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Chapter 1

Introduction

Unquestionably, the need of dimension reduction procedures in statistical data analy-
sis has never been more important than in today’s time. Due to increased computing
power and storage capacity of computers, the amount of data along with the number of
surveyed variables in studies are often larger than ever before. Consider, for example,
studies in the field of Bioinformatics or Epidemiology dealing with microarray data.
When analyzing microarray data, we often face up to thousands of genes, representing
regressor variables, but only very small sample sizes, as described by Tibshirani (2000)
or Dettling and Bithlmann (2004) for example. The latter authors also refer to this
as the “small sample size n, large predictor dimension p-phenomenon.” But data sets
consisting of fewer regressor variables can also pose severe problems in the data analy-
sis step, which is the case in the often cited Boston Housing data set by Harrison and
Rubinfeld (1978) that consists of 14 variables and n = 506 observations. The arising
problem is known as the curse of dimensionality describing the following phenomena.
As the dimension p of the regressor space increases, the space becomes sparser unless
the amount of data, the number of observations n, grows exponentially. Consequently,
nonparametric regression procedures used for fitting regression models will fail to esti-
mate an underlying regression function g sufficiently well, as they crucially depend on

data observations having neighboring observations nearby in the regression space.
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As a remedy, often an appropriate lower dimensional subspace of the original regressor
space is sufficient for fitting a regression function. These subspaces can be obtained by

identifying IC < p important linear combinations of the regressor variables.

SLICED INVERSE REGRESSION (SIR) by Li (1991) is a dimension reduction pro-
cedure that aims at estimating such a subspace, spanned by important linear com-
binations of regressor variables. Other well-known dimension reduction procedures
estimating so-called dimension reduction subspaces of the regressor space include SIR
11 by Li (1991), SAVE (Cook and Weisberg (1991), Cook (2000)), PRINCIPAL HESSIAN
DIRECTIONS (Li (1992)) or more recently MAVE by Xia et al. (2002). The main focus

of this thesis though will only be on the dimension reduction procedure SIR.

Because ultimately the estimation of a regression curve or link function relies cru-
cially on the correct identification of the linear combinations that span the dimension
reduction subspace, robustness properties of a dimension reduction procedure become
crucial to understand. That is, it is important to consider just how sensitive SIR
and its subspace estimates are to data contamination. Unfortunately, there has been

disagreement over the robustness properties of SIR.

Although Li (1991) pursues the argument that SIR is robust against outlying ob-
servations, other researchers including Hilker (1997), Gather et al. (2002) and Pren-
dergast (2004) have demonstrated that the procedure is sensitive to certain types of
data contamination which may influence the subspace estimate. Li (1991) justified
his argument by pointing out that the influence of outlying observations within the
response variable y is limited as y is incorporated in the SIR procedure only in a slicing
step (see Chapter 3). Regarding the regressor variables x, he argues that xz-values are
typically fixed design points. However, as noted by Prendergast (2004), we are often
faced with high dimensional data sets that are not the result of a designed experiment.
Hence, we are obliged to be concerned about contamination of the data, in particular
as such observations often remain undetected due to the high dimensionality of the
data set [cf. Rousseeuw and Leroy (1987)]. Cook and Critchley (2000) reach the con-

clusion that outlying observations only result in additional linear combinations to the
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true subspace. While this certainly may be true for some situations and particular
types of contamination, we will show that outlying observations can indeed lead to
the loss of important linear combinations of the subspace as well as the inclusion of
false information (see Chapter 4). Bond (1999) also investigated the robustness of SIR
focusing on the robustness of the procedure under violations of distributional assump-
tions. His study revealed that Sir is “fairly robust, not being affected by even fairly
sizable perturbations when the response function was well behaved.” We argue that
these differing findings may arise because the type of contamination plays a significant
role in the study of robustness of SIR. Single data points may not yield a bad estimate
of a dimension reduction subspace simply if the points lie far away from the main bulk
of the data. The direction in which outlying data points may play a more decisive and

important role [cf. Hilker (1997), Gather et al. (2002)].

The focus of this thesis is placed on a detailed investigation of the robustness
properties of SIR. In particular, we emphasize on the finite sample behavior of the SIr
procedure under data contamination, considering various types of contamination (i.e.,
directions of contamination) which may produce a worst case subspace estimate. We
wish to demonstrate that the data contamination scenarios that produce bad subspace
estimates in SIR depend also on the covariance structure of the regressor variables as

well as the knowledge of the dimension I of the final dimension reduction subspace.

Starting point is the dissertation of Hilker (1997), which provided a first thorough
investigation of the robustness of SIR particulary focusing on a breakdown point defi-
nition. While this study of Hilker concentrated on the estimation of the first dimension
reduction direction, we extend our study to all directions of the dimension reduction
subspace. That is, we wish to consider the effect of data contamination on the entire
dimension reduction subspace estimate as a whole, not single dimension reduction di-
rections or vectors. As the dissertation of Prendergast (2004) offers first results on a
definition of the influence function for SIR, we shall keep the main focus of our work

on a possible definition of a finite sample breakdown point for SIR.

The thesis is organized as follows.
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In Chapter 2 we provide a review of necessary basic algebraic terminology allowing us
to define distance measures between RP-vector subspaces. Our findings cumulate in an
adequate metric on RP-subspaces that is based on the Frobenius norm. We will discuss
its main properties and establish its suitability compared to other distance measures

based on angles and so-called gap functions.

A review of the SIR procedure is given in Chapter 3. Because the procedure has been
thoroughly presented in various sources in the literature, we will restrict our review

only to details necessary for the investigation of the robustness properties.

The main theoretical contributions regarding the behavior of the SIR procedure under
data contamination are presented in Chapter 4. We begin with a discussion of the
meaning of the notion of breakdown with respect to SIR and dimension reduction
procedures in general. This includes a review of previous approaches found in the
literature, including those of Hilker (1997) and Becker (2001). We continue with a
thorough analysis of the sensitivity of SIR, where a distinction of four different scenarios
and data contamination schemes is necessary. We distinguish whether the dimension
IC of the dimension reduction subspaces to be estimated by the SIr procedure is known
or unknown. A second decisive factor in the sensitivity analysis turns out to be the
knowledge regarding the covariance matrix of the regressor variables. That is, we shall
see that types of data contamination that cause SIR to yield an erroneous subspace
estimate can change depending on whether the covariance of the regressors is known

or not.

Chapter 5 contains the description of a simulation study used to numerically support
our theoretical findings presented in the previous Chapter 4. The results of the simu-

lation study concerning data contamination with SIrR are presented and summarized.

The concept of BREAKDOWN & GROUPS established by Davies and Gather (2002,
2005a) offers by far the most insightful analysis regarding breakdown of a statistical
functional. In Chapter 6 we examine the extent to which the theory of BREAKDOWN

& GROUPS can be applied to the case of dimension reduction functionals, in particular
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to functionals of the SirR-type. We find that SiR-type functionals are difficult to place
in the framework of BREAKDOWN & GROUPS, because a geometrically meaningful
metric on subspaces (i.e., the parameters) is complicated to formulate under conditions
required in Davies and Gather (2002, 2005a). As hinted by Davies and Gather (2004,
2005b), an alternative definition of breakdown can be applied to dimension reduction
functionals which may statistically be more meaningful and accurate than a definition
based on common breakdown point theory, since this requires no metric on subspaces

to be specified.

Conclusions and recommendations for possible research extending the results found in

this thesis are given in Chapter 7.

Some supporting technical arguments and results are provided in the Appendix.




Chapter 2

Preliminaries

This chapter focuses on Euclidian vector spaces RP and developing metrics to measure
the distance between subspaces of RP. In Section 2.1, a review is given of the basic
properties of vector spaces and orthogonal projection matrices. Section 2.2 develops a
metric for RP-subspaces based on the Frobenius matrix norm that has many desirable
qualities for quantifying the distance between subspaces. For example, this subspace
metric is often simple to compute and to geometrically interpret. We use this metric to
formulate most of the finite sample breakdown results in Chapter 4. For completeness
in Section 2.3, we discuss other general metrics which are possible for RP-subspaces,
namely gap functions (Section 2.3.1) and angles (Section 2.3.2). We argue that the
Frobenius norm-based subspace metric is more attractive than these other alternatives
for subspace metrics. Section 2.4 illustrates the Frobenius norm-based metric with
some examples. In Section 2.5, further properties of the Frobenius norm-based subspace
metric are developed for later use, including the invariance of the metric (Section 2.5.1)

and bounds on the maximal values of the metric (Section 2.5.2).




2 PRELIMINARIES

2.1 Vector Spaces

We begin by recalling some basic definitions involving Fuclidean vector spaces V =
RP;p > 1 and subspaces as well as basis vectors which span them. Although these
definitions concern basic algebraic elements, we feel that their review is worthwhile
because SIR is concerned with estimating a vector subspace. The familiar reader may

not hesitate to skip this section.

Definition 2.1 (Schott, 1995) Let V denote a collection of p x 1 vectors satisfying

the following two properties

Pi1. Ifx1 €V and x5 € V, then x1 + x5 € V.

P2. If x € V and « is a real-valued scalar, then ax € V.

Then V is called a vector space in p-dimensional space.

Properties P1 and P2 are generally known as the closure properties for vector addition
and scalar multiplication, respectively. In particular, the Euclidean vector space V =

R? consists of all p-dimensional vectors with p real-valued components.

Definition 2.2 (Schott, 1995) Let {x1,...,x,} be a set of p x 1 vectors in a vector
space V. This set is called a basis of V if it spans the vector space V (i.e. any
vector in v € V can be expressed as a linear combination of {x1,...,x,} by v =
Z?Zl a;x; for real-valued scalars) and the vectors w1, ..., x, are linearly independent
(i.e. if 0 =" o, then each a; = 0). Although this basis is not uniquely defined
for a vector space, the number of vectors n in the basis is unique and is referred to as

the dimension of the vector space V, denoted by dim(V) = n.

Definition 2.3 (Schott, 1995) Let V be a vector space spanned by a basis
{z1,...,2,}. A space S is called a subspace of V (S C V) if it is spanned by a
set {y1,...,ych, K < n, where any y;,i = 1,...,K is a linear combination of the
x's,i=1,...,n and y,...,yc are linearly independent. The number of linearly inde-

pendent vectors IC spanning S corresponds to the dimension of the subspace S.
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Definition 2.4 (Meyer, 2000) Let S; and Sy be subspaces of a vector space V. The
sum of & and S is defined as the set of all possible sums of vectors from Sy with

vectors from Sy. That is

81@82:{81—|—52|81€Sl cmdSQESQ}.

Subspaces &1 and Sy generate a new subspace Sy & Sy = S and for two sets S1 and S

of vectors spanning &; and S, respectively. It follows that S U Ss spans S; & S, = S.

In our studies of SIR and Euclidean vector subspaces, we will often refer to the orthog-
onal complement of a vector subspace. Two (nonzero) Euclidean vectors x and y are
said to be orthogonal if the cosine of the angle between the vectors,
'y

cos) = ———,
[l [[{y]

(2.1)

equals zero. This leads to a general definition of orthogonality between Euclidean
vectors (i.e. x and y are orthogonal if 7y = 0) and the notion of the orthogonal

complement of a subspace, described in the following.

Definition 2.5 (Schott, 1995) Let S be a Fuclidean vector subspace of V = RP p >
1. The orthogonal complement of S, denoted by S*, is the collection of all vectors in RP

that are orthogonal to every vector in S; that is St ={x € RP: 27y =0 for ally €
S}.

In particular, assuming we have V = RP, then if S is a vector subspace of RP its
orthogonal complement S* is also a vector subspace of RP and it holds that V = RP =
S @8t (cf. Schott (1995), Theorem 2.15, p.56). It also holds that if a vector subspace
S of R? is of dimension K, then the dimension of St is p — K (cf. Schott (1995),
Theorem 2.16, p.56).

Our study of the robustness properties of SIR relies heavily on the notation of vector
space projections and projection matrices involving Euclidean vector spaces V = RP,

p > 1. We review some necessary definitions in the following.
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Definition 2.6 (Fraleigh € Beauregard, 1990) Let S be a vector subspace of RP
with basis vectors s1,...,sc, K < p, and let x be an arbitrary vector in RP. A wvector

T € RP is said to be the projection of x onto S if and only if two properties hold:

K
Pl.z€S8, ide,x=)> as; forsomea; R, i=1,... K.
i=1

P2. the vector T — x is orthogonal to S, i.e., s (T —x) =0 for any s € S.

A p X p matriz Ps is said to be the orthogonal projection matrix of the vector

space S if Psx = x gives the projection of an arbitrary vector x € RP onto S.

Let & C R? be a vector subspace with basis vectors in p x I matrix form S = [s; - - - sk,
K < p, whereby rank(S) = dim(S). To ease the exposition to follow, we will use a small
abuse of notation and refer to either Pg (i.e., subscripted by the matrix S) or Ps (i.e.,
subscripted by the subspace S spanned by the columns of S) as the projection matrix
for the subspace §. This will cause no confusion because a subspace S is completely
characterized both by its projection matrix Ps = Pg and by its basis. We will often
make use of the following basic properties of projection matrices, which can be found

in Schott (1995) or verified from Definition 2.6.
Properties of Projection matrices for a Euclidean Vector Space S C RP:

P1. The matrix Ps is uniquely defined (although basis vectors S may not be) and
may be written Ps = Ps = S(S7S)7!ST, where K = rank(S) for a matrix S

with columns that are basis vectors spanning S.
P2. For any x € RP, the projection Psx = = of x onto § is unique.
P3. Ps is symmetric and also idempotent, i.e. PST = Ps and P2 = Ps.
Pj. dim(S) = rank(S) = tr(Ps).

P5. If S is a further subspace of §, namely ScSc R?; then the projection matrix
of the subspace & NSt = {reRP:2€8, Vse g, r's =0} equals Ps — Ps.

P6. If x € R? and S C RP, then ||z||2 = || Psz||5+||(I, — Ps)z||3, where I, denotes the

p X p identity matrix.
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2.2 Defining distances between subspaces of R”

2.2.1 Metrics

Any attempt to formulate breakdown concepts for dimension reduction procedures, like
SIR, will require us to develop a distance measure, or a metric, defined on subspaces

of R?. We next recall the properties of a metric, defined on a general set of objects X.

Definition 2.7 (Mathieu, 1998) Let X be a nonempty set. A nonnegative mapping
d: X x X — RP s called a metric on X, if the following properties hold

P1. Ve,ye X :d(x,y) = d(y,x).
P2. Vx,y,z € X :d(x,y) <d(z,z) +d(z,y).

P3. Vr,ye X :d(z,y) =0 x=1y.
Under P1.-P3., the combination (X,d) is called a metric space.

A set X coupled with a metric d determines a metric space (X, d). For every normed
space (X, || -||) consisting of a set X and a norm || - ||, it is possible to define a metric

space in a natural way by the distance measure d(z,y) := ||z — y||,z,y € X.

2.2.2 A metric induced by the Frobenius norm F

It is well known that an examination of the robustness of a statistical procedure re-
quires the definition of an appropriate metric on a parameter space (see Davies &
Gather (2002, 2005a)). The main aim of a SIR-type method is to estimate a (di-
mension reduction) subspace of RP spanned by certain p-dimensional basis vectors
B1,. .., 0. This subspace, span(fy, ..., k), may be considered as the parameter of

interest in a parameter space consisting of all possible subsets of RP. Therefore, the

10
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study of the robustness properties of SIR requires a suitable metric to assess distances
between given RP-subspaces. Using an appropriately defined metric, we can quantify
the amount of data contamination required to cause SIR to produce an erroneous and
worst-case estimate of span(f, ..., 0x) (i.e., so-called breakdown). In the following,
we define a useful metric on subspaces of RP based on the concept of orthogonal pro-
jection matrices, which are common in the statistical literature for formulating ideas of
subspaces and distances (e.g. Krzanowski (1979), Golub and Van Loan (1985), Crone
and Crosby (1995) or Ferré (1998)).

Al previously noted, a vector subspace & C RP is completely characterized by its
unique p X p projection matrix, Ps. That is, there is an injective mapping, or one-to-one
correspondence, from the set of RP-subspaces to the set of p x p real-valued matrices
defined by S — Ps, with unique inverse Ps — S. This suggests that we can naturally
judge the distance between two spaces S and SCRr by appropriately quantifying the
distance between the corresponding matrices Ps and Pz. Such an approach allows us
a geometrically attractive and mathematically tractable way to compare and measure
distances between subspaces of RP, which may be applicable even to RP-subspaces of
different dimensions. In fact, the comparison of subspaces of different dimensions can
be especially useful and practical for a meaningful and logical concept of breakdown
of a dimension reduction procedure. The idea is that projection matrices allow a
comparison of the distance between RP-subspaces of different “dimensions” through
matrices which are of the same size or “dimension” (namely p x p). This can be seen

easily in the following.

Suppose matrices S = [s1,...,8x|, s; € RP for i = 1,... K and S = (51, -, Skc+]s
s; € R for i = 1,...,K* constitute an orthonormal basis for the (column) vector
subspaces S and S of R? , respectively. Hence, the subspaces & and S are of dimensions
IC and K* respectively, where K, C* < p and it may hold that I # K*. Even for the
K # K* case, the corresponding projection matrices Ps = S(STS)71ST and Pz =
S (§T§)_1§T will naturally be p X p matrices. To induce a suitable metric between

two vector spaces S and S of RP , we will use the following two-step approach based on

11
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p X p matrices:

1. compute the difference Ps — Pz

2. apply a matrix norm on Ps — Pz to measure the closeness of Ps and Ps.

The idea is that we obtain a distance measure between vectors spaces, that has all the
necessary properties of a metric, by using a metric on a special matrix Ps — Pz. For
quantifying vector space distances in terms of projection matrix differences, we contend

that a good choice of a matrix norm is the Frobenius norm defined below.

Definition 2.8 (Stewart € Sun, 1990) Let S € R™" be an m X n matriz with
components indexed by s;;, i =1,...,m; j=1,...,n. The Frobenius norm of S is

defined as

IS]e =

DD sl = V(SST).

i=1 j=1

Stewart & Sun (1990, Chapter II, Section 2.1) describe basic properties of the norm
| - |lr and we state some useful properties of || - || in the Appendix (see Lemma 7.4)

for later use and reference.

We now give a precise definition of a metric F between two vector spaces S and

S C R” based on the Frobenius norm.

Definition 2.9 (Frobenius norm-based metric definition on subspaces) Let
matrices S = [s1,...,8xk], si € R fori=1,... K and S = [51,...,5k+], 5; € RP for

i=1,...,K" represent an orthonormal basis for the (column) vector subspaces S and

S, respectively. The distance between S and S using the Frobenius norm || - || is then

defined by

F(S,8) = ||Ps — Psls = [t{(Ps— Pg)(Ps — P5) }]*

N

= [tr(P$ — PsPs — PsPs + Pg.)]

N |=

= [tr(Ps) + tr(Pg) — 2tr(PsPs)]
—  [rank(S) + rank(S) — 2tr(PsPs)]? (2.2)
= [dim(S) + dim(S) — 2tr(PsPg)]2.

12
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Because all s;, 1 =1,..., K ands;, 1 =1,...,K* are orthonormal, the unique projection
matrices onto the vector spaces S and S are given by Pg = S(STS)1ST = SST and
P; = S(STS)~1ST =SS, respectively.

In the above definition of IF we use the property that the trace of a projection matrix
Ps equals the rank or dimension of the subspace §. The metric F also inherently
incorporates the term tr(PsPg), which may be viewed as a measure of the closeness of
two subspaces S and S , a nonnegative numerical measure of what both subspaces have
in common. Lemma 7.3 shows that tr(PsPg) > 0 and this trace equals zero only if the
RP-subspaces S and S are orthogonal, sharing only the zero vector 0, € R” in common.
As the size or dimension of the intersection S NS increases, so will the corresponding
trace tr(PgPg) term. Krzanowski (1979) used this same trace quantity for assessing the
closeness when studying the subset of principal components in multivariate analysis.
However, the trace tr(PsPg) does not constitute a metric by failing to satisfy a triangle
inequality. The form in (2.2) however ensures that F immediately defines a metric on

vector spaces; see Section 2.2.1. This fact is also illustrated in the following properties.

Metric Properties of F: For vector spaces S, "5‘: 7T C RP, it holds that

P1. F(S,S8) > 0 (nonnegativity).
P2 F(S,8)=0<= Ps=Ps <= S=38 (identifiability).

P3. F(S,8) =F(S,S) (symmetry).

Pj. F(S,S) <F(7,S)+F(7,S) (triangle inequality).

The second property above also holds true up to an orthogonal transformation of the
vector space S or equivalently an orthogonal transformation of the basis vectors S (in
matrix form) of §; the invariance of the metric F to orthogonal transformations of
subspaces follows from the invariance of the Frobenius matrix norm || - || to orthog-

onal transformations of either the rows or columns of a matrix (see Lemma 7.4(d) in

13
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the Appendix for this matrix norm property). We shall further detail the invariance

property of I in Section 2.5.1.

Using the Frobenius matrix norm, Paige (1984) proposed a distance measure on
subspaces S, S C R? of the same dimension dim(S) = dim(S) = K given by a metric:

min IS = 5Qe = |(Ps — Pg)S|le.

KX IC orthonormal @

where the columns of the p x I matrices S, S must constitute orthonormal bases of
Sand S , respectively, and the minimum above is achieved at the K x K orthogonal
matrix ) = STS yielding the equality above. We remark that Stewart & Sun (1990,
Chapter II, Section 4) consider this metric along with others on RP-subspaces of the

same dimension which we will describe in Section 2.3.

For measuring distances between subspaces in hypothesis tests with principal-
component regression, Crone & Crosby (1995) also employed a metric similar to
F. Given the principal components associated with the I largest eigenvalues of
two different p x p sample covariance matrices and writing those IC principal com-
ponents as the columns of two p x K matrices A and B of rank K, these au-
thors use (K —tr[A(ATA)_1ATB(BTB)_1BT])1/2 as the distance between the two
KC-dimensional subspaces of R? given by the column spaces of matrices A and B. Ap-
plying (2.2) to the column space of matrices A and B gives the above distance measure

of Crone & Crosby (1995), scaled by a factor of v/2:

F(col(A),col(B))
W5 :

Hence, (2.2) may be viewed as a generalization of the special subspace metric of Crone

(K — t[A(ATA) T ATB(BTB) ' BT))? =

& Crosby (1995) which allows us to accommodate general subspaces of RP that may

not have the same fixed dimension.

14
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2.3 General distance measures

To further frame the choice of the subspace metric defined in (2.2), we shall briefly
explain some other general distance measures between vector spaces which have been
introduced in the literature. (We refer the interested reader to Stewart & Sun (1990)
and Meyer (2000) for more details.)

There are two possible approaches for developing subspace metrics: either through
gap functions between subspaces or through angles between subspaces. We will find
that our subspace metric F(-,-) from (2.2) is related to so-called gap functions in
Section 2.3.1 and in fact all subspace metrics based on gap functions are equivalent
(i.e. they lead to the same topology on the set of all possible RP-subspaces). In
Section 2.3.2, we argue that IF(-,-) is more appropriate and tractable than angles to

measure distances between subspaces.

2.3.1 Gap functions

The first approach to define an appropriate distance measure between two vector sub-
spaces as in our case is to begin with the definition of the distance between a point

and a subspace.

Definition 2.10 (Stewart € Sun, 1990) Let S denote a subspace of RP and b a
point in RP. By v we denote an arbitrary vector norm on RP. The v-distance between

S and b with respect to the norm v is then defined as

dist, (b, S) = min v(b—s). (2.3)
s€
Considering the special case of the Euclidian vector norm (v(-) = || - ||2) on RP, the

above distance (2.3) can be expressed as

dista (b, §) = min |[b = sll = [|b = Psb]|2 = [[(L = Fs)b]l2,

15
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which corresponds to the orthogonal distance between b and the subspace S or equiva-
lently the distance between b and its projection onto S [cf. Meyer (2000)]. We can then
extend the orthogonal distance (2.3) between a point b and a subspace S to formulate

the distance between two subspaces & and S by the following computations
disty(S,S) = max disty(s,S)
seS
lIslla=1
= max |1 Py)s|l

S
l[sll2=1

= max (I~ Pg)s]l (2.4
lIsll2<1

— max (1= Pg) Pl (2.5)
z|lg=
z€RP

Equation (2.4) can be justified because for a nonnegative function f : V — R defined
on a vector space V such that f(ax) = af(x) for some scalar o > 0

max, f(z) = max, f()

holds; (2.5) follows because {s € S : ||s]|ls < 1} = {Psz : z € R?,||z|]» = 1}.

It should be noted that the orthogonal distance disty(S,S) corresponds actually
to a directed distance from S to the subspace S , which may not necessarily equal the
orthogonal distance disty(S,S) from S to S (i.e. reversing the order S,S). Hence,
using the orthogonal distance dists(+,-) from (2.5) to quantify the maximal degree of
separation between two subspaces requires both directed distance values disty(S ,g )

and diStg(g ,S) to be incorporated in a more complete distance measure, the so-called

GAP [cf. Meyer (2000), p. 453]:

gap,(S,S) = max {distg(S,g), dists (S, S)} : (2.6)
Note that the GAP measure (2.6) above grew out of orthogonal distance considerations
(2.4) between a point and a subspace based on the Euclidean vector norm (v(-) = ||-||2)
on RP. A more general definition for distances between subspaces S and SCRr , based

on the GAP concept, can be formulated by beginning with an arbitrary vector norm v

on RP.
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Definition 2.11 (Stewart & Sun, 1990) Let S and S denote two subspaces of RP .

The GAP between S and S with respect to a vector norm v on RP is defined as

gap, (S,S) = max ¢ max dist,(s,S), max dist,(s,S) (2.7)
sES 5e8
v(s)=1 v(3)=1

with dist, (-, -) defined as in (2.3).

We recall that the subspace metric F from Definition 2.9 involved applying the Frobe-
nius matrix norm || - ||p to the difference of the projection matrices Ps — Pz. For
defining alternative metrics between RP- subspaces S and S. , we may note an interest-
ing connection between the GAP function based on the Euclidean vector norm (2.6)
and another matrix norm applied to the difference in projection matrices Ps — Pg (but
not the Frobenius matrix norm). The spectral norm or matrix 2-norm defined on a

q % p real-valued matrix A is given as

Al = max ||Azx|. = \/Iargest eigenvalue of AT A. (2.8)

T€RP,||z||2=1

It can be shown that the GAP based on the Euclidean vector norm (2.6) can be re-
formulated in terms of the matrix 2-norm (2.8) applied to the difference of projection

matrices for two subspaces S and S of RP:

gap,(S,S) = || Ps — Psll». (2.9)
In considering numerical methods for matrix computations, Golub and Van Loan (1985)
apply this same distance measure (2.9) on subspaces S,S C RP. The metric (2.9) on
subspaces resembles the metric F from Definition 2.9 by applying the spectral norm

(2.8), rather than the Frobenius norm, on the difference of projection matrices Ps — Ps.

We remark that the subspace metrics in (2.2), Definition 2.9 and (2.9) are special
cases of a more general framework given in Stewart and Sun (1990, Chapter II, The-
orem 4.7) for defining subspace metrics. Namely, with any matrix norm v, for p x p
matrices, the function

Pu(S,8) = v (Ps — Pg) (2.10)
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yields a metric p,, on subspaces of R? [cf. Stewart & Sun (1990), Chapter II, The-
orem 4.7; though these authors consider only RP-subspaces of the same dimension].

Possibilities for subspace metrics p,,, (S, S) in (2.10) could also involve a norm v,,(A)

on p X p matrices A defined by

vm(A) = Al = max Az,

2ERP |z o=1
based on a Hélder vector norm ||-||, for ¢ € NU{oo}; note again that (2.8) is equivalent
to using || - ||2 in (2.10). However, all subspace metrics defined by gap functions (2.10),
including [F, are in some sense equivalent because of the equivalence of matrix norms
[cf. Stewart and Sun (1990), Chapter II, Section 4]. In particular, if v, and 7, are
p X p matrix norms defined by ||Al|g or ||A]|, for any ¢ € NU {oo}, then there exist

positive constants «, 3 > 0 such that

(8.8 <0, (8.5 2, (5.9)
for all subspaces S, S C RP. This follows because avy,(A) < 7 (A) < Bum(A) holds
for some constants «, 3 > 0 for choices of matrix norms v,,, v, from || - ||r or || - |4
q € NU{oo}. We refer to Lemma 7.4 for an example involving the matrix norms || - ||r
and || - ||2. Hence, subspace metrics p,,, based on a Hoélder matrix norm v, = || - ||,

q € NU {oo}, will generate the same topology as F in (2.2) on subspaces of R?.

2.3.2 Angles

A common and perhaps more intuitive distance measure to gauge the separation be-
tween subspaces are angles. The major drawback from employing angles as appropriate
measures, however, is that they often do not constitute a metric between subspaces.
Furthermore, angles as distance measures for vector subspaces of R? in higher dimen-
sions p are not as straightforward or appropriate as in lower dimensional spaces R? or
R3, and certainly can be more difficult to visualize.

There are often several choices of angles between subspaces that are available to

quantify the distance between subspaces but the suitability of a subspace angle type

18



2 PRELIMINARIES

may depend on whether the considered subspaces S and S are of the same dimension
or whether the subspaces S and S are complementary (i.e., S = 31, RF =S &S for
S ,g C RP). We shall also see that the subspace metrics we have established so far,
like (2.2) and (2.9), incorporate angles automatically in their computation and thus
actually incorporate more angular information on subspaces than one might think at

first glance. These types of considerations are the topic of discussion in this section.

For RP-subspaces S and S , a first type of angle to measure the separation of the
subspaces is the so-called MINIMAL ANGLE. The minimal angle 6,,;, between subspaces

S and S is defined as the value 0 < Opin < 7/2 which satisfies

cosbpim = max s s (2.11)
ses,§~e§
l[sll2=[3]|2=1

If Ps and Pgz are the orthogonal projection matrices onto & and S , respectively, then
the minimal angle can be computed as cos Opin = || PsPsl|2, applying the matrix 2-norm
from (2.8). From the definition of the minimal angle, it is clear that two RP-subspaces
S and S will satisfy cosf,;,, = 0 if the two spaces are complementary. However, it
always holds that cos €y, = 1 (the maximal value) whenever two RP-subspaces S and
S have a nontrivial intersection S NS # {0,} [ef. Meyer (2000), p. 452]. It is then
less obvious how to interpret cos f,,;, as a distance measure if the two subspaces S and
S C RP are non-complementary whenever p > 2. Hence, the application of this type

of angle can become rather limited.

While the cos 8, in (2.11) is defined as the minimal angle, sin 6, describes the
so-called MAXIMAL ANGLE 0.« between RP subspaces S and g, which unlike the
minimal angle fulfills all properties of a metric. It turns out that the sine function of
the maximal angle is equal to the GAP function defined in (2.6), which takes on values
between 0 and 1; that is, the maximal angle between two subspaces S and S CRp

corresponds to the number 0 < 0y, < 7/2 satisfying

Sin Omax = gap,y(S, S) = ||Ps — Psl|.. (2.12)

While the minimal angle can measure the degree of closeness between two nontrivial

complementary subspaces, the maximal angle is most suitable for subspaces of equal

19



2 PRELIMINARIES

dimension. This is because of the following properties of sin f,,.x, given by Meyer (2000)
[p. 454]:
1 if dim(8) # dim(S),
|Ps — Psll2 = sin Oax = 1 if dim(S) = dim(S), S NS+ # 0,,
c<1 if dim(S) = dim(S),§ NS+ =0,.

LN

Hence, (2.9) and (2.12) are equal to 1 (the maximal value) whenever two RP-subspaces
S and S have unequal dimension and this metric also equals 1 whenever § and St

share a non-zero vector in common.

We find that neither minimal nor maximal angles are appropriate as a measure of
the amount of separation between two general subspaces. For example, if S and S
are RP-subspaces of unequal dimension that have a nontrivial intersection, then the
minimal angle 0,,;, = 0 and the maximal angle 0,,,x = 7/2, but neither number may

convey the desired information of the closeness of the two subspaces.

To formulate angle values as a comprise between the extremes 6,,,;, and 60,,.«, the so-
called PRINCIPAL or CANONICAL ANGLES have been derived in the literature to assess
the distance between two subspaces. Canonical angles were also used for example by
Hilker (1997) to measure the distance between contaminated subspace estimates in the
study of SIR. For nonzero subspaces S and S C R? with m = min{dimS,dimg},
the PRINCIPAL ANGLES between S = S; and S = gl are recursively defined to be the

numbers 0 < ¢; < 7/2 such that

cosfy= max s'5=3s;5, i=1,...,m,

SE€S;,5€8;
l[sll2=[Is]l2=1

where [[sills = [[Bill = 1, Si = s+ ,NSi_1, S; = 35 ,NSi_, with &) = S, S = S. It then
holds that O, = 01 < -+ <0, < Opax With 0, = 0. in the case of dimS = dim S
[cf. Meyer (2000), p. 456]. Hence, the principal angles may be viewed as intermediate
angles between 6,.;, and 0,.,. The limitation of the principal angles as a measure
of closeness between subspaces in the context of this paper becomes obvious because

principal angles do not constitute a metric. Although they allow for a comparison of
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subspaces of different dimensions, the number of principal angles that can be computed
is at most m = min{dim S, dim S }, which is limited by the size or dimension of the

smallest subspace in the comparison of two subspaces S and S.

To facilitate mathematical computation and geometrical interpretation, we prefer
to use the metric IF over (2.9) or other gap functions (2.10). This choice of a distance
measure [ also has desirable invariance properties with respect to orthogonal trans-
formations; see Section 2.5.1. By using F, we also avoid the complicated geometrical
framework given by James (1954), who developed an approach for describing distribu-

tions of k-dimensional subspaces of R” based on manifolds and differential geometry.

An appealing feature of the metric F is that the metric, in some sense, agrees with
our geometrical intuition of the closeness between subspaces, while still constituting a

metric. We next illustrate this quality with some numerical examples.

2.4 Numerical examples of [F

We begin this section with a numerical example. For the purpose of illustration we

consider a simple example.

Example 2.1 LetV = R® denote a vector space spanned by unit vectorse;, i =1,...,8
with e; containing the entry 1 in the ith position and 0 everywhere else. Hence, ||e;|| =1
and ej e; = 0 for i # j. Furthermore, we denote by S a subspace of R, which for
simplicity is spanned by five of the basis vectors, namely ey, ..., es (KK =5). Suppose
that a second subspace S is spanned by some sub-collection of the vectors ey, ..., es.
(With regard to our application in SIR (see Chapter 3), S and S could represent the
true and the estimated dimension reduction spaces, respectively.) We indicate by OL
the number of OVERLAPPING directions between S and S or the numbers of vectors
among {ey,...,es} that are common to both S and S. We use NOL to denote the

number of NONOVERLAPPING directions between S and S or the number of vectors
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dim(S) | dim(S) | oL directions | NOL directions | F(S,S)
5 8 5 3 V3
5 7 5 2 V2
5 7 4 3 V4
5 6 5 1 V1
5 6 4 2 V3
5 6 3 3 V5
5 5 5 0 Vo
5 5 4 1 V2
5 5 3 2 V4
5 5 2 3 NG
5 4 4 0 V1
5 4 3 1 V3
5 4 2 2 V5
5 4 1 3 VT
5 3 3 0 V2
5 3 2 1 V4
5 3 1 2 V6
5 3 0 3 NG
5 2 2 0 V3
5 2 1 1 V5
5 2 0 2 VT
5 1 1 0 V4
5 1 0 1 V6

TABLE 1: Computations of Frobenius norm based metric

between subspaces of R3

among {ei1,...,es} that are in the span of S but not in the span of 8. In the first
two columns of Table 1 the dimensions for S and S are listed. Applying the metric

introduced in Definition 2.9, the distances in Table 1 between S and S are obtained.

Obuviously, the metric becomes only zero, when S and S are spanned by the same set
of vectors, while it takes on its mazimal distance /8, when S and S are completely

orthogonal to each other.

Example 2.2 (subspaces spanned by lines in R?, i.e., of dimension 1)
It is helpful to consider some simple cases to illustrate that the vector space met-
ric F agrees with geometric intuition in a sense. For erample, suppose two vector

spaces S and S CRr correspond to two lines spanned by normalized vectors s; and
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s1, respectively (i.e., ||s1]|| = ||s1]| = 1). In this special case, the cosine of the an-
gle 0 = cos™1(s{3)) between the vectors s, and 3y, namely s{3s,, embodies a com-

mon and intuitively appealing measure of the closeness of the lines S = span(sy) and
S = span(sy), corresponding to the minimal angle defined in (2.11). Applying the

metric F to these 1-dimensional spaces, we find here that
F(S,8) = v2- [1—cos2(0)]"* = V2 [1 - (s75)2/% = V2 - sin .

That is, the metric F incorporates the same natural measure of distance between two
lines in terms of the cosine of the canonical angle cos(0) = s| 31 formed by the lines.
When cos(0) = 1, we have that the lines S and S are the same and the metric F(S,S) =
0 reflects this aspect as well by assuming a value of zero; at the other extreme, when
the lines are orthogonal s{ 31 = 0, the spaces S and S are further apart and the metric

F(S,g) = /2 reflects this difference in distance as well.

In this case with two subspaces spanned by normalized vectors s; and s; € RP, it is
interesting to contrast the computation of B with the evaluation of the matriz-2 norm
based metric using its definition in (2.9). If p = 2, we can explicitly determine (2.9)
as the square root of the largest root of the characteristic polynomial det(A — AL,), with
T

A= (s15{ —3515] )% and p x p identity matriz 1,, given by

N = Mr(A) +det(A) =0 (ifp=2).

In the case of p = 2, it can be verified through direct computation that det(A) =
(tr(A)/2)?, so that the above characteristic polynomial is

0 = M — Atr(A) +det(A)

tr(A),,
= (\—
( 2 ) ?
which has a single root at
\ = tr(2A) >0
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The square root of this A- value is the value of the metric (2.9):
Sinfmax = 8apy(S,S)
tr(A
2
= /1 —cos?(0)
F(S,S)
7
That is, we find that the distance between S = span(si) and S = span(3,) by the
spectral metric (2.9) equals F(S,S)/v2 and cos™ (s]51) = 0 = Opax. Even for this

simple case, we see the computation of the distance (2.9) using the definition is much
more involved and here embodies the same information as F in terms of the canonical

angle cos™'(s{ 51) between S and S.

2.5 Further properties of the metric F

2.5.1 Invariance

A first desirable property of the subspace metric F is its invariance to orthogonal
transformations of a subspace & C RP. Because a dimension reduction procedure like
SIR attempts to estimate the dimension reduction space span(f, ..., 0c) C R? only
up to an orthogonal transformation of the vectors (3;, this invariance of the subspace
metric F is particularly important. To demonstrate invariance for transformation of the
columns (or rows) of a matrix, define matrices S = [sq,...,sc], s, € RPfori=1,...,K
and S = [S1,-..,8k+], 5i € RP for i = 1,...,K* as orthonormal bases for the (column)
subspaces S and S , respectively, and let Qx and Qi+ denote K x K and K" x K*
orthogonal matrices, respectively. Write SOy and S O~ C R? to denote the subspaces
spanned by the columns SQx and gQK*. Then, it is straightforward to verify the

invariance of F to orthogonal transformations of subspace basis vectors:

F(S,8Qc) =0,  F(S,S) =F(SQx,5Qk-).
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That is, the RP-subspaces & and SQx (or SQx and S Qy+) are the same (unaffected
by the orthogonal transformation of the columns of the matrix S) which the metric
F(-,-) captures by declaring the distance between & and SQy to be zero.

The above equalities follow directly from the preservation of projection matrices under

orthogonal matrix transformations:

Psor = SQx(QrSTSQx)™'QLST = SQk[Qr(STS) " QxlQrST
= S(8T8)tsT = Pps.

If @ is a p x p orthogonal matrix and QS, QS denote the column spaces spanned by
QS and QS, it also holds that F(S,S) = F(QS, Q8) for invariance to transformations

of the row space.

It is important that any metric between subspaces recognizes that orthogonal trans-
formations do not affect the subspace so that this invariance which the metric F(-,-)

possesses is really a minimal condition to require of a subspace metric.

2.5.2 Upper bounds

To explain some further properties of the vector space metric IF, we first give an upper

bound to the metric.

Lemma 2.1 Let S, S be two vector subspaces of RP. The Frobenius norm-based metric

F(S,S) = [dim(S) + dim(S) — 2tr(P5P§)]% is bounded from above by

F(S,S) < /p.

Proof. Applying (2.2) and Lemma 7.3, we find that

F(S,8) < [dim(S) + dim(S)]?.

[N

(2.13)

We now consider two cases to establish Lemma 2.1:
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CASE 1: dim(S) + dim(S) < p,

CASE 2: dim(S) + dim(S) > p.

CASE 1: In the first case, Lemma 2.1 follows easily from (2.13).
CASE 2: To handle the second case, note that F(S,S) = F(S*,8+), which follows
from the fact that Ps + Ps. =1, = Pz + Ps., where I, denotes the identity matrix of

rank p. Taking traces of the two matrix sums, we find

2p = tr(Ps)+ tr(Psy) + tr(Pg) + tr(Pz.)
= dim(8) + dim(S1) + dim(S) + dim(SH).

Consequently, if dim(S)+dim(S) > p, it must be the case that dim(S+)+dim(S+) < p.
Then, Lemma 2.1 follows easily from F(S,S) = F(S+,81) = [dim(S4) + dim(S+) —
2tr(Ps. gl)]% < ,/p and Lemma 7.3. O

We can show that the metric ' agrees with the intuition that two vector subspaces
S, S in RP should be maximally distant if one space is the orthogonal complement of
the other in R? (see also Example 2.1, Section 2.4). The following result establishes

this property of F.

Theorem 2.1 Let S, S be two vector subspaces of RP. The Frobenius norm-based

metric F(S,S) will take on its mazimum value F(S,S) = VP if and only if § =8+,

Proof. In the following, we suppose spaces & and S C RP are each spanned by an
orthonormal basis S = [sy, ..., sx] and S = [S1,. .., 8K+, respectively, where K, * < p.
Write Ps, Ps and Ps. to denote the corresponding projection matrices onto S, S and

S+, respectively.

If S = 84, it follows that Pz =1,—Ps = Ps1 and PsPg = 0 and dim(S)+dim(S) =

p. Applying these facts in (2.2), we find F(S,S) = /p, which is the maximal distance

between the vector subspaces S and S by Lemma 2.1.
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We now suppose F(S,g) = /p and show that S = S8t We can first argue that
dim(S) + dim(S) = p holds. That is, if dim(S) + dim(S) < p, it would follow that
F(S,S) < /P by (2.2) and Lemma 7.3, which is a contradiction. Likewise, if dim(S) +
dim(S) > p, we would again have a contradiction by F(S,S) = F(S+,8%) < /P by

(2.2) and Lemma 7.3.

Consequently, we proceed assuming that F(S,S) = \/p and dim(S) + dim(S) = p,
from which it follows that tr(PsPg) = 0 by (2.2). Writing A = STS = LAMT using

the singular value decomposition from Lemma 7.2, we can express
’C/
0 = tr(PsPs) = tr(AAT) = > 67,
i=1

where K’ represents the rank of AAT and 67, ..., 0%, are the nonnegative eigenvalues of
AAT. Consequently, each §; = 0 fori = 1,...,K’, which implies that the K x K* matrix
A = Ogxxc+ has only zero entries and also that STS = A= Oxcxcic+. Then it follows that
the spaces S and S are orthogonal. By this orthogonality and dim(S) + dim(g) =p,

we have S = S*. O

In some of the robustness studies to follow, it is also useful to know the maximal
possible distance between two vector spaces S, S C R? w.r.t. the metric [F, conditioned
on the additional information (restriction) that these spaces have the same size or

dimension. We give a modification of Lemma 2.1 to frame the largest value of F(S,S)

in this case.

Lemma 2.2 Suppose S and S C R? are subspaces both of dimension KC < p. Then the
intersection of S and S is at least of dimension max{0,2K —p}. That is, dim(SNS) >
max{0, 2K — p}.

Proof. Define a vector subspace Y = {s+5:s € S,5 € §} =S®S C R By
Theorem 4.4.19 of Meyer, (2000), it holds that

dim(SNS) = dim(S) + dim(S) — dim(U) = 2K — dim(U) > 2K — p,

using dim(U) < p. The claim now follows. O
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Theorem 2.2 Suppose two vector spaces S and S C R? are each spanned by an or-
thonormal basis S = [s1,...,sx| and S = [51,..-, 8], K < p, so that dim(S) =

dim(g) = K. Then, the metric based on the Frobenius norm is bounded by

F(S,S) < \/Z(IC — max{0,2K — p}).

When 2K < p, then F(S, g) = V2K if and only if the subspaces S and S are orthogonal;
when 2K > p, then F(S,S) \/2 (K = {2K — p}) if and only if the subspaces SN (SN
S and SN (SNS)L are orthogonal.

Proof. To establish the claim we need to consider two cases: 2K < p and 2K > p.
CaseE 1. Consider 2K < p. Since tr(PsPz) > 0 by Lemma 7.3 and K = tr(Ps) =
tr(Pg), it follows that

=

F(S,S) = [dim(S) + dim(S) — 2tr(PsPg)]? < V2K,

by the definition of F in (2.2). It also follows easily that F(S,S) = v/2K if and only if
tr(PsPz) = 0, which is equivalent to the subspaces S and S being orthogonal to each
other by Lemma 7.3.

CASE 2. Assume here 2K > p. Let d = dim(S N'S) and define a p x d matrix A
with orthonormal columns that are basis vectors for the intersection subspace & N S.
If P, denotes the projection matrix for SN S , then it follows from Definition 2.6 that
Ps — P, and Py — P, are the projection matrices for the subspaces SN (SN g)L and
SN(SNS)L, respectively (i.e, after removing vectors common to both S and S). Then,

=

[F(S’ §) d1m —|— dlm(S) — 2tr(P3P§)}

[NIES

2}C—2tr(P5—PA—I—PA][P~—PA—|—PA])}

[
= |
= [2K —2tr([Ps — Pa][Ps — Pa] + PA)}
= |

l\?\bﬂ

2IKC — 2d — 2tr([Ps — Pa][Ps — Pal)]?, (2.14)

using above that PsP4 = P4 = PPy, since SN S is a subset of both S and S, , and
Py, is idempotent with d = rank(A) = tr(P,4). Because tr([Pg — Py][Ps — PA]) >0 by

28



2 PRELIMINARIES

Lemma 7.3 (namely, Ps — P4 and Pg— P, are the projection matrices) and d > 2K —p
by Lemma 2.2, we now find in (2.14) that

F(S,8) < \/2(/c — {2k —p}).

It also stands from (2.14) that F(S,S) = \/Q(IC — {2K — p}) if and only if tr([Ps —
Pa)[Ps — P4]) = 0 (and d = 2K — p), which is equivalent to the orthogonality of the
subspaces SN (S NS)L and SN (SN S)* by Lemma 7.3. O

Remark. The distinction between the result above and the one in Lemma 2.1 is that,
if 2)C > p, then the vector spaces S and S C R? must have a nonempty intersection,
namely Z = SN S # (). In this case, it is clear that S and S cannot be completely
orthogonal. However, the proof shows that, when 2/C > p, the spaces S and S are most
distant w.r.t. the F metric when spaces SNZ+ and SNZ+ (after removing any vectors
contained in both § and g) are orthogonal. In a sense, this agrees with geometric
intuition. On the other hand, if 2/C < p, we find that S and S are most distant w.r.t.
the F metric, namely F(S ,g) — V2, when these spaces are orthogonal (but S U S

may not necessarily span all of R?).
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Chapter 3

Sliced Inverse Regression — A

Review

Consider the task of estimating a nonparametric regression function g based on ob-
served data points (z;,9;),7 = 1,...,n of a random vector (X,Y) € R? x R, where Y
denotes the response variable and X = (Xi,...,X,)" is a vector of regressor variables.

That is, we wish to understand an underlying model
Y = g(X,e) (3.1)

that explains the response Y in terms of the regressors X up to an error term £ which
is independent of X. A common difficulty that can arise is the so-called CURSE OF
DIMENSIONALITY introduced by Bellman (1961) (see also Friedman (1991), Gather &
Becker (2001)) which describes the dilemma that the volume of a p-dimensional space
grows exponentially as a function of the dimension p. As an immediate consequence, it
becomes more difficult to accurately estimate a function g(-) because more data (x;, y;)

is needed in order to fill the space RP x R densely enough to fit the function g.

Fortunately, it often turns out that an appropriate subspace of the original regressor

space RP is sufficient for an adequate fit of g. Such a subspace can be obtained by
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identifying important linear combinations of the regressor variables, BT X, using a px K
matrix of linearly independent column vectors B = [y, ..., Ox] for some K < p, such
that the dimension of the essential regressor space is reduced from p to K. Li (1991)
introduced a procedure for identifying such important linear combinations, i.e. the
vectors B, called SLICED INVERSE REGRESSION (SIR). The theoretical properties of
the procedure have been originally developed by Li and Duan (1987) and Duan and
Li (1991). Once the linear combinations of the regressors, B' X, are identified, these

can be used to fit a regression model to predict the response variable Y.

The underlying idea of SIR is to model p one-dimensional regression problems in-
stead of one p-dimensional regression problem and thus avoiding the curse of dimen-
sionality. This is done by considering the inverse regression curve E(X|Y’) rather than
the usual curve E(Y|X) considered in multiple regression. Under some model assump-
tions, important linear combinations of the regressor variables BT X correspond to
those which are needed to linearly span and completely explain the inverse regression

curve E(XY) in the R? space.

In contrast to other dimension reduction procedures, SIR is not able to identify the
directions [y, ..., Bk itself, which are also not unique, but the RP-subspace spanned
by the directions B = span(/f3, ..., ). This subspace is unique and B is called EF-
FECTIVE DIMENSION REDUCTION SUBSPACE and vectors 31, ..., O are referred to as
EFFECTIVE DIMENSION REDUCTION VECTORS or DIRECTIONS (henceforth denoted as
the e.d.r. subspace and e.d.r. directions, respectively). The identification of the e.d.r.
subspace with SIR is possible via a principal component analysis of a particular covari-
ance matrix V' = Cov[E(Z|Y)] involving the conditional expectation E(Z|Y’), where
Z = ¥7Y2(X —E(X)) denotes the standardized regressor vector with ¥ = Cov(X). By
conducting a spectral decomposition of V' (principal component analysis), directions
with high variability in the random vector E(X|Y) can be recognized as the eigen-
vectors of V' corresponding to the largest eigenvalues of V. These eigenvectors of V'
can be used to provide meaningful linear combinations B = [, ..., Ok| of the regres-

sor variables X. The eigenvectors of V| corresponding to the largest K eigenvalues,
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correspond to the standardized e.d.r. directions, which we will denote by ny,...,nk.
Undoing the standardization will then yield the actual e.d.r. directions (,..., G,
whereby 8; = 7Y%, fori=1,..., K.

In the following section, we will explain the SIR procedure in more detail. Later
sections of the dissertation will focus on the robustness properties of SIR against data
contamination. It should be noted that, since the development of Sir by Li (1991),
other dimension reduction procedures have been proposed for identifying important
linear combinations B = [(,..., x| of the regressor variables X, or more precisely
the space B C R spanned by B. These include, for example, SAVE (Cook, 2000) or
MAVE (Xia et al.). However, we shall give here a detailed study of the robustness of

SIR.

3.1 Description of the model

To ease the discussion, we give a precise definition of a spectral decomposition of a
symmetric matrix such as required in SIR to identify the eigenvalues and eigenvectors

of the matrix V.

Definition 3.1 (A normalized spectral decomposition) A symmetric p X p real-

valued matriz A may be uniquely written as

b 1 ifi=y,

i=1 0 otherwise.
Unless stated otherwise, we will adopt the convention thatn;, i = 1, ..., p will be referred
to as the normalized eigenvectors of A; \;, i = 1,...,p are said to be the corresponding

eigenvalues of A.

The above definition is a version of the spectral decomposition theorem (cf. Schott,
1995, Theorem 4.2). Of course, when a symmetric matrix A is nonnegative definite, it

holds that each eigenvalue \; > 0 is nonnegative in the above spectral decomposition.

32



3 SLICED INVERSE REGRESSION — A REVIEW

Before continuing to state the SIR procedure we proceed with reviewing necessary
assumptions for SIR. We begin with the statistical model that is assumed to describe

the relationship between the response variable Y and the p regressor variables X =

(X1, Xp) "
Model 3.1 Assume a nonlinear regression function f : RE1 — R of form
Y =f(6{X,....0cX,e) = f(B'X,¢) (3.2)

describing the functional relationship between the response variable Y € R and p re-
gressor variables X = (Xi,...,X,)" € RP. The following assumptions hold for the

above model:

- 1 = E(X) denotes the expected value of X and ¥ = Cov(X) the corresponding

covariance matrix. We assume that 3 is positive definite.
- ¢ € R denotes an error term, independent of the regressor variables X .

- B1,...,0c € RP are the (linearly independent) e.d.r. directions spanning the

e.d.r. subspace B = span(fy,..., Bx).

We shall note that the functions ¢ in (3.1) and f in Model 3.1 describing the relation-
ship between X and Y and BT X and Y, respectively, will typically not be identical.
Furthermore, SIR does not attempt to fit the regression model f, it solely estimates
the e.d.r. subspace B. Once an estimate for B is obtained the model fit is attempted

in a separate step.

As we have already pointed out SIR is based on the inverse regression curve E(X|Y)
instead of E(Y'|X). Li (1991) showed that under certain conditions, which we will state
below, the standardized inverse regression curve ¥~"/2(E(X|Y) —E(X)) falls in the lin-
ear subspace spanned by the directions X'/24;, ..., 2Y23. The reason for this can be
found in the property that the expected value of an arbitrary linear combination of the
regressor variables X conditioned on 8] X, ..., 8L X is again linear in the conditional

vectors, which Li formalized in the following condition.
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Condition 3.1 (Li, 1991) For any b € RP, the conditional expectation
EGT XA X, ..., 8EX) s linear in B]X,...,3:X; that is, for some constants

Co,C1, - - -, Cxc, wWe have
EG'X|8) X,....,0cX) =co+c1f X+ ... +cefBeX.

It can be shown that Condition 3.1 is fulfilled if in the assumed Model 3.1, the random
vector X € RP is characterized by a non-degenerate elliptically symmetric distribution;
see e.g. Li (1991), Duan and Li (1991) or Hilker (1997). For more detailed discussions
on this assumption we refer to Diaconis and Freedman (1984), Eaton (1986) or Cook

and Weisberg (1991), Hall and Li (1993) or Kotter (2000).

Condition 3.1 ensures that the centered inverse regression curve E(X|Y) — E(X)

lies in the linear subspace spanned by ¥3;,7 = 1..., K, stated in the next theorem and

proved by Li (1991).

Theorem 3.1 (Li, 1991) For the assumed Model 3.1 under Condition 3.1, the cen-
tered inverse regression curve E(X|Y) — E(X) is contained in the linear subspace

spanned by L0;,i = 1...,K, where ¥ = Cov(X).

This property also holds true if the centered inverse regression curve E(X|Y) —E(X) is
standardized, which can be explained as follows. It can be shown that, under Model 3.1
and Condition 3.1, the p x p covariance matrix V = Cov[Z~Y2E(X|Y)] admits the

following spectral decomposition

K
V = Cov[S PE(X[Y)] = 3 A (33)
i=1
with eigenvalues 0 < Ag < --- < A; and corresponding K orthonormal eigenvectors

{ni}E |5 see Li (1991) and Duan and Li (1991). The eigenvectors 7y, . . . , 1, correspond-

ing to the positive eigenvalues of V', are again referred to as the standardized e.d.r. di-
rections. Li (1991) shows that the standardized regression curve ¥ ~2(E(X|Y)—E(X))

is spanned by 7, ..., Nk, as summarized in the next result.
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Corollary 3.1 (Li, 1991) Assume that Z = X~Y2(X —E(X)) has been standardized.
Then under the Model 3.1 and Condition 3.1, the standardized inverse regression curve

E(Z|Y) is contained in the linear space generated by the standardized e.d.r. directions
M- K-

It follows from Theorem 3.1 and Corollary 3.1 that the actual e.d.r. directions are then

B; =X, i=1,...,K, using the normalized eigenvectors (3.3) of V.

As an alternative to the covariance matrix V = Cov[X~Y/2E(X|Y)], Li (1991) sug-
gests a covariance matrix approximation based on slicing. The range of the response
variable is divided into H consecutive and disjoint intervals (slices), denoted by I,
i = 1,...,H. The slices yield sliced proportions p; = P(Y € I) and sliced means
w = BE(X|Y € ;) € RP) i = 1,...,H, where Zfilpi/% = p = E(X). Then, the

covariance matrix V = Cov[S~V2E(X|Y)] is replaced with a step-wise approximation

H
V=S "pi(p — p) (s — p) 272
=1

using the same notation V' as a small notational abuse. The idea is that this alternative

covariance matrix formulation V is often easier to estimate with data.

3.2 Sir with known subspace dimension K

We have now set all the necessary groundwork to give an explicit description of the
SIR procedure consisting of the following six steps. Assume we have observed data
points (X, Y)" = ((x1,21),. -, (Tn, yn)) with z; € R? and y; € R for i = 1,...,n and

the dimension of the e.d.r. subspace K is known.

1. Standardization of z, ..., z, yielding observations
2 = i_l/Q(xi —-T), i=1,...,n,

(v; —T)(z; — )" the sample

S =

where T denotes the arithmetic mean and & =

=1

covariance matrix.
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. Order observations of the response variable from smallest to largest y1), ..., Ym)
and place the corresponding zi,..., 2, into H slices I, with n,, h = 1,..., H,

denoting the number of observations within each slice; namely,
Yy, -+ Ymn) S ]Il; Y(ni4+1)s - -+ Y(ni4n2) € ]12; Yyt _14+1) - -5 Y(n) €ly.

. Computation of the sliced means

1 F H
V= n Z nhﬁ”zhml = ﬁhmhm;>
h=1 h=1
where py, denotes the slice sample proportion. Conduct a (weighted) principal

component analysis yielding ordered eigenvalues Xl > > /)\\p with correspond-

ing eigenvectors 7y, . .., 7.

. The eigenvectors corresponding to the I largest eigenvalues of V are used to

estimate K e.d.r. directions

Bi=S"1%, i=1,....K.

. The estimate of the e.d.r. subspace is

-~

B = span(ﬁl, ooy Bro)-

With B = span(Bl, o ,B,C) in hand, one can attempt to fit a model for f.

Modification for Sir with known covariance structure of X

We also note that there is a possible modification to the above steps in the SIR pro-

cedure, depending on what information is available. In particular, if the covariance

structure of the regressor variable X is known and E(X) = p € RP, Cov(X) = X are

available, then replace * with p and S with ¥ in Steps 1 and 5 above.
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3.3 Sir with unknown subspace dimension

In most practical applications of SIR, the dimension K of the dimension reduction
subspace is unknown and must be estimated from the data (X, Y)" = {(z;, )},
That is, the data must be used to first find an estimate C of KC and then obtain an

estimated e.d.r. subspace éﬁ C RP spanned by the first K e.d.r. directions, namely
B[/C\ = Span(ﬁl? s 75}6)

Assuming that the regressor variables X € R? follow a multivariate normal distri-
bution (X ~ N(u,Y)), Li (1991) suggests the following procedure for estimating K.
This method involves performing consecutive hypothesis tests based on the ordered
eigenvalues Xl > > Xp from the SIR procedure, where the covariance structure p, >
of X maybe known or unknown. For 0 < a < 1, let X?,’a denote the upper o quantile

of a chi-square distribution x7 with v degrees of freedom; that is P(x2 > x7,) = «.

Li (1991)’s procedure for estimating K:

1. Pick a level of significance o and set 7 = 0.

2. Using the test statistic t; = an:jH /):Z-, test the hypotheses Hg : K = j versus

H{ : K > j by rejecting Hg if t; > X?p—j)(H—j—l),a'

3. If Hg is rejected, set j = j + 1 and repeat Step 2; otherwise set K= J-

Hence, the estimated dimension K of the e.d.r. subspace is determined by the eigen-
values that are significantly large. The estimate K of K must be substituted in Steps
5 and 6 of the SIR procedure in Section 3.2. Alternative methods for estimating K in
SIR have been proposed by Ferré (1998), Schott (1994), or Velilla (1998), for example.
Schott proposes a test procedure that relaxes Li’s assumption of a normally distributed
regressor vector X to X following an elliptically symmetric distribution. But all meth-
ods for estimating K involve considerations of the eigenvalues /):1 >0 > /):p of V from

Step 4 in the SIR procedure. More detailed information on these and further methods
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can be found in Holland-Letz (2001) who carried out a comparative study assessing

their performance with respect to the correct determination of K.

As the fit of a model for f heavily relies on the subspace estimate g, the robustness
of the SIR procedure is of crucial interest. In particular it appears decisive to assess
the influence of one or more observations (z;,v;),i = 1,...,n on the estimate B of the

e.d.r. subspace. We will approach this task in the next chapter.
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Chapter 4

A Sensitivity Analysis of Sliced

Inverse Regression

Throughout this chapter we wish to investigate the sensitivity (robustness) of the SIR
procedure with respect to contamination of the data. We suppose that SIR produces an
estimate B of the e.d.r. subspace B C R? based on a sample (X,Y)" = {(z, y;)}", C
R? x R of size n. We then wish study the robustness of SIR when one or more ob-
servations in (X,Y)" are replaced with maliciously contaminated values, producing a
contaminated subspace estimate B*. In order to assess this influence of contamination,
we quantify the discrepancy of B and B* based on a suitable metric. Consequently, the

case we are treating here is the finite sample case.

We begin with a review of previous work in this area in Section 4.1.1, which can
mainly be attributed to Hilker (1997), Becker (2001) and Gather et al. (2002). A
discussion clarifying what we regard as complete failure of the SIR procedure shall
then be considered. We will then continue with a summary of the most important
and interesting results and discuss them in more detail with supporting proofs and

arguments throughout the rest of Chapter 4.
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4.1 Breakdown of Sir

SIR pursuits a dimension reduction of a p-dimensional regressor space by producing
a K-dimensional (K < p) subspace estimate B without any loss of information re-
garding the functional relationship of the response variable Y with the p regressors
X = (Xy,...,X,)". Hence, the parameter of interest with SIR (and other dimension
reduction procedures like SAVE (cf. Cook, 2000)) is a subspace of RP. In the following
we will define any failure of SIR with respect to the final subspace estimate and not with
respect to any of the individual estimators and respective estimates that are integrated

into the steps of the SIR procedure, as done in a first approach by Hilker (1997).

4.1.1 Review of previous breakdown definitions

Hilker (1997) was the first to approach the problem of defining a finite sample break-
down point for SLICED INVERSE REGRESSION. He established a definition which is
based on the idea of considering the breakdown behavior of all individual functionals
the SIR procedure consists of. As seen in Chapter 3, there are four different functionals
involved when estimating the e.d.r. subspace B: two location functionals, say 7; and
75, as well as two scatter functionals, say C; and Cy. Functionals 7; and C; are used
in the standardization step of the procedure, while 75 is used for estimating the sliced
means in Step 3 and C, for estimating the covariance matrix of the sliced means prior
the principal component analysis. In the SIR procedure in Chapter 3, the original
location and scatter functionals 77, C;, 73 and Cy applied to the data correspond to the
sample mean T, sample covariance f], sliced sample means my,, and sample covariance

V of the sliced sample means.

Among Hilker’s findings is the important result (see also Gather et al. (2001)) that
the location functional 77 in the standardization step does not influence the estimation
of the e.d.r. subspace regardless of any potential contamination. For this reason,

Hilker argued that focusing on the remaining functionals 75, C; and Cs is sufficient when
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studying the breakdown behavior of SIrR. The findings by Hilker can be summarized as
follows (see also Becker (2001)). Hilker characterized the breakdown behavior of SIR by
trying to identify the weakest link in terms of robustness among the individual location
and scatter functionals 75, C; and C, required in the steps of SIR. It is well-known that
many functionals based on sample means and covariances are notoriously non-robust.
Hilker (1997) formulated that breakdown of SIR could be caused by the breakdown
of a scatter functional C; in the standardization step, which happens when either the
largest eigenvalue of the covariance estimate of ¥ (produced by C;) converges to infinity
or the smallest eigenvalue converges to zero [cf. Lopuhad and Rousseeuw (1991)]. A
detailed discussion of this can be found in Hilker’s dissertation (p. 93 ff.) but also
in Becker (2001, p. 53). Regardless of the behavior of C;, Hilker suggested that
SIR could also break down if the scatter functional Cy breaks down, which happens
when the largest eigenvalue of the covariance matrix estimate of the sliced means,
obtained from Cy, becomes arbitrarily large; see Becker (2001, p. 50). Note that the
location functional 75 also contributes to the covariance estimate based on Cy and is also
assessed in terms of the breakdown. Finally, Hilker formulated that a third potential
incidence of breakdown could occur when the largest eigenvalue of Co-based covariance
estimate becomes arbitrarily close to zero. Considering the smallest eigenvalue of Cy
is not meaningful, because, due to the nature of the procedure, we can have less than
H < p slices resulting in the smallest eigenvalue being equal to zero by default; see

also Hilker (1997) and Becker (2001).

Hilker’s breakdown definition is based on a combination of the breakdown causes
described above, where he defined the breakdown point of SIR as the minimum of the
three breakdown points associated with the above breakdown cases (Hilker (1997), Def-
inition 5.10). Becker (2001) advances this definition by recognizing, that following the
philosophy of Stromberg and Ruppert (1992), it would probably be more meaningful

7

to look at “the performance of the procedure as a whole.” By this, Becker proposes
that the definition of breakdown should be formulated with respect to the final prod-
uct of the SIR procedure, namely the estimated subspace itself, rather than looking at

breakdown in terms of individual estimators involved in the steps of SIR. According
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to Becker, breakdown should more naturally correspond to the situation in which the
“subspace is estimated completely wrongly.” Although this approach is also hinted at
by Hilker (1997), he did not pursue it.

Up to this point, we have not mentioned the distance measures on e.d.r. directions,
which both Hilker (1997) and Becker (2001) address. To measure the distance between
two sets of estimates of e.d.r. directions, based on uncontaminated and contaminated
data, both Hilker and Becker proposed using canonical correlations, as originally in-
troduced by Li (1991) to assess the closeness of e.d.r. directions. In particular, when
the reduction subspace dimension K is known, they suggested examining the small-
est canonical correlation between uncontaminated estimates of the e.d.r. directions
and estimates based on (k-replacement) contaminated data; see Hilker (1997). In fact,
Becker gives a first definition of the “correlation breakdown point” based on this small-
est canonical correlation when K is known; see Becker (2001), Definition 4.13. If the
smallest canonical correlation becomes zero this implies that at least one estimated
e.d.r. direction under contamination must be orthogonal to the e.d.r. subspace es-
timated without contamination and this is what she defines to be the finite sample
breakdown of the SIrR procedure. Becker (2001) later extends her finite sample break-
down definition to reflect estimation of the entire e.d.r. subspace under consideration

(not just e.d.r. directions), which will shall discuss in the next section.

4.1.2 Issues in formulating failure for Sir

As already noted, a fair discussion regarding the robustness of the Sir procedure should
be preceded by clarifying first how the procedure can fail. In order to do so, it helps
to first discuss some situations that could possibly represent an erroneous estimate B
of the true e.d.r. subspace B C RP. This task, however, is not as straightforward as it
may first appear. Connected to the difficulty of defining erroneous subspace estimates,
a further complication is that we require a means to help judge how far off a subspace

estimate B might be from the true e.d.r. subspace B. Of course, one way to assess the
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discrepancy or distance between B and an estimate B (or between two estimates of B
based on uncontaminated and contaminated data) is through a metric D defined on
RP-subspaces. However, it can be hard to reach a common consensus on a meaningful

metric to use.

Listed below, we consider possible erroneous estimates B for the e.d.r. subspace
B and discuss issues surrounding these. By K, we denote the dimension of the e.d.r.

subspace B.

Worst case subspace estimation, £ known

Suppose the dimension IC of the true e.d.r. subspace B C RP? is known. In the extreme
cases, if K is known to be 0 or p, there can be no problems in estimating the reduction
subspace, since then either B = 0, or R? holds. But suppose that 1 < K < p is known
and B represents an estimate also with dim(B) = K. What type of estimate B should
be considered as the worst case estimate of B possible? Becker (2001, p. 55) suggests
the following “extreme position” as the worst case estimate. She essentially states that
we could consider a K-dimensional subspace estimate B as being extremely distant

from the true e.d.r. subspace B if the following two conditions hold:

C1. the dimension d = dim(Z) of the intersection Z = BN B is minimal, namely

d = max{0, 2K — p} (see Lemma 2.2);

C2. after removing the intersection Z, the subspaces BNT+ and BNT* are orthogonal,

where Z1 represents the orthogonal complement of Z.

(Technically, Becker (2001) considers the sets g\I and B\ Z, not BNI* and BNT*,
but the first two sets are not RP-subspaces, e.g., these do not contain 0,.) Note that
this notion of maximal distance from Becker agrees completely with the mathematical
formulation of maximal distance between two K-dimensional subspaces of RP based on
the Frobenius norm-based subspace metric F in Definition 2.9. By Theorem 2.2, K-
dimensional subspaces B and B C R? are maximally distant with respect to the metric

F if F(B,B) = \/2 (K — max{0,2K — p}) which is equivalent to the two conditions
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listed above from Becker (2001). Hence, we tend to agree with Becker’s concept of
worst case estimation of B when K is known since this agrees with both geometrical

intuition and a mathematically precise metric on subspaces.

Worst case subspace estimation, X unknown

Suppose now that the dimension K of B is unknown and must be estimated, K.

1. Obviously, a subspace estimate B of B will be wrong if K # K. But what would
be a worst case estimate? When estimating an e.d.r. subspace, a question arising
is, whether to equally treat the underestimation and overestimation of K. If one
wishes to define breakdown of SIR through a metric to assess distances between
RP-subspaces, then underestimation of K should, in many cases, be just as er-
roneous as overestimation, because a metric must be symmetric. On the other
hand, one would expect that overestimating XC may not be as bad as underesti-
mation if the resulting subspace estimate B contains the true reduction subspace
B (ie., B C E) because overestimation of K does not cause any loss of informa-
tion. At the same time, overestimation incorporates some false information in
the sense that parts of the orthogonal complement of the e.d.r. subspace B might
be included in the resulting estimate B. In the end, the issue of whether over-
estimation or underestimation of K is negative for SIR can only be answered by
examining the consequences for estimating the link function f. However, the SIR
procedure itself is really only focused on estimating the e.d.r. subspace B itself
and we would like to investigate the robustness properties of SIR independent of

fitting the link function f.

2. In the extreme cases that the estimated subspace dimension K =0or p, can
we consider this as breakdown? Becker (2001, p. 57) suggests that this is one
possibility, especially since we would expect the true subspace dimension should
satisfy K < p if dimension reduction is at all possible. However, it is conceivable,
though extreme, that true subspace dimension satisfies C = 0 or p, if there is no
relationship between the regressors and the response or if no dimension reduction

is possible. In this case, estimates K=0or p might be allowable.
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3. As Becker (2001, p.58) discusses, a formulation of a worst case estimate B of
B, where the dimension dim(g) =K is estimated, should reflect what vectors B
and B have in common. She suggests using canonical correlations for this. It is
geometrically clear that two RP-subspaces B and B should have little in common,
or be most distant, if these subspaces are orthogonal. The most extreme case
of distance would involve B = B+, so that B is the orthogonal complement of
B and contains essentially all RP-vectors that cannot be spanned in any part by
vectors in B. In fact, we could consider using the Frobenius subspace metric to
capture this notion. By Theorem 2.1, we find that two subspaces B and B of
R? are maximally distant in terms of the metric F, i.e., F(B, g) = /p, if and
only if B =Bt Hence, in the case that I is unknown, we could define extreme
failure occurring whenever the estimate B consists of the orthogonal complement

of B and essentially contains the largest amount of subspace information that is

contrary to B.

4. Tt should not be forgotten that the estimated eigenvalues of Vin step 4 of the
SIR procedure (see Section 3.2) play an important role in defining worst case
subspace estimates. The relative sizes of these estimated eigenvalues determine
the estimated e.d.r directions and hence the subspace estimate B. In addition,
as discussed in Section 3.3, estimation of K is often based on the estimated
cigenvalues of V. Davies and Gather (2004, 2005b) remind us that cigenvalues
are central in formulating the robustness of principal component analysis, which
SIR involves. Indeed, the studies of the effect of data contamination on SIR, given
in Sections 4.2-4.4, always begin with considering the eigenvalues of V under
contamination. It is possible as well to formulate breakdown in terms of the
estimated eigenvalues of V = Cov[E(X~Y/2XY)]. For example, if all eigenvalues
of the estimate V of V are equal, then it becomes impossible to estimate the
most influential e.d.r directions needed for any estimate B. We could consider
this situation to be a breakdown of SIR as well. This is essentially a point made

by Davies and Gather (2004, 2005b).
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Again, breakdown in the area of robust statistics is commonly understood as worst case
behavior of a statistical procedure in the sense of infinite bias. From the suggestions
of Becker (2001) and our understanding of the subspace metric F from Definition 2.9,
when /C is known a worst case behavior of SIR can be linked to the estimation of a
maximally distant subspace B from the true e.d.r. subspace B C RP with respect to

the metric F, namely F(B, g) = \/2 (IC —max{0, 2K —p}). This again implies that

two K-dimensional subspaces B and B have little in common through an intersection 7
of the smallest possible dimension dim(Z) = max{0, 2K — p} and remaining subspace

portions B NI+, BNIt that are orthogonal.

When K is unknown, the worst case behavior of SIR appears to be geometrically
linked to the estimation of the orthogonal complement B = Bt of the true e.d.r.
subspace B C RP. We can use the metric F from Definition 2.9 to reflect this because

the metric assumes its maximal value F(B, B) = /p when the orthogonal complement

of B is estimated.

This should lead us to the thought that in the finite sample case, when we consider
contaminating a data set (X,Y)" by replacing certain observations with corrupted val-
ues, failure of the procedure can considered as estimation of the orthogonal complement.
More precisely, we could say a subspace estimate based on contaminated data differs
maximally from an uncontaminated estimate if the two subspaces have a minimal in-
tersection Z (of dimension max{0, 2KC — p} when K is known and of dimension 0 when
K is unknown) and non-interesting portions of both subspaces that are orthogonal.
This formulation appears to geometrically capture the worst case estimation scenario
in both cases where the true subspace dimension K may be known or unknown. In
particular, whether K is known or unknown, the metric F from Definition 2.9 provides
maximal distances between subspaces that are consistent with this idea of estimation
of the orthogonal complement as illustrated in Section 2.5.2. Also, F has the advan-
tage over using single canonical correlations to measure subspace distance, because it

constitutes a true metric.
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4.2 Discussion of main results

Throughout Sections 4.3 and 4.4 we will investigate in detail the sensitivity of SIR
against contaminated data. We will look at the type of contamination that is necessary
in order to obtain erroneous (orthogonal) estimates. Already in Hilker (1997), Gather et
al. (2002) and Prendergast (2004), it can be found that the influence of a contaminated

data point highly depends on the direction in which it is placed.

Mainly, there are two factors that influence a subspace estimate B of the true e.d.r.

subspace B C RP.

1. knowledge of the dimension K of the e.d.r. subspace B: The relevance of this
issue is obvious. If I is known, the procedure will not under- or overestimate
the dimension of B. In the vast majority of all applications however, K will be

unknown and thus constitutes the more realistic case.

2. knowledge of the covariance structure of the regressor variables Cov(X) = X
and E(X) = u: As indicated in the findings of Hilker (1997) and Gather et
al. (2002), contamination schemes that cause damaging subspace estimates in
SIR can change depending on whether Cov(X) = 3 and E(X) = p are known or

not.

For this reason we will distinguish the following cases in our robustness study and
we summarize some of our main findings in Sections 4.3 and 4.4. Suppose B c RP
denotes a subspace estimate of B based on a sample (X, Y)" = {(z;,v:)}7-; C RP x R,
obtained from applying SIR with H slices (min{k, p} < H). We denote an estimate K
of K = dim(B) based on (X,Y)".

- Case I K, ¥ (u) are known.

If 1 < K < pis known, we can replace k = min{/C, p— K} observations in (X, Y)"
to obtain a contaminated subspace estimate that is maximally distant (orthogo-

nal) from B in terms of the Frobenius norm-based subspace metric F, given that
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IC is known. The contamination scheme involves replacing a regressor variable z;
with a contaminated value z; = tmgi across k different slices, i.e., one contami-
nated z-value per slice. To define the k-contaminated z-values, we use a scaling
factor ¢, > 0 determining the magnitude of contamination and k-directions of
contamination {3;}%_, given by 3; = ©V/25;, where {5,}*_, are orthonormal vec-
tors in {XY2v : v € B}, In the case ¥ = L, the p x p identity matrix, then
the directions of contamination are orthogonal to the uncontaminated subspace

estimate E See Section 4.3.1.

- Cask II: K is known, ¥ (u) is unknown.

If 1 < K < p is known, the estimate B from the uncontaminated data (X, )"
is spanned by uncontaminated estimates {BZ}QCZI of the first K e.d.r. directions.
Again, we can replace k = min{K,p — K} observations in (X,Y’)" to obtain a
contaminated subspace estimate that is maximally distant (orthogonal) from B
in terms of the Frobenius norm-based subspace metric [F, given that K is known.
We use the same contamination scheme as above (i.e., k different slices) with
the exception that the k£ directions of contamination {Bz}le must be a size k
subcollection of the K uncontaminated e.d.r. direction estimates {B\Z};C:l That
is, contamination is in the direction of the uncontaminated estimates {BZ ~

when Y is unknown. See Section 4.3.2.

- CaAsg III: K is unknown, ¥ (p) is known.

Suppose the uncontaminated estimate of K satisfies 1 < K < p. We can replace
k=p— K observations in (X,Y)" so that, under this contamination, the largest
k contaminated eigenvalues computed in Step 4 of the SIR procedure explode in
size, while the remaining p — k& contaminated eigenvalues are bounded. Because
the contaminated estimate of the subspace dimension depends on the largest
contaminated eigenvalues, we can force the contaminated subspace estimate to
have dimension k£ = p—l€ as well as force this subspace estimate to be orthogonal
to the uncontaminated B. That is, by replacing k = p — K observations in

(X,Y)", we can obtain a contaminated subspace estimate that is the orthogonal
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complement of B and so maximally distant (orthogonal) from B in terms of the
Frobenius subspace metric F. The contamination scheme is essentially the same
as in CASE [ above, replacing x-observations in k = p — K different slices and

using the same contamination directions. See Section 4.4.1.

CAse IV: K, ¥ (u) are unknown.

When the uncontaminated dimension estimate is 1 < K< p, we can replace k =
K observations in (X,Y)" so that the resulting contaminated subspace estimate
is a subspace of EL, the orthogonal complement of the uncontaminated estimate
B. The contamination scheme is essentially the same as in CASE II above,
replacing z-observations in k = K different slices. But for the k directions of
contamination, we use all k = K uncontaminated e.d.r. directions {@}le used
to span B. Under this contamination, it is very difficult to control the sizes
of the contaminated eigenvalue estimates in the SIR procedure (unlike CASE
I1T). Hence, the contaminated estimate of subspace dimension is problematic to
directly manage. However, it is possible to show that the contaminated subspace
estimate must be orthogonal to B and must then have dimension less than or
equal to p — K. In essence, the contaminated subspace estimate has nothing

in common with B (i.e., is orthogonal), but may not correspond to the entire

orthogonal complement of B. See Section 4.4.2.

As in finite sample studies of Hilker (1997) and Gather et al. (2002), we find that

directions of contamination that are harmful to SIR differ depending on whether

Cov(X) = X is known or not. Contamination in the direction of the uncontaminated

e.d.r. direction estimates ; is harmful when ¥ is unknown, whereas contamination

orthogonal to uncontaminated direction estimates is worst when ¥ is known. Indeed,

the sensitivity of SIR depends on both the knowledge of the covariance structure ¥ and

of the dimension KC of the true e.d.r. subspace B. Hence, our work in the following

Sections 4.3-4.4 fully supports and extends the results of Hilker (1997) and Gather et
al. (2002).

We finally note that, according to Cook and Critchley (2000), outliers present in a
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data set can only cause an overestimation of the number of directions of the subspace
in SIR, which supposedly should not be dangerous in estimating the key ingredients of
the true e.d.r. subspace. In Sections 4.3 and 4.4, we are able to show that this is not

the case.

Throughout the remainder of this Chapter, we assume that the SIR procedure can
be applied to a given uncontaminated data set (X,Y)" = {(x;,v;)}7; € R? x R under
consideration. Essentially, we suppose that H slices can be identified from the data

(X,Y)" € RP x R, which always holds true if the y-observations are all distinct.

4.3 Sensitivity Analysis when K is known

In the case that 1 < K < p is known, the estimated reduction subspace B C RP
computed from the data (X,Y)" = {(z;, )}, has dimension K. Suppose that we
replace k < n arbitrary data points in (X,Y)" to obtain a contaminated data sample
(X,Y)™*. Applying the SIR-procedure with (X,Y)™* given the known dimension K,
we would produce a contaminated estimate of the reduction subspace gk spanned by
K independent vectors based on (X, Y )",

To judge the effect of data contamination on dimension reduction subspace esti-
mation, we consider measuring the distances between K-dimensional subspaces B (es-
timated e.d.r. subspace using uncontaminated data (X,Y’)") and B, (e.d.r. subspace
estimated by contaminating k data points (X, Y)™*) with the metric F. The worst-case

contamination scenario would cause the subspaces B and gk to be most distant under

the measure F.

When K is known, we can quantify the worst-case scenario under contamination,

for dimension reduction as

o VoK it 2K < p,
F(B.By) = /2(K — max{0,2K — p}) = bo=P (4.1)
2p—K) if 2K > p,

50



4 A SENSITIVITY ANALYSIS OF SLICED INVERSE REGRESSION

using Theorem 2.2. That is, B and Ek are maximally distant in terms of the subspace

metric [F.

We are now prepared to define a finite sample breakdown point for SIR-type dimen-

sion reduction procedures, in the case that the dimension I of reduction is known.

Definition 4.1 Finite sample breakdown point in dimension reduction (K
known). Let (X,Y)"* denote a contaminated sample found by replacing 1 < k <
n data points in a data set (X,Y)" = {(x;,y:)}-, C R? x R with arbitrary values
{(Zi,,0;,)};—1. For fized 1 < K < p, let B and B, C RP denote estimates of K-
dimensional e.d.r subspaces based on a given dimension reduction procedure (e.g., SIR)
applied to (X,Y)" and (X,Y)"*, respectively. The finite sample breakdown point

of the dimension reduction procedure is defined as

Efsbp,lC((X7 Y)nv IF’ IC) =

min {E :1<k<n, sup IF([?, Ek) = \/Q(IC — max{0, 2K —p})}
n (X, Y)nk

under the metric F for the data constellation (X,Y)".

The value €4, represents the percentage of contamination in a data set (X,Y)"
necessary to cause a dimension reduction procedure to breakdown with a maximal
distance (4.1) between the subspace estimate under contamination and the estimate
produced from an original, uncontaminated sample. Note that in the cases that X =0
or KL = p is known, the finite sample breakdown point definition above is not applicable
because breakdown in these extreme cases is not even possible; when I = 0 or K = p,

it is known that the e.d.r. subspace estimate should be B= 0, or B =Rr , respectively.
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4.3.1 K known — X known case

The following lemma is useful for determining the limiting behavior of eigenvectors
corresponding to a sequence of non-negative definite covariance matrices. Since the
estimated reduction space in SIR corresponds to (scaled) estimated eigenvectors, we
shall exploit the result to understand the influence of data contamination on SIR in
the case of a known covariance structure. We note that Lemma 4.8 of Hilker (1997)
follows as a special case of Lemma 4.1 here (i.e., I = 1), but our result is geometrically
stronger and more comprehensive in terms of the convergence of subspaces spanned by

convergent eigenvectors.

In the following lemma, we use |A| to denote the cardinality of a finite set A.

Lemma 4.1 Let {t,,}>°_, be a positive, increasing real sequence such that t,, — oo
as m — oo. For every m > 1, let M,, be a symmetric, nonnegative definite p X p

matriz with ordered eigenvalues 0 < A, , < --- < A\, 1 and corresponding orthonormal

etgenvectors Ny, t =1,...,p. Assume that
M k
lim —= =Y ¢ 6,6 4.2
for some 0 < ¢ < --- < 1 and orthonormal collection of vectors 3; e RP, i =1,...,k,
k < p. Furthermore, suppose that there are g < k distinct values among {cy,...,ck},

denoted by 0 < ¢, < --- < ¢1. For each j =1,...,g, define an index set 5j = {i:
¢; = ¢;}, write Ej and Nm,j to denote p X |5J| matrices with columns formed by vectors
Biyi € 6} and N, 1 € 5j, respectively; denote projection matrices for Ej and Nm’j as
ng and Pﬁm%j, respectively.

(a) Then, for each j =1,..., g,

lim Pﬁ

m—o0 m,j
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There exists a sequence of k X k orthogonal matrices

~_|_ ~ ~ ~ ~ - - - =
Nmlel 0|B1|><|B2| O\B1|><\Bg| O\B1|><\Bg|
~ -~ ~T B ~ ~ oo ~ ~
Q= O0iBoix1By Nm2B2 03,105 015} | B,
m . . i .
_ - _ ~ ~ _ Nal
| 9B,x1B1 OBy x1Bal 018, 1x|Bsl N gBg

such that, as m — oo,

[ﬁml . ng}Q;kn SN [§1 . §g].
(b) Let N, and B denote subspaces of RP spanned by 0, ; and [5; vectors, i = 1,... k,

respectively. Then, as m — o0,

k k
Py = Y il — > 0i8 = Ps.
i=1 i=1
There exists a sequence Q,, of k X k orthogonal matrices such that, as m — o0,

[t Do) Qe — [B1 -+ Br] -
(c) Fori=1,...,p,

Am.i ¢ ifi=1,...,k

lim — =
m—0o iy, 0 otherwise.

Remark. We make a few comments on the above result before beginning its proof.
Under the matrix convergence from (4.2), Lemma 4.1 states that the ordered eigenval-
ues of M, (scaled by t,,), as well as the corresponding eigenvectors, converge to those
of the matrix Zle ci - B3] . While the first k ordered eigenvalues of M,, converge
directly to the corresponding ordered eigenvalues of the limiting matrix ZL ¢ B3B!
by part (c), the convergence of the eigenvectors of M,, is not direct; that is, we cannot
generally say that n,,;, — 3; (1 = 1,...,k). But instead, by Lemma 4.1 (b), the first
k orthonormal eigenvectors of M,, converge to those of the limiting matrix, namely
Bi, ..., B, up to an orthogonal transformation. Consequently, the space N, spanned

by the k vectors 7, (corresponding to the k largest eigenvalues of M,,) converges as
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m — oo to the space B spanned by the eigenvectors ;, @ = 1,...,k of the limiting
matrix (4.2). As an implication of this, direct componentwise convergence of the first
k eigenvectors of M, of the form n,,; — §; (i = 1,...,k) can be achieved in fact if
the first &k eigenvalues of (4.2) are all distinct ¢ < --+ < ¢1, or equivalently if g = k
and |5J| =1forall j =1,...,9. In part (a), we also find that if there are ¢ distinct
eigenvalues among {c;}¥_, in (4.2) then, up to an orthogonal transformation, g differ-
ent collections of eigenvectors of M,, must converge to those collections of [3; vectors
in (4.2) which share a common ¢; eigenvalue. Because the limiting matrix in (4.2) has
rank k, part (c) of Lemma 4.1 reflects that the smallest p — k eigenvalues of the matrix

M,,, must converge to zero, ensuring the rank of M,, properly converges to k.

Proof. We separately treat the proofs of parts (a)-(c) for clarity.

Proof of (c).

We begin by establishing part (c) first. Note that the symmetric matrix M, /t,, has or-
dered eigenvalues A, ;, 2 = 1,...,p, which correspond to the orthonormal eigenvectors
Nm,i- Also, the limiting matrix Zle c;3;8] from (4.2) has ordered positive eigenvalues
¢p > -+ > ¢ > 0 along with an eigenvalue 0 with multiplicity p — & (i.e., exactly p — k
times does 0 appear as an eigenvalue), corresponding to p — k additional orthonormal
eigenvectors, say (i1, .., 3, that span the orthogonal complement of span{;}¥_,,
ie., Zle ci3:.81 + 0> 11 B;3. By Rouché’s theorem [Stewart and Sun (1990), p.
167], which states that eigenvalues are continuous under matrix convergence, it holds

that the ordered eigenvalues of M,,/t,, must converge to those of the limiting matrix

(4.2) so that

. >\mz C; lflzl,,]{?,
lim - =
m=0 lp, 0 otherwise
follows for ¢ = 1,...,p. In particular, the convergence of the first k ordered eigenvalues
of M,,/t,, implies that
. >\m A ~ . =~ .
lim — =¢;, ieCy,j=1,...,¢. (4.3)

m— oo tm
Proof of (a).
For each j = 1,...,¢, note that Pﬁm,j = Zie@_ nmw;i and ng = Zie@ BB by

54



4 A SENSITIVITY ANALYSIS OF SLICED INVERSE REGRESSION

the orthonormal property of the vectors n,,; and (3;, respectively. It also holds that
My, =30 A - 77m7m;7i and Zle ci - BB =Y E}ng. The matrix M,, can be

=1

rewritten as

k
i=1
where the remainder matrix R,, is defined by subtraction, ie. R, = M, —

tm Sor 3BT Let t,, - i denote the sum of the absolute entries of R,,; that is,

if the p x p matrix R,, has entries denoted by R,,;;, ¢ = 1,...,p,7 = 1,...,p, then

b - 7";0 =>"r, ?:1 |R,,ij|. Because any component of 7, ; is less than or equal to
1 in absolute value by |9l =1 for i = 1,..., k, we may bound
0 Rl <tm -7, i=1,....k where lim r} =0 (4.5)
’ ) m— 00 )

follows from limy, oo Ry /tm = Opsp.

To establish the claim in part (a), it suffices to show that: for any j =1,...,g¢,

li

e H(Ip - PE)”WM’H =0, S ij (4'6>
denoting the p x p identity matrix as I, above. From (4.6), it follows that lim,, (I, —
ng)ﬁm,i =0, for any 7 € @- and fixed j = 1,..., g implying that, when m is large, we
have n,,; ~ B, i for all 7 € 6']- for a given j =1,...,9.

Because components of 7, are bounded by 1 from |[n,,;|| = 1, we find that, if (4.6)
holds for a given j =1,..., ¢, then

lim (I, — P5 )Py = lim > (I, — Pg ) ithi = Opep (4.7)

m— o0 J m,J m—00
i€Cy

holds as well. Because N;lﬁmz =1z, (the |6’]| X |éj| identity matrix), Py = B;B}
and Pﬁm]- = NmZNT

m,i)

we find (4.7) is in turn equivalent to

0 (= lim Ny (Is ) — Py )Py Npj = lim (I, — AnA,), (4.8)

ICi1%ICi] ~ oo m—00
where A,, = N,IJEJ for a given 7 = 1,...,¢9. By Rouché’s theorem again, all |6’j|

eigenvalues of A,, A must converge to 1 as m — oo so that

IN

sup,, [[Anl2 =  sup,, (largest eigenvalue of A,, A )

(4.9)

A
Q

sup,, [|AL|32 = sup,, 1/(smallest eigenvalue of A,,A)
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for some real 0 < C' < co. In addition, since det(4,,) = det(4,), we have

2
1 = lim det(A,AT) = lim det(A,,) - det(AT) = lim [det(Am)] ,

m—00 m—00 m—00

which shows that lim,, . det(4,,) = 1 so that A,, is nonsingular for large m and A_!

exists eventually. Then, applying Lemma 7.4 with (4.8) and (4.9), we find

lim L~ AL Aule = lim A AL~ ALAL s

lim ||A7_nl(1|5j| — AnAy) Anlle

< lim [JAZY ] - [T, — Andy) e | Anlle
< lim [GlIIA 2 1T, — AmAn)lle - [[Amll2
< [G]-C- lim [[(Ig) - An A,

0,

so that 1imm_,oo(1‘5j| — Al A, = Ol@\XI@I and hence

Opp = lim By(I, — AT A,)B]
= lim ng — Péjpﬁmjpéj
7

= lim [(Ip - Pﬁm,j)Pp:j] [(Ip - Py, )5, |

because I, — Pﬁmj and ng are symmetric, idempotent matrices. This last limit shows

that, if (4.6) holds for a given 7 =1,..., g, then

lim (Ip - PN )PE' = Opxp, (410)

m—o00 m,j J

holds in addition to the counterpart result in (4.7). From (4.7) and (4.10), we find the

following limit of the quadratic form

lim (Py — Py ) (Pg — Py, ) = lim (I, =Py )Pg + (I, - Péj)szm,j]
OPXP
so that
lim (Py = Pg) = 0pp (4.11)
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is valid whenever (4.6) holds for a given 7 = 1,...,g. This shows the first claim in

part (a) of Lemma 4.1. The second claim in Lemma 4.1(a) then follows using

[Nowi - Nl Q= [Pﬁm,lél ...P~ B 1,

m Nm,g 9

so that the limiting matrix

lim [Nm,l - Nm’g} Q;'fn = lim [P]Vmgél - Pﬁm’gfég}

= [PaBiP )

= [31'--39},

because Péjéj = éj fory=1,...,9.

Proof of (4.6). We use an induction argument on j to establish (4.6). We first show
that (4.6) holds for j = 1 and any i = 1,...,|Cy]| (that is, i € Cy).

Using the orthonormal property of the eigenvectors of M,,, (4.4) and (4.5), we find

for ¢ € 51:
0 S )\m,i
= U;,Z'Mmﬁm,i
g
< in ZEZ : U;,ipgmm,i + |77;rrz,z‘Rm77m,i|
=1
g
<t | P mall” + tm - (4.12)
=1
g
<t Y 1Pl + 1
=1

= tmgln;,iPBnm,i + tm ' T;L,O

< tmgl + tm ' T;,Oa
where the last inequality follows from:

T i P8 < N i Pstisi + My i (L = P8) Mg = T iy = 1.

Because ¢; = ¢; for i € C; and

Jr
. tm M Tm70 . )\m,z ~
lim —— =0, lim =c¢ =0
m—00 tm m—0oo t

m
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by (4.3) and (4.5), we may conclude that
g
Tim 3Pl = 1. (413)
=1
from the previous inequalities in (4.12). We aim now to show that for i € C,
lim || Py 1> = 1 (4.14)

follows from (4.13). If g = 1, this is clearly true. For the case that g > 1, it suffices to
establish for a fixed i € C,

Jim 1 P5mmll> =0, €=2,....9, (4.15)

or equivalently, (because the sequence ||Pg fmil*> < [[9mll*> = 1 is bounded by the
Cauchy-Schwartz inequality) that any convergent subsequence ag,, = ||Pg,0m,1[* of
HPgenmin converges to 0, for any ¢ = 2,...,¢g. Suppose (4.15) does not hold and,
for some ¢* € {2,..., g}, there exists a subsequence ay- ,, such that ap, — ¢ # 0 as

n — oo. Note that ¢ € (0, 1] from 0 < a,, < 1 and that by (4.13): i € 51,

g
|2 - TLILIEO <Z ||P§gnmn7’b”2 - af*,n) - 1 — C.
/=1

g9
L Y | P o
=1

oy
Using (4.12), we can produce bounds

)\mn,i
tm

tm" ) rmna

2 4 ; 0§51+7“+

g
<Gt + 01 Y ||Ps, Mo 0
n =1
e

n

Taking limits as n — oo, we then find ¢&; < ¢- ¢ 4+ (1 —¢) - &3 < ¢, implying ¢; = .
This is a contradiction because ¢y« < ¢; for £* # 1 by assumption. Hence, we have now

established that (4.14) holds or equivalently that (4.6) holds with j = 1.

If g = 1, we have immediately that (4.6) holds. For the case g > 1, we now use a
strong induction step to show that, if (4.6) holds for any j < j* for some fixed j* where
1 < j* < g —1 (the induction assumption), then (4.6) also holds for j = j*+ 1. For
any j with j < j*, if (4.6) holds then limm_,oo(Péj — Pﬁm,j> = Opxp follows from (4.11).
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Let T;,j denote the sum of the absolute entries of Péj — Pﬁmj’ j=1,...,¢9. Again, the

components of the eigenvectors 7,,; are bounded by 1, so that we may majorize

|77;;7i(P§j — Py ihmal < e 1€ 5]-, where lim r . =0, j<j*  (4.16)

m
m—o00 J

noting that lim,, . 7,, ; = 0 follows for j < j* from hmm—»oo<P§j - Pﬁm,j) = Opxp by

the induction assumption that (4.6) and (4.11) hold for j < j*.

Now let j =j*+ 1 and i € éj*ﬂ, or equivalently, 1 < i — Zé:l \@] < |5j*+1|. By
steps analogous to (4.12) using (4.16), 'r];,mm,i =1 and Pﬁmjnm,i =0, for j < j* and

t € Cj«y1, we can argue for i € Cj-4q,

0 S /\m,i

‘7*
S tm Z EE ) nT—TrL,Z [(PEZ B PNNL,Z) + PN7VL,Z:| nm’i
(=1

g
+lm Z Eﬁ'nl,ipféenm,i"i‘|77nT1,z'Rm77m,i’ (4.18)
(=41
g J*
<t D G Pl e Y G, (@=1)
l=j*+1 £=0
g J*
< twligr Y |Pgmill® +tm Y Gy
t=j*+1 =0

5

J
~ ~ o+
< bpCjryr T iy E Co " Ty g
=0

Above we used ¢j=41 > ¢; > 0 for j > j*. From (4.3), (4.5), (4.16) and ¢« = ¢; for
1€ éj*ﬂ, it follows for ¢ € 6'j*+1 that

J
lim g Cy- T;M =0, lim == ¢ = Cjrt1,
m—oo o m—o0o tm

and we find in (4.18) that

g
lim_ > Pg > =1, i€ Cipp. (4.19)
(=j*+1
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To finish the induction argument, we wish to show that for i € 5j*+1
. 5 12 —
Jim [|Pg | l” =1

now follows from (4.19). If g = j*+1, this is immediate and, for the case that g > j*+1,

we can establish for ¢ € 6j*+1
Jim (| Pgmil? =0, £=5"+2.....9,

with arguments completely analogous to (4.15) involving subsequences. (If for some
e {j*+2,...,9} and i € 5j*+1, there exists a non-null subsequence by, » =
1P, 1l With 1limy, oo b, e« = ¢ € (0, 1], then we may deduce from (4.18) and
(4.19) by taking limits as n — oo that ¢y < ¢ -G+ + (1 —¢) - Cjop1 < Cjrpa, a

contradiction since ¢« < ¢;«41.) The proof of (4.6) by induction is now complete.

Proof of (b). The convergence in part (b) follows immediately from the result in part (a)

and . .
P =D Py, Ps=) Pp
j=1 Jj=1

by orthogonality. O

Data contamination

Suppose the model assumption
Y = f(B"X,¢)

with ¢ = E(X) and ¥ = Cov(X) can be justified and (X,Y)" = {(x1,v1),. .., (Tn,yn)}
is a sample of size n of (X,Y') with y; # y; for all i # j. When the dimension 1 < K < p
of the reduction subspace and the covariance structure X, u are known, a dimension

reduction procedure of the SirR-type applied to (X,Y)" yields e.d.r. directions Bl =

$=12n, i =1,...,K derived from the orthonormal eigenvectors 7;, i = 1,..., K of
H
V=S "pu(@n — )@ — p) 5 (4.20)
h=1
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corresponding to the K largest, ordered eigenvalues X;C < - < Xl of (4.20). The

~

estimated reduction space B is spanned by the vectors 61, oo Bree

Recall that, in the SIR procedure, the sample observations of {(z;,v;)}?, are or-
dered by the y—responses (yu) < y@+1)) and grouped into slices I;, ¢ = 1,..., H as

determined by the rankings of the response variable:

Ya), -+ Ymy) € Hlu Yni+1)s - - s Y(ni+n2) € H27 o Y tedng 14+1) -0 Yn) € ]IH

We shall exploit the slices in the contamination scheme as follows, noting K < H.

Let {t,,}oo_, denote a sequence of positive scaling factors such that ¢,, — oo as
m — oo. For each m and scaling factor t,,, we create a contaminated sample, denoted
by (X,Y)™* by replacing k observations in the uncontaminated data (X,Y)". Denote
the index of the first observation in each slice I, as 1, = 1 + Z?;ll ni, h=1...,H.
WLoG suppose the first observation of each of the first k& < H slices Iy,...,1 is

replaced by arbitrary observations
(%1h,,mag1h)7 h = 17"'7]{:7

where the y-values remain unchanged, v1, = v1,, h = 1,...,k and thus observations
assigned to a slice I,,h = 1,..., H stay the same. The contamination of the z-values

is assumed to be of the following structure:

51h7m = tmah'f"ﬁha Bh;ah eRP, h=1,...,k (421)

with
BB = 6hy  hyj=1,...k (4.22)
where ¢p,; denotes the Kronecker delta function above (e.g., dp; = 1 if j = h and

otherwise 0). Again, under this k—observation replacement scheme, we obtain the

contaminated sample as (X, Y%k,

Computing a version of (4.20) based on (X,Y)™* yields a contaminated estimate
V,,, of Cov(E(X~Y2X[Y)) with ordered eigenvalues 0 < Ay, < -+ < A, and corre-

sponding orthonormal eigenvectors 7,,,;, @ = 1,...,p of V. An application of the SIR
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method to (X,Y)™* results in an estimate Ekm of the dimension reduction subspace

spanned by an appropriate choice of vectors B\m’i =V My 1 =1,...,K.

With the established Lemma 4.1, we can now study the effect of this type of con-
tamination on the eigenvectors of V,, in determining estimates of e.d.r. directions. The

following theorem quantifies the result.

Theorem 4.1 Under the k-slice contamination scheme of Section 4.3.1, 1 < k <
min{p, H}, and with known E(X) = p and Cov(X) = X, suppose that a SIR-dimension

reduction procedure is applied to the contaminated sample (X,Y ) * with resulting or-

dered eigenvalues 0 < A, < --- < A\ 1 and corresponding orthonormal eigenvectors
Nm.i» @ =1,....p of an estimated covariance matriz Vy,.

(a) Let N, and Y28 denote subspaces of RP spanned by {TmnYe_, and {S7123,}F_,

vectors, respectively. Then, as m — 00,

an hnm I Z 1/26 _1/2ﬁm,h)T = szl/ZB"

(b) If the number of observations in the first k slices, namely {ny}i_,, are ordered

nay < - < ny, then

1
th _ if h=1,...,k,
lim t27 = N(k—h+1)T
e 0 otherwise.

(¢) For h € {1,...,k}, let ./vmh and X728, denote subspaces of RP spanned by
Dm0 1 <7 <k, ng—jy1) = N—nt1y} and {2_1/25]' 1 <5<k nj = ng_nin}

respectively. As m — oo,

2 : ~ T 2 : -1/27 —-1/27 T
Pﬁmh - nm,hnmﬁ ? (E / ﬁm,h)(z / ﬂm,h) — PE—1/2i§h-
1<5<k, 1<5<k,
"(k—j+1) T (k—h+1) i =" (k—h+1)

(d) There exists a sequence Q,, of orthogonal k X k matrices such that

lim [ﬁml .. ﬁmk}@m _ [271/251 N 2,1/2@]

m—00
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(e) Let S-UV2N and S'B denote the subspaces of RP spanned by {Bmh =
SV 20, and {zflﬁh}’g:p respectively. Then

7%1_120 szl/%\?m = Pyop
Remark. We start again with a few comments on the above results before proceeding
with the proof. Under the k-slice contamination scheme of Section 4.3.1, a contam-
inated covariance matrix V,, results in place of (4.20) by using the corrupted data
(X,Y)™*. This matrix has orthonormal eigenvectors 7, p, . - ., associated with
the ordered eigenvalues Xm,p < - < /)\\m,l' In particular, the k largest eigenvalues
of V,, correspond to the eigenvectors {Dmn}f_,. Part (a) of Theorem 4.1 states that
RP-space /\A/m spanned by the contaminated eigenvectors {7, }¥_, converges to the R?-
space B spanned by {£7Y/ QBh}ﬁzl based on the k directions of contamination {3, }_,
satisfying (4.22) (i.e., the respective projection matrices converge). In matrix form,
Theorem 4.1(d) states that, up to an orthogonal transformation, the contaminated
cigenvectors {fm}i_, converge to {S7Y23,}¢_,. Consequently, the space $Y2A,,
spanned by contaminated first k e.d.r. directions {-7V%75,, ,}%_, (i.e., transforming
the eigenvectors {7, }F_, associated with the k largest eigenvalues of XA/m, where we
note that k£ may not necessarily equal K) converges to the space ¥-18 spanned by
{Z_lgh}ﬁzl in Theorem 4.1(e). This result is crucial because it reveals how the k-
slice contamination scheme of Section 4.3.1 can be used to control vectors spanning
the e.d.r. subspace. In part (b) of Theorem 4.1, we find that, after contaminating k
slices, the k largest eigenvalues of the contaminated matrix YA/m “explode” and grow
infinitely large at a rate faster than the remaining p — k eigenvalues of V. (In the case
where the covariance structure % of X is known but the dimension K of the true e.d.r.
subspace is unknown, this result implies that we can carefully control the dimension of
the estimated e.d.r. subspace, as well as the space itself under contamination by de-
termining how many eigenvalues are large; see Section 4.4.2.) Finally, Theorem 4.1(c)
states that, because the eigenvectors {7, }%_, associated with the k largest eigenval-
ues of XA/m are determined in the limit by the contamination among the first £ slices

by Theorem 4.1(b), we find that the space spanned by certain sub-collections of the
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eigenvectors {7, }¥_, converges to the space spanned by certain sub-collections of
the eigenvectors {£~V Qﬁh}ﬁzl and both collections of eigenvectors are determined by
the number of observations {n;}¥_, in the first k slices. Namely, collections of slices
have the same number of observations n;, correspond to collections of eigenvectors that

converge.

Proof: Using the known g, Y values with the sample (X, Y)™* the estimated covari-

ance matrix Vm can now be written in two parts:

k H

Voo = X723 " i (@nm — 1) @ — ) 524 872N B (@ — ) (@ — )
h=1 h=k+1
with
1
T, = — Ti, h=k+1,..., H;
2y €lp
Thm - —Thm T — Li
[
(4.21) tmn ~

1/ & tm >

—ﬁh‘l‘_(vh‘i‘ $i>:—ﬂh+vh+ﬂa h=1,...,k,
n np

where v, = n,;l ('ﬁh + >0 :L'Z) — p. With some algebra, we express

k
~ R ton ~ tm > Tl
Vi, = thE‘l/Q —Bn+vop || —0Bn+vn) X 1/2+S
np np
h=1
k

= Z( 28,8y + - mﬁh Ty htmzl/%hBZ)JrS, (4.23)
np

h=1

B =572, S =X UQ(ZP}#M% + Z pr(Tn — p)(@n — M)T> 2

h=k+1

Note that the term S does not depend on the contaminated observations. Because

k

) 1

tim o (D2 itmBath 72 + it S 208y + ) = Oy
=1

m—00
m

and p, = np/n, it holds that

=5 k ~ k

V, . Ph— =T 1 1
lim - = lim “n :E{_ /2 1/2
m1—>oo tgn m1—>oo b1 n%ﬂhﬂh he1 nhn( 6 )( ﬁ )
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Note that the vectors 3, = 2_1/25;1, h =1,...,k, are orthonormal by (4.22). There-
fore, parts(a)-(d) of Theorem 4.1 now follow directly from applying Lemma 4.1, noting

that 1 < ... < L
k) —

- )

To prove part (e), write p X k matrices Nm = [ﬁml . ﬁmk} Q,, and B = [51 . Ek}

We now aim to show that

lim (NIS7'N,,) "' = (BTS2B)~". (4.24)
From (4.24) and
lim ©"Y2N,, =X7'B (4.25)

from part (d), the result in part (e) follows directly:

lim Pyiag, = nyg;ozfl/mm(N,Iz*ﬁm)*lﬁnjz*ﬂ

= X 'B(B'y?B)"'B'x!

- szlg.

Because 7! is symmetric and positive definite, we may write X! = QT DQ, where
Q@ is a p x p orthogonal matrix and D is a p X p positive diagonal matrix. Define a
p X k matrix ]V;jl = Qﬁm and note that the columns of ]/\7;',‘1 are orthonormal vectors
(i.e., (N*)T(N*) =1;). To finish the proof, we use some properties of the Frobenius
|Al|r and spectral || Al|; norms of a symmetric k& x k matrix A. These norms are given

in Definition 2.8 and (2.8), respectively. From Lemma 7.4, we have
1All2 < [ Alle < VE - [|All2.

In addition, if B is a k x k matrix, then |AB||r < k-||A||r||B]||r. Using these properties,
we let Cy, = (NISIN,,) L = [(N*)TD(N2)] ™! and C = (BTS2B)~! and write

tr[(Crn — C) (Cro = C)] = [Cr = C|I2
= [|Cw(Ct = CTNCIR
< k- lCul3-IC = CTHE - ICIIR
= k- ICIg- ID7M5 - tr[(CRt = C7H (CR = C7H],

m
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where above, because (), is symmetric,

ICnll5 = largest eigenvalue of C,,C]

m m

- -1
= largest eigenvalue of (C’l)(C”l)]

PP o -1
= largest eigenvalue of (N;)TD(N;)(N;)TD(N;)}

-1

= largest eigenvalue of (N;L)TDQ(]V:;L)}
= largest eigenvalue of [D?]~!

= D75

By (4.25), lim,, .oo(C;} — C™1) = 0Oy so that it follows that lim,, .o tr[(Cm —
)Y (O, — C’)} = 0 or, equivalently, that lim,, ...(C,, — C)T(Cp, — C) = Opx. This
proves (4.24) and part (e). O

In accordance with Definition 4.1, we can now set an upper bound on the finite sam-

ple breakdown point of a SiR-type procedure, based on a known covariance structure

DINTA

Corollary 4.1 For a given 1 < K < p, suppose the SIR procedure seeks to estimate a
K-dimensional subspace of RP based on H > min{/C,p — K} data slices with a size n

data sample (X,Y)" and known values of E(X) = u, Cov(X) = X. Then,

n,k

m

(i) there exists a sequence (X,Y )% m € N, of contaminated data sets and associated
subspace estimates gm,k; found by replacing k = min{KC, p—K} observations in (X,Y)",

where

lim F(B, gmk) = /2(K — max{0, 2K — p}),

m—00

where B is the subspace estimate based on (X,Y)".
(ii) the finite sample breakdown point of SIR, under Definition 4.1, satisfies
min{/C,p — £}

n

6fsbp,/C<<X7 Y)nu F? ]C) S

Remark. We make a few comments on the nature of the proof and the contamination

scheme used. Uncontaminated data (X,Y)™ produces a —dimensional estimate Bc
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R? of the reduction space, when the dimension I of reduction is known. If Emk C RP
represents a corrupted K—dimensional estimate of the reduction subspace, based on
replacing k observations in (X,Y)" under the contamination scheme in Section 4.3.1,
then the maximal distance F(g , gmk) between the corrupted and uncorrupted subspace
estimates is given in (4.1). There are the two possible cases for this distance, depending

on whether 2K < p or 2K > p.

If 2IC < p, the subspace estimates E, gmk are maximally distant under FF if these
estimates are orthogonal. In this case, by appropriately replacing £ = IC observations in
the first K slices, we can obtain a contaminated estimate B\m,k:;C that is arbitrarily close

to being orthogonal to the uncontaminated estimate B (in the sense that PgPg =~

Opxp)-

If 2IC > p, the subspace estimates B and Em,k must have a non-empty intersection
that is at least of dimension 2KC — p by Lemma 2.2. In this case, subspaces B and gmk
are maximally distant under F if the intersection BN B\m,k is as minimal as possible
(e.g., dim(g ﬂBAmk) = 2K —p) and, after removing the intersection, the remaining parts
of both subspaces Bn (gﬂ [3\7,”16)L and Emk N (gﬂ B\mk)L are orthogonal. Here we
can replace k = p — K observations to obtain a contaminated sample and an estimate
B sy for which dim(B N By, ) ~ 2K — p and Pggog 0 Pa, nios, o0 &
Opxp, ensuring enough contamination to force a breakdown of the dimension reduction

procedure.

Proof. Let B C R? denote the K-dimensional reduction subspace determined from
the uncontaminated data; B C RP is spanned by the scaled eigenvectors Bl =
SV Be = S7Y27 associated with the K largest eigenvalues of (4.20) com-
puted with (X,Y)". To establish a bound on €fg, x, we consider two possible cases:
2K < por 2K > p. For each case, we examine the finite sample breakdown point under

different contamination schemes which satisfy (4.21) and (4.22).

CAse I: 2K < p. Here we use the contamination routine described in Section 4.3.1

to obtain a contaminated sample upon replacing I observations in (X,Y")". Choose
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orthonormal 3y, ..., B € V2B = {£1/2y : v € B} C RP, which is possible because
dim(ZlﬂgL) = dim(gL) =p— dim(g) = p— K > K. Following Section 4.3.1,
replace the first observation in the first /C slices with contaminated values (1, m, ¥1,) =
(Z1,,91,) to obtain a sequence of contaminated samples (X,Y)%* for m € N, where
1, m = tnBy with 3, = »1/23, for h =1,...,K. Note that the vectors {5;1}’,?:1 satisfy
(4.22).

After computing a covariance estimate V,, based on (X,Y)™X in (4.20), an applica-
tion of the SIR method to (X,Y)™X results in an estimated K-dimensional reduction
subspace l§m,;c C RP spanned by the scaled eigenvectors Bml =225, . aB\m,lC =
N2,k of V. associated with the K largest eigenvalues of V,,. Let ¥~!B C RP
denote the subspace spanned by 718, = S7V23,, ... Y713 = ©-125,.. Tt follows
from Theorem 4.1 (e) (with £ = K) that

lim Pgm’)c = Pz—lg

m—0o0

and so

~

lim F(B,B,x) = lim \/Qlc—ztr(PngM)

m—00 m—00

= /2K - 2t:(PsPy15) = F(B, 5 7'B)

by the continuity of matrix trace and multiplication operations in (2.2). Because
Y18 ¢ B, it holds that Py, 5Pz = 0, by orthogonality. From this and 2K < p,
the subspaces B and £1B are maximally distant C-dimensional subspaces under F by
(4.1), namely F(B,%'B) = v/2K. By Definition 4.1, we conclude

(X, V) B k) < K miniop = K}

n n

Cask II: 2K > p. Again we use the contamination scheme from Section 4.3.1, but
replace k = p—IC observations in (X, Y)" for a contaminated sample. Choose orthonor-
mal By, ..., B, _x vectors which span SV2BL ¢ RP, noting dim(XV2B4) = dim(B*) =
p — K. To obtain a sequence of contaminated samples (X,Y)"P~% m € N, we re-
place the first observation in the first & = p — K slices with contaminated values

(i:lh,ma glh) = (glh,ylh) Where Elh,m = tmgh Wlth Bh = 21/23}” fOI' h, = 1, ey P — ]C
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The SIR procedure, applied to (X,Y)™P~X again results in an estimated K-

1/2_gcaled eigenvectors

dimensional reduction subspace gmp_;c C R? spanned by the >~
Bm,la . ,B\mJC of a covariance estimate ‘A/m (associated with the IC largest eigenvalues

Ami = o0 > /)\\m,IC of x7m) Write B\S?p—/c and Bﬁ;_,c to denote the RP-subspaces

spanned by vectors {§m7h}z;f and {Bmvh}’,f:pf,c 41, respectively. By orthogonality, we
may write
Py = P+ g

Because B and B\m,p_,c are JL—dimensional subspaces of R, the dimension of the inter-
section B\ﬂgm’p_]c is at least 2KC—p by Lemma 2.2, for all m € N. Because the projection
matrix for gm,p,,c N (BN B\mp,;c)l is Py Pz - P

m,pflCm(l:j‘;ﬁig\rn,pfIC)l - Bm,pflC B\mgm,pflC and

PgPgeg,. . = Paag,,, . from Bn B\m,p,;c C B, it follows that for all m € N:

tr(Pghg, ) = tr [Pg((Pgm,p_K — Pgog, )T P@ngm,p_,c)}
= tr[Ps(Ps,  cn@nB,, b+ Lard,, )
= w(PsPs, @b, o) T s, )

> tr(P, ) >2K —p (4.26)

Eﬂgmyp,]c

using Lemma 7.3. We note as well that

tr(PgPA(z) ) < rank(Pg(z) )

Brpx mp— K
=l )
= tr(Pgm’p_K—ng3p_K)
= (P, )~ (P ) (4.27)

= rank(Pg piK) —rank(Pzn) ) =2K —p.

K

Let ©~'B C R? denote the subspace spanned by ©713; = %123, .. .,Eilgp_;c =
57123, . From Theorem 4.1 (e) (with k = p — K), it follows directly that

lim Py =Py oz

m— oo Bm,p—Kj
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By this and (4.26)-(4.28), we find

2K—p < lim tr(PgPg )

m—00

(
= lim tr[ (1) +PA(2> )}

m—00 'mp K

< lim tr(Pg PA(l) ) +2K —p
m—00 —-K

= hmtrPP L) +2K—p

- 2K—p7

using above PP .5 = 0,x, by orthogonality since Y18 = BL. Hence,
lim,, o tr(PgPg p_}c) = 2K — p and so we finally derive

lim F(B, Bmp k) = lim \/QIC—2tr p%) =/2(p — K).

The limiting value \/2(p — K) of F(B, B\m’p_;c) is the maximal distance between two
KC-dimensional subspaces of R? under F by (4.1) in the considered case 2KC > p. By

Definition 4.1, we may conclude

p—K min{K,p—-K}

s X, Y)"F.K) <
erspic((X,Y) ) - .

4.3.2 K known — Y unknown case

Here we establish a bound on the finite sample breakdown point of SIR in the case that
the dimension 1 < K < p of the reduction subspace is known, but the components of

the covariance structure Cov(X) = 3, E(X) = p are unknown and require estimation.

As in Section 4.3.1, let (X,Y)" = {(x;,y:)}~, C R? x R denote an uncontam-
inated sample of size n. We estimate the unknown mean p and variance ¥ with
T =, z;/nand 5= S (@, — T)(x; — T) " /n, respectively. Based on (X,Y)", a
SIR-type procedure results in a —dimensional reduction subspace estimate B based on
31 = f]*l/Zﬁl, o ,EK -5~ 120, where 71, ..., Dk are the eigenvectors corresponding

to the IC largest eigenvectors )\1 > > )\;C of

H
V=S "pu@ -7 @ 1) S (4.28)
h=1

70



4 A SENSITIVITY ANALYSIS OF SLICED INVERSE REGRESSION

Equivalently, 317 e BK can be determined as the eigenvectors corresponding to the IC

largest eigenvectors of

H
= Z (Th —T) (T —T) ", (4.29)
since ‘A/@ = /):Zﬁ, if and only if Vﬁi = XZ@, i=1,...,K.

In our subsequent study of the breakdown properties of SIR, we use a contamination
scheme similar to Section 4.3.1 to obtain a contaminated sample (X,Y)™* based on

replacing k£ observations among the first k£ slices I;, t = 1,..., H.

To establish a bound on the breakdown point of SIR, we will make use of the

following results.

Lemma 4.2 Let My be a p X p positive definite matriz and let {t,,}°_, be a positive,

increasing real sequence such that t,, — co as m — oo. Fori =1,...,k < p, let

Bi # Op,u; € RP, ¢; > 0 € R such that {B;}F_, are linearly independent; define B, =
+ (u;/tn) and let

My =My +12 ;BB meN

(a) Then, for each i = 1,...,k and m € N, the matriz M,,; is positive definite with

an nverse given by
c-t2 - ML i ,,T“M_
My =ML - 10m i Mo (4.30)
’ ’ 1+4¢- t72n ) m,iMm,i—lﬁmai

where My, o = My for m > 1. Furthermore, fori=1,... k:

MY = lim ML = M;1/2<IP—P 71/QBi)MO*1/2,

m—0o0 MO
MY 1B
lim 2, - M 8. = °°7Z‘_11ﬁ : (4.31)
m—oo n G - ﬁzTMoo zelﬁi

where B; = [, - - - 3i] represents a p x i matriz and M_'y = M ".

00,0 —

(b) Let Bm = Zf:l ﬁm,z/k and Mm = m,k + tz Zz 1 cl(ﬂmz - ﬁm)(ﬁm,z - Bm)—r fOT’
¢;>0,i=1,...,k. Then, M,, is positive definite and satisfies

lim M-' = MY (Ip _p ,1/2Bk)M51/2

m—0o0 MO
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with sup t2 || M1 B,]| < oo fori=1,... k.

Remark. The above results imply that, because of the contamination/pertubation of
My to M, (or M, ), the limit of M, is not positive definite. In fact, the contami-
nation vectors {3;}¥_, span the nullspace of the limiting inverse matrix lim,, .., M'.

That is, for v € RP, we find (lim,, Mn_llk)v = 0, if and only if v € span({3;}%_,).

Proof. We prove part (a) of the lemma first. Given the form of M_};_; in (4.31) (with

My = My " and Py =172 = Opxp), we note that
0

00,0 —

BIMZL B > 0 (Ip—PMo,lmBH) M5, 20,
= M,"?B ¢ span({M, *3;}i7}) (4.32)

— ¢ span({ﬁj};;ll), 1=1,...,k.

Because {/3;}¥_, are linearly independent, we have that 3; ¢ span({;}/_}) for each
i =1,...,k and the denominator of (4.31) is well-defined, if the form of each M2},

holds as claimed.

We use a proof by induction. Consider ¢ = 1 first. Then, M,, is positive definite

from the fact that for v # 0, € RP, i =1,
UTM,WU = vTMmJ_lv + t?n yox (vTﬁmi)Z > UTMm7i_1v >0 (4.33)

by the positive definiteness of M,,; 1. One can verify directly that ]\47,_1’11 in (4.30)
satisfies Mm,lMé}l = I,. The limiting properties of M&}l follow immediately upon
noting that, for i = 1,

-1

-1 Mm i—1Mmyi
M, iBm,i = : (4.34)

32 . 43T -1 .
1+C7, tm m,iMm,ifl m,?

and Py -ajap = My 28187 My 2 (87 My By).

We show now that the claim holds for a given : = 2, ..., k, under the induction as-

sumption that M,, ;_; is positive definite with inverse Mr;,liq that has the two claimed

limiting properties. If M,,;_; is positive definite, M,, ; is positive definite by the same
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argument as in (4.33) and, since multiplying the matrix (4.30) by M,,; vields the iden-
tity matrix I, the matrix in (4.30) must be M, . Because M, | = limy, oo M i1
exists by the induction hypothesis with form given by (4.31), ﬂi]\/[(;}iflﬁ; > 0 and
(I, — PMD—1/2 BH>M0_ V23, o 0, hold by (4.32) under the induction assumption, and

lim,;, o0 Bmi = Bi, we can deduce that

M1 BB My,

. -1 -1 00,i—1
%%Mmz = Moo,z'—l_ ﬁTM_l 3,
i Moo,i—1Mi
_ —1/2 —1/2
= MY  —M; /°P 12, M,
00,i—1 0 (Ip=P _1/2 )M, /25,470
My ' B4

_ Mo_l/2<1p — P e

- P
My ""Bi—1 (IP*PMo—lmBFl)Mo Bi

>M0—1/2

—1/2 —-1/2

The last equality above follows from the fact that PMo—l/Q B, T P(Ip_ PM(;l/?B-_I) M Y25,
is the orthogonal projection matrix for the RP-subspace spanned by vectors

{MO_I/2BZ»_1, (I, — PMo_l/zBH)Mo_lmﬁi} (i.e., the sum of the two projection matrices is

symmetric and idempotent since P, —12, P
0

_ =0 holds by or-
i1 (Ip_PMO_I/QBi—l)MO 124 pxp y

thogonality). Because the two collections of vectors {Mo_l/QBi_l, Iy = Pyvzp )Bi}
0 i—

and M(;l/QBi span the same subspace of RP, it must be the case that P, —12, =
0 i

MO
find (4.34) holds for i using the formula of M 1 so that lim,, .. ¢, - M. o_ollﬂml again

m,i

i—1

P, 1) . . T Py,-p _,, )8, by the uniqueness of projection matrices. Likewise, we
i—1 M, /2p

follows by the induction assumption. This completes the proof by induction of part (a).

To establish part (b), define Mmp = M,,, and Bm = Bimi — B,

)
Mpi = Muo+ 12, EGBmiby;  i=1,...k
j=1

Note that each me i=1,...,k, is positive definite (e.g., UTMmiv >0,v#0, € RP)

because My, = My, is positive definite from part (a) and ]\7,m — Mm,[} is clearly

nonnegative definite. For each i = 1,... k, the inverse .7\\4/,;11 satisfies
~ A1 3 AT jr-1
M-l — Al Gt Mm,i—1ﬁm,i5m,z’Mm,i—1 4
myi — M1 — =~ 2 5T 1 5 (4.35)
1+ C; - tm : m,iMm,i—lﬁm{i
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upon replacing {vaz-, M i1, B, ci} with counterparts {Mm’i, Mm’i_l, Bmz,’c;} in
(4.30). Because M, = Mmk, it suffices to show that for each i = 0,1,..., k,

lim ML = M (1,, _p ,1/sz>Mgl/2 — ML

bl
o0 M, 00,k

sup t2, - ||]\7njllﬁm]|| < oo, j=1,...,k. (4.36)

Again we proceed with an induction argument to show (4.36). For i = 1,...,k, let
B;_ denote the p x (k — 1) matrix that results from removing the column f; from By.
For any j = 1,...,k, we can rewrite M,,; = (M, + 3, Z%i eBm,eBme) + CiBmiBm.
so that the jth term, involving cjﬁm,jﬁ;j, appears as the last (i.e., kth) term in the

sum M,, . Treating the jth term c¢;3,,08, ; as the (final) kth term in the sum M,, ,

7j

it follows from the form of inverses in part (a) and (4.31) that for any j = 1,...,k,

—~1/2 —1/2
My (1, = Py )M 8,

lim &7, - M\ By = 7 7
mo ¢ BT My 2 (1, = Pyyvey )My 28,

# 0, (=1,...,k),

where the last inequality follows from (4.32). Hence, (4.36) holds for i = 0 with

—~

Mm 0 — Mm,k-

)

Now assuming (4.36) holds for some i € {0,1,...,k — 1}, we show (4.36) holds for

1+ 1. Under the induction assumption and

k

~ 1 1

Bm,iJrl = — Z E/Bm‘] + <1 — %> 5m,i+17
j=1

J#i+1

we find

k
. 11 —
supt?, - ||anlzﬁmz+1|| < Zmax {1 0 E} -supt?, - ||Mn_lllﬁm] < 00, (4.37)
which implies
lim My Bpiin =0, 1< sup{l+ Gy t2, - B i Myt Bnipi} < C < oo (4.38)

m—00 ot

for some C > 0 so that

-1

=~ 2 .A-13 3T
im Cit1 " tm ’ Mm,iﬁm,i-l-lﬁm,i—l—le,i

~ 2 NT N_l >
m—00 1 _l_ Ci+1 . tm . m’i+1Mm7iﬁm7i+l
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From this last limit and lim,,_ ]’\‘4“;11 = M_, by the induction assumption, we find

: A7—1
limy, oo M, ;

il = MO_Olk from (4.35). Finally, using the inverse in (4.35), recognizing

that (4.36) holds for ¢ under the induction assumption, and applying (4.37)-(4.38), we
find that for any j =1,..., k:

supty, | M1 Bmgll < supty, - [ My, 3B
m

m

5‘+1 Tr—17 Py A7—
1 <sup t2, IIMm}iﬁm,mH) : (Sup t, - ;,mMm,lzﬂmJ)
m m

C
< supt%i-HMn_Ll,ﬂm,j”
m
_ 2
Cit1 Ar—-17
P (sup e IV sl sup ]
m m
< OoQ.

Hence, we find (4.36) holds for ¢ + 1 which completes the induction proof of part (b).
O

The following is a generalization of Lemma 4.18 of Hilker (1997).

Lemma 4.3 Let {M,,}5°_, be a sequence of p X p matrices, each having p real eigen-
T

values.  Suppose lim,, ..o M,, = WZle uv; , where W is a p X p matriz and

i, v; 0, ERP, WTo; =0,,i=1,...,k.

Let n, € RP, |9l = 1 denote an arbitrary normalized eigenvector of M, with

corresponding eigenvalue \,,, m > 1. Then,

(a) limy;, 00 Ay, = 0.

b) If the vectors {Wu,;}¥_, are linearly independent, then lim,, .n'v; = 0 for i =
=1 nm

1,...,k.

Proof. To begin, we shall establish part (a). Let M = W 3.1 uw. We first note
that all p eigenvalues of M must be zero. To see this, let A denote an arbitrary

real eigenvalue of M with corresponding eigenvector v (possibly complex) such that
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v'v = 1, where U denotes the complex conjugate of v. Because M? = 0,4, from

viTW:O; fort=1,...,k and Mv = \v, we have
0=0"0,=0"0pypv =0 M?*v=0"M(Mv)=0" (M)A =0 v\* = \?,
implying A = 0.

Writing Ay, 1, - . ., Ay to denote the p real eigenvalues of M,,, the Ostrowski-Elsner
Theorem [cf. Stewart and Sun (1990), p. 170] states that we can bound the maximum
difference between the eigenvalues {\,,;}7_, of M,, and the eigenvalues (all zero) of
the limiting matrix M as

max [Ani| = max |Am; — 0] < (2p — 1) (|M]lr + 1M al) ™7 (1M — Ml

1<i<p

Because lim,,,_,o M,,, = M and the Frobenius matrix norm is continuous, we have from

the above inequality that lim,, .. maxj<;<, |Am:| = 0. This establishes part (a).

To show part (b), it suffices to show that, for any subsequence {m;}22, of {m}p_,,
there exists a further subsequence {m;, }o>; of {m;}32, such that lim, .. v;' 9, =0
for each © = 1,... k. By the Bolzano-Weierstrass theorem, there exists a convergent

subsequence {mj, }72; of {m;}32, such that lim, .. 7, =c€RP, |c[| =1.

Note ||n,,|| = 1 is bounded and M., 1, = A, for all m > 1. As m — oo, we find
that
Mny, = — (M, — M )0y, + At — 0p

follows from lim,, oo A, = 0 and lim,, oo (M, — M) = 0,x,. From the above limit of

Mn,,, it stands that

k
0, = lim M, = > ;- W,
i=1
where a; = v;'¢ = lim v i=1 k. Because {Wu;}%_ | are linearly inde-
i = Uy €= n—oo Uy Nmy,,» * = L,..., K. ifi=1 y

pendent, it must be the case that each a; = 0 or, equivalently, lim,,_. n;j v; = 0 for

i=1,..., k. This completes the proof of part (b). O
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Data contamination

To establish a bound on the finite sample breakdown point of SIR in the case of an
unknown covariance structure, we use k-slice (replacement) contamination scheme as
in Section 4.3.1 with the following exception. Instead of (4.22), the contamination
of the z-values is here assumed to be of the following structure: 7y, ,, = thh + Up,

Bh,’ﬁh e RP for h=1,...,k, where
{Bh}f;:l are linearly independent. (4.39)

This provides a contaminated sample (X, Y)™* based on replacing the first observation

in the first & slices.

n,k

% we compute the

To estimate the unknown covariance ¥ using the data (X,Y)

sample covariance matrix S, of (X,Y)™F which can be algebraically rewritten as

k

Y, = - ¥+ > Z(mlh,m — 7)) F1m — 7))
h=1
k k
+ ) Z(glh,m - Ek,m)(flh,m - Tk,m)—ra
n h=1
for
k
~ 1 1 1
* =k =\ T = Z :_va
n— ; (xz X )(xz X ) ’ X n— < Li, Lkm L < T1,,m
et k) et k) N

For our purposes, it is helpful to further rewrite im as

k k
S = 2 BB + —t2Zﬁhm— )(Brm = B)T (440
h=1 h=1
where
s-""Fs 3 Zﬁ R A Sk
— n m k h,m> hom — Mh N R R

Because we determine the dimension reduction space by multiplying K normalized

eigenvectors of (4.28) by 51/ 2 or equivalently by finding K eigenvectors of V from
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(4.29), it is important to understand how these matrices behave in the presence of data

contamination. The next result addresses this point.

In the following, let B C R? denote the space spanned by {3,}*_, and write T} =
> iz1, et Ti/ (nn — 1) to denote the sample mean of the uncontaminated observations

in the hth slice, h=1,... k.

Theorem 4.2 Under the k-slice contamination scheme described in (4.39) (see also
Section 4.3.1), 1 < k < min{p, H}, suppose a contaminated sample (X,Y )" yields an
estimate im of ¥ as well as a p X p matrizc Vin from (4.29). Assuming the matriz S is

positive definite in (4.40), it holds that:

lim 3,1 = S7V2(I, — Py ip5) STV, (4.41)
. 1~ —1/2 —-1/2 : np — 1 —x —\ QT
lim V= S (I, — Py1p) S > — (T — )6, . (4.42)
m h=1

Remark. For the case that the covariance matrix ¥ of the regressor variables X is
unknown, the above Theorem has powerful implications as to how k-slice contamina-
tion will influence the e.d.r. subspace resulting from the SIR procedure under con-
tamination. The behavior of the inverse of the covariance matrix i;}, estimated
from contaminated data (X,Y)™* is key because this matrix appears in the con-
taminated matrix version V,, of (4.29), where V,, in turn is used for obtaining the
contaminated e.d.r directions as its eigenvectors. In the limiting form of contamina-
tion (i.e., as t, — 0o0), the positive definite inverse matrix 3! actually degenerates
to a singular matrix in (4.41). But more importantly, the null space of lim,, . i;l
is precisely the space spanned by the k linearly independent directions of contamina-
tion {Bh}fi:l from (4.39). That is, the orthogonal complement of the column space of
limy oo S0 = S71/2 (I, — Pg-1/25) S™Y/? is exactly the RP-space span({3,}¥_,). The
significance of this result is the following. Suppose B\m represents an estimated e.d.r.

direction arising from the SIR procedure applied to the contaminated data (X,Y)™*.

The vector 3, is an eigenvector of V,,, i.e.,

E;nlcm = mﬁm = )\mﬁmv
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where ¢, € R? is given by
k H
Cn = 5 (Zﬁh(@,m = T) @ = Tm) D> Pu(Th — Tn) (T — fm)T> Bom
h=1 h=k+1
involving the contaminated sample means from the first k slices {Zj,,,}%_, and the
contaminated overall sample mean 7,,. Hence, we expect the e.d.r. direction Bm to
be in the column space of f];f so that lim,,_ Bm should be in the column space of

-~ and therefore orthogonal to the directions of contamination {Bh}]ﬁ:1 from

lim,;, o0 2,

(4.39). In fact, the limit (as m — 00) of any eigenvector of V,,, or equivalently V;, [tm,
can be expected to be in the column space of S7V2 (I, — Pg_1/5) S™/2 by (4.42) and

hence orthogonal to span({3,}*_,).

Proof. The result in (4.41) follows immediately from applying Lemma 4.2(b) to the
form of 3, in (4.40).

To establish (4.42), we first note that the matrix V from (4.29) can be generally

rewritten in a form more suitable for our purposes. With some algebra, it holds that

n

Y (@i—T)(wi—7) =D S+ Y m@n—T)@n—7)", Shi= > (1;—Tn)(z;—Tn)
h=1 h=1

=1 By €1y

so that upon division by the sample size n, we have

A H

L N~ = T

- <Z Sh> +th(xh ) (T, —7T)
h=1 h=1

from which it follows that

”’_’llHA—_——_—T_ -1 lH
V=3 (@, —7) (T —7) =1, -2 Z‘Sh :

h=1

5

Now consider computing a version V., of V under contamination. Under the k-
slice contamination scheme, the sums S, for h = k + 1,..., H remain unchanged and
are not functions of m. However, under contamination affecting the first observation
(T1,m, %, = t,) in the first k-slices (h = 1,...,k), we may write contaminated
versions, say {Sn.m}¥_,, of the first k sums {S;}¥_, as a function of {¥, ., }%_, by

— _ — — T

n _1 IE*—.’E* .’E*—l'*

Shom = Sy + hn tiz(ﬁh,m+ - h) (ﬁh,m+ h) . h=1,...,k
h m
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with Sj =32 ., (T —T5) (2 —7;)" for h =1,...,k, and By, as defined in (4.40).

Hence, writing

H
E,, _1——2 (Zsh Zsh>, u, =7 -7, h=1,...k,

h=Fk+1

we can compute the contaminated V,, as

B . (1 Kk 1 H
Vi = L,—3%, (Ez;sh,,ﬁE > Sh>

Upon division by m, we have

1 1 hon, —1 up\ |
=~ h — -1 -1 h
—V, = t_Em — Z (tmEm ﬂmm + Em Uh) <6h,m + a) .

tm m = nan

Applying Lemma 4.2 with the form of S, in (4.40), we have that

-
. 1 oo . o~ . Up, ~
lim —Zml = Opxp, lim thmlﬁhm =0, lim wy (ﬁh,m + —) = uhﬁ;,
m—0o00 m m—0o0 m—00 tm

so that lim,, o Ep/tm = Opxp and the form of lim,, Vi [t follows from using the

limit of i;}. O

In accordance with Definition 4.1, we can now derive an upper bound on the finite
sample breakdown point of a SIR-type procedure with an unknown covariance structure
and known dimension X of reduction. To derive the bound, we will require the following
mild definition of a breakdown pattern with respect to the data (X,Y)". The breakdown
pattern implies that the constitution of the data (X,Y)" allows for k observations to
m=1,2 ...

be replaced in order to a sequence of contaminated data sets (X,Y )%,

which has some mild properties.

For all practical purposes and to facilitate the proofs, we may consider again a

k-replacement contamination scheme that involves corrupting the first observation in
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each of the first k£ < H slices in the (X,Y)". However, to allow for more generality in
applying the breakdown result, the breakdown pattern definition shall detail conditions
for which a more general k-replacement contamination scheme (X,Y)%* will ensure
breakdown in the sense that the maximal distance F(B\ , gmk) between the uncorrupted
B and corrupted Z/S’\mk subspace estimates, based on (X,Y)" and (X,Y)™* can be

obtained as m — oo.

Definition 4.2 (Breakdown pattern for given K and unknown covariance.)
Suppose that a size n data sample (X,Y)" yields a K-dimensional subspace of RP
based on SIR-estimated e.d.r. directions Bl,...,B,C, where 1 < K < p. Let k =
min{/C,p—K}. The sample (X,Y)" is said to satisfy a breakdown pattern for given
K and unknown E(X) = u, Cov(X) = X if, there exists

1. some arbitrary selection of k slices from the available H slices, denoted by indices

{hj}é?:l C {1, ey H},

2. some arbitrary selection of k observations from (X,Y )" involving a single obser-
vation, denoted (Iih].v?/ihj); chosen from each of the above k selected slices with

indices {h;}h_,: i.e., Yin, € I, for each j =1,...k;

3. some arbitrary selection of k e.d.r. directions, denoted {@] }le, from the e.d.r.

directions 31, . ,B,C estimated from (X,Y)";

4. a positive real sequence {t,,}5°_, such that t,, — 0o as m — o0;

such that:

(i) for any real constants {a;}¥_,,
nhj —1 —k —k 2 1k .
Zaj - (@, —72) € span{f;}j_; only ifar = -+ =a, =0,
Jj=1 7
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and
n
1 —k —k\T . 1 ;
S == E (r; =T )(x; —T") ' is positive definite,
n =1
1€{ih1 ,,,,, zhk}
where
n
1 1
—_—k - =%
xhj:n — E xz,j:17...,k7 7:n—k} E Zi,
hj iy €l =1
it z€{1h1 ,,,,, zhk}

denote the sample mean T, of the h;th slice after deleting the selected observa-
tion Tiy,, (i =1,...,k) along with the overall sample mean T* and a covariance

estimate S_ of 3 after deleting the k selected observations {:Bihj My from (X, Y)";

(ii) for some size k subset B\m’gl, e ,B\m’gk of the first K SiR-estimated e.d.r. directions
from the contaminated data (X,Y)™*, found by replacing (:cihj,yihj) e (X, Y)"

with (@hj,yihj) where
fihj :tmﬁz] +@/j7 Tl\jj ERP, j = 1,...,k’, (443)

then the p X k matriz B,, = [Bm,gl . B\mgk] satisfies
det(B] B,,
lim inf % >, (4.44)
meee Hj:l ”ﬁjm||2

for some C' > 0.

Note: If the first k slices are selected (i.e., hj = j for j = 1,...,k) and the first
observation in each slice is selected (i.e., Ty, = a1, for j =1,.. ., k) to satisfy (i)-
(i) in the above definition, then the k-replacement contamination scheme (4.43) is the
same as (4.39) and T, =T forj=1,....k T =7, S_ =5, where T}, T, S
correspond to the quantities appearing in (4.42) of Theorem 4.2.

Using the first k slice replacement scheme (4.39), the condition (i) in Definition 4.2

k

may be expressed as: for any real constants {a;} i1

Zi:l ap - ”’;L—;l(fz —T%) € Span{@j };?:1 only if a;=---=a =0,
(4.45)

and the p x p matriz S from (4.40) is positive definite.
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For the K = 1 case involving contamination of the first observation in the first slice,
Definition 4.2 (specifically, (4.45)) is an alternative, but equivalent, formulation of
the conditions required in Gather et al. (2002) and Hilker (1997) for studying errors in
direction estimation with unknown covariance structure. In addition, (4.44) is a weaker
version of a similar condition used in Hilker (1997, Corollary 4.20). Both (4.45) and
(4.44) are technical conditions that facilitate the proof for the breakdown point, given
K and unknown covariance Cov(X) = 3. Again the main point of the contamination
used here is that regressor observations are contaminated by corrupting observations
located in different slices (4.43), but for discussion purposes it suffices to consider

contamination (X,Y)™F using the first observation in the first k slices as in (4.39).

We now give a bound on the breakdown point.

Corollary 4.2 For a given 1 < K < p, suppose the SIR procedure seeks to estimate a
KC-dimensional subspace of RP based on H > min{K,p — K} data slices with a size n
data sample (X,Y)" and unknown values of E(X) = p, Cov(X) = 3. Provided that
the data (X,Y)" satisfies the Breakdown Pattern Definition 4.2,

n,k

m

(i) there exists a sequence (X,Y) % m € N, of contaminated data sets and associated
subspace estimates gm,k; found by replacing k = min{/C, p—K} observations in (X, Y )",

where

lim F(B, Bys) = v2(K — max{0, 2K — p}),

where B is the subspace estimate based on (X, )™
(i) the finite sample breakdown point of SIR, under Definition 4.1, satisfies
min{/C,p — K}

n

6fsbp,lC(()(v Y)na F? ]C) S

Remark. We again make a few comments on the nature of the proof and the contam-

ination scheme used.

The dimension K of the reduction subspace is known and the uncontaminated data

(X,Y)™ produces a K—dimensional estimate B C R” of the reduction subspace, while
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A~

B C RP represents a corrupted K—dimensional estimate of the reduction subspace,
based on replacing k observations in (X,Y)”. WloG and to ease our discussion, we
can assume that we shall contaminate the first observation in each of the first K slices
as in the contamination plan of (4.39). The maximal distance F(B, gmk) between the
corrupted and uncorrupted subspace estimates is again given in (4.1). There are the

two possible cases for this distance, depending on 2/C < p or 2IC > p.

If 2K < p, the subspace estimates g, lé’\m,k are maximally distant under F if these
estimates are orthogonal. If the uncontaminated data (X,Y)" are in the breakdown
pattern, we replace k = K observations with contaminated vectors as in (4.39), where
the directions of contamination correspond to 31, cee B,C, namely the SiR-estimated
e.d.r. directions from (X,Y)". Using Theorem 4.2, we show that this approach shall
yield a contaminated estimate B\m,k:;c of the e.d.r. subspace that is arbitrary close to

being orthogonal to the uncontaminated estimate B (in the sense that PgPg =~ Opsep)-

If 2K > p, the subspace estimates g, B\m,k must have a non-empty intersection that is
at least of dimension 2/C — p by Lemma 2.2. In this case, subspaces B and Emk are
maximally distant under FF if the intersection Bn Emk is as minimal as possible (i.e.,
dim(g N gmk) = 2K — p) and, after removing the intersection, the remaining parts of
both subspaces Bn (EF‘I gmvk)l and gmk N (l?ﬂ l§mk)L are orthogonal. Here we can
replace k = p — K observations to obtain a contaminated sample and a contaminated
e.d.r. subspace gm,k:p_;c by choosing k£ = p — K < K directions from among the IC
uncontaminated estimates Bl, e A,C to serve as the directions of contamination under
the scheme (4.39). Using Theorem 4.2 again with this contamination plan, we can
show dim(B N By,p_x) ~ 2K — p and Pon@ng,, ) P (BB, - =~ Opxp in the limit
(as m — o0). Hence, this contamination approach provides enough contamination to

force breakdown of the SIR dimension reduction procedure.

Proof. Let B C RP denote the K-dimensional reduction subspace determined from
the uncontaminated data; B c R is spanned by the scaled eigenvectors /ﬁ\l =
SV25, . Be = T2 associated with the K largest eigenvalues of (4.20) com-

puted with (X,Y)". To establish a bound on €4y, c, we consider two possible cases:
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2K < por 2K > p. For each case, we examine the finite sample breakdown point under

different contamination schemes.

CASE I: 2IC < p. Because the data (X, Y')" satisfy the breakdown pattern Definition 4.2
by assumption, we can get a contaminated sequence (X,Y)™* m € N, as in (4.43)
by picking k& = min{K,p — K} = K slices from among the available H slices, one
observation from each of these IC slices and all K e.d.r. directions 31, e B,C. WloG we
assume that the contamination scheme (4.39), with & = K contamination directions
Eh = Bh, h=1,...,K, can be used to obtain (X, Y)™* under Definition 4.2; that is, we
assume that the first k = K slices and the first observation in each slice {z, }~_, may
be used so that (4.44) and (4.45) hold; if this choice does not satisfy Definition 4.2,

then other slices and observations may be used for contamination under (4.43) and the

arguments require only notational modifications.

The contaminated data yields a subspace estimate gm,,c based on eigenvectors
BLm, e ,B,Qm corresponding to the largest K eigenvalues of the contaminated matrix

Vi (computed from using (X, Y)%X in (4.29)).

Under the first £ = K replacement scheme (4.39), we now apply the results in
Lemma 4.3(b) and Theorem 4.2 using conditions (4.44) and (4.45) (since again we
assume the data (X, Y)" are in a breakdown pattern involving the first observation from
the first £ = KC slices). We may first assume that the matrix S from (4.40) is positive
definite under condition (4.45). Consequently, we may apply (4.42) in Theorem 4.2 to
find

= k
Vin -1 ~
lim =" = §7V2 (I, = Pyipg) ST M@ - 7))
h=1

where B denotes the RP-subspace spanned by the directions of contamination {Eh =

Bh}lhczl'

We now wish to apply Lemma 4.3(b) treating k& = K, M,, = vm/tm, W =
STV2(L, = Pg_rjog) S7V2, wy, = “=X(z; — 7*) and v, = B =By (h =1,...,K)

npn

in the notation of Lemma 4.3. With this notation, it holds that W v, = Wy, = 0p
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for each h = 1,...,K since v, = 3, € B so that Py 1358720, = S71/2y,. To apply
Lemma 4.3(b) to M, = V,, /tm, we need to show that the collection {Wup ¥k, of vec-
tors are linearly independent. Suppose, for some real constants aq, ..., ax, it holds that
Zle athh = WZIhC:l apup = Op, 1mply1ng that (2521 ahuh)TW(ZIhC:l ahuh) =0

or equivalently that

((Ip — Py 1) 572 (i ahuh) ) T ((Ip — Py 1) S712 (Z ahuh)) =0;

this in turn implies that

K K
(Ip — Ps_l/zg) 5_1/2 (Z ahuh> = Op = 5_1/2 <Z ahuh> S S_I/Qg,
h=1 h=1
so that
IC ~ ~ ~
Z apuy, € B = span{fy}y_; = span{fB}i_;.
h=1
But because u;, = ";h_nl (Ty —7*) for h =1,...,K, the above statement can only hold
if a; = -+ = ax = 0 by condition (4.45). Hence, the vectors {Wuy}X_, are linearly
independent.

Now note that each vector in {E};m = ma/l\ﬁhmH}f:l is an eigenvector of ‘~/m/tm
in (4.42) and is normalized so that || B\;mH =1 for each h =1,..., K. Hence, applying
Lemma 4.3(b) to M,, = Vyu/tm, we have that for each eigenvector in {B,’;m}’,le of

V,./tm that

lim B G, = lim 3/ B;,,=0 h=1,...Kj=1,... K (4.46)
Define a p x K matrix B = [Bfm B;mﬁ;gm] so that the column space of B},

is contaminated e.d.r. subspace gm,/c and Pg = = B (B:'B:)'B:'. Let B =
[31 32 - BK] be a p x K matrix with columns defined by the K uncontaminated e.d.r.
directions so that Pz = B(B"B)™'B'.

By (4.44), there exists some C' > 0 (not depending on m) and some N € N such

that, for m > N,
det(B,, B,,)

det(BjnTB:n) = K 5 9
Hj:l Hﬁij2

C
>_7
-2
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and lim,, .., B' B}, = Oxxx by (4.46), so that

lim B'Pg = Ocxx

m—00

follows from Lemma 7.5.

Hence, lim,, .. PzPz

A, — Upxp SO that

lim F(B,Byx) = lim /2K —2t:(PgPg, ) = V2K

by the continuity of matrix trace operations. By Definition 4.1, we conclude

K min{,p— K
eramn((X,Y)"FK) < — = { np ]

CASE II: 2K > p. Because the data (X,Y)" satisfy the breakdown pattern Defini-
tion 4.2 by assumption, we can again get a contaminated sequence (X,Y)™* m € N,
as in (4.43) by picking £ = min{C,p — K} = p — K slices from among the available
H slices, one observation from each of these p — K slices and selecting p — K < K
e.d.r. directions, say {@J }?;f, from among the K uncontaminated Bl, e ,BK;. WloG
we may assuie Bij = BJ forj=1,...,p— K, i.e., the first p— K uncontaminated e.d.r.
directions are chosen. WloG we also assume that the contamination scheme (4.39),
with k£ = p — K contamination directions Bh = Zf\h, h=1,...,p— K, can be used to
obtain (X,Y)™F under Definition 4.2; that is, we assume that the first k¥ = p — K slices
and the first observation in each slice {x, }?_F may be used so that (4.44) and (4.45)
hold (where (4.45) uses /ﬁ\ij = Bj forj=1,...,p—K).

The contaminated data yields a subspace estimate B\m,p,;c based on eigenvectors

Bm,la e ,B\m’,c corresponding to the largest K eigenvalues of the contaminated matrix
V. (computed from using (X,Y)" P~ in (4.29)).

Define a p x (p — K) matrix BY = [51 BQ . -Bp,,g] using the p — K directions of
contamination (i.e., the first p — I uncontaminated e.d.r. directions used in (4.45)).
With the same essential arguments of Case I by replacing B there with BM (i.e.,
applying Lemma 4.3(b) and Theorem 4.2 using condition (4.45) and then using (4.44)

with Lemma 7.5), it can be shown that

lim BYTPg = 0pk)xp-)-

m— o0 m,p—K
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From this, if B® ¢ B denotes the column space of B with corresponding projection

matrix Pgu = BY(BWTBW)"1BWT we have

Wlllfgo Pgoy Pg,, ek Opxp- (4.47)

The subspace BnBWL ¢ l§, consisting of the B-vectors orthogonal to 5(1)’ has pro-
jection matrix Pg g = Pg — Pga). We note that tr(PzPg p_K) > 2KC — p by (4.26)

and

IN

rank(Pgmg(l)L)

= tr(PgrgaL)

= tr(PB\ — Pg(l))

tr(PngmL PEm,pf)c)

= tr(Pg) — tr(Pg(l))

= rank(Pg) — rank(Pgn)) = 2K — p.

Then by (4.47), we have that

2K —p < lim tr(PgPg )
< 7711_I)noo tr B(l)L + PBQB(I)L)PB ,p71c>

IA

IN

lim tr( B(l)P _ )+ lim tr(PEmz?uMPEmp_;c)

lim tr{ Pga) Py p_’c) +2K—p

m—0o0

0+ 2K —p.

IA

Hence, lim,, . tr(PzPg ) = 2K — p and so

mp)C

lim F(B, Bmp k) = lim \/QIC—Qtr IHC) = /2(p—K).

The limiting value \/2(p — K) of F(B, By p_x) is the maximal distance between two
K-dimensional subspaces of R? under F by (4.1), in the considered case 2K > p. By
Definition 4.1, we may conclude

p—K min{K,p—-K}
n o n '

6fsbp,lC<(X7 Y)na IF’ IC) S
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4.4 Sensitivity Analysis when K is unknown

A careful examination of SIR is required to determine how contamination could possibly
influence an estimate K of I as well as the estimated subspace E}E' Given a data set
(X,Y)", we may replace k data points in (X,Y’) to obtain a contaminated data set
(X,Y)™k. Applying SIR to (X,Y)™* yields a corrupted dimension estimate K, and
subspace estimate B\Ek' To measure the effect of data contamination on the subspace
estimation, we consider the distances between the subspaces [5;16 C RP (estimated
e.d.r. subspace using uncontaminated data (X,Y)") and B\,Ek C R? (e.d.r. subspace
estimated by contaminating k data points (X,Y)™*) with the metric F. The worst-
case contamination scenario would cause the subspaces gﬁ and B\Ek to be most distant
under the measure F and we could refer to this occurrence as the breakdown of the

dimension reduction procedure.

When K is unknown, we can quantify the breakdown for dimension reduction, or

worst-case scenario in contamination with respect to the subspace metric [F, as

F(Bg,Bg,) = /b (4.48)
using Theorem 2.1. Breakdown occurs when subspace estimates with and without
contamination, l?,g and g@? are maximally distant in terms of the subspace distance
measure . In fact, the corrupted and uncorrupted subspace estimates must be distant
to the largest extent possible for RP subspaces. That is, breakdown in (4.48) requires
B\Ek to be the orthogonal complement of B\’E in R? i.e., g,%k = f)’% In contrast, when K
is known, then the maximal distance between subspace estimates (4.1) may be much
smaller than (4.48) when K is unknown. In fact, in the case that 2/C > p, two dimension
IC subspace estimates must have a sizable intersection by Lemma 2.2, so that there are
limits to the amount of separation between subspace estimates. This is not the case
when K is unknown and worst case contamination now implies a subspace estimate
based on k-replacement must be the orthogonal complement of the subspace estimated

by the uncorrupted data.
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We are now prepared to define a finite sample breakdown point for SIR-type dimen-
sion reduction procedures, in the case that the dimension I of reduction is unknown.
This requires a modification of the finite sample breakdown Definition 4.3 when I is

known, because again the notation of worst case contamination has changed.

Definition 4.3 Finite sample breakdown point in dimension reduction (K
unknown). Let (X,Y)"* denote a contaminated sample found by replacing 1 < k <
n data points in a data set (X,Y)" = {(x;,y:)}-, C RP x R with arbitrary values
{(fij,ﬂij)};?:l. Let l§,€ and l?,gk C R? denote reduction subspace estimates, of estimated
dimensions 0 < K < pand 0 < I/C\k < p, based on a giwen dimension reduction
procedure (e.g., SIR) applied to (X, Y)" and (X,Y)™*, respectively. The finite sample

breakdown point of the dimension reduction procedure is defined as

n (X.y)mh

k o~
ersop((X,Y)", F) = min {_ t1<k<n, sup F(Bg, By )= \/ﬁ}

under the metric F for the data constellation (X,Y)™.

The finite sample breakdown point definition in Definition 4.3 quantifies the amount
of data in (X,Y)" that need to be corrupted so that the resulting subspace estimate
is completely orthogonal (i.e., the orthogonal complement) of the subspace estimated
intended by the original data. Clearly, this type of data contamination entails a dra-
matic, and arguably the most drastic departure from the subspace estimate of the

original data.

Using Definition 4.3, we next examine the robustness of SIR when the dimension
of the reduction space must be estimated. In Section 4.4.1, we handle the case that
the covariance structure of the regressor variables is known. The robustness of SIR in
applications of an unknown covariance structure and unknown dimension K is detailed

in Section 4.4.2.
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4.4.1 K unknown — Y known case

To study the robustness of SIR, suppose some data (X,Y)™ produces a subspace esti-
mate BA,E = span(ﬁl, - 731@7 based on the first K e.d.r. directions for some estimate
K < p of K. Typically, we would expect K > 1 to hold, but K = 0 is also allowed in

the following discussion, in which case l;p’\,g =0, € RP.

We shall use the k-replacement scheme from Section 4.3.1 to obtain a sequence of
contaminated samples (X, Y)™* m € N, as follows. Let k = p — K < H and, following
(4.21), replace the first observation (x1,,¥,) in each of the first p — K slices with
(z1,,,1n,) for

flh’m:tmghﬁ—ﬁh, gh,fﬁhERp, h:].,...,/{?;

where {t,,}>°_, is a positive real sequence such that t¢,, — oo as m — oco. Furthermore,
we suppose the p—le contamination directions have form Eh =223, h=1,... ,p—ﬁ,
where {Bh}i;’? is an orthonormal basis for (span(Zl/le, e ZI/QBE))L, the orthogonal
complement of the space X/ Ql;)’\,%. Hence, the vectors {gh}z;lle satisfy (4.22).

We remark that the choice of contaminating the first p — K is again somewhat
arbitrary and is made here for simplicity. The important idea of contamination is to

contaminate a single observation in each of £k = p — K different slices in a manner

analogous to the above mentioned contamination scheme.

Computing (4.23) (with & = p — IE) based on (X,Y)™* yields a contaminated
estimate V,, of Cov(E(2Y/2X|Y)) and we shall make the weak assumption that S in
(4.23) (with k = p — K) is positive definite throughout our discussion. The matrix V,,
has ordered eigenvalues /):m’p <o < //{mJ and corresponding orthonormal eigenvectors
Nmi, © = 1,...,p of V., and contaminated e.d.r. directions B\mz = N7V, 0 =

1,... ,I/C\. We now need an estimate I/C\mk based on (X, Y)™F to produce a contaminated

subspace estimate Bﬁm,k = span(Bm.1, .- -, mﬁm,k)’ where k = p — K.

Controlling the estimate l%mk of the subspace l?,gm . dimension is in general quite

difficult, because this depends on the size of the eigenvalues me <. < Xm,l as well
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as the testing criterion suggested by Li (1991). That is, a determination of the exact
magnitude of all p contaminated eigenvalues {/):m7i}f:1 (as a function of m) seems out
of reach. At the same time, we give meaning to the sizes of the eigenvalues, and rate
their importance, by an arbitrarily chosen significance level used in testing, as pointed
out in Ferré (1998). The task of precisely managing the effect of contamination on the
estimate I%mk is then nearly impossible if one does not have the exact critical values
needed to test for the dimension of the subspace estimate and in addition one cannot

exactly find the eigenvalues to compare against these critical values.

However, we aim to show that the above contamination scheme involving a replace-
ment of k = p — K observations forces the first p — K eigenvalues {\,,,}2_} of V,,, to
become arbitrarily large while the last K eigenvalues {/Xm»p}i:p— o are bounded and
therefore relatively much smaller. This is the most precise result possible that we can

expect to achieve in terms of the behavior of the eigenvalues under the contamination.

Note that an explosion of the only first p — K would suggest that the contaminated
(X,Y)™k m € N, should lead to a dimension estimate lemk where Kmk =p— K for
large m. If one chooses I/C\mk =p— K as m — oo as the contaminated data (X, Y)nk
suggests, resulting the contaminated subspace estimate gﬁm,k can be shown to be
nearly equal to the orthogonal complement of the uncontaminated subspace estimate

Bg; namely, for large m, it holds that Pg;a Pl?,e ~ Opxp (e, B\,e and gﬁm , are nearly

m,k

orthogonal) and dim( A,%) + dim(f)’\,@m k) —K +(p— Ie) =p.

We summarize this finding in the following theorem.

Theorem 4.3 For a given data set (X,Y)"™ with known values of E(X) = u, Cov(X) =
Y2, suppose the SIR procedure yields an estimated reduction subspace l§,€ C RP with an

estimated dimension 0 < K < p, where H < p slices are used in SIR. Then, there

n,k

m

exists a sequence (X,Y) m € N, of contaminated data sets and associated subspace
estimates g,g . CR?, found by replacing k = p— K observations in (X, Y)", for which

the following hold.
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(i) the ordered eigenvalues 0 < Xm,p <. < :\\m,l of \A/m from applying the SIR procedure
to (X,Y)* satisfy

limm_,oo/):mvh:oo hzl,...,p—ﬁ,

~

Supm)\m,h§07 h:p_ﬁ_‘_l?apa

for some C' > 0;
(i) there exists o € (0,1) such that if Li (1991)’s testing procedure with significance

level a € (0, "] is used to estimate the subspace dimension I/C\m’k, then

~ ~ ~

lim Ky =p—K, lim F(Bg,Bp )= /D.

m—00 m—0o0

Remark. To control the Type I error in Li (1991)’s testing procedure for the dimension
of the subspace estimate [3\,3, one should usually choose a to be small in accordance
with the condition of Theorem 4.3. This implies that, for many data sets (X,Y)", it
would hold that N

(X, Y)F) < LR

n

where K is the estimated subspace dimension based on (X,Y)".

Proof. Through the proof, we use the contamination discussed at the beginning of

(4.4.1).

We establish part (a) of the theorem first. By (4.23) with k = p — K, we may write

)

~ (- _ T
1 h

m m

T

where we assume S from (4.23) is positive definite so that eigenvalues of XA/m are positive,

10, 0 < App <+ < A

By part (b) of Theorem 4.1, we have that for the first p — K eigenvalues h =

~

1,...,p—K,

A 1 RN
lim 7;’}1 = >0 = lim A, ) = oo.
m—oo i, M(p—K—h+1) oo
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o~

As for the last K eigenvalues A , Am,p, Note that by Lemma 4.2, because S

m,pfl/C\+17 e

is positive definite and the vectors {Bh}i;’f are linearly independent, it holds that

lim V' = S~V2(I, — Py 125)5~ /2,

m—00

where B = [3, - .Ep—ﬁ] denotes a p X (p — IE) matrix. Note that

rank(S~V2(I, — Pg-125)S™ %) = rank(I, — Pg_1/25)
= tr(l, — Psy-123)
= tr(Ip) — tr(Ps—1/2§)

= p—rank(Pg12p5) = K.

Hence, if 0 < s, < --- < s; denote the ordered eigenvalues of S~Y2(I,, — Py_125)S~ /2,
then 0 <spg <.+ < sy while0=s5,="---= Sgyq- By Rouché’s theorem [Stewart and
Sun (1990), p. 167], the ordered eigenvalues 0 < 1/:\\m71 < < 1//):m,p of ‘Zgl must

converge to those of S™V2(I, — Py_1/25)S™ /2 as m — oo, namely

lim — =s,511, t=1,...,p,
m—0o0 /\m,z

which implies

1 ~
>0 = sup|Apu| <Ch, h=p—-K+1,...,p,

lim )\m,h =
m—0oo Sp—h+1

for some Cy >0, h = p — K+ 1,...,p. By setting C'= max, g, Ch, part (a) is

now established.

To show part (b), we use the value of C' above and find the o* € (0,1) such that
XR(H—piR1)ar — nCC. This is possible by the continuity of the chi-square distribution.
(In the event that K =0, set o =1 and x§ - = 0.)

Now we choose a level of significance o € (0, *] in order apply Li (1991)’s test to
choose a dimension estimate Emk based on the contaminated data (X,Y)%F m € N
where k = p — K. By the result in part (a), we have that there exists an N € N such

that :\\h,m > X%p—h—i—l)(H—h)oz forh=1,...,p— K and m > N. Hence, for m > N,

th*l 2 )\h’m > X%p7h+l)(H7h),o¢ h - 1, [N ’p - ’C,
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implying that p > Iem,k >p— K. By part (a), it holds that for all m € N,

p
_ 3. ez
g=n ) Am<nCK= XR(H-p+R—1),0*"
j=p—K+1

so that we fail to reject the hypothesis Hgilc K= p—I/C\ and conclude that /Emk < p—le

~

for all m € N. Hence, for m > N, we have I/C\mk =p-—K.

Therefore, we have immediately that lim,, Iemﬁk =p— K and also that, for

~

m>N,Bg = span(@m’l, ce Amﬁmk) = span(amyl, e 7Bm,k>7 where k = p — K. By

Theorem 4.1(e) with k =p — K,

lim Pz = lim P

—~ ~ — P ~ ~
mM—00 Rk m— 00 Span(ﬁm,h"'uﬁm,k) Span(z_lﬂla“-vz_lﬁk)

= Ps,

where span(X~'5;,...,5713;) = span(X-Y23,,...,5"V23,) = B\% and PgﬁPgL =

Opxp- Finally, we have

lim F(Be,Be ) = lim \//€+/€m,,c —2tr(Pg_Pg, )

= \//6 +(p—-K) - 2tr(Pg Pg,)

m,k

This establishes part (b) of the theorem. O

4.4.2 K unknown — Y. unknown case

Again we suppose some data (X,Y)" produces a subspace estimate B\’% =
span(ﬁl, e ,B,%), based on the first K e.d.r. directions for some estimate 1 < K < D
of K. The estimated e.d.r. directions correspond to eigenvectors of the matrix V from

(4.29) because ¥ must be estimated by 3.

We shall use the k-replacement scheme from (4.39) in Section 4.3.2 to obtain a

sequence of contaminated samples (X,Y)™* m € N, as follows. Let k = K < H and,
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following (4.39), replace the first observation (z1,,yi,) in each of the first k = K slices
with (Z4,, 1, ) for

§1h7m :tmah_'_ﬁha 5h S RP, h = 1,...,]6; (449)

where {t,,}5°_, is a positive real sequence such that t,, — oo as m — oo. That is, we
contaminate in each of the K directions {Bh}’,?:l estimated from the uncontaminated
sample. We shall also assume that (4.45) holds after setting K = K and k = K in
Definition 4.2. (More generally, we may assume that the uncontaminated data (X, Y)"
satisfy the breakdown pattern in Definition 4.2 after setting K = K and k = K in that
definition; the choice of contaminating the first observation in each of the first k = K
slices is just a special case of contamination in which the conditions of Definition 4.2

simplify to the condition (4.45).)

The contaminated sample (X,Y)%* with k = 16, yields an estimate im of ¥
as well as a p X p matrix f/m from (4.29). This matrix 17m has ordered eigenvalues
0< Xm,p <. < /)\\m,l and corresponding eigenvectors Bm,iv 1 =1,...,p, which are all

p contaminated e.d.r. directions.

We find an estimate I/C\mk based on (X, Y )™ to produce a contaminated subspace
estimate gl?m,k = span(gml, o Amﬁm’k), where again k = K. However, unlike in the
case where ¥ is known (and K unknown) from Section 4.4.1, we have no apparent way
to control the size of the contaminated eigenvalues 0 < Xmﬁp << Xm,l when X is
unknown. In Section 4.3.2 we developed some strong results on the behavior of eigen-
vectors V, (i.e., the contaminated e.d.r. directions) under contamination when X is
unknown, but none of these results indicate the behavior of the eigenvalues of V,, under
contamination. In fact, the simulation study of Chapter 5 will show that, under various
types of contamination (similar to what we consider here), contaminated eigenvalues
of V, may differ largely or very slightly from the eigenvalues of the uncontaminated
matrix V from (4.29) used to produce estimates K and [3\,3 That is, it is very difficult

to control the contaminated estimate Emk of the reduction subspace dimension.

The best result on the effect of contamination when ¥ and K are unknown can be
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summarized as follows. With the k = K—contamination scheme described above (i.e.,
in the direction of {Eh}h’lﬂ, we can construct a sequence of contaminated data sets
(X,Y)™k m € N with corresponding RP-subspace estimates gﬁm,k where it holds that
PgﬁPg}%mk ~ Opxp (i€, [3\,3 and B\k\m,k are nearly orthogonal) and dim(gﬁm’k) <p-K
for large m. That is, the contaminated subspace estimate Bﬁm,k must be essentially a
subset of the orthogonal complement of the uncontaminated subspace estimate @% for
large m, which has rank p — K. Of course, this result is not as strong as saying that
dim([ﬁ'\,%myk) =p-— K in addition to PBAE Pgﬁm,k ~ 0pxp for large m, which was possible
in Section 4.4.1 (known X). Consequently, the contaminated subspace estimate B’Em,k
might not correspond to the entire orthogonal complement of the uncontaminated
subspace estimate B\% for large m. However, contamination can still drastically alter the
subspace estimate intended by the uncontaminated data (X,Y")" by actually causing

a subspace estimate orthogonal to g,g.

We summarize the result in the following theorem.

Theorem 4.4 For a given data set (X,Y)" with unknown values of E(X) = pu,
Cov(X) = X, suppose the SIR procedure yields an estimated reduction subspace
[3\,3 C R?P with an estimated dimension 1 < K < p, where H < p slices are used in
SIR. Provided that the data (X,Y)" satisfy the breakdown pattern Definition 4.2 (set-
ting IC = K, k= K in this Definition) then, there exists a sequence (X,Y)"* m € N,

of contaminated data sets and associated subspace estimates B\,gmk C RP, found by

replacing k = K observations in (X,Y)", for which the following hold.

(i) For some N € N, the contaminated estimate Iem,k of the dimension ofgﬁ . satisfies
I/C\m,kgp—l/c\, mZN
(i1) [3\,5 . is orthogonal to [3\,% as m — oo, namely

lim Pg

m—oo <

Pg. =0y
m,k

Remark. If the uncontaminated data (X,Y)" produces an estimate K = 0 (no rela-

tionship between X and Y'), results (i) and (ii) in the above theorem still hold.
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Proof. Because the data (X,Y)" satisfy the breakdown pattern Definition 4.2 (setting
K = /€, k = I%), WloG we assume that we may contaminate the first observation in

cach of the first k = K slices as in (4.49) so that (4.45) holds with K = K, k = K.

Now repeating the proof of CASE I of Corollary 4.2 with K substituted for K and
setting k = K in that proof, we find that part (i) above follows.

To show part (i), we note that

tr((1,— P )Ps, ) <tr(l,— Pg) =p—tr(Pg) =p—K,

Icm,k

so that by the result in part(i) it holds that

lim sup Iemk = limsup 1"anl<:(PgI6 )
m—o0 m—oo m,k
= limsup tr(Pg}E )

m— oo m,k

m—0o0

= limsup tr(lt’g’%f:’g’E k) + lim sup tr<(Ip — PEE)PE;G k)

~

< limsup tr(PgﬁPEﬁ )+p—K
m,k

= 0+p—-K=p—K. (4.50)
For each m € N, define b, = sup{l%myk,lemH,k,l/C\mH,k,...} and note that
lim sup,,,_, o /€mk = inf,, b,, by definition; see the Appendix. Suppose we make

the assumption that for all m € N, it holds that b,, > p — K + 0.5 in which
case limsup,, ., I/C\mk = inf,,b, > p — K + 0.5; this is a contradiction of
(4.50).  Hence, it must be the case that there exists an N € N such that
sup{l%N,k,leN+1,k,I€N+27k, L} =by < p-— K€+ 0.5 so that /GM < p- K+ 05
for m > N. Because Kmk € N is an integer, we have Kmk <p-— K for m > N which

shows part (i) of the theorem. O
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Chapter 5

A Simulation Study

Our objective of Chapter 4 was a thorough investigation of the finite sample behavior of
SIR under the presence of some type of data contamination. An important conclusion
to be drawn from the results obtained during this investigation can be summarized as
follows. Not every type of data contamination is necessarily damaging the estimation
of the e.d.r. subspace. As it turns out, the knowledge of the covariance matrix >
and of the dimension C of the e.d.r. subspace profoundly determine how harmful a
certain type of data contamination essentially is for the e.d.r. subspace estimation.
While one type of contamination causes estimates of e.d.r. directions orthogonal to
the actual e.d.r. directions when ¥ is known, this type of contamination will not effect

the estimates when X is unknown and vice versa.

We want to proceed now with a simulation study to support our theoretical findings
from Chapter 4. In particular, we wish to verify our results regarding the amount
and the type of data contamination that is necessary to cause e.d.r. directions to be

estimated orthogonal to the actual e.d.r. directions.
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5 A SIMULATION STUDY

5.1 Simulation Design

We will look at two different statistical models. Both models have been investigated in
similar form before: once in the dissertation of Hilker (1997, p.171), and also in the dis-
sertation of Bond (1999, p.108). We assume the regressor space to be four-dimensional
X = (X1, X5, X3, X,)", where each regressor variable represents an independent ob-
servation from a standard normal distribution (i.i.d. X; ~ AN (0,1),4=1,...,4). Note
that the mean and covariance of the regressor variables X are given by E(X) = u = 0,4
and Cov(X) = X = I;. Observations for the response variable Y are determined with

respect to Model 1 and Model 2 given below.

Model 1:
Y:X1+X2+X3+X4. (51)

Hence, we have K = 1 with e.d.r. direction 3, = (1,1,1,1)".

Model 2:
X4

Y = .
0.5+ /1.5 + Xy

Hence, we have K = 2 with e.d.r. directions 3; = (1,0,0,0)" and 3, =
(0,1,0,0)T.

(5.2)

The corresponding e.d.r. subspaces for Model 1 and Model 2 are one- and two-
dimensional, K = 1 and IC = 2, respectively. For simplicity, we neglected an additional
error term ¢ (see (3.1)) in both models. From each model, we consider taking samples
(X,Y)" € R*x R of size n = 100, where some of these points will be replaced with cor-
rupted values. We will consider applying SIR to contaminated samples using H = 10

slices, I,,h=1,..., H.

As described in Sections 4.3.1 and 4.3.2, contamination involving corrupted obser-
vations spread out in different slices can be damaging SIR. For both Models 1 and 2,
we consider various amounts of contamination by replacing either one, two or three

observations in a generated data set (X,Y) € R? x R with contaminated z-values. To
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obtain three replacement-contamination points, we shall replace the z-value of the first

x-observation 1, in each of the first three slices according to the following structure
E1h,7’n = tmaha B/h € R47 h = 17 27 3a

where Eh denotes the direction of contamination and ¢,, > 0 is a selected scaling factor.
To obtain one, two or three contamination points, we may use {Z1, m}, {Z1,.m> T19.m }
or {Z1, m, T1ym» T15m - We continue by precisely stating possible directions Bh of con-

tamination for Models 1 and 2.

DIRECTION OF CONTAMINATION WHEN > IS UNKNOWN:

When ¥ is unknown and has to be estimated, contaminated data points affect
potential e.d.r. direction estimates if the contamination is placed in the direction
of the e.d.r. directions itself; see Section 4.4.2. For Model 1 this corresponds to a

contamination in the direction of
Bi=p6=(1,1,1,1)".

Hence, the replacement of one observation zy, ,, in one slice by z, ,, is sufficient in
order to estimate [3; orthogonal to itself.

The e.d.r. subspace for Model 2 is spanned by the vectors
B =(1,0,0,0)" and B, =(0,1,0,0)".

Consequently, effective contamination leading to estimates orthogonal to both 3; and
B2 is possible if two observations 1, m,, 1, ,m in two distinct slices are replaced by
Z1,m, T1,,m, Tespectively, using contamination Bh = Bn, h = 1,2, in the directions of

the two actual e.d.r. directions.

DIRECTION OF CONTAMINATION WHEN Y IS KNOWN:

For simplicity, we are assuming that the covariance matrix > corresponds to

the identity matrix I;. Effective contamination now has to involve orthonormal
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contamination directions that are orthogonal to the actual e.d.r. directions in order to
estimate directions orthogonal to the true e.d.r directions. Because the e.d.r. subspace
of Model 1 is of dimension one, the orthogonal complement of span(3;) C R?* is of
dimension three. By the results in Section 4.4.1, SIR will yield a three-dimensional
e.d.r. subspace orthogonal to span(f;) if we replace three distinct observations
T1y m» T1y,ms T14,m 0 three different slices with contaminated versions 21, ,m, ZT15.m: T15,m;
the contaminated points should involve three different contamination directions
{Bh}%:l which are orthonormal and also orthogonal to 3;. Three orthonormal vectors

orthogonal to (3; are for example given by
~ 11 T 11\
- _7__7070 ) - 0707__7_
- () A (o)

- e

Hence, contamination of three distinct observations, one for each of the above direc-

(\V]

and

tions 51, 52 and 53 and each placed in a different slice is sufficient in order to estimate
the complete orthogonal complement of span(3;) = span((1,1,1,1)"). By contaminat-
ing only one or two observations according to 51 or 52, only parts of the orthogonal
complement will be estimated.

For Model 2, vectors that are orthonormal to the e.d.r. directions 3; = (1,0,0,0)" and
B2 =(0,1,0,0)T are given by

51 = (07 Oa 17 O)T and 62 = (07 07 07 1)T

By contaminating two distinct observations {71, ,, }2_; in two different slices using Bl
and Bg, respectively, SIR will estimate the orthogonal complement of the e.d.r. subspace

spanned by (3; and (.

Furthermore, the magnitude of contamination, denoted by t,, is also of interest to us.
For fixed directions of contamination Bh, we shall increase the magnitude t,, WLoG

according to the following values

tm = 10°, t,, = 10, t,, = 10%, t,, = 10%, t,, = 10° and t,, = 10%.
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For each model we will again vary the amount of contamination. For example,
when ¥ = I, is known, contamination for Model 1 in one, two or three directions is
meaningful, while for Model 2 contamination in at most two directions has an important

effect for SIR.

PERFORMANCE CRITERIA:

After replacing observations in a generated data set (X,Y) € R* x R with one, two
or three contaminated points {Z1, ,,}3_,, an application of SIR will yield estimated
e.d.r directions Bl, el 34 with corresponding eigenvalues 0 < X4 <-- < :\\1. To assess
the quality of these estimated e.d.r. directions under contamination, we evaluate the
vector product @r py1 fori=1,...,4, (and in addition @r B for Model 2). Because we
normalized the estimated e.d.r. directions as well as the actual e.d.r. directions, these
vector products correspond to the cosine of the angle between them, i.e we compute

as previously defined in (2.1)
cosf :COS(@réﬂj) :B\irﬁj for i=1,...,4;7=1,2,

where |3 =1 = | B;|l The cosine of the angle should be close to 0 when both vectors
are orthogonal to each other and approximately 1 or -1 when they span the same

direction.

The reason for choosing cosf as a performance criteria in this simulation study
rather than the previously introduced Frobenius norm-based metric is that by applying
F to the subspace estimates, we obtain information on how far apart the subspace
estimates are. Information on the behavior of individual e.d.r. directions however
is lost. We feel that using cosf at this point will give more insight to the effect of
contamination on individual e.d.r. directions apart from any definition of breakdown

on subspaces.

For each model (Model 1 or 2), contamination amount (one, two or three points
from {71, . }3_,), and magnitude ¢,,, we conducted M = 1000 simulation runs in which

we generated data sets (X,Y)" of sample size n = 100, contaminated the data and
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computed @rﬁj = cos(3] ZB1),i=1,...,4 (and in addition cos(3; Z3,) for Model 2);
the values of |COS(@461)| and |cos(@éﬁ2)| were then averaged over the M = 1000
runs and reported in the subsequent tables. Using the absolute value makes sense as
the cosine of the angle can take on the value 1 when vectors span the same direction.
Average values of the ordered eigenvalues {/):i}?zl were also tabulated.

For purposes of comparison, we also computed average values of | B:r B, | @r Bs|, and
i (1 =1,...,4) for uncontaminated data sets (X,Y)" of sample size n = 100, using

M = 1000 simulation runs.

5.2 Simulation results when Y. is unknown

We will proceed next with a summary of the most important results obtained in the
simulation study when the covariance matrix ¥ is unknown. The main results for both

Models are numerically summarized in Tables 2 through 6.

e Table 2 displays the results of the simulation study for Model 1. We contami-
nated the first observation of the first slice in the direction of 3, = (1,1,1,1).
Evidently, the contamination has an effect on all estimated eigenvalues Xl, e ,/)\\4,
although this effect is strongest for Xl; the only significant eigenvalue for Model 1.
As we increase the magnitude of the contamination by letting ¢,, tend to larger
values, we can observe that all estimated eigenvalues converge and remain ap-
proximately unchanged. This implies that the magnitude t,, has a relatively
small effect on the eigenvalues compared to the direction of contamination (.
This agrees with results in Section 4.4.2 that the size of contaminated estimated

eigenvalues /):Z are difficult to control via the magnitude of contamination t,,.

e With respect to the estimated e.d.r. directions we find in Table 2, that SIR cor-
rectly estimates the true e.d.r. direction 3; = (1,1,1,1)T with Bl when there is

no contamination. However, by the contamination of one observation, SIR is not
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able to correctly estimate 3; any longer. Not only is the estimate of the first e.d.r.
direction, Bl, almost orthogonal to [, i.e. |COS(§1T461)| ~ 0.0204 for t,, = 102,
the remaining directions 32, 53 and 54 are estimated orthogonally to 3; as well.
This essentially supports the finding in Theorem 4.4(ii); an estimated e.d.r. space
under contamination will be orthogonal to the direction of contamination (; (or
the space spanned by the uncontaminated estimate Bl) Furthermore we can
see that, contrary to the eigenvalues, the magnitude of contamination %, yields
estimates for (3y,..., 3, that tend to be increasingly orthogonal to (3; and thus
the magnitude has an effect on the e.d.r. directions.

Therefore, a legimitate conclusion is, that due to the contamination of one ob-
servation in the direction of 3; = (1,1,1,1)", SIR is not able to recover the true

e.d.r. direction 3; for Model 1 any longer.

Tables 3 to 6 summarize our findings obtained for Model 2. In Table 3 the
results for the estimated eigenvalues ;\\17 e ,/):4 are displayed when we contami-
nated exactly one observation in the direction of 3; = (1,0,0,0)" and a second
in the direction of f; = (0,1,0,0), each placed in a different slice. The results
are similar to the ones obtained before for Model 1. Again we find that the
largest eigenvalue /):1 shows the greatest amount of change under contamination
and appears to decrease the most relative to the uncontaminated value of Xl.
Obviously the contamination itself does have an effect on the estimated eigen-
values, the magnitude t,, however does not, as the average eigenvalue estimates
remain fairly unchanged for increasing values of ¢,,,. Once more, the size of the es-
timated eigenvalues under contamination are difficult to directly control through

the magnitude of contamination.

In Table 4 we contaminated only one observation. The left side of the table
shows the estimated eigenvalues when we contaminated the first observation of
the first slice in the direction of 3;, while on the right hand side, results are
presented when the contamination of the first observation of the first slice was

placed in the direction of J5. An interesting observation to be made here is the
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following. We find in Table 4 that a contamination in the direction of ; results
in a contamination of all estimated eigenvalues /):1, e ,/)\\4 as they all decrease in
value and similar to what we have seen earlier (where the corrupted estimate \
again exhibits the most change). However, a contamination in the direction of /35
causes very little change in Xl while the remaining estimates /)\\2, e ,X4 decrease
only slightly. This may seem somewhat surprising in the sense that the behavior
of estimated eigenvalues from SIR under contamination is not symmetric with
respect to the direction of contamination. Hence, the direction of contamination

in Model 2 seems to play a role in determining eigenvalue estimates.

e Tables 5 and 6 outline the results on the estimated e.d.r. directions under con-
tamination corresponding to the eigenvalues found in Tables 3 and 4. Without
contamination, SIR appears to correctly estimate (3; but is somewhat less suc-
cessful in estimating second true e.d.r. direction (5. The contamination of two
observations in the directions of (3, and 3, respectively caused SIR to estimate
all directions orthogonal to 3; and (3. That is, none of the estimated e.d.r. direc-
tions, regardless of the significance of the corresponding eigenvalues, are elements
of the true e.d.r. subspace spanned by 3; and (J»; this again supports the theo-
retical findings in Section 4.4.2.

In Table 6 we displayed numerical results on the e.d.r direction estimates obtained
from using one contaminated observation in the direction of £, = (0,1,0,0)".
Just as SIR was able to accurately estimate Xl under this form of contamination
(Table 4), the procedure could also recover [3; as well through the contaminated
estimate 3 (i.e., the absolute value of the cosine of the angle |Cos(ﬁTZﬁ1)| as-
sumed values always fairly close to one). More interesting to us are the results
on the right hand side of Table 6. Because of the contamination in the direction
(B2, we find that all contaminated estimates {Bi}?:l are orthogonal to the true

e.d.r. direction 5.

The conclusion we can draw from this first part of our simulation study where

we assumed Y to be unknown, is that the findings support the theory established in
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Section 4. In particular we were able to verify the claims made in Theorem 4.2 and The-
orem 4.4. When the covariance matrix ¥ is unknown, we are not really able to control
the size of the contaminated eigenvalues from the contaminated covariance matrix 17m
version of (4.29) through the magnitude of contamination ¢,,. While explicit control of
estimated e.d.r. directions can be made through contamination (i.e. the eigenvectors of
Vm), we cannot make general statements regarding the contaminated eigenvalues from

SIR under the same form of contamination as contaminated eigenvalues may differ only

slightly from their uncontaminated counterparts.
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5.3 Simulation results when . is known

Under the assumption that the covariance matrix ¥ = I, is known and this is accounted
for when applying the SIR procedure, the conducted simulation study yielded the

following results numerically summarized in Tables 7 through 12.

e Tables 7 through 9 display the results that we obtained for Model 1. We started
with investigating the behavior of SIR under the contamination of exactly one
observation, where we chose again WLoG the first observation of the first slice
and contaminated it in the direction of 5; = (1/v/2,—-1/+/2,0,0)7, which is or-
thonormal with respect to the true e.d.r. direction 8, = (1,1,1,1)" (see Table 7).
A main result from Chapter 4 was that for the case when ¥ is known, a contam-
ination of k slices causes the k largest eigenvalues of the contaminated matrix
Vm version of (4.20) to “explode” and to grow infinitely large at a rate faster
than the remaining p — k eigenvalues of XA/m; see Theorem 4.1(b) and the subse-
quent remark to Theorem 4.1. The under contamination estimated eigenvalues
in Table 7 clearly seem to support this finding. Not only is the first estimated
eigenvalue affected by the contamination itself, as the magnitude ¢, increases
we have indeed that :\\1 grows infinitely large at a rate faster than the remaining
three eigenvalues /)\\2, /):3 and X4. The same effect can be observed in Table 8
and Table 9, where we contaminated two and three observations, respectively.
In Table 8, we contaminated the first observation of the first slice in the direc-
tion of B; = (1/v/2,—1/v/2,0,0)T and the first observation of the second slice
in the direction of B, = (0,0,—1/v/2,—-1/4/2)T. Now, the estimated first two
eigenvalues Xl and Xg grow infinitely large as t,,, increases while /)\\3 and X4 remain
bounded. Table 9 differs from the previous two tables only with respect to an
additionally contaminated observation replaced in the third slice in the direction
of B3 = (1/v4,1/v/4,—1/v/4, —1/v/A)T. The effect on the cigenvalues is essen-
tially the same. In addition to Xl and /)\\2 we have now also :\\3 growing infinitely

large as t,, increases.
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e The right hand sides of Tables 7 through 9 display the results regarding the
estimated e.d.r. directions under contamination. In each table, as more contam-
inated points are used (involving orthonormal directions of contamination with
respect to ), we find that contaminated direction estimates BZ corresponding to
exploding eigenvalues :\\Z are orthogonal to the true e.d.r. direction (3;. This sup-
ports our findings in Theorem 4.1(c), which stated that eigenvectors associated
with the k largest eigenvalues of the contaminated covariance matrix Vm (under
k-replacement contamination) converge to vectors spanned by the &k (orthonor-

mal) directions of contamination (i.e., orthogonal to the true e.d.r. subspace

span(f31)).

e The results for Model 2 are summarized in Tables 10 through 12. In Table 10,
we display the contaminated eigenvalue estimates after contaminating two ob-
servations (WLoG, the first observation in the first two slices) in the directions
B = (0,0,1,0)T, By = (0,0,0,1)" which are orthonormal with respect to the two
true e.d.r directions 8, = (1,0,0,0)", B, = (0,1,0,0)" in Model 2. As the mag-
nitude of contamination t,, increase, we find that the two largest contaminated
eigenvalues explode in value because of the contamination of two data points; the
smallest two eigenvalues remain bounded in value. Table 10 also shows that, if
only one contamination point is used in the direction Bl =(0,0,1,0)", then only
one (the largest) contaminated eigenvalue explodes in size, while the remaining

three contaminated eigenvalues are much smaller and essentially bounded.

Table 11 shows that, when two directions Bl = (0,0,1,0)T, 32 = (0,0,0,1)7 of
contamination are used, the contaminated direction estimates Bl, 52 correspond-
ing to the two largest (exploding) contaminated eigenvalues are determined by
31752 and so are orthogonal to the two true e.d.r directions 3, = (1,0,0,0)T,
B2 = (0,1,0,0)" in Model 2. This would imply that a contaminated subspace
estimate span(@l, 52), if determined by the two clearly significant contaminated

eigenvalues, would be orthogonal to the true e.d.r. subspace span(3, 3.) C R%.

Table 12 shows that, if one direction 3, = (0,0,1,0)" of contamination is
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used, then this determines the direction of contaminated direction estimate Bl
corresponding to the largest, exploding contaminated eigenvalue given in Ta-
ble 10. Consequently, the two true e.d.r. directions (31,3 are orthogonal to

span(gl) ~ span((0,0,1,0)7).
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Chapter 6

Quantitative Concepts for

Dimension Reduction Procedures of

the SIR-Type

After studying the effects of contaminated data on SIR in the finite sample case in
Chapter 4 and defining a version of a finite sample breakdown point for the Sir di-
mension reduction procedure, we will focus now on some more general issues regarding

the robustness of SIR at the level of population distributions.

In assessing robustness of a statistical functional (an estimator or test statistic) such
as SIR at the population distribution level, one distinguishes between qualitative and
quantitative robustness. While qualitative robustness provides information about the
robustness of a functional against some type of contamination in general, quantitative
robustness measures the degree of robustness of the functional. We will discuss both
types of robustness in the context of the SIR procedure but focus mainly on quantitative

robustness.

Qualitative robustness of a functional is linked to the equicontinuity of the func-
tional. This property can be regarded as a minimal robustness condition. It is some-

what limited, because it does not permit comparisons between different qualitatively
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6 QUANTITATIVE CONCEPTS FOR DIMENSION REDUCTION PROCEDURES OF THE SIR-TYPE

robust estimators. That is, qualitative robustness gives no indication of the level of
robustness. We note that the expectation functional, for example, is not qualitatively
robust [see Hampel et al. (1986)] so that many classical statistical procedures, based
on the mean, must also lack the property of qualitative robustness. Because the SIr
procedure is mean-based, we can expect SIR to fail to be qualitatively robust as well. In
addition, Davies & Gather (2004, 2005b) discuss that PRINCIPAL COMPONENTS and
hence the SIR functional which is based on covariance matrix estimates and principal
components is not even a continuous functional. Consequently, one could suspect SIR

to have limited robustness.

The breakdown point and the influence function of an estimator belong to the class
of quantitative measures of robustness. The breakdown point was originally introduced
by Hampel (1968, 1971) and later also by Huber (1981) and Donoho & Huber (1983)
in a finite sample version. Also of importance is the influence function, established
first by Hampel (1971). Many other common measures can be introduced, such as the
maxbias curve, the gross-error sensitivity, and the asymptotic variance for example [cf.
Hampel, et al. (1986)]. In addition, Hampel et al. (1986, p.99) point out that if a
functional possesses a positive breakdown point, it will generally be also qualitatively

robust.
The main points of Chapter 6 can be summarized as follows.

e In Section 6.1, we will focus on the breakdown point of SIR at the level of prob-
ability distribution contamination. However, this discussion also has relevance
for the finite sample breakdown of SIR (i.e., contamination of the empirical dis-
tribution, say P,, of a particular data set (z1,vy1),..., (Zn,yn) € RP x R). We
shall review the recent work of Davies and Gather (2002, 2005a) which is crucial
for understanding if a meaningful breakdown point can be formulated for a sta-
tistical functional, like SIR. In essence, Davies and Gather propose a framework
for a statistical functional that is required in finding a non-trivial upper bound
for the breakdown point. This framework includes, among other issues involving

metrics, the existence of a rich group equivariance structure.
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6 QUANTITATIVE CONCEPTS FOR DIMENSION REDUCTION PROCEDURES OF THE SIR-TYPE

The most important finding of the results here is that a group equivariance struc-
ture does in fact exist for SIR, as shown in Section 6.1.1. However, the SIR
functional and subspace estimation in general does not fit into the framework of
Davies and Gather (2002, 2005a) because an unbounded metric seemingly cannot
be defined on the parameter space in SIR (which consists of vector subspaces of
RP). Consequently, a meaningful breakdown concept for SIR, involving a break-
down point with an upper bound of 1/2, cannot be obtained. The implication of

this may be that the entire concept of breakdown has limited value for SIR.

Section 6.2 discusses a new and alternative breakdown point concept of Davies
and Gather (2004, 2005b) which can be successfully applied to SR as well as any

dimension reduction functional.

For completeness, in Section 6.3, we review the recent work of Prendergast (2004)
in developing the influence function of SiR. The findings of Prendergast (2004)
are relevant here because these further confirm the finite sample breakdown be-
havior of SIR, presented in Chapter 4 as well as the work of Hilker (1997) and
Gather, Hilker and Becker (2002).

6.1 Breakdown Set-up of Davies & (ather

The relationship between a concept of BREAKDOWN and the existence of a group

structure was introduced by Davies and Gather (2002, 2005a). They show that under

a certain framework involving groups and metrics, which we shall explore in more detail

in the following, a nontrivial upper bound for the breakdown point of a functional 7 can

be derived. Up to this point, their work constitutes by far the most insightful one on

breakdown. However, as Davies and Gather (2002) note, there exist earlier references

in the literature observing a connection between an underlying group equivariance

structure of a functional to its robustness properties; see He and Simpson (1993).
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6 QUANTITATIVE CONCEPTS FOR DIMENSION REDUCTION PROCEDURES OF THE SIR-TYPE

To provide a general description of the breakdown results of Davies and Gather, we
first provide the key ingredients beginning with the group structure. Let (X, B(X))
be a measurable sample space and P be a family of non-degenerate probability mea-
sures on (X, B(X)) that are of primary interest. Let © be some parameter space and
T :(X,B(X),Po) — O a functional. Let G denote a group of measurable transfor-
mations on the sample space X with elements g : X — X, where for any P € P and
any g € G we set P9 = P9(B) = P(¢g'(B)). Forn € N;n > 2 and g € G, we define
g"(-) = g(g"'(-)). The group G of data transformations induces a group Hg acting
on the parameter space © by Hg = {h, : ¢ € G} where h, : © — O such that 7 is
called equivariant w.r.t. G if and only if 7(P?) = h,(7 (P)).

The breakdown results of Davies and Gather also require two (pseudo)metrics, d
and D, respectively defined on the spaces of probability distributions P and parameters
©. We denote a pseudometric on P by d, i.e. d: P x P — [0,00), which should

satisfy the following two properties

sup d(P,Q) =1 (6.1)
PQEPo
and
dlaP+ (1 —a)@Q1,aP+(1-a)@2) <1—« (6.2)

for any P, Q1,2 € Po and a € (0, 1). Condition (6.2) is a technical condition (needed
in the proof of Theorem 6.1 below). A suitable pseudometric on the parameter space

© is given by D, where D : © x © — [0, 00) should satisfy

sup D(6,,6;) = oo. (6.3)
91,026@

Figure 1 below displays the connection between the equivariance structure of a func-
tional 7 on the sample space and the induced equivariance structure on the parameter

space, as introduced by Davies and Gather (2002).

Before proceeding further, we define a subset of GG of special interest by

G = {g €G: lim infD (0, hy(0)) = oo}. (6.4)

n—oo 0
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6 QUANTITATIVE CONCEPTS FOR DIMENSION REDUCTION PROCEDURES OF THE SIR-TYPE

Figure 6.1: Group and Parameter Equivariance Structures

T
(X,B,P) S)

N AN

d D

/ /

G Hg

The collection (G is the set of all transformations g € GG for which the induced trans-
formation h, causes 6 and hgn(6) to become maximally distant in the limit (i.e., upon
iteratively applying a transformation g of the sample space X and the corresponding
transformation h, of the parameter space) with respect to the pseudometric D. We

shall denote the restriction of a transformation g € G to a set B € B by g,z and define
A(P) =sup{P(B): B € B, gp = v for some g € G}, (6.5)

where ¢ € G denotes an identity mapping, i.e. ¢(x) = x for x € X. Hence, the quantity
A(P) represents the largest probability measure of a set B € 9B for which some g € Gy
from (6.4) maps the elements of B to itself, like the identity function.

For clarity in our notation and discussion, we repeat the breakdown point definitions

of Davies and Gather (2002, 2005a).

Definition 6.1 (Davies & Gather, 2002, 2005a) The breakdown point
e*(T,P,d,D) of a functional T at a distribution P with respect to a pseudometrics
d and D s defined by

e"(7T,P,d,D) =inf{e > 0| sup D(T(P),T(Q)) = oo}.
d(P,Q)<e
The finite sample breakdown point (fsbp) of T at a sample x,, with respect to a
pseudometric D is defined by
1
bep(T7 Ty D) = E mln{k € {17 cee 7n}| sup D(T(Pn)a T(Qn,k)) = OO},

Qn,k
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6 QUANTITATIVE CONCEPTS FOR DIMENSION REDUCTION PROCEDURES OF THE SIR-TYPE

where P, denotes the empirical distribution of x,, and Q)i denotes the empirical dis-

tribution of the sample y, 1 obtained by altering at most k points arbitrarily in x,,.

Using elements of the group equivariance structure in estimation, we now give the
theorem on the upper bound for the breakdown point established by Davies and
Gather (2002, 2005a).

Theorem 6.1 (Davies € Gather, 2002, 2005a) With the above notation and

under the assumption that Gi # (), we have

1 - A(P)

(T, Pd,D) < —

(6.6)
for all G-equivariant functionals T, for all P € P and for all pseudometrics d and D

satisfying (6.1),(6.2), and (6.3).

The proof of this theorem can be found in Davies and Gather (2002, 2005a).

The upper bound given in Theorem 6.1 can also be extended to the situation of the

finite sample case.

Theorem 6.2 (Davies € Gather, 2002, 2005a) With the above notation and

under the assumption G1 # () we have

fsbp(T ,z,, D) <

V —nA(P) + 1 J n 67

where P, denotes the empirical distribution of the data x,,.

The proof can be found again in Davies and Gather (2002).

To help demonstrate the above equivariance group structure for a concrete estima-
tion scenario, we will give an example from Davies and Gather (2002, 2005a) involving

location functionals.
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Example 6.1 (Davies é Gather, 2002, 2005a) Consider p-dimensional random
vectors defined by a sample space X = RP and the Borel c—algebra B(X) on RP. We
may take the family of probability measures Pg to be the set of all distributions P on
RP or let P be the set of all RP-distributions with a finite expectation.

For a distribution P € Pg, a location functional T could be defined as the median
of P (T(P) =median of P) or the mean of P (T(P) = [,, xdP). In any case, we take
the parameter space to be © = RP = {0 : 0 € RP}.

As the group acting on the sample space, we take the translation group G on RP
with elements g : R? — RP € G of form g(x) =+ a, a € RP. The group G induces a
group Hg on the parameter space with elements hy = g for g € G. Here the choices of
D and d are not crucial and we could choose D(60y,605) = ||61 — 61|, (Euclidean vector

norm) and d(P,Q) = supgec |P(B) — Q(B)|, where
C={C:C={z:2"b+a<0}}

with b € RP a € R. Of course, the mean and median functionals T are equivariant

with respect to the group G.

Note that the class of constant functionals T () = ¢ € RP for all x € RP, which
naturally exhibits a breakdown point of 1, are automatically excluded from G as they

fail to fulfill condition (6.4).

The group Gy according to the definition in (6.4) is equivalent to the group G defined
above except for the identity element {1}. As a consequence we have A(P) = P(() =0
in (6.5), since no non-empty set B € B can be found such that gjp = yp holds for

some g € Gy.

Applying the above theorem to location functionals and the translation group yields
an upper bound for the breakdown point of location functionals of 1/2, based on A(P) =
0.
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Simply the presence of a group structure, however, does not guarantee a nontrivial
upper bound for the breakdown point. If the group structure is not sufficiently rich,
a trivial smallest upper bound of 1 is still possible. An example from Davies and
Gather (2002) is given by the binomial model, where the data consist of a count of
successes x based on k trials for estimating the binomial parameter p € [0,1]. This
example was considered by Ruckstuhl and Welsh (2001). Davies and Gather (2002)
show that there is a group acting on the sample space which consists only of two
elements: the identity mapping and the mapping g : g(z) = k — z. But, due to the
small group structure on the sample space, it turns out that the set G; = ) is empty so
that Theorem 6.1 cannot be applied to find an upper bound for the breakdown point
of a functional for estimating p. Indeed, equivariant functionals exist for estimating
p with a breakdown point of 1 and, in fact, Davies and Gather (2002) give such a

functional.

6.1.1 Dimension reduction functionals

The focus of this section is to analyze the extent to which the theory of BREAKDOWN
& GROUPS can be applied to the case of dimension reduction functionals, in particular
to functionals of the SiR-type. The results we will obtain however are likely to hold
also for dimension reduction functionals in general. For reduction subspace estimation,
the parameter space © corresponds to some collection of subspaces of RP. As a key
result, we will show that, for subspace estimation, it is not possible to find a suitable
pseudometric D on the parameter space © of RP-subspaces such that condition (6.3) is
fulfilled. The crucial property of any D in the framework of Davies and Gather (2002,
2005a) that the pseudometric takes on the value oo in the supremum. As we shall
discuss later, in the problem of reduction subspace estimation, this assumption cannot

be fulfilled for any choice of a meaningful (pseudo)metric D on subspaces.
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Elements in Breakdown and Group Structure for Sir, X known

To better understand BREAKDOWN & GROUPS for functionals like SIR, we now consider
identifying the key elements of Davies and Gather (2002, 2005a) in the context of
dimension reduction. To ease our exposition, we assume that the reduction subspace
B C R? has known dimension dim(B) = K which we wish to estimate with a functional

T associated with SIR (or similar dimension reduction functional).

PARAMETER SPACE: O.

The parameter space O would be
Ok = {0 C R? : dim(0) = K},

the set of all k-dimensional subspaces of RP.

STATISTICAL MODEL: (X,B(X), Px).

Since the data consist of observed random vectors (X,Y) € R? x R, we take the sample
space (X,B(X)) to be defined by X = RP x R and B as the usual Borel o-algebra on
R?P x R. Given the form of the parameter space Ox above and the nature of the Sir

functional, the set of all probability measures under consideration is given by

Po=Px={Pxy on RP xR | X(Pyxy,)) =% = Cov(X) is positive definite, (6.8)
V(Pxy) =V = Cov[E(Z(Pyy,) 2X|Y)] has
ordered eigenvalues A\ > -+ > A\ > Aggq > -+ >

Ay > 0}

Thus, (X,B(X), Px) describing the statistical model under consideration. The condi-
tion A > Ay in (6.8) is an identifiability condition for the dimension of a subspace
(parameter) estimate since we assume that K is known. The condition is necessary and
sufficient so that, if a SIR functional 7 is applied to a distribution P x,, € Px, SIR will
render a K-dimensional parameter estimate 7 (P y,) € O consistent with the pa-

rameter space Ox. If SIR is applied to a distribution Py, & Pk, then 7 (P y,) € Ok.
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STATISTICAL FUNCTIONAL: 7.

More formally, assume a functional of the Sir-type 7 : (X,B(X), Px) — O that,
when applied to Pxy, € P, yields a RP-subspace 7 (Pxy)) = 0 = 0(Pxy,) € Ok of
dimension K given by

0 = span(X V2, 2720,

based on the orthonormal eigenvectors ny,...,nc of V. = V(P.,,) corresponding to

the largest KC eigenvalues of V' (which are identifiable again by (6.8)).

GROUP OF TRANSFORMATIONS ON SAMPLE SPACE: G.
A group of measurable transformations G' on the sample space & is given by the affine

transformations:

G ={g:RFtl - RPF | g(z) = (gl(r)), 90y) =y R, gi(z)=Ax+beRP,

y 92(y)
p X p nonsingular matrix A, b € RP}.
(6.9)

Note that transformations g € G affect only z-values, the mapping of y-values cor-
responds to the identity mapping. This is analogous to the regression case described
in Davies and Gather (2002, 2005a), where the group acting on the sample space
corresponds to the translation group and a transformation of the data is carried out

only with respect to the observations of the response variable Y.

GROUP OF INDUCED TRANSFORMATIONS ON PARAMETER SPACE: Hg.
The group G operating on the sample space induces a group Hg on the parameter

space that corresponds to
Hg ={hy:© — O] hy(0) = (A7)0 C R*}

such that the equivariance property is fulfilled. (Note if § C RP is K-dimensional
subspace with basis vectors, say by,...,bx, then (AT)710 denotes the RP subspace

spanned by span((AT) "1y, ..., (A7) tbk).)
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EQUIVARIANCE STRUCTURE.

To prove that SiR-type functionals are equivariant w.r.t. the affine group G, we fix
Pxy, € P with Cov(X) = X(Pyy) = ¥ and V(Pyy,) = V = SV2WEY2 for
W = Cov[E(X]Y)]. With a spectral decomposition, note that V = i Aimin;, where
{n:}1_, are the orthonormal eigenvectors of V' corresponding to the orczlze;ed eigenvalues

AL > o> A > A > - > A, > 0 by (6.8). We also have 7 (Pxyy) = 0 =

—-1/2 —-1/2

span(X 2 ny, ., N ).

Choose g(z,y) = (Ax+b,y) € G. Under g(X,Y) with (X,Y) ~ Py, or P, it
holds that

Y = N(Pky,) =AXAT
W = W(P%,,)=AWA"
V o= V(Phy) =% W% = (ASAT) V2(AWAT)(ARAT) /2,

We now have to find T'(P9) which requires a spectral decomposition of V to find
the matrix’s orthogonal eigenvectors and largest K eigenvalues. We write C' =

(AXAT)Y/2A%Y2 and note that AXAT and ¥ are symmetric and nonnegative def-

inite so that
COT = (ASAT) V2ATAT(ADAT) Y2

that is, C' is a p X p orthogonal matrix. Let 7, = Cn; for ¢ = 1,...,p. Multiply V
defined as above with C' and C'" to get

p
doamm =CVCT = (ASAT)TVPASVPE TIPS TSP AT(ASAT) T
i=1
= (ASAT) VZAWAT(AZAT) V2 =V, (6.10)
Since {7;}%_, are orthonormal by

1 ifi=j,
nm;=n CTCn; =nin; = -
0 otherwise,
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we find (6.10) is the spectral decomposition of V, which has eigenvectors 7, ..., 7,
corresponding to its well-defined, K largest eigenvalues (i.e, A1 < Ag). By definition

we have

—=—1/2__ —=1/2__
T(P%y,) = span(X LTS S

ASATY 20, (AZAT)‘l/QOn,C>
ASATYTAS Y2, (AZAT)‘lAZI/Qn,C>

I

n

o)

]

)
/N7 N N
—~ —~ —~

AT)71271/27]17 L (AT)71271/277K)

= (AT)ilspan (Eil/znlv SRR Eil/2nl€)

using above that (AXAT)™! = (AT)"!X"1 A1 Hence, the STR-functional 7 : P —

is equivariant with respect to G' because
T(Py)) = (A")710 = hy(0) = hg(T (Pix)),

where h,(0) = (AT)7'0 € Hg is the mapping induced by g € G.

PSEUDOMETRIC: d.

Analogous to the location example from Davies and Gather (2002), we could choose
pseudometric d defined on Pk as d(Pixy), Qxy)) = SuPgec |Pixv)(B) — Qix.v)(B)],
where C = {C': C = {(z,y) e RF™ : (27, y)b+ a < 0}} with b € RP*! a € R. This d
satisfies (6.1).

PSEUDOMETRIC: D.

We now come to the point in the BREAKDOWN & GROUPS framework where there are

no easy solutions. A pseudometric D on the parameter space O is a mapping of the

form D : © x © — [0, M] with sup D(61,65) = M € (0,00], where M denotes the
1,02€

supremum value of D. The problem is that any pseudometric D should satisfy two

properties:
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1. D should be geometrically meaningful. If 2k < p, then all existing metrics on
subspaces from Chapter 2 would agree on the following point: two K-subspaces
01,0, € O C RP with 2 < p should be maximally distant if and only if the
subspaces 6; and 0y are orthogonal. Hence, a geometrically meaningful pseudo-
metric D on the parameter space Ox should somehow embody the notation that
a maximal distance D(6;,0s) = M between 6; and 0 means that these subspaces
(of parts of them) are orthogonal. More specifically, we could say that (for any
K < p), if two subspaces 6; and 0, are mazimally distant under a pseudometric
D, then 6, N (6, NBy)+ and O, N (6 N+ should at the very least be orthogonal;

see Section 2.5.2.

2. The pseudometric D must satisfy sup D(#;,0,) = M = oo in (6.3) in the
01,0o€0
framework of Davies and Gather (2002, 2005a).

It is possible to find metrics which satisfy either property 1 or satisfy property 2. For
example, the Frobenius metric D(6;,6,) = I fulfills the geometrical property 1 but has

supremum metric value that is finite, namely

sup F(0y,0:) = v/2(K — max0,2K —p) = M < oo
91,926@}(

and so F does not satisfy property 2.

The sad news is that it is mathematically impossible to find a pseudometric D which
simultaneously satisfies both properties 1 and 2 above. This can be proven as follows
for the case 2K < p; the 2K > p could be treated similarly. Suppose we have a
pseudometric D which fulfills: sup IN)(Ql, 0s) = oo if and only if §; and 6y become
orthogonal in the RP. We show illrfgte 6;uch a pseudometric does not satisfy the triangle

inequality (and therefore cannot be a pseudometric). Pick 6;,0; and 03 € RP where

the pair 6, 6, is orthogonal but the pairs #,, 63 and 65, 63 are not so that

0o = D(61,05) < D(6y,05) + D(6s,03) < 0,

which is impossible.
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So we have a serious dilemma. If we choose a geometrically meaningful but bounded
metric, like F, the group G defined in (6.4) must be empty so that Theorem 6.1 cannot
be applied to find a meaningful upper bound on the breakdown point for SIR-type
functionals under the metric. This might imply that a geometrically and universally
acceptable formulation of a breakdown for SiR-type functions is not possible. However,
as shown in Chapter 4, it is still possible to use a geometrically meaningful metric
like F to quantify some effects of contamination on subspace estimation using SIR.
That is, the metric F allows one to mathematically study and interpret the effects
of contamination. A solution to this dilemma may be an alternative definition for
breakdown for dimension reduction functionals, and hence functionals of the SIR-type,
based on an idea by Davies and Gather (2004, 2005b). For this alternative definition

we refer to section 6.2.

Elements in Breakdown and Group Structure for Sir, £ unknown

To set-up the BREAKDOWN & groups framework for SIR in the case that the dimension
IC of the reduction RP-subspace is unknown, we make three changes to the above
structure when K is known. Alternative formulations of the parameter space Oy, the

family of probability distributions Pe,,, and the functional 7" are required.

PARAMETER SPACE: O,

The parameter space 0y, would be
Oop = Up_Ox = {0 C R : dim(d) = K, 0 < K < p},
the set of all subspaces of RP.

STATISTICAL MODEL: (X,B(X), Po).

Again (X,B(X)) is defined as before (i.e, ¥ = R? x R) and

Poy, = {Pxyy on R xR | X(Pyy)) =X = Cov(X) is positive definite,
V(Pxy,) =V = Cov[E(2(Pyy,) Y2X|Y)] has ordered
eigenvalues \y > -+ > A > A1 2> -+ > A >0,

0 <K <p}
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GROUP TRANSFORMATIONS: G and Hg. These remain unchanged.

STATISTICAL FUNCTIONAL: 7.
A functional of the SiR-type T : (X,B(X), Pe,,) — © that, when applied to Py y, €
Py, vields a RP-subspace T (Pix,y)) = 0 = 0(Pxy,) € © of dimension K = IC(Pxy))
given by

0 = span(2_1/2n1, e 2_1/277,@),
based on the orthonormal eigenvectors ny,...,nc of V. = V(P.,,) corresponding to

the K = K(Px.y,) non-zero eigenvalues of V.

Note that 7 is equivariant with respect to G because one can show that
T(Piy) = (A1) = hy(0) = he(T (Pix.v)))

as before, where h,(0) = (A")7'0 € Hg is mapping induced by g € G. We note one
interesting facet of the group induced structure Hg on O, where © consists of any
subspace of RP. Namely, if § € O has dimension dim(f) = I, then hy(#) € O also has
dimension dim(h,(¢)) = K, for any g € G. That is, under affine transformations G of
the sample space, we find K-subspaces of R? must always be mapped to K-subspaces
of RP for a given dimension 0 < K < p. Affine transformations of the data cannot
alter the dimension of subspace estimates based on SIR, i.e, dimensions of 7 (P ),

T (PY.,) are equal for g € G.

PSEUDOMETRICS: d and D.

The previous discussion in the K known case is still applicable. In particular,
it is still difficult to find a geometrically meaningful metric D on © for which
Supy, g,co D(01,02) = oo in (6.3). An additional complication is that, for any g € G
and n € N and 6 € Oy, it holds that 6 and hgn(f) are RP-subspaces of the same
dimension, so that it difficult to invent a pseudometric D for which D(6, hyn(0)) can
become arbitrarily large for a given 6 € ©,,,. Worse yet, if 0 € O, has dimension

IC = p then 6 = R? and we always have hyn(0) = RP, so that

St D(0, by (8)) < D(RY, hyn(R¥)) = D(R", ) < 00, n€N, g€G,
€00:p

if D(RP,R?) is bounded.
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6.2 An alternative definition of breakdown for di-

mension reduction functionals (K known)

The discussion from the previous Section 6.1.1 indicates that, for SIR-type functionals
of RP-subspaces of known dimension /C, a serious problem in applying the BREAKDOWN
& Groups framework of Davies and Gather (2002, 2005a) is that a suitable pseudo-
metric D cannot be found for the parameter space O = {# C RP|dim(f) = K} of
interest. Davies and Gather (2005b) suggest a different formulation of a breakdown
point which is attractive because this definition does not even require a pseudometric
D. That is, the breakdown point definition of Davies and Gather (2005b) overcomes
problems suggested in the last section by completely side-stepping the need for a mean-

ing pseudometric D to even be specified.

We next give the new breakdown point definition using the same (general) notation
developed in Davies and Gather (2002, 2005a) from Section 6.1. Let P denote the set
of all distributions on the measurable sample space (X, B). Again we suppose that
there is a group G of measurable transformations of the sample space (X, ).

Davies and Gather (2005b) define a functional 7 : Pr — O with Py C P as

equivariant with respect to the group G if the following three conditions are fulfilled
C1.  Pris closed under all g € G.

C2. T is well defined on Pr.

C3.  T(P9) =hy(T(P)) for all P € Py and g € G.
Davies and Gather then suggest the following definition of breakdown.

Definition 6.2 (Davies € Gather, 2005b) Under the above assumptions the

breakdown point is defined as
e"(T,P,d) =inf{e > 0:d(P,Q) < ¢ for some Q ¢ Pr},

where e*(T,P,d) =0 if P ¢ Pr.
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For Sir-Functionals when K is known, we have the parameter space © = O as in
Section 6.1.1 with family of distributions Pg = Px from (6.8), while P is the set of all
distributions on the sample space X = R? xR. Now the property of identifiability of the
IC largest eigenvalues of V(P ) in (6.8) for Py, € Pk, which is necessary for the SIr
functional to produce a dimension K subspace estimate in R? (i.e., 7 (Px,) € Ox), can
be easily violated. For example, if a distribution ) € P has a covariance matrix V (Q)
in (6.8) with all equal eigenvalues Ay = --- = A\, (or even just eigenvalues A\ = A1),
then 7 (@) is not defined as SIR cannot determine a K-dimensional subspace estimate
from V(Q), i.e. more equal eigenvalues than the number of dimensions K of the
underlying e.d.r. subspace. Davies and Gather (2005b) discuss the complications
of equal eigenvalues in defining a breakdown in principal component analysis and their

comments are relevant for SIR.

As an example of Definition 6.2, Davies and Gather (2005b) explain that the mean is
not defined for all distributions so that it follows easily that the mean has a breakdown
point of 0 under the above definition for any distribution P € P. Since SIR depends on
means (as well as covariances) of the underlying distribution, it follows that SIR must

also automatically have a breakdown point of 0 under Definition 6.2 for any P € P.

Upper bounds for new breakdown point with subspace functionals

Davies and Gather (2005b) also give an upper bound for the breakdown point in Def-
inition 6.2. We can use this to find the upper bound for the breakdown point in
Definition 6.2 for any dimension reduction functional 7" that seeks to estimate a sub-
space of RP, not just SiR-type. For this upper bound, some new notation is necessary.

Define a set of distributions
Pyiny = {P € P : there exists some g € G with hy # h,, where P9 = P},

consisting of distributions in P which are unaffected by some transformation g € G but
the corresponding parameter 7 (P) = 6 may change. According to the equivariance
property of 7, we would expect for any g € G for which P9 = P holds to have 7 (P) =
T(P9) = hy(T(P)) if P € Pz, but this is of course not possible for distributions
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P € Pyiny. Obviously, we can conclude that Py, C P\ Pr for every equivariant

functional 7", which implies an upper bound for the breakdown point of
(T, P,d) < inf{e : d(P,Q) < ¢ for some Q € Pyiny} (6.11)

for all equivariant functionals 7 and P € P. Based on the above inequality, Davies
and Gather (2005b) give the following upper bound for the breakdown point in Defi-

nition 6.2.

Theorem 6.3 Suppose G contains a finite sub-group Gy of order k > 2 such that
¥ = (the identity) holds for all g € Gy. Then, it holds that

k—1
e (7T,P,d) < o

for any P € P.

In the following example, we show how to apply the above Theorem 6.3 to obtain an
upper bound on the breakdown point Definition 6.2 for a subspace estimating func-
tional. We need not assume the dimension K of dimension reduction is known or even
that the functional corresponds to SIR. We simply suppose that the functional 7 is
equivariant (i.e., satisfies C'1.-C3.) with respect to the group of affine transformations
G acting on the sample space X = RP x R given in (6.9). This group seems to be very

appropriate for SIR-type functionals.

Example 6.2 Suppose the sample space is X = RP x R with the usual Borel o—algebra
B. Let P be the set of all distributions on (RP x R, B) and take the group G of sample

space transformations to be (6.9).

Suppose p > 2. Then, for any k > 2, there is a rotation subgroup of G of order k
given by

o= (1) =0

where Ay, k> 2, is a p X p matriz given by

g(z) = (A) 'z :RF - RP i€ {l,...,k},q(y) = y} ,

A — M, 02><(p*2) M, = COS(%) - Sin(%)
Op-2)x2  Ip2 sin(%’r) cos(%“)
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and L,_5 is a (p — 2) x (p — 2) identity matriz. To see this, note that

M)k Ogype
R B e S S VA L N
0(p72)><2 Ip—2
so that for any k > 2 if g € Gy, it holds that g¥(z) = (A)" "z = {(Ap)*}x = Lx =,
x € RP with respect to some i € {1,...,k}. Hence, the elements g € Gy have order

k> 2.

If p =1, we define a subgroup of G of order k = 2 by

o= (1) =

where clearly g?(x) = (—1)*x =z, x € R, if g € Gy when p = 1.

gl(x) = (_1>ix R — Ra [AS {07 1}792(y> = y} ’

Hence, by the existence of Gy, k = 2, for any p > 1, it follows from Theorem 6.3
that for any dimension reduction functional T equivariant with respect to the group G

of affine transformations (6.9), any P € P, and any pseudometric d,

1

8*(77 P, d) S 5

In particular, the SIR functional has a breakdown point of 0 under Definition 6.2.
Davies and Gather (2005b) have argued that the median, since it is defined for all

distributions, has a breakdown point of 1 under Definition 6.2.

6.3 Influence Function

The influence function (I F') was introduced by Hampel (1968, 1974) and belongs to the
class of quantitative robustness measures appropriate for assessing local robustness of a
functional 7. It represents a directional derivative of the functional 7 at a distribution
P in the direction of a point mass in x. The influence function can be used to assess the
robustness of a functional under the infinitesimal amount of contamination in a point
x. A formal definition of the influence function can be found for example in Hampel

et al. (1986).
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Definition 6.3 (Hampel, et al. 1986) For a real-valued statistical functional T at

a distribution F, the influence function of T at P in a point x is given by

[F(e, T, P) = lim L =P +60) = T(P) (6.12)

e—0 €

where 9, denotes the Dirac measure putting point mass 1 on x. The function

IF(x,T,P) is defined for all x for which the above limit exists.

Hampel et al. (1986, p.41) refer to the influence function as the measure providing
the richest quantitative robustness information as it describes the approximate and

standardized effect of an additional observation (i.e., a point mass at ) on 7.

Contributions regarding the influence function in the robustness analysis of SIR
can be attributed to Prendergast (2004) in his dissertation. He focused on querying
the robustness of SIR towards outlying observations and violations of distributional
assumptions for the data and investigated the influence function for Sir. His findings
cumulated in the derivation of the influence function for functionals estimating SIR

e.d.r. directions. The assumed underlying contamination model is of the form
P(e) = (1 —¢€)P + €dy,

where 09 = (¢, yo) indicates the point mass placed on the value (xg,yo) representing
the contamination. Prendergast carried out the derivation of the influence function for

a single e.d.r. direction under the following two assumptions

A.1 The slicing proportions py, ..., py are constant, where p; = P(Y € I;) rep-
resents the probability that the response variable Y falls into the #th slice I;,
1=1,...,H.

A.2 SIR is able to recover a K-dimensional e.d.r. subspace, if the K is the true

dimension.

The main result by Prendergast is the derivation of the influence function the ith e.d.r.

direction (i = 1, ..., K) stated in Theorem 4.1 of his dissertation, which also derived for
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other dimension reduction procedures, such as SAVE [cf. Cook and Weisberg (1991),
Cook (2000)]. It turns out that it is not possible to present the influence function in
closed form. This is because the SIR procedure/functional applied at the contaminated
distribution P(€) provides a certain additive component to the influence function that

may not be determined without exact knowledge of the link function f.

According to Prendergast however, there exist cases for which the influence function

is free of this term, such as the single index model expressed by
Y =3/ X +e,

with X = (Xi,...,X,) € RP a vector of regressor variables, Y € R a response variable,
and € an error random variable. The corresponding mean and covariance matrix for
X are denoted by u and X, respectively. The sliced means py, = E(X|Y € 1,,) € R are
defined for each of the H slices I, h =1,..., H. The single index model has only one
e.d.r. direction ; € R? (i.e., K = 1) and Prendergast stated the influence function for

(1 explicitly as

ITF(By, 00, P) = BﬂlﬁlT - 21] [(950 — (o — M)T - E] B (6.13)

H
I
15w (7= 8180) D> I(yo € B (1 — 1) Havo — p),

h=1
where I(-) denotes the indicator function and A; is the largest eigenvalue of sliced
version of Cov[X~V2E(X|Y)] given by S0 ppX~Y2(up — 1) (. — p) TE~Y2 (cf. Pren-
dergast (2004), p. 124).

As expected the influence function is unbounded with respect to the explanatory
variables and bounded with respect to the response. Based on the derivation of the
influence function for the single index model Prendergast investigates in particular
three types of contamination Jy of the regressor space, denoted by 41, d2, and d3, when
taking > = I, and ¢ = 0,. The term d; represents a contamination in the direction of
the e.d.r. direction (3;; d5 is contamination orthogonal to the e.d.r. direction; and a

third type represents a mixture of the other two types d; and d5. Among his findings
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is that contaminations of the type §; may have zero influence on the e.d.r. direction
which at first glance seems to contradict our finite sample findings in Chapter 4 and
the findings by Gather et al. (2002). This apparent contradiction can be explained,

however. To do so, we give a new example, not presented by Prendergast.

Suppose ¥ =I,, =0, and H =1 (so that y; = ), then the influence function

(6.13) for the single index model becomes

1
IF(ﬂb do, P) = {iﬁlﬂl—r - I;D:| [-Tox(—)r - Ip:| B
We next assume further WLoG that [|3;]] = 1. If the contamination term is orthogonal

to 3 (i.e., zg 31 = 0), then the Euclidian norm of the influence function is
[ LF(B1,0a, P)|| = .

Under Prendergast’s contamination type 0o, the influence function for (3 is bounded
but not necessarily zero. Now consider Prendergast’s contamination type ¢; using a

term xy = ¢ for ¢ € R so that the influence function is
1
| IF(f1,01, P)|| = 9 }02 - 1‘-

Under Prendergast’s contamination type d; with xy = ¢, the influence function for
(1 is unbounded with respect to ¢ but could possibly be zero if c = 1 or —1. This example
shows that, as Prendergast suggests, contamination in the direction of 3, (i.e, type d;)
may not always be as bad as contamination orthogonal to 3; (i.e., type dz), since the
influence function is smaller when |c¢| < V2. But, generally, contamination zy = ¢ in

the direction of (3 is much more influential for large values of ¢ (i.e., |c| > V/2).

Note that Prendergast assumes that ¥ is unknown. When ¥ is unknown but I = 1
is known, the finite sample studies given in Chapter 4 and carried out by Hilker (1997)
and Gather et al. (2002) showed that contamination ¢ - §; in the first e.d.r. direction
can produce an estimate of 3; that is orthogonal to 3; when c is large. That is, under
the single index model, one contamination point z of large magnitude in the direction
of #; can be dangerous for the SIR procedure. The example above, taking zo = ¢,
for large ¢, indicates that Prendergast’s influence function for the single index model

would seem to support this conclusion.
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Chapter 7

Conclusions and Recommendations

In the focus of this thesis was a thorough investigation of the robustness properties
of the dimension reduction procedure SIR (Li, (1991)). In particular, emphasis was
especially paid to the finite sample behavior of the SIR procedure under data contam-

ination.

This work builds upon the dissertation by Hilker (1997), containing the first efforts
to define a breakdown point concept for dimension reduction procedures in the finite
sample case, as well as research by Becker (2001) and Gather et al. (2002).

The definition of Hilker’s finite sample breakdown point involved canonical correla-
tions as a suitable distance measure between the estimated and true e.d.r. subspaces.
However, as breakdown classically involves the use of an underlying metric, this defini-
tion turned out to be somewhat problematic in the sense that canonical correlations do
not constitute a metric. This provided the main motivation for Chapter 2, which es-
tablishes an appropriate distance measure between RP-vector subspaces. Our findings
cumulated in a metric based on the Frobenius matrix norm. This metric represents
an adequate distance measure on RP-subspaces from both an intuitive and geometric
point of view. The Frobenius-norm based subspace metric ' further resolves a second
drawback of Hilker’s breakdown point definition. While Hilker’s work stipulated that

breakdown occurs if one basis vector of an estimated e.d.r. subspace is orthogonal to
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the true e.d.r. subspace, we felt that it is arguably worse to estimate and select the
entire orthogonal subspace of the true e.d.r. subspace of interest. The metric F entirely
supports this notion of a worst case estimated by taking on its maximal value if and

only if the orthogonal complement of the true subspace is estimated.

In Chapter 4 we considered various types of contamination which can produce a
worst case e.d.r. subspace estimate. We demonstrated that the data contamination
scenarios that produce erroneous e.d.r. subspace estimates in SIR depend for one on
the knowledge of the covariance structure of the regressor variables but also on the
knowledge of the dimension K of the true e.d.r. subspace. In particular, we showed
that the type of data contamination that causes SIR to yield an erroneous subspace
estimate will change depending on whether the covariance of the regressors is known
or not. Based on these findings we were able to provide upper bounds for the finite
sample breakdown point with respect to the metric F depending on the knowledge of

the covariance matrix and of the dimension of the reduction subspace.

Summarizing Chapter 4, we were able to show that unlike stated at various places
in the literature, SIR is indeed sensitive to outlying observations. Not only is it possible
to obtain additional e.d.r. direction under data contamination as stated by Cook and
Critchley (2000), e.d.r. directions can also become lost under contamination to the
extent that none of the true e.d.r. directions of the e.d.r. subspace are recoverable
by SirR and only the orthogonal complement of the e.d.r. subspace will ultimately be
estimated.

Our theoretical findings of Chapter 4 were followed by a simulation study in Chap-
ter 5, which clearly supported our established theory.

While our definition of the finite sample breakdown point follows geometrical in-
tuition, it has itself the drawback of being based on a metric that can only take on
finite values. This is problematic because, in Robust Statistics, the notion of breakdown
is commonly established with respect to an unbounded metric on a parameter space

(i.e., a metric that can become infinitely large when taking limits). In particular a
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statistical functional is said to break down under contamination when its bias becomes
infinitely large and the metric quantifying the distance between the true parameter and
its contaminated estimate diverges to infinity. For RP-subspaces, which represent the
parameters of interest in SIR, such a metric is not possible. A metric that is unbounded
cannot be found as shown in Chapter 6. This difficulty with metrics is a part of our
general findings in Chapter 6, where we examined the robustness of Sir at the level of
population distributions based on the results of Breakdown & Groups by Davies and
Gather (2005a). The main result is that SIR-Type functionals are difficult to place
in the framework of Breakdown & Groups because the above mentioned problem of
finding a suitable metric.

As hinted by Davies and Gather (2005b), an alternative definition of breakdown
can be applied to dimension reduction functionals which may statistically be more
meaningful and accurate than a definition based on common breakdown point theory,

since this requires no metric on subspaces to be specified.

As a general conclusion it may be more appropriate to examine the robustness of
SIR in terms of its discontinuity and lack of qualitative robustness rather than the

breakdown point.
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Appendix: Supporting Technical
Results

Many of the proofs require basic, but perhaps less familiar, results from real analysis
involving sequences. We recall some important definitions involving a sequence of real

numbers {a,}5>, C R and collect some useful results with sequences in Lemma 7.1.

If {an};2, C R is a real sequence, define two further sequences {b,}>>, and {c,}5°,

by b, = sup{an, Gni1,anio,- ..}, ¢ = inf{ay,, ani1, anio, ...} for n € N. The sequence

[e.e]

°° , is monotonically

{b,}52, is monotonically decreasing (i.e., b,y1 < b,) while {c,}

increasing (i.e., ¢,41 > ¢,). Define

[e.9]

limsup a,, = inf{b, }>, lim inf a,, = sup{c, },es,

n—oo

where limsup,,_, . an, liminf, . a, € RU {co, —oc}.

Lemma 7.1 {a,}>°, C R is a real sequence, then the following hold.

(1) If {a,}32, is bounded so that |a,| < C, n € N, then there exists a subsequence
{an,; 132, C{an}iZ, and real a, |a| < C, such that a,; — a as j — oo. (Bolzano-
Weierstrass Theorem)

(i4) If a subsequence {an,; }32, C {an}p, satisfies an; — a as j — oo for some a € R,
then liminf,, . a, < a <limsup,,_, . an.

(iii) a, — a as n — oo for some a € R if and only if for any subsequence
{an; 132, C {an}ply, there exists a further subsequence {ay,; Yooy C {an;}52,

such that a,;, — a asm — oo.
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Proof. See Chapter 3 of Berberian (1994).

The following, useful result gives the singular value decomposition of a matrix A.

Lemma 7.2 If A is a p X ¢ matriz of rank k, then A can be expressed as
A=LAMT,

where L is a p X p orthogonal matriz, M is a g X q orthogonal matriz and A is a p X q

matrix of form

[diag(él, (52, e ,6k, 0... ,0 )|p><(q—p)0]
lengthp—k
and 63,03, ...,0% are the nonnegative eigenvalues of AAT or ATA.

Proof. Kshirsagar (1972, Theorem 1, p.247) O

We use the next result to show that the product of two projection matrices must

have a nonnegative trace.

Lemma 7.3 Let S, S be two vector subspaces of RP each spanned by an orthonormal
basis S = [s1,...,s,| and S = [S1,...,Sk+], respectively, where k,k* < p. If Ps and
Pz denote the corresponding projection matrices onto S and §, respectively, then it
holds that tr(PsPg) > 0. Also, tr(PsPgz) = 0 if and only if the subspaces S and S are

orthogonal.

Proof. With the projection matrices Ps and Pz as defined in Definition 2.9, it follows
that

tr(PsPg) = tr(SSTSST) = tr(STSSTS) = tr(AAT),

where A = STS is a k x k* matrix. Using a singular value decomposition STS = A=

LAMT, Lemma 7.2 yields now

k,l
tr(AAT) => 87 >0, (7.1)
=1
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where k' represents the rank of AA"T and 0 < 62 < 1,7 = 1,...,k/, represent the
nonnegative eigenvalues of AA". (The property that each 62 < 1,7 =1,... k', follows

from next argument. If 62 is an eigenvalue of AAT with eigenvector v;, v,/ v; = 1, then

51'2 = UZT'Ui(Si = ’UiTAATUi = (Svi)Tpg(Svi>

1PsSwi|*
< [[Sul*

< largest eigenvalue of SST = Ps

= 1,
using above that Ps = SST))

Now note that if S and S are orthogonal, then A = 0 follow