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Abstract

In this article a new monotone nonparametric estimate for a regression function of two

or more variables is proposed. The method starts with an unconstrained nonparametric

regression estimate and uses successively one-dimensional isotonization procedures. In the

case of a strictly monotone regression function, it is shown that the new estimate is first

order asymptotic equivalent to the unconstrained estimate, and asymptotic normality of

an appropriate standardization of the estimate is established. Moreover, if the regression

function is not monotone in one of its arguments, the constructed estimate has approximately

the same L
p-norm as the initial unconstrained estimate. The methodology is also illustrated

by means of a simulation study, and two data examples are analyzed.
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1 Introduction

The estimation of relationships among observable variables is an important problem in many
areas of applied statistics. The dependence between a real random variable Z and an explanatory
variable T can often be decomposed into a deterministic and stochastic part, that is

Z = m(T ) + σ(T )ε,(1.1)

where m and σ are smooth (unknown) functions (the regression and variance function), ε denotes
a random error, and T is the observed value of independent variables. In many settings, there
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are restrictions on the direction of the relationships between variables, but not on the particular
functional form of their relationships. Typical examples appear in economics where curvature
and monotonicity apply to indirect utility, expenditure, production, profit, and cost function [see,
e.g., Gallant and Golub (1984), Matzkin (1994), or Aı̈t-Sahalia and Duarte (2003) among many
others] or in medicine where the probability of contracting a certain disease (say cancer) depends
monotonically on certain factors (say smoking frequency, drinking frequency, and weight). The
present paper is devoted to the problem of constructing a smooth nonparametric estimate of the
regression function m which is strictly monotone in all (or a subset) of its arguments.
The common approach to obtain monotone estimates in nonparametric regression with an one-
dimensional predictor applies isotonic regression, which is easily implemented for functions of one
variable using the pool-adjacent violator algorithm (PAVA). Various modifications of this algo-
rithm have been proposed in the literature [see Brunk (1955), Mukerjee (1988), Mammen (1991),
Friedman and Tibshirani (1984), Ramsay (1988), or Hall and Huang (2001) among many others].
However for regression functions of more than one variable, the problem of constructing monotone
estimates is substantially more difficult, and good algorithms are not available except in special
cases. Most of the literature deals with algorithms for multi-argument isotonic regression on a grid
[see Gebhardt (1970), Dykstra and Robertson (1982), Lee (1983), or Qian and Eddy (1996) among
others], but to the knowledge of the authors, the presence of multivariate random predictors has
not been discussed so far in the literature. Because of the computational difficulties, several au-
thors propose alternative methodologies such as additive isotonic regression [see Bacchetti (1989)]
or hybrid-type estimators [see Mukarjee and Stern (1994)].
It is the purpose of the present paper to construct a smooth estimate for the function m in the non-
parametric regression model (1.1) which is strictly monotone in all (or a subset) of its arguments.
The approach uses successively one dimensional strictly monotone estimates, which were recently
proposed by Dette et al. (2005) in the case of an one-dimensional explanatory variable. The pro-
cedure applies an unconstrained nonparametric estimate of the regression function as preliminary
estimate which is successively monotonized in each variable without changing the monotonicity of
the other directions. The resulting estimate is strictly isotone in each of the specified coordinates
and has the same smoothness properties as the unconstrained estimate of the initial step. This is
an important advantage to the currently available procedures; because in the literature, isotonic
regression has been critizised for two reasons. On the one hand, practitioners do not believe in
the “flat” spots of the resulting estimators [see Wright (1978)]; on the other hand, there usually
appears some lack of smoothness in the resulting isotone estimates [see Hall and Huang (2001)].
The method is carefully described in Section 2, where also some of its basic properties are dis-
cussed. In Section 3, we prove asymptotic normality of the new estimate and demonstrate that
it has precisely the same first order asymptotic properties as the unconstrained estimate used as
preliminary estimate. In Section 4, we present a small simulation study and two data examples
in order to illustrate the applicability of our method. Finally, all technical details will be given in
the Appendix.

2 A strictly monotone regression estimate

In order to fix ideas, we describe a general procedure of monotonizing a given function, lately
introduced by Dette et al. (2005). To be precise, let g : [0, 1] → R denote an arbitrary function
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on a given interval, say [0, 1], we define for t ∈Im(g)

g−1
I (t) =

∫ 1

0

I{g(x) ≤ t}dx.(2.1)

Note that this function is always increasing and coincides with the inverse of the function g , say
g−1, in the case where g is strictly increasing. Some properties of a related function have been
discussed in the context of nondecreasing/nonincreasing rearrangements [see, e.g., Ryff (1965),
Ryff (1970), and Bennett and Sharpley (1988) among others]. The function g−1

I is not necessarily
smooth, but smoothing can easily be accomplished by considering the function

g−1
I (t, hd) =

1

hd

∫ 1

0

∫ t

−∞

Kd

(g(x) − u

hd

)

dudx,(2.2)

where hd is a bandwidth satisfying hd → 0 with increasing sample size, and Kd is a positive two
times continuously differentiable, symmetric kernel with compact support, say [−1, 1]. Note that
for hd → 0, we have

1

hd

∫ 1

0

∫ t

−∞

Kd

(g(x) − u

hd

)

dudx =

∫ 1

0

I{g(x) ≤ t}dx + o(1) = g−1
I (t) + o(1),(2.3)

and that for a positive kernel Kd, the function g−1
I (t, hd) is always strictly increasing, indepen-

dently whether the original function g has this property because of its positive derivative. For
computational purposes, we also consider an approximation of the integral g−1

I (t, hd), i.e.

g−1
N (t, hd) =

1

Nhd

N
∑

i=1

∫ t

−∞

Kd

(g( i
N

) − u

hd

)

du(2.4)

and its inverse gN(t, hd). The role of the inverse of g−1
I or g−1

I (t, hd) as a monotone and smooth
approximation of the function g is carefully discussed in Dette et al. (2005). In particular, the
following result is useful for our purposes.

Lemma 2.1. If the function g is strictly increasing and two times continuously differentiable, we
have for any t ∈ (g(0), g(1)) with g′(g−1(t)) > 0

g−1
N (t, hd) = g−1(t) + κ2(Kd)h

2
d(g

−1)′′(t) + o(h2
d) + O

( 1

Nhd

)

,(2.5)

gN(t, hd) = g(t) + κ2(Kd)h
2
d

g′′(t)

(g′(t))2
+ o(h2

d) + O
( 1

Nhd

)

,(2.6)

where the constant κ2(Kd) is given by κ2(Kd) = 1
2

∫ 1

−1
v2Kd(v)dv.

In the present context, we will use this concept successively to obtain monotone estimates of a
smooth regression function for two or more variables. For the sake of transparency, we restrict
ourselves to the problem of estimating regression functions with two arguments, but the corre-
sponding generalization to the higher dimensional case is obvious [see also Remark 2.7 at the end
of this section]. We further assume that the function m in (1.1) is increasing in both arguments.
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More precisely, we assume that n independent observation according to the model

Zi = m(Xi, Yi) + σ(Xi, Yi)εi(2.7)

are available. {(Ti, Zi)}
n
i=1 = {(Xi, Yi, Zi)}

n
i=1 is a sample of i.i.d. observations, where Ti = (Xi, Yi)

has a two times continuously differentiable positive density, say f, supported on the square [0, 1]2.
σ : [0, 1]2 → R

+ is a continuous variance function, and the regression function m : [0, 1]2 → R is
two times continuously differentiable with respect to both arguments. We finally assume that the
random variables (Xi, Yi) and εi are independent such that E[εi] = 0, E[ε2

i ] = 1, and E[ε4
i ] ≤ c < ∞

for some constant c > 0. To obtain strictly monotone estimates, the method proposed in this paper
is based on a successive monotonization of an unconstrained preliminary estimate with respect to
each of its arguments. For the preliminary estimate, any smoothing procedure (e.g. smoothing
splines, kernel estimates or local polynomials) could be used, but for the sake of transparency and
definiteness, we restrict ourselves to the classical Nadaraya-Watson estimate, that is

m̂(x, y) =

∑n
i=1 Kr

(

Xi−x
hr,1

, Yi−y
hr,2

)

Zi

∑n
i=1 Kr

(

Xi−x
hr,1

, Yi−y
hr,2

) ,(2.8)

where Kr is a two dimensional square integrable kernel with compact support, say [−1, 1]2, existing
second moments satisfying

κ2(Kr) =
1

2

∫

[0,1]2
x2Kr(x, y)dxdy =

1

2

∫

[0,1]2
y2Kr(x, y)dxdy,

(2.9)

0 =

∫

[0,1]2
xyKr(x, y)dxdy,

and hr,1, hr,2 denote the bandwidths for each coordinate. The isotonization of the nonparametric
regression estimate m̂ is now performed in four steps using a kernel density estimate with positive
kernel Kd and bandwidth hd.

• Step 1 (isotonization with respect to the first coordinate)

For each y ∈ (0, 1) define

m̂−1
I1

(z|y) =
1

Nhd

N
∑

i=1

∫ z

−∞

Kd

(m̂( i
N

, y) − u

hd

)

du,(2.10)

then m̂−1
I1

(z | y) is obviously a strictly increasing function of z (for fixed y) (provided that
N is sufficiently large) on the interval (m(0, y),m(1, y)). We also note that the summation
in (2.10) can be interpreted as a quadrature formula for the corresponding integral

1

hd

∫ 1

0

∫ z

−∞

Kd

(m̂(x, y) − u

hd

)

dudx.

• Step 2 (inversion with respect to the first coordinate)
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For each (fixed) y ∈ (0, 1) the inverse of the strictly increasing function m̂−1
I1

(z | y) (as a
function of z) is calculated and denoted by m̂I1(x, y). This function is strictly increasing
with respect to its first argument.

• Step 3 (isotonization with respect to the second coordinate)

For each (fixed) x ∈ (0, 1) define

m̂−1
I1,2

(t|x) =
1

Nhd

N
∑

j=1

∫ t

−∞

Kd

(m̂I1(x, j
N

) − u

hd

)

du,(2.11)

which is again a strictly increasing function of t (for fixed x) and denoted by m̂−1
I1,2

.

• Step 4 (inversion with respect to the second coordinate)

For each (fixed) x ∈ (0, 1) the inverse of the strictly increasing function m̂−1
I1,2

(y | x) (con-

sidered as a function of y) is calculated and denoted by m̂I1,2
(x, y). This function is strictly

increasing with respect to both arguments.

In the following, we will discuss some properties of this procedure, which demonstrate that the
estimate m̂I1,2

is a good smooth approximation of the regression function, which is increasing with
respect to both of its arguments. We will begin with a result which provides some monotonicity
properties of the function m̂−1

I1
(x | y) with respect to both arguments x and y. The proof can be

found in the Appendix.

Lemma 2.2. Assume that the preliminary estimate m̂(x, y) is strictly increasing with respect to
its second argument, then for sufficiently large N the estimate m̂−1

I1
(x | y) obtained in the first step

of the above isotonization procedure is

• strictly increasing in x for fixed y

• strictly decreasing in y for fixed x

The preceding lemma is the basic tool to prove the statement made at the end of Step 4 of our
procedure, i.e., the monotonicity of the regression estimate m̂I1,2

with respect to both arguments.
In other words, the monotonicity of the estimate m̂I1 with respect to the first coordinate obtained
in Step 1 and 2 of the procedure are not destroyed by the isotonization of m̂I1 with respect to the
second coordinate.

Lemma 2.3. For sufficiently large N , the estimate m̂I1,2
is strictly increasing with respect to both

arguments.

A few further remarks may be appropriate at this point for a better understanding of the pro-
posed procedure. If the regression function m in (2.7) is strictly increasing with respect to both
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arguments, it is heuristically clear that the estimate from the first step is an approximation of the
quantity

m−1
N1

(t|y) =
1

Nhd

N
∑

i=1

∫ t

−∞

Kd

(m( i
N

, y) − u

hd

)

du(2.12)

≈

∫ 1

0

I{m(x, y) ≤ t}dx =: m−1
1 (t | y),

where the approximation is justified if N → ∞, hd → 0 sufficiently fast. For fixed y ∈ (0, 1) the
function m is strictly isotone with respect to the first argument. It follows that m−1

1 (· | y) is the
inverse of m(·, y) (for fixed y ∈ (0, 1)), and the inversion in Step 2 of the algorithm reproduces m.
Because the same argument applies to the third and fourth step of our procedure, it is intuitively
clear that the estimate m̂I1,2

is a consistent estimate of a strictly istotone regression function in
two variables. These heuristic arguments will be made precise in the following section, where the
asymptotic properties of the new estimate are discussed.
The following result gives some information regarding the behaviour of the estimate m̂I1,2

in
the case where the regression function is not necessarily increasing with respect to both of its
arguments.

Theorem 2.4. Assume that in Step 1 and 3 of the isotonization procedure the definitions

m̃−1
I1

(z | y) =

∫ 1

0

I{m̂(u, y) ≤ z}du(2.13)

m̃−1
I1,2

(t | x) =

∫ 1

0

I{m̃I1(x, u) ≤ t}du(2.14)

are used instead of (2.10) and (2.11), respectively, and define m̃I1,2
as the inverse of the function

m̃−1
I1,2

, then we have for all p > 0

∫

[0,1]2
|m̃I1,2

(x, y)|pdxdy =

∫

[0,1]2
|m̂(x, y)|pdxdy.

Note that by Theorem 2.4 and the approximation (2.12) the original estimate m̂I1,2
has approxi-

mately (if N is sufficiently large and hd sufficiently small) the same Lp-norm as the unconstrained
Nadaraya-Watson estimate m̂. Consequently, if the regression function m is not isotone in both
coordinates, the estimate m̂I1,2

converges to a function, say mI1,2
with the same Lp-norm as the

function m for all p > 0.

Remark 2.5. Note that for finite sample sizes the estimates may differ if the order of mono-
tonization is interchanged. To be precise, let m̂I2,1

denote the estimate which is obtained by first
isotonizing with respect to the second argument and then with respect to the first argument. Then
for a specific point (x, y) ∈ (0, 1)2 the estimates m̂I1,2

(x, y) and m̂I2,1
(x, y) may differ slightly. In

order to avoid effects caused by the order of isotonization, the average estimate

m̂I(x, y) = (m̂I1,2
(x, y) + m̂I2,1

(x, y))/2
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could be used. On the other hand, it is shown in Section 3 that the estimates m̂1,2 and m̂2,1 are
first order asymptotic equivalent if the regression function m is monotone with respect to both
arguments. Therefore for moderate sample sizes substantial differences between the estimates m̂I1,2

and m̂I2,1
will rarely be observable in this case [see also Section 4 for some numerical examples].

Remark 2.6. It is also worth mentioning that the procedure can easily be adapted for the
nonparametric estimation of regression functions which are increasing in some and decreasing
in other components. More precisely, consider the model (2.7) and assume that the regression
function m is antitone in x and isotone in y. Then a shape restricted strictly antitone (with
respect to the first argument) estimate for the regression function m is obtained by using the
estimate

m̂−1
A1

(z|y) =
1

Nhd

N
∑

i=1

∫ ∞

z

Kd

(m̂( i
N

, y) − u

hd

)

du(2.15)

in Step 1 and 2 of our procedure. Obviously, m̂A1
is decreasing with respect to the first argument

z, and an application of Step 3 and 4 (i.e. isotonization with respect to the second argument)
yields a smooth estimate with the desired monotonicity properties, that is, an antitone and isotone
function with respect to the first and second argument, respectively.

Remark 2.7. The extension of the procedure to the monotone estimation of a regression depend-
ing on more than two variables is straightforward. For each coordinate, for which the relation
between response and variable is assumed to be monotone, a corresponding isotonization step and
inversion is performed. Note, however, that nonparametric estimation of a multivariate regression
function is a difficult problem due to the “curse of dimensionality”.
On the other hand, the application of parametric regression models avoids the problem of a high
dimensional predictor and unconstrained parametric estimates can easily be isotonized by the
method described in Step 1 - 4 of this section (we only replace the nonparametric initial estimate
by its corresponding parametric counterpart).

3 Asymptotic theory

In this section, we present some asymptotic results for the statistic m̂I1,2
introduced in the previous

section. In particular, we prove consistency and asymptotic normality of the new estimate. For
this, we need several conditions on the bandwidths, that is

hr,i → 0, (i = 1, 2), nhr,1hr,2 → ∞, hd → 0, Nhd → ∞(3.1)

n(hr,1 + hr,2)
6 = O(1), n = O(N),(3.2)

lim
n→∞

hr,i

hd

= ∞ , i = 1, 2,(3.3)

1

nhr,1hr,2h2
d

= o(1),(3.4)

log(hr,1 + hr,2)
−1

nhr,1hr,2h2
d

= o(1) .(3.5)
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The last bandwidth condition includes condition (3.4) and is used in the proofs of Theorem 3.2
and Theorem 3.4 where the asymptotic normality of the inverse of the functions m̂−1

I1
and m̂−1

I1,2
,

respectively, is etablished. This condition is a slight improvement to the assumption made in
Dette et al. (2005).
Recall that for a strictly increasing function in the first argument m−1

1 (t|y) is the inverse of
m if the inversion is performed with respect to first argument where the second argument is
fixed. Similarly m−1

2 (t|x)) denotes the inverse with respect to the second argument for fixed first
argument. Moreover, ∂

∂x1

m(x, y) and ∂
∂y1

m(x, y) indicate the partial derivatives regarding the first
and second argument, respectively. The following theorem is proven in the appendix.

Theorem 3.1. Assume that the conditions stated at the beginning of Section 2, and the assump-
tions (3.1) - (3.4) are satisfied. If the regression function m in (2.7) is strictly increasing with re-
spect to x, then we have for any fixed y and for all t ∈ (m(0, y),m(1, y)) with ∂

∂x1

m(m−1
1 (t|y), y) > 0

√

nhr,1hr,2

(

m̂−1
I1

(t|y) − m−1
1 (t|y) + b1(t, y)

)

D
→ N (0, s2

1(t, y)),

where the asymptotic bias and variance are given by

b1(t, y) =
κ2(Kr)

∂
∂x1

m(m−1
1 (t|y), y)

[

h2
r,1

∂2

∂x2
1

m(m−1
1 (t|y), y) + h2

r,2

∂2

∂y2
1

m(m−1
1 (t|y), y)(3.6)

+ 2h2
r,1

∂
∂x1

m(m−1
1 (t|y), y) ∂

∂x1

f(m−1
1 (t|y), y)

f(m−1
1 (t|y), y)

+ 2h2
r,2

∂
∂y1

m(m−1
1 (t|y), y) ∂

∂y1

f(m−1
1 (t|y), y)

f(m−1
1 (t|y), y)

]

,

s2
1(t, y) =

σ2(m−1
1 (t|y), y)

f(m−1
1 (t|y), y)( ∂

∂x1

m(m−1
1 (t|y), y))2

∫

[−1,1]2
K2

r (u, v)dudv,(3.7)

respectively, and the quantity κ2(Kr) is defined in (2.9).

Our next result gives a corresponding statement of asymptotic normality of the estimate m̂I1(·, y),
which is obtained by the inversion of the function m̂−1

I1
(· | y) considered as function of the variable

x for fixed y. The proof follows similar arguments as presented in Dette et al. (2005) for the
one-dimensional case, but we will give some hints in the appendix how the improved bandwidth
condition (3.5) can be achieved.

Theorem 3.2. If the assumptions of Theorem 3.1 and condition (3.5) are satisfied, then it follows
for any y ∈ (0, 1) and x ∈ (0, 1) with ∂

∂x1

m(x, y) > 0 that

√

nhr,1hr,2

(

m̂I1(x, y) − m(x, y) − b(x, y)
)

D
→ N (0, s2(x, y)),(3.8)

where the asymptotic bias and variance are given by

b(x, y) = κ2(Kr)
[

h2
r,1

∂2

∂x2
1

m(x, y) + h2
r,2

∂2

∂y2
1

m(x, y)(3.9)
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+ 2h2
r,1

∂
∂x1

m(x, y) ∂
∂x1

f(x, y)

f(x, y)
+ 2h2

r,2

∂
∂y1

m(x, y) ∂
∂y1

f(x, y)

f(x, y)

]

,

s2(x, y) =
σ2(x, y)

f(x, y)

∫

[−1,1]2
K2

r (u, v)dudv,(3.10)

respectively, and the quantity κ2(Kr) is defined in (2.9).

Step 3 of the proposed algorithm in Section 2 uses the implicitly defined estimate m̂I1 again as a
preliminary estimate where now the role of the first and second argument is interchanged. Our
next theorem gives the asymptotic normality of the resulting estimate m̂−1

I1,2
. The proof is more

complicated because, in contrast to the estimate m̂−1
I1

in (2.10) (which uses the Nadaraya-Watson
estimate as preliminary estimate), the preliminary estimate m̂I1 is only defined implicitly as the
inverse of the function m̂−1

I1
. The details are given in the Appendix.

Theorem 3.3. If the assumptions of Theorem 3.2 are satisfied, and the regression function m
in model (2.7) is strictly increasing with respect to both arguments, then it follows for any fixed x
and for all t ∈ (m(x, 0),m(x, 1)) with ∂

∂y1

m(x,m−1
2 (t|x)) > 0 and ∂

∂x1

m(x,m−1
2 (t|x)) > 0

√

nhr,1hr,2

(

m̂−1
I1,2

(t|x) − m−1
2 (t|x) + b2(x, t)

)

D
→ N (0, s2

2(x, t)),(3.11)

where the asymptotic bias and variance are given by

b2(x, t) =
κ2(Kr)

∂
∂y1

m(x,m−1
2 (t|x))

[

h2
r,1

∂2

∂x2
1

m(x,m−1
2 (t|x)) + h2

r,2

∂2

∂y2
1

m(x,m−1
2 (t|x))(3.12)

+ 2h2
r,1

∂
∂x1

m(x,m−1
2 (t|x)) ∂

∂x1

f(x,m−1
2 (t|x))

f(x,m−1
2 (t|x))

+ 2h2
r,2

∂
∂y1

m(x,m−1
2 (t|x)) ∂

∂y1

f(x,m−1
2 (t|x))

f(x,m−1
2 (t|x))

]

,

s2
2(x, t) =

σ2(x,m−1
2 (t|x))

f(x,m−1
2 (t|x))( ∂

∂y1

m(x,m−1
2 (t|x)))2

∫

[−1,1]2
K2

r (u, v)dudv,(3.13)

respectively, and the quantity κ2(Kr) is defined in (2.9).

Our final asymptotic result refers to the stochastic properties of the estimate m̂1,2 obtained in
Step 4 of our algorithm. The proof is derived from Theorem 3.3 by the same arguments as used
for the proof of Theorem 3.2 and therefore omitted.

Theorem 3.4. If the assumptions of Theorem 3.3 are satisfied, then we have for any x and y
with ∂

∂x1

m(x, y) > 0, ∂
∂y1

m(x, y) > 0

√

nhr,1hr,2

(

m̂I1,2
(x, y) − m(x, y) − b(x, y)

)

D
→ N (0, s2(x, y)),(3.14)

where the asymptotic bias and variance are given by (3.9) and (3.10), respectively.
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Remark 3.5. It follows from Theorem 3.4 that the estimate m̂I1,2
is first order asymptotic

equivalent the to the unconstrained Nadaraya-Watson estimate m̂ [see Härdle et al. (2004) and
observe the symmetry condition for the kernel Kr in (2.9)]. Similarly, by Theorem 3.2, the
estimate m̂I1 is first order asymptotic equivalent to m̂ and m̂I1,2

. Thus each pair of steps in the
algorithm produces a first order asymptotic equivalent estimate with one additional isotonized
coordinate. Moreover, Theorem 3.4 also shows that from an asymptotic point of view the order of
isotonization in the procedure can be interchanged. In other words, the nonparametric regression
estimate m̂I2,1

obtained by first isotonizing with respect to the second and then with respect to
the first coordinate exhibits the same asymptotic behaviour as described for the estimate m̂I1,2

in
Theorem 3.4.

Remark 3.6. It is worthy of mention that similar asymptotic results can be obtained if alternative
unconstrained nonparametric regression estimates are used as preliminary estimate m̂. Consider,
for example, the local linear estimator for the function m in the regression model (2.7), then a
similar analysis as presented in the Appendix shows that the statement (3.14) in Theorem 3.4 is
still valid if the bias b(x, y) is replaced by

b̃(x, y) = κ2(Kr)
[

h2
r,1

∂2

∂x2
1

m(x, y) + h2
r,2

∂2

∂y2
1

m(x, y)
]

(3.15)

[see equations (5.8) and (5.9) in the Appendix]. Again the monotonized estimate is first order
equivalent to the unconstrained local linear estimate [see e.g. Ruppert and Wand (1994)]. Because
of its better performance at the boundary, the local linear estimate was in fact used in our
numerical examples, which will be described in the following section.

4 Finite sample properties and data analysis

In this section, we investigate the finite sample properties of the new monotone estimates m̂I1,2
and

m̂I2,1
of the regression function m by means of a simulation study and illustrate the performance

of the new procedure in two data examples.

4.1 A small simulation study

In order to avoid boundary effects, we implemented the new procedure using a two dimensional
local linear estimator [see Ruppert and Wand (1994)] and the bandwidth

hr,1 = hr,2 =
( σ̃2

n

)1/6

(4.1)

where σ̃2 =
∫

σ2(u, v)dudv denotes the integrated variance and n is the sample size. For the kernel
Kr, we used a product kernel based on two Epanechnikov kernels k(x) = 3

4
(1 − x2)I[−1,1](x) and

the same kernel was used for Kd in step 1 and 3 of the procedure. The number N of nodes in
(2.10) used for the evalutation of the integral is chosen as N = 51 and the bandwidth in step 1
and 3 is given by hd = h3

r.
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Example 4.1 We consider a regression model with

m(x, y) =
1

2
(y +

1

6π
sin(6πy))(1 + (2x − 1)3),(4.2)

which is obviously strictly isotone in each coordinate. For the error distribution in model (2.7)
we use a normal distribution, whereas the variance function is constant and given by σ2 = 0.1.
The sample size is n = 400 and the design density is a uniform distribution on the square [0, 1]2.
In Figure 1, we display a typical picture of the regression estimates based on one simulation. In
order to avoid the domination by boundary effects, all graphical results in this example will be
displayed on the square [0.05, 0.95]2.
We observe that the local linear estimate is obviously not isotone with regard to both arguments
[see the upper right panel in Figure 1]. The estimates m̂I1 and m̂I2 with respect to the coordinates
x and y, respectively, look substantially different because isotonization is only performed with
respect to one coordinate [the middle panel in Figure 1]. On the other hand, substantial differences
between the isotone estimates m̂I1,2

and m̂I2,1
(obtained by interchanging the order of isotonization)

are not visible as predicted by our asymptotic theory [see the lower panel in Figure 1].
For a better understanding of our procedure and a direct comparison of the two estimates m̂I1,2

and m̂I2,1
, we present also two dimensional plots of the estimates of the regression function m(x, y),

where one coordinate has been fixed. In Figure 2, we show three typical simulations of the estimate
m̂I1,2

, m̂I2,1
, and the “true” curve, where the coordinate y is fixed at 0.3, 0.5, and 0.7. The left

part of the figure correspond to the curves obtained by the estimate m̂I1,2
, whereas the right part

shows the curves for the estimate m̂I2,1
. The corresponding results for fixed x = 0.3, 0.5, and 0.7

are depicted in Figure 3. We observe a reasonable performance of the estimates in all cases and
again no substantial differences between the estimates m̂I1,2

and m̂I2,1
obtained by interchanging

the order of isotonization.

Example 4.2 In this example, we compare the isotonized estimates with the unconstrained
local linear estimates. Again to avoid the domination by boundary effect, we calculate the mean
squared error of both estimates over the square [0.1, 0.9] × [0.1, 0.9]. In Figure 4, we display the
ratios

r(x, y) =
MSE[m̂(x, y)]

MSE[m̂1,2(x, y)]
(4.3)

in this region for the regression function (4.2) and the functions

m(x, y) =
1

2
[x + y +

1

6π
sin(6π(x + y))](4.4)

m(x, y) = sin
(π

4
(x + y)

)

(4.5)

m(x, y) = (2xy +
1

2
x2 − 2y2 + 2y −

1

2
)I{1 ≤ 2y ≤ x + 1}(4.6)

+ (2yx −
1

2
x2)I{x ≤ 2y < 1} + 2y2I{2y < x} + xI{x + 1 ≤ 2y}.
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Figure 1: The regression function (4.2) and its different estimates. Upper panel: the regression
function m (left) and the local linear estimator m̂ (right) based on n = 400 observations with
variance σ2 = 0.1. Middle panel: monotone estimate m̂I1 with respect to the first coordinate (left)
and monotone estimate m̂I2 with respect to second coordinate (right). Lower panel: monotone
estimates with respect to both coordinates m̂I1,2

(left) and m̂I2,1
(right).
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Figure 2: The regression function m and its monotone estimates m̂I1,2
(dotted lines) and m̂I2,1

(dashed lines) in comparison to each other. The three estimates m̂I1,2
and m̂I2,1

, respectively, are
obtained from three different simulation runs. The Figure shows the two dimensional functions
fixed in y: y = 0.3 (upper panel), y = 0.5 (middle panel) and y = 0.7 (lower panel). The solid
curve corresponds to the “true” regression function, whereas the estimates m̂I1,2

are represented by
the dotted curves and m̂I2,1

by the dashed curves.
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Figure 3: The regression function m and its monotone estimates m̂I1,2
(dotted lines) and m̂I2,1

(dashed lines) in comparison to each other. The three estimates m̂I1,2
and m̂I2,1

, respectively, are
obtained from three different simulation runs. The Figure shows the two dimensional functions
fixed in x: x = 0.3 (upper panel), x = 0.5 (middle panel) and x = 0.7 (lower panel). The solid
curve corresponds to the “true” regression function, whereas the estimates m̂I1,2

are represented by
the dotted curves and m̂I2,1

by the dashed curves.
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Again the sample size is n = 400 and the errors are standard normal with variance σ2 = 0.1. The
ratio of the mean squared errors was estimated by 1000 simulation runs and is larger than 1 if
and only if the monotonized estimate has a better performance. We observe that for all regression
functions the surfaces usually exceed the value 1, which indicates that the additional information
of monotonicity in the nonparametric regression estimate can improve its finite sample properties.
In most cases, the improvement is substantial. For example in model (4.2), there are several
regions in the square [0.1, 0.9]2, where the ratio is larger than 1.7. The improvement caused by
the monotonization in model (4.4) and (4.5) is not so large but still clearly visible.
Note that model (4.6) corresponds to the distribution function of the random variable Z = 1

2
(X +

Y ), where X,Y are independent with a uniform distribution on the interval [0, 1]. This model
does not satisfy the assumptions of our theoretical results because for 2y ≥ x + 1, we have
m(x, y) = x, and this function is not strictly increasing with respect to y. Similarly, we have
m(x, y) = 2y2 if 2y < x in model (4.6). Nevertheless, the statistic m̂I1,2

yields also a reliable
estimate of the regression function in this case. Observe also that there are some (small) areas,
where the unconstrained local linear estimate yields a smaller mean squared error in model (4.6).
However, in most cases, the incorporation of the additional information of monotonicity yields a
reduction of the mean squared error, in particular, if the regression function is strictly increasing
with respect to both arguments.

4.2 Two data examples

To investigate the performance of our procedure in practice, we consider two typical examples
for monotone regression functions with two independent variables. In both examples, we used
Spokoiny’s variance estimate for high-dimensional regression models [see Spokoiny (2002)] to ob-
tain an estimate σ̂2 of the integrated variance. Then a two-step cross validation was used to
determine the bandwidths hr and hd. The first step is to choose the bandwidth hr. The leave-one-
out cross validation procedure was implemented to minimize the cross validation function over an

appropriate interval centered at the point (σ̂2/n)
1/6

to determine hr [see Härdle (1990, page 152)],
where n is the sample size of the datasets. The resulting minimizer is used as the bandwidth
hr to fit the local linear estimator for the regression curve. To choose the bandwidth for the
monotonizing procedure, we performed a second cross validation and minimized the function

CV (hd) = n−1

n
∑

i=1

(Zi − m̂I,i(Xi, Yi))
2,

where
m̂I,i(x, y) = (m̂I1,2,i(x, y) + m̂I2,1,i(x, y))/2

is the average of the two monotone estimates m̂I1,2
and m̂I2,1

(obtained by interchanging the
order of isotonization) in which the ith observation is left out. In order to make these exam-
ples reproducible, we provide an R-package, called ‘monoProc’, where an implementation of the
monotonization procedure and further examples as well as Example 4.3 can be found.

Example 4.3 A reasonable criterion for obesity is to calculate the bodyfat percentage of a person.
The most accurate techniques like underwater weighing to obtain the bodyfat percentage are time
consuming and expensive.
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Figure 4: The simulated ratio (4.3) of the mean squared errors of the local linear estimate and
its monotonization with respect to the x and y coordinate. The four surfaces correspond to the
regression functions (4.2): upper left panel, (4.4): upper right panel, (4.5): lower left panel and
(4.6): lower right panel.

16



Other methods to estimate this percentage suggest certain predictive equations depending on,
e.g., weight, height, age, and several simple body measurements. The dataset, we analysed to give
a simple example for a monotone regression function in more than one variable consists of age,
weight, height, 10 simple body circumfence measurments, and the bodyfat percentage provided by
underwater weighing using Siri’s equation recorded for 252 men from 22 to 81 years [see Penrose
et al. (1985)]. We restricted ourselves to consider simply weight and height. Certainly, this
restriction is simplifying since the Body Mass Index

BMI =
weight(lbs)

(height(in))2

as an indicator for the bodyfat percentage can be quite problematic [see Summerfield (2001,
page 78)]. On the other hand, there are also problems with the accuracy of body circumfence
measurements. Weight and height are, in contrast to that, easily obtained quantities. Moreover, it
is reasonable that in an average group of men, bodyfat should be an increasing function of weight
and a decreasing function of height. It has to be mentioned that two outliers in this dataset have
been disregarded [observation 39 and 42]. For the Bodyfat dataset, we obtained σ̂2 = 39.48902
using Spokoiny’s variance estimate. The cross validation function suggests the bandwidth hr = 0.5
for the unconstrained estimator. In the second cross validation the bandwidth hd = 0.75 for the
monotonizing procedure was chosen out of the set [0.1, 3.0] with CV (0.75) = 30.9634. In this
example, there is a slight difference between the cross validation value of m̂I1,2

(31.063877) and
m̂I2,1

(30.862941). The choice hd = 0.75 corresponds also to the minimum of CV (hd) if only
m̂I1,2

is under consideration. By comparison, the local linear estimate leads in this setup to a
cross validation value of 30.952571. The (monotone) estimate of the regression function (bodyfat
percentage as a function of weight and height) is depicted in Figure 5.

Example 4.4 Often a monotone dependency between
Bodyfat Percentage
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65
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Figure 5: Isotone estimate of the Bodyfat
percentage as a function of weight and age.

education and work experience and the correspond-
ing salary is assumed. To examine the monotonic re-
lationship between the frequency to earn more than
$50 000 per year as response and education and age
as explanatory variables, we analysed a reasonably
clean extract of the 1994 Census database found in
Blake and Merz (1998) [see also Kohavi (1996)]. This
data consists of 48813 instances after removing dupli-
cates. Since we are only interested in age, education,
and the frequency of earning more than $50 000 a
year, we derived a dataset with 639 observations, age
ranging from 19 to 90 and education levels from 1 to
16. This extract includes only age groups in which
at least one person earns more than 50000 per year.
Furthermore, we restricted age to 27-70 and analysed
therefore a sample of 516 observations. Spokoiny’s variance estimate leads to σ̂2 = 0.02563633,
and we obtained the bandwidth hr = 0.169 by cross validation. Again we used a second cross
validation to find the bandwidth hd.
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The cross validation function CV (hd) was minimized over the set [0.001, 0.03]. In the following
table, a part of these results for the different estimates are recorded. Note that the impact of
the choice of the bandwidth hd on the cross validation function is very small. We decided to use
hd = 0.017 for the further analysis, which is a minimizer of CV (hd) for the average of the two
monotonized procedures m̂I = (m̂I12 + m̂I21)/2. But the difference to the minima of the estimates
m̂I12 and m̂I21 , which are attained at hd = 0.013 and in hd = 0.019 respectively, is negligible.

m̂I m̂I12 m̂I21 hd m̂I m̂I12 m̂I21 hd

0.0331355 0.034175 0.032096 0.009 0.033113 0.03419 0.032036 0.02

0.033126 0.034169 0.032083 0.01 0.0331165 0.034196 0.032037 0.021

0.033119 0.034167 0.032071 0.011 0.03312 0.034203 0.032037 0.022

0.033114 0.034166 0.032062 0.012 0.0331245 0.03421 0.032039 0.023

0.0331105 0.034165 0.032056 0.013 0.0331315 0.034221 0.032042 0.024

0.0331085 0.034166 0.032051 0.014 0.03314 0.034233 0.032047 0.025

0.0331065 0.034167 0.032046 0.015 0.033149 0.034246 0.032052 0.026

0.0331055 0.034169 0.032042 0.016 0.033159 0.03426 0.032058 0.027

0.0331055 0.034172 0.032039 0.017 0.03317 0.034275 0.032065 0.028

0.033107 0.034177 0.032037 0.018 0.0331815 0.03429 0.032073 0.029

0.0331095 0.034183 0.032036 0.019 0.033194 0.034307 0.032081 0.03

Table 1: Scores of the cross validation function for the different estimates with hr = 0.169

The estimates for the regression function are displayed in Figure 6. Since the difference between
m̂I12 and m̂I21 was not significant, only the estimate m̂I is shown. The monotonization with respect
to the education level appears to be more influential than the monotonization with respect to age.

5 Appendix: Proofs

For the sake of simplicity, we assume that the same bandwidths are used for both coordinates, i.e.
hr = hr,1 = hr,2 in the regression estimate (2.8), and that the kernel Kr in this estimate is in fact a
product kernel, i.e. Kr(x)Kr(y), where we also use the symbol Kr for the one-dimensional kernel.
For a more transparent notation, we will further assume that N = n. Throughout this section,
we use the same notations as in the previous sections. The index “1” in m−1

1 means inversion
of the function m with respect to its first argument, where the second argument has been fixed.
Whereas the indexes in m̂I1,2

refer not only to the variables which has been monotonized but also
to the order of isotonization.

5.1 Proof of Lemma 2.2.

Recall the definition of the estimate m̂−1
I1

in (2.10), then (for sufficiently large N = n) m̂−1
I1

is
obviously strictly increasing with respect to its first argument (for fixed second argument) because
the kernel Kd is positive. For fixed x and y1 < y2, we therefore obtain

m̂−1
I1

(x | y2) − m̂−1
I1

(x | y1) =
1

N

N
∑

i=1

{

K̄d

(m̂( i
N

, y1) − x

hd

)

− K̄d

(m̂( i
N

, y2) − x

hd

)}

,
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Figure 6: The results of the Census-Income Example. The estimates for the regression function
and their corresponding Contour Plots from top to bottom with hr = 0.169 and hd = 0.017: m̂I ,
m̂I1 , m̂I2 , and m̂
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where K̄d(w) =
∫ w

−1
Kd(v)dv is a strictly increasing function for w ∈ [−1, 1]. Now, by the assump-

tion of the lemma, m̂ is strictly increasing with respect to its second argument, which implies that
the above difference is negative for at least one i if N is sufficiently large. Consequently, for fixed
x, the estimate m̂−1

I1
is strictly decreasing with respect to its second argument.

2

5.2 Proof of Lemma 2.3.

From the basic construction, it is obvious that the estimate m̂I1,2
is strictly increasing with respect

to its second argument for sufficiently large N , and it remains to show that it has the same property
with respect to its first argument. By Lemma 2.2, it follows that m̂I1 is strictly increasing with
respect to its first argument. Therefore interchanging the role of the first and second coordinate
and applying the second part of Lemma 2.2, it follows that m̂−1

I1,2
is strictly decreasing in x for

fixed y and sufficiently large N , that is

m̂−1
I1,2

(y | x1) > m̂−1
I1,2

(y | x2)(5.1)

if x1 < x2. Note further that the function m̂I1,2
is obtained by the inversion of m̂−1

I1,2
as a function

of y for fixed x. In other words,
t = m̂I1,2

(x, y)

is the (unique) solution of the equation

m̂−1
I1,2

(t | x) = y

with respect to t. Now consider the equation (with respect to t1, t2)

y = m̂−1
I1,2

(t1 | x1) = m̂−1
I1,2

(t2 | x2)

with x1 < x2. We have to show that t1 = m̂I1,2
(x1, y) < t2 = mI1,2

(x2, y) and assume that the
converse t2 ≤ t1 is true. In this case, we would obtain from the monotonicity of m̂−1

I1,2
(t | x) with

respect to the variable t and from (5.1) that

m̂−1
I1,2

(t1 | x1) = m−1
I1,2

(t2 | x2) ≤ m−1
I1,2

(t1 | x2) < m−1
I1,2

(t1 | x1),

which yields a contradiction to the assumption

m̂I1,2
(x1, y) = t1 ≥ t2 = m̂I1,2

(x2, y).

2

5.3 Proof of Theorem 2.4.

It has been proven by Birke and Dette (2005) that the inverse of the function g−1
I defined in (2.1)

satisfies
∫ 1

0

|gI(u)|pdu =

∫ 1

0

|g(u)|pdu(5.2)
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for all p > 0. We now use Fubini’s theorem and obtain by two applications of (5.2)

∫

[0,1]2
|m̃I1,2

(x, y)|pdxdy =

∫ 1

0

∫ 1

0

|m̂I1(x, u)|pdudx

=

∫ 1

0

∫ 1

0

|m̂I1(x, u)|pdxdu =

∫

[0,1]2
|m̂(x, y)|pdxdy.

2

5.4 Proof of Theorem 3.1.

The proof follows by adapting the arguments in Dette et al. (2005) to the two-dimensional case.
Because these authors discuss the case where the bandwidths hr and hd are of the same order, i.e.
limn→∞ hr/hd = c > 0, and in order to make the present paper self-contained, we present some
details, which are also useful to see why the bandwidth conditions in (3.1) - (3.4) are required.
Moreover, the arguments given in this subsection will help the reader to understand the proof of
Theorem 3.3. We use Lemma 2.1, hd = o(hr), and the decomposition

∆n(t|y) = (m̂−1
I1

− m−1
1 )(t|y)(5.3)

= (m̂−1
I1

− m−1
n1

)(t|y) + o(
1

√

nh2
r

)

=
1

nhd

n
∑

i=1

∫ t

−∞

(

Kd

(m̂( i
n
, y) − u

hd

)

− Kd

(m( i
n
, y) − u

hd

))

du + o(
1

√

nh2
r

)

= ∆(1)
n (t|y) +

1

2
∆(2)

n (t|y) + o(
1

√

nh2
r

),

where the function m−1
n1

(t|y) is defined in (2.12) (note that we assume N = n throughout this
proof and that the index 1 corresponds to the first coordinate),

∆(1)
n (t|y) =

1

nh2
d

n
∑

i=1

∫ t

−∞

K ′
d

(m( i
n
, y) − u

hd

)(

m̂(
i

n
, y) − m(

i

n
, y)

)

du,(5.4)

∆(2)
n (t|y) =

1

nh3
d

n
∑

i=1

∫ t

−∞

K ′′
d

(ξi(y, u) − u

hd

)(

m̂(
i

n
, y) − m(

i

n
, y)

)2

du,(5.5)

and the points ξi(y, u) satisfy for any u ∈ (−∞, t] the inequalities

|ξi(y, u) − m(
i

n
, y)| ≤ |m̂(

i

n
, y) − m(

i

n
, y)| i = 1, . . . , n.

Now a standard argument using the asymptotic MSE of the estimate m̂(x, y), the bandwidth
condition (3.4), and a Taylor expansion shows that

√

nh2
r∆

(2)
n (t|y) = op(1).(5.6)
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The remaining term ∆
(1)
n is decomposed as follows

∆(1)
n (t|y) = (∆(1.1)

n (t|y) + ∆(1.2)
n (t|y))(1 + op(1)),(5.7)

with

∆(1.1)
n (t|y) =

−1

n2hdh2
r

n
∑

i,j=1

Kd

(m( i
n
, y) − t

hd

)

Kr

(Xj −
i
n

hr

)

Kr

(Yj − y

hr

)m(Xj, Yj) − m( i
n
, y)

f( i
n
, y)

(5.8)

∆(1.2)
n (t|y) =

−1

n2hdh2
r

n
∑

i,j=1

Kd

(m( i
n
, y) − t

hd

)

Kr

(Xj −
i
n

hr

)

Kr

(Yj − y

hr

)

σ(Xj, Yj)
εj

f( i
n
, y)

(5.9)

corresponding to bias and variance in Theorem 3.1. A straightforward calculation yields for the
first term

E[∆(1.1)
n (t|y)] = −

(1 + o(1))

h2
rhd

∫

Kd

(m(x, y) − t

hd

)

Kr

(u − x

hr

)

Kr

(v − y

hr

)

(5.10)

×
(m(u, v) − m(x, y))

f(x, y)
f(u, v)dxdudv

= −
(1 + o(1))h2

rκ2(Kr)
∂

∂x1

m(m−1
1 (t|y), y)

( ∂2

∂x2
1

m(m−1
1 (t|y), y) +

∂2

∂y2
1

m(m−1
1 (t|y), y)

+ 2
∂

∂x1

m(m−1
1 (t|y), y) ∂

∂x1

f(m−1
1 (t|y), y)

f(m−1
1 (t|y), y)

+ 2

∂
∂y1

m(m−1
1 (t|y), y) ∂

∂y1

f(m−1
1 (t|y), y)

f(m−1
1 (t|y), y)

)

,

which gives the bias in Theorem 3.1 (note that we assume hr = hr,1 = hr,2 throughout this section).

For the estimation of the variance of ∆
(1.1)
n (t|y), we use the substitution x = m−1

1 (t + hdu|y) and
obtain

Var(∆(1.1)
n (t|y))

≤
1

n3h4
rh

2
d

E
[(

n
∑

i=1

Kd

(m( i
n
, y) − t

hd

)

Kr

(Xj −
i
n

hr

)

Kr

(Yj − y

hr

)m(Xj, Yj) − m( i
n
, y)

f( i
n
, y)

)2]

=
(1 + o(1))

nh4
rh

2
d

∫

(

∫ 1

0

Kd

(m(x, y) − t

hd

)

Kr

(v − x

hr

)

Kr

(w − y

hr

)m(v, w) − m(x, y)

f(x, y)
dx

)2

f(v, w)dvdw

=
(1 + o(1))

nh4
r

∫

K2
r

(v − m−1
1 (t|y)

hr

)

K2
r

(w − y

hr

) (m(v, w) − m(m−1
1 (t|y), y))2

(f(m−1
1 (t|y), y) ∂

∂x1

m(m−1
1 (t|y), y))2

f(v, w)dvdw.

With the substitutions v = m−1
1 (t|y) + hrv

′ and w = y + hrw
′ it therefore follows

Var(∆(1.1)
n (t|y)) ≤

(1 + o(1))

nh2
r

1

f(m−1
1 (t|y), y)( ∂

∂x1

m(m−1
1 (t|y), y))2

(5.11)

×

∫

K2
r (v′)K2

r (w′)(m(m−1
1 (t|y) + hrv

′, y + hrw
′) − m(m−1

1 (t|y), y))2dv′dw′

= O
( 1

n

)

= o(
1

nh2
r

).
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In order to derive the last identities, we applied a first order Taylor expansion. We note at this
point that in the case of a d-dimensional predictor the rate of convergence in (5.11) is of order

O
( 1

nhd−2
r

)

[see also Dette et al. (2005) for the case d = 1]. For the treatment of the second term ∆
(1.2)
n (t|y)

in (5.7), we note that E[∆
(1.2)
n (t|y)] = 0 and obtain (using the i.i.d. assumption)

Var(
√

nh2
r∆

(1.2)
n (t|y)) =

(1 + o(1))

h2
dh

2
r

∫

σ2(u, v)Kd

(m(x, y) − t

hd

)

Kd

(m(z, y) − t

hd

)

× K2
r

(v − y

hr

)

Kr

(u − x

hr

)

Kr

(u − z

hr

) f(u, v)

f(x, y)f(z, y)
dxdzdudv

=
(1 + o(1))

h2
r

∫

K2
r

(v − y

hr

)

Kd(x
′)Kd(z

′)Kr

(u − m−1
1 (t + hdx

′|y)

hr

)

× Kr

(u − m−1
1 (t + hdz

′|y)

hr

) σ2(u, v)f(u, v)

(f(m−1
1 (t|y), y) ∂

∂x1

m(m−1
1 (t|y), y))2

dx′dz′dudv,

where we used the substitutions x = m−1
1 (t+hdx

′|y) and z = m−1
1 (t+hdz

′|y) in the last equation.
A further substitution v = y + hrv

′ and u = m−1
1 (t + hdx

′|y) + hru
′ now gives

Var(
√

nh2
r∆

(1.2)
n (t|y)) =

(1 + o(1))σ2(m−1
1 (t|y), y)

f(m−1
1 (t|y), y)( ∂

∂x1

m(m−1
1 (t|y), y))2

∫

K2
r (v′)Kd(x

′)Kd(z
′)Kr(u

′)(5.12)

×Kr

(m−1
1 (t + hdx

′|y) − m−1
1 (t + hdz

′|y)

hr

+ u′
)

dx′dy′du′dv′

=
(1 + o(1))σ2(m−1

1 (t|y), y)

f(m−1
1 (t|y), y)( ∂

∂x1

m(m−1
1 (t|y), y))2

(

∫

K2
r (u′)du′

)2

,

where we have used the condition limn→∞
hd

hr
= 0 in the last step and the simplifying assumption

of a product kernel made at the beginning of this section. Finally, the assertion of the Theorem
follows from (5.3), (5.6), (5.7), (5.10), (5.11), (5.12), and the weak convergence

√

nh2
r∆

(1.2)
n (t|y)

D
→ N (0, s2(t, y)) ,(5.13)

which is an immediate consequence of Ljapunoff’s Theorem. 2

5.5 Sketch of the proof of Theorem 3.2.

The basic idea to prove Theorem 3.2 uses a special Taylor expansion for the operator, which maps
a strictly increasing function g with t in the interior of its image to its quantile g−1(t). Details
can be found in Dette et al. (2005). By this expansion, we obtain the following decomposition

m̂I1(t, y) − m(t, y) = An(y) +
1

2
Bn(y),(5.14)
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where

An(y) = −
(m̂−1

I1
− m−1

1 )
∂

∂x1

(m−1
1 )

◦ (m(t, y)|y)

= −
∂

∂x1

m(t, y)(m̂−1
I1

− m−1
1 ) ◦ (m(t, y)|y)

and

Bn(y) = 2
(m̂−1

I1
− m−1

1 ) ∂
∂x1

(m̂−1
I1

− m−1
1 )

[ ∂
∂x1

(m−1
1 + λ∗(m̂−1

I1
− m−1

1 ))]2
◦ (m−1

1 + λ∗(m̂−1
I1

− m−1
1 ))−1

1 (t|y)

−
(m̂−1

I1
− m−1

1 )2 ∂2

∂2x1

(m−1
1 + λ∗(m̂−1

I1
− m−1

1 ))

[ ∂
∂x1

(m̂−1
I1

+ λ∗(m̂−1
I1

− m−1
1 ))]3

◦ (m−1 + λ∗(m̂−1
I1

− m−1
1 ))−1

1 (t|y)

= 2Bn1(y) − Bn2(y).

If it can be shown that

Bn(y) = op

( 1
√

nh2
r

)

,(5.15)

then the assertion of the Theorem follows directly from Theorem 3.1.
For a proof of (5.15) we first note that

(m−1
1 + λ∗(m̂−1

I1
− m−1

1 ))
P
→ m−1

1

and
(m−1 + λ∗(m̂−1

I1
− m−1

1 ))−1
1 (t, y)

P
→ m(t, y).

To deal with the terms in the numerator of Bn1(y), we analyse ∂
∂x1

(m̂−1
I1

−m−1
1 )(ζ|y) in a somehow

similar way as (m̂−1
I1

− m−1
1 )(t|y) in the proof of Theorem 3.1. We use the inequality

|m̂(
i

n
, y) − m(

i

n
, y)| = O

(− log hr

nh2
r

)1/2

a.s.

[see Collomb and Härdle (1986), Theorem 2], and obtain for some ηi,n(y) with

|ηi,n(y) − m(
i

n
, y)| < |m̂(

i

n
, y) − m(

i

n
, y)|

the estimate

∂

∂x1

(m̂−1
I1

− m−1
1 )(ζ|y) =

∂

∂x1

(m̂−1
I1

− m−1
n1

)(ζ|y) +
∂

∂x1

(m̂−1
n1

− m−1
1 )(ζ|y)

=
∂

∂x1

(m̂−1
I1

− m−1
n1

)(ζ|y) + O
(

hd +
1

nhd

)

=
1

nh2
d

n
∑

i=1

[

Kd

(m̂( i
n
, y) − t

hd

)

− Kd

(m( i
n
, y) − t

hd

)]

+ O
(

hd +
1

nhd

)
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=
1

nh2
d

n
∑

i=1

K ′
d

(ηi,n(y) − ζ

hd

)(

m̂(
i

n
, y) − m(

i

n
, y)

)

+ O
(

hd +
1

nhd

)

=
1 + o(1)

nh2
d

∫ 1

0

K ′
d

(m(x, y) − ζ

hd

)

dx Op

(− log hr

nh2
r

)1/2

+ O
(

hd +
1

nhd

)

= Op

((− log hr

nh2
rh

2
d

)1/2

+ hd +
1

nhd

)

.

From the bandwidth condition (3.5), it follows that

∂

∂x1

(m̂−1
I1

− m−1
1 )(ζ|y) = op(1).(5.16)

We remark that in the d-dimensional case, the bandwidth condition (3.5) has to be modified into

− log(hr)

nhd
rh

2
d

= o(1)

since the rate of the strong uniform consistency of m̂ changes [see Collomb and Härdle (1986)],
whereas the above calculation stays essentially the same (i.e. the exponent of hd does not change).
This and the following estimate

(m̂−1
I1

− m−1
1 ) ◦ (m(t, y)|y) = Op

( 1
√

nh2
r

)

derived from Theorem 3.1 establish finally that

Bn1
(y) = Op

( 1
√

nh2
r

((− log hr

nh2
rh

2
d

)1/2

+ hd +
1

nhd

))

= op

( 1
√

nh2
r

)

and

Bn2
(y) = Op

( 1

nh2
r

)

= op

( 1
√

nh2
r

)

.

The last equation is true, since the second derivative ∂2

∂x2

1

m(x, y) is bounded. This proves the

estimate (5.15) and completes the proof of Theorem 3.2. 2

5.6 Proof of Theorem 3.3.

The proof uses Theorem 3.2, Lemma 2.1, hd = o(hr) and the decomposition

∆n(t|x) = m̂−1
I1,2

(t|x) − m−1
2 (t|x) = m̂−1

I1,2
(t|x) − m−1

n2
(t|x) + o(

1
√

nh2
r

)(5.17)

=
1

nhd

n
∑

i=1

∫ t

−∞

[

Kd

(m̂I1(x, i
n
) − u

hd

)

− Kd

(m(x, i
n
) − u

hd

)]

du + o(
1

√

nh2
r

)

= ∆(1)
n (t|x) +

1

2
∆(2)

n (t|x) + o(
1

√

nh2
r

),
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where the quantitiy m−1
n2

(t|x) is defined by

m−1
n2

(t|x) =
1

nhd

n
∑

i=1

∫ t

−∞

Kd

(m(x, i
n
) − u

hd

)

du ,(5.18)

and the terms ∆
(1)
n (t|x) and ∆

(2)
n (t|x) in the last line of (5.17) are given by

∆(1)
n (t|x) = −

1

nhd

n
∑

i=1

Kd

(m(x, i
n
) − t

hd

)(

m̂I1(x,
i

n
) − m(x,

i

n
)
)

(5.19)

∆(2)
n (t|x) =

1

nh3
d

n
∑

i=1

∫ t

−∞

K ′′
d

(ξi(x, u) − u

hd

)(

m̂I1(x,
i

n
) − m(x,

i

n
)
)2

du.(5.20)

The points ξi(x, u) with i = 1, . . . , n satisfy the inequality

|ξi(x, u) − m(x,
i

n
)| ≤ |m̂I1(x,

i

n
) − m(x,

i

n
)|

for all u ∈ (0, 1). We use the fact that the estimate m̂I1(x, y) has the same asymptotic properties
as m̂(x, y) established in Theorem 3.2. This yields

(m̂I1(x, y) − m(x, y))2 = Op

(

h4
r +

1

nh2
r

)

,

and it follows

|∆(2)
n (t|x)| =

∣

∣

∣

(1 + op(1))

nh2
d

n
∑

i=1

K ′
d

(m(x, i
n
) − t

hd

)(

m̂I1(x,
i

n
) − m(x,

i

n
)
)2∣

∣

∣
(5.21)

=
(1 + op(1))

h2
d

∣

∣

∣

∫ 1

0

K ′
d

(m(x, y) − t

hd

)

(m̂I1(x, y) − m(x, y))2 dy
∣

∣

∣

= Op

( 1

hd

(

h4
r +

1

nh2
r

))

= op(
1

√

nh2
r

).

For the first term in the decomposition (5.17), we obtain

∆(1)
n (t|x) = ∆(1.1)

n (t|x) + ∆(1.2)
n (t|x),(5.22)

with

∆(1.1)
n (t|x) = −

1

nhd

n
∑

i=1

Kd

(m(x, i
n
) − t

hd

)(

m̂I1(x,
i

n
) − mn1

(x,
i

n
)
)

,(5.23)

∆(1.2)
n (t|x) = −

1

nhd

n
∑

i=1

Kd

(m(x, i
n
) − t

hd

)(

mn1
(x,

i

n
) − m(x,

i

n
)
)

(5.24)

= O
(

h2
d +

1

nhd

)

= o(
1

√

nh2
r

).
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Note that mn1
is the inverse of the function m−1

n1
defined in (2.12) (calculated with respect to the

first argument), and the last estimate is obvious by Lemma 2.1 and the bandwidth conditions
stated in Section 3. The first term is treated by a Taylor expansion similar to the expansion (5.14)
in the sketch of the proof of Theorem 3.2, which yields

m̂I1(x, y) − mn1
(x, y) = −

(m̂−1
I1

− m−1
n1

)
∂

∂x1

(m−1
1 )

(m(x, y)|y) + op(
1

√

nh2
r

),(5.25)

where ∂
∂x1

(m−1
1 ) is the derivative of the function m−1

1 (·|y) with respect to the x-coordinate for
fixed y. Therefore we obtain from (5.19)

∆(1)
n (t|x) = ∆(1.1.1)

n (t|x)(1 + oP (1)),(5.26)

where the random variable ∆
(1.1.1)
n (t|x) is defined by

∆(1.1.1)
n (t|x) =

1

nhd

n
∑

i=1

Kd

(m(x, i
n
) − t

hd

) ∂

∂x1

m(x,
i

n
)
(

(m̂−1
I1

− m−1
n1

)(m(x,
i

n
)|

i

n
)
)

(5.27)

=
1

n2h2
d

n
∑

i,j=1

Kd

(m(x, i
n
) − t

hd

) ∂

∂x1

m(x,
i

n
)

×

∫ m(x, i
n

)

−∞

(

Kd

(m̂( j
n
, i

n
) − u

hd

)

− Kd

(m( j
n
, i

n
) − u

hd

))

du.

We now apply a similar (but substantially more intricate decomposition) as used in the proof of
Theorem 3.1, that is

∆(1.1.1)
n (t|x) = ∆(1.1.1.a)

n (t|x) +
1

2
∆(1.1.1.b)

n (t|x),(5.28)

with

∆(1.1.1.a)
n (t|x) =

1

n2h3
d

n
∑

i,j=1

∂

∂x1

m(x,
i

n
)Kd

(m(x, i
n
) − t

hd

)

(5.29)

×

∫ m(x, i
n

)

−∞

K ′
d

(m( j
n
, i

n
) − u

hd

)(

m̂(
j

n
,
i

n
) − m(

j

n
,
i

n
)
)

du

= −
1

n2h2
d

n
∑

i,j=1

∂

∂x1

m(x,
i

n
)Kd

(m(x, i
n
) − t

hd

)

× Kd

(m( j
n
, i

n
) − m(x, i

n
)

hd

)(

m̂(
j

n
,
i

n
) − m(

j

n
,
i

n
)
)

∆(1.1.1.b)
n (t|x) =

1

n2h4
d

n
∑

i,j=1

∂

∂x1

m(x,
i

n
)Kd

(m(x, i
n
) − t

hd

)

(5.30)

×

∫ m(x, i
n

)

−∞

K ′′
d

(ξj(
i
n
, u) − u

hd

)(

m̂(
j

n
,
i

n
) − m(

j

n
,
i

n
)
)2

du,

27



and |ξj(
i
n
, u)−m( j

n
, i

n
)| ≤ |m̂( j

n
, i

n
)−m( j

n
, i

n
)|. Note that the terms ∆

(1.1.1.a)
n (t|x) and ∆

(1.1.1.b)
n (t|x)

are the analogs of the quantities ∆
(1)
n and ∆

(2)
n in the proof of Theorem 3.1 (which was one of

the reasons why we gave some more details of this proof). A straightforward argument using the
asymptotic properties of the Nadaraya-Watson estimate m̂(x, y) shows

|∆(1.1.1.b)
n (t|x)| =

(1 + op(1))

h3
d

∣

∣

∣

∫ 1

0

∫ 1

0

∂

∂x1

m(x, y)Kd

(m(x, y) − t

hd

)

(5.31)

× K ′
d

(m(u, y) − m(x, y)

hd

)

(m̂(u, y) − m(u, y))2 dudy
∣

∣

∣

= O
( 1

hd

(

h4
r +

1

nh2
r

))

= op(
1

√

nh2
r

),

where we used the assumption (3.4) in the last estimate. For the term in (5.29) we derive a further
decomposition, that is
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n (t|x) = −

[
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where the terms ∆(1.1.1.a.a) and ∆(1.1.1.a.b) are defined by
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and correspond to the bias and variance of the estimate m̂−1
I1,2

. For the expectation of (5.33), it
follows by a straightforward but tedious calculation
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where we used successively the substitutions u′ = u−x′
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For the variance of the remaining term in (5.34), we obtain
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The Ljapunoff condition can be checked by similar arguments, that is
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The asymptotic normality of the random variable
√

nh2
r∆

(1.1.1.a.b)
n (t|x) is obtained from Ljapunoffs

Theorem, that is
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n (t|x)

D
→ N (0, s2

2(x, t)),

where the quantity s2
2(x, t) is defined in (3.13). The assertion of Theorem 3.3 finally follows from

(5.17), (5.21), (5.22), (5.24), (5.26), (5.28), (5.32), and (5.36). 2
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