sup

Qn,k

D(T (Pn), T (Qn,k)) = ∞},
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where Pn denotes the empirical distribution of xn and Qn,k denotes the empirical dis-

tribution of the sample yn,k obtained by altering at most k points arbitrarily in xn.

Using elements of the group equivariance structure in estimation, we now give the

theorem on the upper bound for the breakdown point established by Davies and

Gather (2002, 2005a).

Theorem 6.1 (Davies & Gather, 2002, 2005a) With the above notation and

under the assumption that G1 6= ∅, we have

ε∗(T , P, d, D) ≤ 1−∆(P )

2
(6.6)

for all G-equivariant functionals T , for all P ∈ P and for all pseudometrics d and D

satisfying (6.1),(6.2), and (6.3).

The proof of this theorem can be found in Davies and Gather (2002, 2005a).

The upper bound given in Theorem 6.1 can also be extended to the situation of the

finite sample case.

Theorem 6.2 (Davies & Gather, 2002, 2005a) With the above notation and

under the assumption G1 6= ∅ we have

fsbp(T , xn, D) ≤
⌊

n− n∆(Pn) + 1

2

⌋
/n, (6.7)

where Pn denotes the empirical distribution of the data xn.

The proof can be found again in Davies and Gather (2002).

To help demonstrate the above equivariance group structure for a concrete estima-

tion scenario, we will give an example from Davies and Gather (2002, 2005a) involving

location functionals.
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Example 6.1 (Davies & Gather, 2002, 2005a) Consider p-dimensional random

vectors defined by a sample space X = Rp and the Borel σ−algebra B(X ) on Rp. We

may take the family of probability measures PΘ to be the set of all distributions P on

Rp or let P be the set of all Rp-distributions with a finite expectation.

For a distribution P ∈ PΘ, a location functional T could be defined as the median

of P (T (P ) =median of P ) or the mean of P (T (P ) =
∫

Rp xdP ). In any case, we take

the parameter space to be Θ = Rp = {θ : θ ∈ Rp}.

As the group acting on the sample space, we take the translation group G on Rp

with elements g : Rp → Rp ∈ G of form g(x) = x + a, a ∈ Rp. The group G induces a

group HG on the parameter space with elements hg = g for g ∈ G. Here the choices of

D and d are not crucial and we could choose D(θ1, θ2) = ‖θ1 − θ2‖p (Euclidean vector

norm) and d(P, Q) = supB∈C |P (B)−Q(B)|, where

C =
{
C : C = {x : x>b + a ≤ 0}

}
with b ∈ Rp, a ∈ R. Of course, the mean and median functionals T are equivariant

with respect to the group G.

Note that the class of constant functionals T (x) = c ∈ Rp for all x ∈ Rp, which

naturally exhibits a breakdown point of 1, are automatically excluded from G as they

fail to fulfill condition (6.4).

The group G1 according to the definition in (6.4) is equivalent to the group G defined

above except for the identity element {ι}. As a consequence we have ∆(P ) = P (∅) = 0

in (6.5), since no non-empty set B ∈ B can be found such that g|B = ι|B holds for

some g ∈ G1.

Applying the above theorem to location functionals and the translation group yields

an upper bound for the breakdown point of location functionals of 1/2, based on ∆(P ) =

0.
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Simply the presence of a group structure, however, does not guarantee a nontrivial

upper bound for the breakdown point. If the group structure is not sufficiently rich,

a trivial smallest upper bound of 1 is still possible. An example from Davies and

Gather (2002) is given by the binomial model, where the data consist of a count of

successes x based on k trials for estimating the binomial parameter p ∈ [0, 1]. This

example was considered by Ruckstuhl and Welsh (2001). Davies and Gather (2002)

show that there is a group acting on the sample space which consists only of two

elements: the identity mapping and the mapping g : g(x) = k − x. But, due to the

small group structure on the sample space, it turns out that the set G1 = ∅ is empty so

that Theorem 6.1 cannot be applied to find an upper bound for the breakdown point

of a functional for estimating p. Indeed, equivariant functionals exist for estimating

p with a breakdown point of 1 and, in fact, Davies and Gather (2002) give such a

functional.

6.1.1 Dimension reduction functionals

The focus of this section is to analyze the extent to which the theory of breakdown

& groups can be applied to the case of dimension reduction functionals, in particular

to functionals of the Sir-type. The results we will obtain however are likely to hold

also for dimension reduction functionals in general. For reduction subspace estimation,

the parameter space Θ corresponds to some collection of subspaces of Rp. As a key

result, we will show that, for subspace estimation, it is not possible to find a suitable

pseudometric D on the parameter space Θ of Rp-subspaces such that condition (6.3) is

fulfilled. The crucial property of any D in the framework of Davies and Gather (2002,

2005a) that the pseudometric takes on the value ∞ in the supremum. As we shall

discuss later, in the problem of reduction subspace estimation, this assumption cannot

be fulfilled for any choice of a meaningful (pseudo)metric D on subspaces.
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Elements in Breakdown and Group Structure for Sir, K known

To better understand breakdown & groups for functionals like Sir, we now consider

identifying the key elements of Davies and Gather (2002, 2005a) in the context of

dimension reduction. To ease our exposition, we assume that the reduction subspace

B ⊂ Rp has known dimension dim(B) = K which we wish to estimate with a functional

T associated with Sir (or similar dimension reduction functional).

Parameter Space: ΘK.

The parameter space ΘK would be

ΘK = {θ ⊂ Rp : dim(θ) = K},

the set of all k-dimensional subspaces of Rp.

Statistical Model: (X , B(X ),PK).

Since the data consist of observed random vectors (X, Y ) ∈ Rp×R, we take the sample

space (X , B(X )) to be defined by X = Rp ×R and B as the usual Borel σ-algebra on

Rp × R. Given the form of the parameter space ΘK above and the nature of the Sir

functional, the set of all probability measures under consideration is given by

PΘ ≡ PK = {P(X,Y ) on Rp × R | Σ(P(X,Y )) ≡ Σ ≡ Cov(X) is positive definite, (6.8)

V (P(X,Y )) ≡ V ≡ Cov[E(Σ(P(X,Y ))
−1/2X|Y )] has

ordered eigenvalues λ1 ≥ · · · ≥ λK > λK+1 ≥ · · · ≥

λp ≥ 0}.

Thus, (X , B(X ),PK) describing the statistical model under consideration. The condi-

tion λK > λK+1 in (6.8) is an identifiability condition for the dimension of a subspace

(parameter) estimate since we assume that K is known. The condition is necessary and

sufficient so that, if a Sir functional T is applied to a distribution P(X,Y ) ∈ PK, Sir will

render a K-dimensional parameter estimate T (P(X,Y )) ∈ ΘK consistent with the pa-

rameter space ΘK. If Sir is applied to a distribution P(X,Y ) 6∈ PK, then T (P(X,Y )) 6∈ ΘK.
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Statistical Functional: T .

More formally, assume a functional of the Sir-type T : (X , B(X ),PK) −→ ΘK that,

when applied to P(X,Y ) ∈ PK, yields a Rp-subspace T (P(X,Y )) = θ = θ(P(X,Y )) ∈ ΘK of

dimension K given by

θ = span(Σ−1/2η1, . . . , Σ
−1/2ηK),

based on the orthonormal eigenvectors η1, . . . , ηK of V = V (P(X,Y )) corresponding to

the largest K eigenvalues of V (which are identifiable again by (6.8)).

Group of Transformations on Sample Space: G.

A group of measurable transformations G on the sample space X is given by the affine

transformations:

G = {g : Rp+1 → Rp+1 | g
(

x
y

)
≡
(

g1(x)
g2(y)

)
, g2(y) = y ∈ R, g1(x) = Ax + b ∈ Rp,

p× p nonsingular matrix A, b ∈ Rp}.
(6.9)

Note that transformations g ∈ G affect only x-values, the mapping of y-values cor-

responds to the identity mapping. This is analogous to the regression case described

in Davies and Gather (2002, 2005a), where the group acting on the sample space

corresponds to the translation group and a transformation of the data is carried out

only with respect to the observations of the response variable Y .

Group of Induced Transformations on Parameter Space: HG.

The group G operating on the sample space induces a group HG on the parameter

space that corresponds to

HG =
{
hg : Θ −→ Θ| hg(θ) = (A>)−1θ ⊂ Rp

}
such that the equivariance property is fulfilled. (Note if θ ⊂ Rp is K-dimensional

subspace with basis vectors, say b1, . . . , bK, then (A>)−1θ denotes the Rp subspace

spanned by span((A>)−1b1, . . . , (A
>)−1bK).)
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Equivariance Structure.

To prove that Sir-type functionals are equivariant w.r.t. the affine group G, we fix

P(X,Y ) ∈ PK with Cov(X) = Σ(P(X,Y )) = Σ and V (P(X,Y )) = V = Σ−1/2WΣ−1/2 for

W = Cov[E(X|Y )]. With a spectral decomposition, note that V =
p∑

i=1

λiηiη
>
i , where

{ηi}p
i=1 are the orthonormal eigenvectors of V corresponding to the ordered eigenvalues

λ1 ≥ · · · ≥ λK > λK+1 ≥ · · · ≥ λp ≥ 0 by (6.8). We also have T (P(X,Y )) = θ =

span(Σ−1/2η1, . . . , Σ
−1/2ηK).

Choose g(x, y) = (Ax + b, y) ∈ G. Under g(X,Y ) with (X, Y ) ∼ P(X,Y ), or P g
(X,Y ), it

holds that

Σ ≡ Σ(P g
(X,Y )) = AΣA>

W ≡ W (P g
(X,Y )) = AWA>

V ≡ V (P g
(X,Y )) = Σ

−1/2
WΣ

−1/2
= (AΣA>)−1/2(AWA>)(AΣA>)−1/2.

We now have to find T (P g) which requires a spectral decomposition of V to find

the matrix’s orthogonal eigenvectors and largest K eigenvalues. We write C =

(AΣA>)−1/2AΣ1/2 and note that AΣA> and Σ are symmetric and nonnegative def-

inite so that

CC> = (AΣA>)−1/2AΣA>(AΣA>)−1/2

= Ip;

that is, C is a p × p orthogonal matrix. Let ηi = Cηi for i = 1, . . . , p. Multiply V

defined as above with C and C> to get

p∑
i=1

λiηiη
>
i = CV C> = (AΣA>)−1/2AΣ1/2Σ−1/2WΣ−1/2Σ1/2A>(AΣA>)−1/2

= (AΣA>)−1/2AWA>(AΣA>)−1/2 = V . (6.10)

Since {ηi}p
i=1 are orthonormal by

η>i ηj = η>i C>Cηj = η>i ηj =

 1 if i = j,

0 otherwise,
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we find (6.10) is the spectral decomposition of V , which has eigenvectors η1, . . . , ηK

corresponding to its well-defined, K largest eigenvalues (i.e, λK+1 < λK). By definition

we have

T (P g
(X,Y )) = span(Σ

−1/2
η1, . . . , Σ

−1/2
ηK)

= span
(
(AΣA>)−1/2Cη1, . . . , (AΣA>)−1/2CηK

)
= span

(
(AΣA>)−1AΣ1/2η1, . . . , (AΣA>)−1AΣ1/2ηK

)
= span

(
(A>)−1Σ−1/2η1, . . . , (A

>)−1Σ−1/2ηK

)
= (A>)−1span

(
Σ−1/2η1, . . . , Σ

−1/2ηK

)
= (A>)−1θ

using above that (AΣA>)−1 = (A>)−1Σ−1A−1. Hence, the Sir-functional T : P → θ

is equivariant with respect to G because

T (P g
(X,Y )) = (A>)−1θ = hg(θ) = hg(T (P(X,Y ))),

where hg(θ) = (A>)−1θ ∈ HG is the mapping induced by g ∈ G.

Pseudometric: d.

Analogous to the location example from Davies and Gather (2002), we could choose

pseudometric d defined on PK as d(P(X,Y ), Q(X,Y )) = supB∈C |P(X,Y )(B) − Q(X,Y )(B)|,

where C =
{
C : C = {(x, y) ∈ Rp+1 : (x>, y)b + a ≤ 0}

}
with b ∈ Rp+1, a ∈ R. This d

satisfies (6.1).

Pseudometric: D.

We now come to the point in the breakdown & groups framework where there are

no easy solutions. A pseudometric D on the parameter space ΘK is a mapping of the

form D : Θ × Θ −→ [0, M ] with sup
θ1,θ2∈Θ

D(θ1, θ2) = M ∈ (0,∞], where M denotes the

supremum value of D. The problem is that any pseudometric D should satisfy two

properties:
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1. D should be geometrically meaningful. If 2K ≤ p, then all existing metrics on

subspaces from Chapter 2 would agree on the following point: two K-subspaces

θ1, θ2 ∈ ΘK ⊂ Rp with 2K ≤ p should be maximally distant if and only if the

subspaces θ1 and θ2 are orthogonal. Hence, a geometrically meaningful pseudo-

metric D on the parameter space ΘK should somehow embody the notation that

a maximal distance D(θ1, θ2) = M between θ1 and θ2 means that these subspaces

(of parts of them) are orthogonal. More specifically, we could say that (for any

K ≤ p), if two subspaces θ1 and θ2 are maximally distant under a pseudometric

D, then θ1 ∩ (θ1 ∩ θ2)
⊥ and θ2 ∩ (θ1 ∩ θ2)

⊥ should at the very least be orthogonal;

see Section 2.5.2.

2. The pseudometric D must satisfy sup
θ1,θ2∈Θ

D(θ1, θ2) = M = ∞ in (6.3) in the

framework of Davies and Gather (2002, 2005a).

It is possible to find metrics which satisfy either property 1 or satisfy property 2. For

example, the Frobenius metric D(θ1, θ2) = F fulfills the geometrical property 1 but has

supremum metric value that is finite, namely

sup
θ1,θ2∈ΘK

F(θ1, θ2) =
√

2(K −max 0, 2K − p) = M < ∞

and so F does not satisfy property 2.

The sad news is that it is mathematically impossible to find a pseudometric D which

simultaneously satisfies both properties 1 and 2 above. This can be proven as follows

for the case 2K ≤ p; the 2K > p could be treated similarly. Suppose we have a

pseudometric D̃ which fulfills: sup
θ1,θ2∈Θ

D̃(θ1, θ2) = ∞ if and only if θ1 and θ2 become

orthogonal in the Rp. We show that such a pseudometric does not satisfy the triangle

inequality (and therefore cannot be a pseudometric). Pick θ1, θ2 and θ3 ∈ Rp where

the pair θ1, θ2 is orthogonal but the pairs θ1, θ3 and θ2, θ3 are not so that

∞ = D̃(θ1, θ2) ≤ D̃(θ1, θ3) + D̃(θ2, θ3) < ∞,

which is impossible.
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So we have a serious dilemma. If we choose a geometrically meaningful but bounded

metric, like F, the group G1 defined in (6.4) must be empty so that Theorem 6.1 cannot

be applied to find a meaningful upper bound on the breakdown point for Sir-type

functionals under the metric. This might imply that a geometrically and universally

acceptable formulation of a breakdown for Sir-type functions is not possible. However,

as shown in Chapter 4, it is still possible to use a geometrically meaningful metric

like F to quantify some effects of contamination on subspace estimation using Sir.

That is, the metric F allows one to mathematically study and interpret the effects

of contamination. A solution to this dilemma may be an alternative definition for

breakdown for dimension reduction functionals, and hence functionals of the Sir-type,

based on an idea by Davies and Gather (2004, 2005b). For this alternative definition

we refer to section 6.2.

Elements in Breakdown and Group Structure for Sir, K unknown

To set-up the breakdown & groups framework for Sir in the case that the dimension

K of the reduction Rp-subspace is unknown, we make three changes to the above

structure when K is known. Alternative formulations of the parameter space Θ0:p, the

family of probability distributions PΘ0:p and the functional T are required.

Parameter Space: Θ0:p.

The parameter space Θ0:p would be

Θ0:p = ∪p
K=0ΘK = {θ ⊂ Rp : dim(θ) = K, 0 ≤ K ≤ p},

the set of all subspaces of Rp.

Statistical Model: (X , B(X ),PΘ).

Again (X , B(X )) is defined as before (i.e, X = Rp × R) and

PΘ0:p ≡ {P(X,Y ) on Rp × R | Σ(P(X,Y )) ≡ Σ ≡ Cov(X) is positive definite,

V (P(X,Y )) ≡ V ≡ Cov[E(Σ(P(X,Y ))
−1/2X|Y )] has ordered

eigenvalues λ1 ≥ · · · ≥ λK > λK+1 ≥ · · · ≥ λp ≥ 0,

0 ≤ K ≤ p}.
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Group Transformations: G and HG. These remain unchanged.

Statistical Functional: T .

A functional of the Sir-type T : (X , B(X ),PΘ0:p) −→ Θ that, when applied to P(X,Y ) ∈

PΘ0:p , yields a Rp-subspace T (P(X,Y )) = θ = θ(P(X,Y )) ∈ Θ of dimension K = K(P(X,Y ))

given by

θ = span(Σ−1/2η1, . . . , Σ
−1/2ηK),

based on the orthonormal eigenvectors η1, . . . , ηK of V = V (P(X,Y )) corresponding to

the K = K(P(X,Y )) non-zero eigenvalues of V .

Note that T is equivariant with respect to G because one can show that

T (P g
(X,Y )) = (A>)−1θ = hg(θ) = hg(T (P(X,Y )))

as before, where hg(θ) = (A>)−1θ ∈ HG is mapping induced by g ∈ G. We note one

interesting facet of the group induced structure HG on Θ, where Θ consists of any

subspace of Rp. Namely, if θ ∈ Θ has dimension dim(θ) = K, then hg(θ) ∈ Θ also has

dimension dim(hg(θ)) = K, for any g ∈ G. That is, under affine transformations G of

the sample space, we find K-subspaces of Rp must always be mapped to K-subspaces

of Rp for a given dimension 0 ≤ K ≤ p. Affine transformations of the data cannot

alter the dimension of subspace estimates based on Sir, i.e, dimensions of T (P(X,Y )),

T (P g
(X,Y )) are equal for g ∈ G.

Pseudometrics: d and D.

The previous discussion in the K known case is still applicable. In particular,

it is still difficult to find a geometrically meaningful metric D on Θ for which

supθ1,θ2∈Θ D(θ1, θ2) = ∞ in (6.3). An additional complication is that, for any g ∈ G

and n ∈ N and θ ∈ Θ0:p, it holds that θ and hgn(θ) are Rp-subspaces of the same

dimension, so that it difficult to invent a pseudometric D for which D(θ, hgn(θ)) can

become arbitrarily large for a given θ ∈ Θ0:p. Worse yet, if θ ∈ Θ0:p has dimension

K = p then θ = Rp and we always have hgn(θ) = Rp, so that

inf
θ∈Θ0:p

D(θ, hgn(θ)) ≤ D(Rp, hgn(Rp)) = D(Rp, Rp) < ∞, n ∈ N, g ∈ G,

if D(Rp, Rp) is bounded.
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6.2 An alternative definition of breakdown for di-

mension reduction functionals (K known)

The discussion from the previous Section 6.1.1 indicates that, for Sir-type functionals

of Rp-subspaces of known dimension K, a serious problem in applying the breakdown

& groups framework of Davies and Gather (2002, 2005a) is that a suitable pseudo-

metric D cannot be found for the parameter space ΘK = {θ ⊂ Rp| dim(θ) = K} of

interest. Davies and Gather (2005b) suggest a different formulation of a breakdown

point which is attractive because this definition does not even require a pseudometric

D. That is, the breakdown point definition of Davies and Gather (2005b) overcomes

problems suggested in the last section by completely side-stepping the need for a mean-

ing pseudometric D to even be specified.

We next give the new breakdown point definition using the same (general) notation

developed in Davies and Gather (2002, 2005a) from Section 6.1. Let P denote the set

of all distributions on the measurable sample space (X ,B). Again we suppose that

there is a group G of measurable transformations of the sample space (X ,B).

Davies and Gather (2005b) define a functional T : PT −→ Θ with PT ⊂ P as

equivariant with respect to the group G if the following three conditions are fulfilled

C1. PT is closed under all g ∈ G.

C2. T is well defined on PT .

C3. T (P g) = hg(T (P )) for all P ∈ PT and g ∈ G.

Davies and Gather then suggest the following definition of breakdown.

Definition 6.2 (Davies & Gather, 2005b) Under the above assumptions the

breakdown point is defined as

ε∗(T , P, d) = inf{ε > 0 : d(P, Q) < ε for some Q /∈ PT },

where ε∗(T , P, d) = 0 if P /∈ PT .
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For Sir-Functionals when K is known, we have the parameter space Θ = ΘK as in

Section 6.1.1 with family of distributions PΘ = PK from (6.8), while P is the set of all

distributions on the sample space X = Rp×R. Now the property of identifiability of the

K largest eigenvalues of V (P(X,Y )) in (6.8) for P(X,Y ) ∈ PK, which is necessary for the Sir

functional to produce a dimension K subspace estimate in Rp (i.e., T (P(X,Y )) ∈ ΘK), can

be easily violated. For example, if a distribution Q ∈ P has a covariance matrix V (Q)

in (6.8) with all equal eigenvalues λ1 = · · · = λp (or even just eigenvalues λK = λK+1),

then T (Q) is not defined as Sir cannot determine a K-dimensional subspace estimate

from V (Q), i.e. more equal eigenvalues than the number of dimensions K of the

underlying e.d.r. subspace. Davies and Gather (2005b) discuss the complications

of equal eigenvalues in defining a breakdown in principal component analysis and their

comments are relevant for Sir.

As an example of Definition 6.2, Davies and Gather (2005b) explain that the mean is

not defined for all distributions so that it follows easily that the mean has a breakdown

point of 0 under the above definition for any distribution P ∈ P . Since Sir depends on

means (as well as covariances) of the underlying distribution, it follows that Sir must

also automatically have a breakdown point of 0 under Definition 6.2 for any P ∈ P .

Upper bounds for new breakdown point with subspace functionals

Davies and Gather (2005b) also give an upper bound for the breakdown point in Def-

inition 6.2. We can use this to find the upper bound for the breakdown point in

Definition 6.2 for any dimension reduction functional T that seeks to estimate a sub-

space of Rp, not just Sir-type. For this upper bound, some new notation is necessary.

Define a set of distributions

Pginv = {P ∈ P : there exists some g ∈ G with hg 6= hι, where P g = P},

consisting of distributions in P which are unaffected by some transformation g ∈ G but

the corresponding parameter T (P ) = θ may change. According to the equivariance

property of T , we would expect for any g ∈ G for which P g = P holds to have T (P ) =

T (P g) = hg(T (P )) if P ∈ PT , but this is of course not possible for distributions
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P ∈ Pginv. Obviously, we can conclude that Pginv ⊂ P \ PT for every equivariant

functional T , which implies an upper bound for the breakdown point of

ε∗(T, P, d) ≤ inf{ε : d(P, Q) < ε for some Q ∈ Pginv} (6.11)

for all equivariant functionals T and P ∈ P . Based on the above inequality, Davies

and Gather (2005b) give the following upper bound for the breakdown point in Defi-

nition 6.2.

Theorem 6.3 Suppose G contains a finite sub-group Gk of order k ≥ 2 such that

gk = ι (the identity) holds for all g ∈ Gk. Then, it holds that

ε∗(T , P, d) ≤ k − 1

k
,

for any P ∈ P.

In the following example, we show how to apply the above Theorem 6.3 to obtain an

upper bound on the breakdown point Definition 6.2 for a subspace estimating func-

tional. We need not assume the dimension K of dimension reduction is known or even

that the functional corresponds to Sir. We simply suppose that the functional T is

equivariant (i.e., satisfies C1.-C3.) with respect to the group of affine transformations

G acting on the sample space X = Rp×R given in (6.9). This group seems to be very

appropriate for Sir-type functionals.

Example 6.2 Suppose the sample space is X = Rp×R with the usual Borel σ−algebra

B. Let P be the set of all distributions on (Rp ×R,B) and take the group G of sample

space transformations to be (6.9).

Suppose p ≥ 2. Then, for any k ≥ 2, there is a rotation subgroup of G of order k

given by

Gk =

{
g ≡

(
g1(x)

g2(y)

)
∈ G

∣∣∣∣∣ g1(x) = (Ak)
ix : Rp → Rp, i ∈ {1, . . . , k}, g2(y) = y

}
,

where Ak, k ≥ 2, is a p× p matrix given by

Ak =

 Mk 02×(p−2)

0(p−2)×2 Ip−2

 , Mk =

 cos(2π
k

) − sin(2π
k

)

sin(2π
k

) cos(2π
k

)


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and Ip−2 is a (p− 2)× (p− 2) identity matrix. To see this, note that

(Ak)
k =

 (Mk)
k 02×(p−2)

0(p−2)×2 Ip−2

 = Ip, (Mk)
k = I2, k ≥ 2,

so that for any k ≥ 2 if g ∈ Gk, it holds that gk
1(x) = (Ak)

i·kx = {(Ak)
k}ix = Ipx = x,

x ∈ Rp with respect to some i ∈ {1, . . . , k}. Hence, the elements g ∈ Gk have order

k ≥ 2.

If p = 1, we define a subgroup of G of order k = 2 by

G2 =

{
g ≡

(
g1(x)

g2(y)

)
∈ G

∣∣∣∣∣ g1(x) = (−1)ix : R → R, i ∈ {0, 1}, g2(y) = y

}
,

where clearly g2
1(x) = (−1)2x = x, x ∈ R, if g ∈ G2 when p = 1.

Hence, by the existence of Gk, k = 2, for any p ≥ 1, it follows from Theorem 6.3

that for any dimension reduction functional T equivariant with respect to the group G

of affine transformations (6.9), any P ∈ P, and any pseudometric d,

ε∗(T , P, d) ≤ 1

2
.

In particular, the Sir functional has a breakdown point of 0 under Definition 6.2.

Davies and Gather (2005b) have argued that the median, since it is defined for all

distributions, has a breakdown point of 1 under Definition 6.2.

6.3 Influence Function

The influence function (IF ) was introduced by Hampel (1968, 1974) and belongs to the

class of quantitative robustness measures appropriate for assessing local robustness of a

functional T . It represents a directional derivative of the functional T at a distribution

P in the direction of a point mass in x. The influence function can be used to assess the

robustness of a functional under the infinitesimal amount of contamination in a point

x. A formal definition of the influence function can be found for example in Hampel

et al. (1986).

135



6 Quantitative Concepts for Dimension Reduction Procedures of the SIR-Type

Definition 6.3 (Hampel, et al. 1986) For a real-valued statistical functional T at

a distribution F , the influence function of T at P in a point x is given by

IF (x, T , P ) = lim
ε→0

T ((1− ε)P + εδx)− T (P )

ε
, (6.12)

where δx denotes the Dirac measure putting point mass 1 on x. The function

IF (x, T , P ) is defined for all x for which the above limit exists.

Hampel et al. (1986, p.41) refer to the influence function as the measure providing

the richest quantitative robustness information as it describes the approximate and

standardized effect of an additional observation (i.e., a point mass at x) on T .

Contributions regarding the influence function in the robustness analysis of Sir

can be attributed to Prendergast (2004) in his dissertation. He focused on querying

the robustness of Sir towards outlying observations and violations of distributional

assumptions for the data and investigated the influence function for Sir. His findings

cumulated in the derivation of the influence function for functionals estimating Sir

e.d.r. directions. The assumed underlying contamination model is of the form

P (ε) = (1− ε)P + εδ0,

where δ0 = (x0, y0) indicates the point mass placed on the value (x0, y0) representing

the contamination. Prendergast carried out the derivation of the influence function for

a single e.d.r. direction under the following two assumptions

A.1 The slicing proportions p1, . . . , pH are constant, where pi = P (Y ∈ Ii) rep-

resents the probability that the response variable Y falls into the ith slice Ii,

i = 1, . . . , H.

A.2 Sir is able to recover a K-dimensional e.d.r. subspace, if the K is the true

dimension.

The main result by Prendergast is the derivation of the influence function the ith e.d.r.

direction (i = 1, . . . ,K) stated in Theorem 4.1 of his dissertation, which also derived for
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other dimension reduction procedures, such as Save [cf. Cook and Weisberg (1991),

Cook (2000)]. It turns out that it is not possible to present the influence function in

closed form. This is because the Sir procedure/functional applied at the contaminated

distribution P (ε) provides a certain additive component to the influence function that

may not be determined without exact knowledge of the link function f .

According to Prendergast however, there exist cases for which the influence function

is free of this term, such as the single index model expressed by

Y = β>1 X + ε,

with X = (X1, . . . , Xp) ∈ Rp a vector of regressor variables, Y ∈ R a response variable,

and ε an error random variable. The corresponding mean and covariance matrix for

X are denoted by µ and Σ, respectively. The sliced means µh = E(X|Y ∈ Ih) ∈ R are

defined for each of the H slices Ih, h = 1, . . . , H. The single index model has only one

e.d.r. direction β1 ∈ Rp (i.e., K = 1) and Prendergast stated the influence function for

β1 explicitly as

IF (β1, δ0, P ) =

[
1

2
β1β1

> − Σ−1

] [
(x0 − µ)(x0 − µ)> − Σ

]
β1 (6.13)

+
1

λ1

(
Σ−1 − β1β

>
1

) H∑
h=1

I(y0 ∈ Ih){β>1 (µh − µ)}(x0 − µ),

where I(·) denotes the indicator function and λ1 is the largest eigenvalue of sliced

version of Cov[Σ−1/2E(X|Y )] given by
∑H

h=1 phΣ
−1/2(µh−µ)(µh−µ)>Σ−1/2 (cf. Pren-

dergast (2004), p. 124).

As expected the influence function is unbounded with respect to the explanatory

variables and bounded with respect to the response. Based on the derivation of the

influence function for the single index model Prendergast investigates in particular

three types of contamination δ0 of the regressor space, denoted by δ1, δ2, and δ3, when

taking Σ = Ip and µ = 0p. The term δ1 represents a contamination in the direction of

the e.d.r. direction β1; δ2 is contamination orthogonal to the e.d.r. direction; and a

third type represents a mixture of the other two types δ1 and δ2. Among his findings
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is that contaminations of the type δ1 may have zero influence on the e.d.r. direction

which at first glance seems to contradict our finite sample findings in Chapter 4 and

the findings by Gather et al. (2002). This apparent contradiction can be explained,

however. To do so, we give a new example, not presented by Prendergast.

Suppose Σ = Ip, µ = 0p and H = 1 (so that µ1 = µ), then the influence function

(6.13) for the single index model becomes

IF (β1, δ0, P ) =

[
1

2
β1β1

> − Ip

] [
x0x

>
0 − Ip

]
β1.

We next assume further WLoG that ‖β1‖ = 1. If the contamination term is orthogonal

to β1 (i.e., x>0 β1 = 0), then the Euclidian norm of the influence function is

‖IF (β1, δ2, P )‖ =
1

2
.

Under Prendergast’s contamination type δ2, the influence function for β1 is bounded

but not necessarily zero. Now consider Prendergast’s contamination type δ1 using a

term x0 = cβ1 for c ∈ R so that the influence function is

‖IF (β1, δ1, P )‖ =
1

2
·
∣∣c2 − 1

∣∣.
Under Prendergast’s contamination type δ1 with x0 = cβ1, the influence function for

β1 is unbounded with respect to c but could possibly be zero if c = 1 or −1. This example

shows that, as Prendergast suggests, contamination in the direction of β1 (i.e, type δ1)

may not always be as bad as contamination orthogonal to β1 (i.e., type δ2), since the

influence function is smaller when |c| <
√

2. But, generally, contamination x0 = cβ1 in

the direction of β1 is much more influential for large values of c (i.e., |c| >
√

2).

Note that Prendergast assumes that Σ is unknown. When Σ is unknown but K = 1

is known, the finite sample studies given in Chapter 4 and carried out by Hilker (1997)

and Gather et al. (2002) showed that contamination c · β1 in the first e.d.r. direction

can produce an estimate of β1 that is orthogonal to β1 when c is large. That is, under

the single index model, one contamination point x0 of large magnitude in the direction

of β1 can be dangerous for the SIR procedure. The example above, taking x0 = cβ1

for large c, indicates that Prendergast’s influence function for the single index model

would seem to support this conclusion.
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Chapter 7

Conclusions and Recommendations

In the focus of this thesis was a thorough investigation of the robustness properties

of the dimension reduction procedure Sir (Li, (1991)). In particular, emphasis was

especially paid to the finite sample behavior of the Sir procedure under data contam-

ination.

This work builds upon the dissertation by Hilker (1997), containing the first efforts

to define a breakdown point concept for dimension reduction procedures in the finite

sample case, as well as research by Becker (2001) and Gather et al. (2002).

The definition of Hilker’s finite sample breakdown point involved canonical correla-

tions as a suitable distance measure between the estimated and true e.d.r. subspaces.

However, as breakdown classically involves the use of an underlying metric, this defini-

tion turned out to be somewhat problematic in the sense that canonical correlations do

not constitute a metric. This provided the main motivation for Chapter 2, which es-

tablishes an appropriate distance measure between Rp-vector subspaces. Our findings

cumulated in a metric based on the Frobenius matrix norm. This metric represents

an adequate distance measure on Rp-subspaces from both an intuitive and geometric

point of view. The Frobenius-norm based subspace metric F further resolves a second

drawback of Hilker’s breakdown point definition. While Hilker’s work stipulated that

breakdown occurs if one basis vector of an estimated e.d.r. subspace is orthogonal to
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the true e.d.r. subspace, we felt that it is arguably worse to estimate and select the

entire orthogonal subspace of the true e.d.r. subspace of interest. The metric F entirely

supports this notion of a worst case estimated by taking on its maximal value if and

only if the orthogonal complement of the true subspace is estimated.

In Chapter 4 we considered various types of contamination which can produce a

worst case e.d.r. subspace estimate. We demonstrated that the data contamination

scenarios that produce erroneous e.d.r. subspace estimates in Sir depend for one on

the knowledge of the covariance structure of the regressor variables but also on the

knowledge of the dimension K of the true e.d.r. subspace. In particular, we showed

that the type of data contamination that causes Sir to yield an erroneous subspace

estimate will change depending on whether the covariance of the regressors is known

or not. Based on these findings we were able to provide upper bounds for the finite

sample breakdown point with respect to the metric F depending on the knowledge of

the covariance matrix and of the dimension of the reduction subspace.

Summarizing Chapter 4, we were able to show that unlike stated at various places

in the literature, Sir is indeed sensitive to outlying observations. Not only is it possible

to obtain additional e.d.r. direction under data contamination as stated by Cook and

Critchley (2000), e.d.r. directions can also become lost under contamination to the

extent that none of the true e.d.r. directions of the e.d.r. subspace are recoverable

by Sir and only the orthogonal complement of the e.d.r. subspace will ultimately be

estimated.

Our theoretical findings of Chapter 4 were followed by a simulation study in Chap-

ter 5, which clearly supported our established theory.

While our definition of the finite sample breakdown point follows geometrical in-

tuition, it has itself the drawback of being based on a metric that can only take on

finite values. This is problematic because, in Robust Statistics, the notion of breakdown

is commonly established with respect to an unbounded metric on a parameter space

(i.e., a metric that can become infinitely large when taking limits). In particular a
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statistical functional is said to break down under contamination when its bias becomes

infinitely large and the metric quantifying the distance between the true parameter and

its contaminated estimate diverges to infinity. For Rp-subspaces, which represent the

parameters of interest in Sir, such a metric is not possible. A metric that is unbounded

cannot be found as shown in Chapter 6. This difficulty with metrics is a part of our

general findings in Chapter 6, where we examined the robustness of Sir at the level of

population distributions based on the results of Breakdown & Groups by Davies and

Gather (2005a). The main result is that Sir-Type functionals are difficult to place

in the framework of Breakdown & Groups because the above mentioned problem of

finding a suitable metric.

As hinted by Davies and Gather (2005b), an alternative definition of breakdown

can be applied to dimension reduction functionals which may statistically be more

meaningful and accurate than a definition based on common breakdown point theory,

since this requires no metric on subspaces to be specified.

As a general conclusion it may be more appropriate to examine the robustness of

Sir in terms of its discontinuity and lack of qualitative robustness rather than the

breakdown point.
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Appendix: Supporting Technical

Results

Many of the proofs require basic, but perhaps less familiar, results from real analysis

involving sequences. We recall some important definitions involving a sequence of real

numbers {an}∞n=1 ⊂ R and collect some useful results with sequences in Lemma 7.1.

If {an}∞n=1 ⊂ R is a real sequence, define two further sequences {bn}∞n=1 and {cn}∞n=1

by bn = sup{an, an+1, an+2, . . .}, cn = inf{an, an+1, an+2, . . .} for n ∈ N. The sequence

{bn}∞n=1 is monotonically decreasing (i.e., bn+1 ≤ bn) while {cn}∞n=1 is monotonically

increasing (i.e., cn+1 ≥ cn). Define

lim sup
n→∞

an = inf{bn}∞n=1 lim inf
n→∞

an = sup{cn}∞n=1,

where lim supn→∞ an, lim infn→∞ an ∈ R ∪ {∞,−∞}.

Lemma 7.1 {an}∞n=1 ⊂ R is a real sequence, then the following hold.

(i) If {an}∞n=1 is bounded so that |an| ≤ C, n ∈ N, then there exists a subsequence

{anj
}∞j=1 ⊂ {an}∞n=1 and real a, |a| ≤ C, such that anj

→ a as j →∞. (Bolzano-

Weierstrass Theorem)

(ii) If a subsequence {anj
}∞j=1 ⊂ {an}∞n=1 satisfies anj

→ a as j →∞ for some a ∈ R,

then lim infn→∞ an ≤ a ≤ lim supn→∞ an.

(iii) an → a as n → ∞ for some a ∈ R if and only if for any subsequence

{anj
}∞j=1 ⊂ {an}∞n=1, there exists a further subsequence {anjm

}∞m=1 ⊂ {anj
}∞j=1

such that anjm
→ a as m →∞.
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Proof. See Chapter 3 of Berberian (1994).

The following, useful result gives the singular value decomposition of a matrix A.

Lemma 7.2 If A is a p× q matrix of rank k, then A can be expressed as

A = L∆M>,

where L is a p× p orthogonal matrix, M is a q× q orthogonal matrix and ∆ is a p× q

matrix of form

[diag(δ1, δ2, . . . , δk, 0 . . . , 0︸ ︷︷ ︸
length p−k

)|p×(q−p)0]

and δ2
1, δ

2
2, . . . , δ

2
k are the nonnegative eigenvalues of AA> or A>A.

Proof. Kshirsagar (1972, Theorem 1, p.247) 2

We use the next result to show that the product of two projection matrices must

have a nonnegative trace.

Lemma 7.3 Let S, S̃ be two vector subspaces of Rp each spanned by an orthonormal

basis S = [s1, . . . , sk] and S̃ = [s̃1, . . . , s̃k∗ ], respectively, where k, k∗ ≤ p. If PS and

P
eS denote the corresponding projection matrices onto S and S̃, respectively, then it

holds that tr(PSP eS) ≥ 0. Also, tr(PSP eS) = 0 if and only if the subspaces S and S̃ are

orthogonal.

Proof. With the projection matrices PS and P
eS as defined in Definition 2.9, it follows

that

tr(PSP eS) = tr(SS>S̃S̃>) = tr(S>S̃S̃>S) = tr(AA>),

where A = S>S̃ is a k × k∗ matrix. Using a singular value decomposition S>S̃ = A =

L∆M>, Lemma 7.2 yields now

tr(AA>) =
k′∑

i=1

δ2
i ≥ 0, (7.1)
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where k′ represents the rank of AA> and 0 ≤ δ2
i ≤ 1, i = 1, . . . , k′, represent the

nonnegative eigenvalues of AA>. (The property that each δ2
i ≤ 1, i = 1, . . . , k′, follows

from next argument. If δ2
i is an eigenvalue of AA> with eigenvector vi, v>i vi = 1, then

δ2
i = v>i viδi = v>i AA>vi = (Svi)

>P
eS(Svi)

= ‖P
eSSvi‖2

≤ ‖Svi‖2

≤ largest eigenvalue of SS> = PS

= 1,

using above that P
eS = S̃S̃>.)

Now note that if S and S̃ are orthogonal, then A = 0 follows and tr(PSP
eS) = 0.

Conversely, if tr(PSP
eS) = 0, then each eigenvalue δ2

i = 0 in (7.1) and so L∆M> =

A = S>S̃ = 0k×k∗ in the singular value decomposition. Hence, the subspaces S and S̃

have orthogonal basis vectors S, S̃ and must be orthogonal. This completes the proof

of Lemma 7.3. 2

We next summarize some useful properties of the Frobenius norm ‖ ·‖F of a matrix,

given in Definition 2.8, and relate the Frobenius norm to the spectral or matrix 2-norm

‖ · ‖2 given in (2.8).

Lemma 7.4 Let A ∈ Rp×q and B ∈ Rq×t denote real-valued p× q and q × t matrices,

respectively. Let P ∈ Rp×p and Q ∈ Rp×p denote real-valued orthogonal p× p and q× q

matrices, respectively, where PP> = Ip×p and QQ> = Iq×q. It holds that

(a) ‖AB‖F ≤ ‖A‖F · ‖B‖F

(b) ‖A‖2 ≤ ‖A‖F

(c) ‖A‖F ≤
√

min{p, q} · ‖A‖2

(d) ‖PAQ‖F = ‖A‖F.
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Proof. For (a), see Stewart and Sun (1990, Chapter II, Section 2.1). To establish

parts (b) and (c), we use the singular value decomposition of A (see Lemma 7.2) to

write

AA> = L∆M>M∆>L> = L∆∆>L>,

using the notation of Lemma 7.2 and that M>M = Iq×q, the q × q identity matrix, by

the orthogonality of M . With this same notation, we have from (2.8) that

‖A‖2
2 = the largest eigenvalue of AA> = max{δ2

1, . . . , δ
2
k},

where k = rank(A) ≤ min{p, q}. Note also that by L>L = Ip×p, it holds by definition

that ‖A‖2
F is equal to

tr(AA>) = tr(L∆∆>L>) = tr(∆∆>L>L) = tr(∆∆>) =
k∑

i=1

δ2
i ,

using properties of the trace operation of matrices (e.g., tr(CD) = tr(DC) for a real-

valued p× q matrix C and a real-valued q × p matrix D). Since k ≤ p, it now follows

that

max{δ2
1, . . . , δ

2
k} = ‖A‖2

2 ≤ ‖A‖2
F =

k∑
i=1

δ2
i ≤ min{p, q} ·max{δ2

1, . . . , δ
2
k}

= min{p, q} · ‖A‖2
2,

establishing parts (b) and (c) of Lemma 7.4. Part (d) follows from properties of the

matrix trace operation and PP> = Ip×p and QQ> = Iq×q:

‖PAQ‖2
F = tr(PAQQ>A>P>) = tr(PAA>P>) = tr(AA>P>P )

= tr(AA>) = ‖A‖2
F.

Note that P>P = Ip×p follows above from PP> = Ip×p since P> is the unique p × p

matrix inverse of the p× p matrix P . 2

The next result will be useful for the convergence of subspaces of Rp, when the

subspaces are spanned by a sequence of vectors. Care must be taken though because a

convergent sequence of vectors does not always correspond to a convergent sequence of

Rp-subspaces. Consider the sequence of normalized vectors b1,m = (1, 0)> and b2,m =
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(1, 1
m

)>/
√

1 + 1
m2 , m ∈ M, in R2. In this example, the space spanned by b1,m, b2,m is R2

for all m but the R2-space spanned by limm→∞ b1,m, limm→∞ b2,m is the line spanned by

(1, 0)>. Hence, limit of the span of b1,m, b2,m (namely, R2) is not the span of the limit of

b1,m, b2,m (namely, span(1, 0)> ⊂ R2). To ensure that subspaces spanned by sequences

of Rp-vectors converge as the sequence of vectors converge, we use a condition (7.2)

below in Lemma 7.5.

Lemma 7.5 Let a ∈ Rp. For k ≤ p, suppose b1,m, . . . , bk,m ∈ Rp, m ∈ N, represent a

sequence of linearly independent vectors such that, for each i = 1, . . . , k

‖bi,m‖ = 1, ∀m ∈ N, lim
m→∞

a>bi,m = 0,

and, for the p× k matrix Bm = [b1,m, . . . , bk,m], it holds that

det(B>
mBm) ≥ C, m ≥ N (7.2)

for some real C > 0 and N ∈ N. If Bm represents the Rp-subspace spanned by {bi,m}m
i=1

and PBm denotes the corresponding orthogonal projection matrix for Bm, then

lim
m→∞

PBma = 0p as m →∞.

Proof. Because we are considering limits, WLoG assume (7.2) holds for all m ∈ N.

Because B>
mBm is symmetric and positive definite, we can write B>

mBm =

Q>
mDmQm, where the k × k matrix Qm is orthogonal (i.e., Q>

mQm = Ik) and Dm is

a diagonal matrix where the main diagonal elements consist of the positive eigenvalues

λ1,m ≥ · · · ≥ λd,m > 0 of B>
mBm; the positivity of the eigenvalues λi,m (i = 1, . . . , k,

m ∈ M) follows because B>
mBm is positive definite from rank(B>

mBm) = rank(Bm) = k.

Since 1 = ‖bi,m‖2 = b>i,mbi,m for i = 1, . . . , k, the k×k matrix B>
mBm has all diagonal

elements equal to 1, so that

‖B>
m‖2

F = tr(B>
mBm) = k, tr(B>

mBm) = tr(DmQmQ>
m) = tr(Dm) =

k∑
i=1

λi,m;
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it follows that 0 < λi,m ≤ k (i = 1, . . . , k, m ∈ M).

Note that (B>
mBm)−1 = Q>

mD−1
m Qm has ordered eigenvalues 1/λ1,m ≤ · · · ≤ 1/λk,m

and that

k∏
i=1

1

λi,m

= det
(
(B>

mBm)−1
)

= 1/ det(B>
mBm) ≤ 1

C
, m ∈ N.

Using the last result with 1/k ≤ 1/λi,m, it follows that(
1

k

)k−1
1

λk,m

≤
k∏

i=1

1

λi,m

≤ 1

C
⇒ 1

λk,m

≤ kk−1

C
≡ C̃

so that

‖(B>
mBm)−1‖2

2 = largest eigenvalue of (B>
mBm)−1[(B>

mBm)−1]>

= largest eigenvalue of Q>
mD−2

m Qm

= largest eigenvalue of D−2
m

=
1

λ2
k,m

≤ C̃2.

Hence, ‖(B>
mBm)−1‖F ≤

√
k · ‖(B>

mBm)−1‖2 ≤
√

k · C̃ using Lemma 7.4. Because

limm→∞ a>Bm = 0>k by assumption, we use Lemma 7.4 again to establish

lim
m→∞

√
(PBma)>(PBma) = lim

m→∞
‖a>PBm‖F

= lim
m→∞

‖a>Bm(B>
mBm)−1B>

m‖F

≤ lim
m→∞

‖a>Bm‖F · ‖(B>
mBm)−1‖F · ‖B>

m‖F

= lim
m→∞

‖a>Bm‖F · k · C̃ = 0,

from which limm→∞ PBma = 0p follows. 2
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Notation

Notation

V euclidian vector space 7

dim(V) dimension of V 7

S euclidian vector subspace 7

PS orthogonal projection matrix of S 9

rank(S) rank of a real-valued matrix S 9

tr(S) trace of a real-valued matrix S 9

‖ · ‖2 euclidian norm 9

Ip p× p identity matrix 9

d(·, ·) a metric 10

span() vector space spanned by a collection of vectors 10

‖ · ‖F Frobenius matrix norm 12

F(S, S̃) Frobenius norm-based subspace metric 12

col(S) column space of a real valued matrix S 14

ν(·) a vector norm on Rp 15

distν(·, ·) ν-distance w.r.t. a vector norm ν 15

gapν(·, ·) gap w.r.t. a norm ν 17

‖A‖2 spectral norm of a real-valued matrix A 17

νm(·) a matrix norm 17

ρνm(·, ·) a subspace metric w.r.t. matrix norm νm(·) 17

θmin minimal angle between subspaces 19

0p p-dimensional zero vector 19

θmax maximal angle between subspaces 19

ei ith unit vector 21
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Notation

Y real-valued response variable 30

X = (X1, . . . , Xp)
> real-valued p-dimensional vector of regressor variables 30

ε real-valued error term 30

E(X|Y ) inverse regression curve 31

B e.d.r. subspace 31

K dimension of e.d.r. subspace B 31

β1, . . . , βK e.d.r. directions 31

η1, . . . , ηK standardized e.d.r. directions 32

λi ith eigenvalue of a matrix A 32

µ, Σ expected value and covariance matrix of X 33

V covariance matrix used in Sir procedure 34

H number of slices used in the Sir procedure 35

(X,Y )n sample of size n 39

T1, T2 location functionals in the Sir procedure 40

C1, C2 scatter functionals in the Sir procedure 40

I intersection of two Rp vector subspaces 43

|A| cardinality of a set A 52

δij Kronecker delta function 61

∠ angle 103

Pn empirical distribution 118

T functional 119

X sample space 120

B Borel σ-Algebra 120

P family of all non-degenerate probability measures 120

Θ parameter space 120

G, Hg groups of measurable transformations 120

d pseudometric on probability distributions 120

D pseudometric on parameter values 120
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