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1. The Wisdom of BeeHive – An

Introduction to Honey Bees

By Thorsten Pannenbäcker (thorsten.pannenbaecker@uni-dortmund.de)

1.1. Introduction

”Cooperation in foraging has evolved in many species of group-living organisms, includ-

ing insects, spiders, colonial invertebrates, fishes, birds, and mammals (...). One of the

most sophisticated forms of cooperative foraging occurs in a social insect, the honey-

bee (Apis mellifera). The thousands of foragers within a typical honeybee colony work

together in harmony, forming an ensemble which can monitor an area of 100 square

kilometres for flower patches, choose among these patches to focus the colony’s foraging

labor on the riches ones, and adjust its patch selectivity in relation to forage abundance

and colony need (...).” [SV88]

But how is this cooperation possible? In the following some processes are discussed,

which primarily illustrate how this information is spread and processed throughout the

honey bee colony.

1.2. Communication of Honey Bees

Honey bees are communicating by using special movements, the so called dances, which

were first extensively examined by Karl von Frisch and described in his recommend-

able book [Fri65]. A special dance is existing for every kind of information interchange,

especially for the announcement of food sources.

In a beehive, thousands of worker bees are fulfilling certain jobs. The most interesting

worker bees are the ones, who are responsible for collecting and processing the nectar:

scouts, foragers and storer bees. The storer bees take the collected nectar from the

foragers and store it in the combs of the hive. The foragers tasks are limited to find the

nectar sources (the flowers), collect the nectar and bring it home to the hive where it is

taken by the storer bees. Finally, the scouts have the job to find new nectar sources.

2



1. The Wisdom of BeeHive – An Introduction to Honey Bees

Basically all worker bees are the same at the time of birth and can do all jobs. Normally

the first days of their short life they are working inside the hive, before they go and work

outside. Actually, there is no real difference between scouts and foragers. They are only

loyal to a certain nectar source in an individual degree. The great majority remain loyal

to their nectar source over a very long period (some days) even if the source is run dry.

During this time they rest inside the hive and will only perform a few flights from time

to time, examining for changes in their source. Only very few bees become disloyal to

their source more often and become scouts. After the discovery of another source, they

will begin to collect nectar and become normal foragers again.

1.3. Information Interchange

Not all foragers are searching for nectar sources on their own. Most of them will fly to

places described by other foragers. To find these places the foragers basically only need

to know about the distance and the direction.

To exploit each nectar source optimally the active foragers on this source will hire new

comrades through performing dances. But this hiring through dances does not happen

automatically and steady, but depends on different ascendancies.

1.3.1. Influencing Ascendancies

The dances performed on the dance floor (a certain but not exact marked-off region of the

hive, normally near the flight hole) convey different information and vary in liveliness.

The decision to perform a dance depends on the factors discussed below in detail.

The most important one is the sweetness of the nectar, which isn’t necessarily corre-

lated to its sustenance. This most important ascendancy determines the dance threshold

for a forager. However, this stimulus isn’t sufficient. Additionally the nectar must be

profitable and easy to reach to let more foragers exploit it. The distance from the hive,

the steady flow of nectar, the general situation of nutrition, the relative changes of qual-

ity, the weather situation, and also the daytime are some other factors influencing the

foragers to dance. (following [Fri65], pages 240ff.)

1.3.2. The Direction Information

Since other foragers have to find a (newly discovered) foraging site on their own, it

is necessary to inform them about its direction. The forager uses different stimuli to

ascertain the correct direction. The most important stimulus is the sun. With its
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faceted eye the bee is able to determine the angle between its own trajectory and the

sun. Even if the sun is covered, the bee is able to determine its direction using the

polarized blue skylight that depends on the suns position. Growing experience puts the

bees in position to orientate towards striking landmarks and interpolate the direction

when the sky is completely covered.

Generally, only the flight from the hive to the nectar source plays a major role in

calculation of direction. It is sensible because they can ”think of” the way back by

themselves by inverting the first way. If the nectar source moves, the forager can’t find

its way back correctly, but that should never happen in nature. Only when the forager

should have returned to its hive but, in fact, isn’t, it starts looking for it. In this case

also the way back will be considered when calculating the direction. Hence the new

direction indicated during the dance is the bisectors of the angle between the place of

arrival and departure of the source (hive).

The direction information is passed to other bees by the dancer during a special

passage of the dance by moving in the corresponding direction. On horizontal dance

floors the dancer can orientate itself by looking at the sun or a part of the sky analogue

to the navigation during the flight. But since the combs in the dark hive only provides

a vertical dance floor the bee is able to transpose the angle to the sun into an angle to

the plumb. That means that a flight directly into the sun leads to a waggle run straight

upwards and for deviations in corresponding directions. This will even work for slanting

planes until the well developed sense of gravity are limited on a nearly horizontal plane.

(following [Fri65], page 127ff.)

1.3.3. The Distance Information

Researchers thought that the bee’s measurement of the distance to a destination is

based on the energy consumption. For instance, von Frisch excluded the absolute

distance in metres and the flight duration at a constant velocity (30 km/h by the way)

as basis. Different experiments with following and head wind, down- and uphill flights,

or additional plumb weights seemed to support this thesis. However, he didn’t exclude

optical stimuli, since flight over areas with few possibilities of orientation (for instance

a smooth water surface) showed smaller announced distances. After experiments of

Esch and others the optical stimuli are considered to be the primary (or even the only)

source for the distance measurement. This thesis doesn’t necessarily contradict the

energy consumption thesis, since bees are flying in different altitudes (according to their

payload), what leads to different perceived optical flows (a flight with great altitude

above a certain pattern seems slower than with small altitude).
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During the dance, information about the distance is passed in a certain phase (the

same as the direction information). If the perceived distance increases, this phase lasts

longer and the liveliness, the speed (in rounds per minute), decreases. (following [Fri65],

page 65ff.; [EB95]; [EB96])

To allow a short insight to this exciting field of honeybees behaviour some special

descriptions will follow. To understand the dependencies and mechanisms more exactly

it is recommended to read the books mentioned in the bibliography, specially [Fri65] by

Karl von Frisch and [See95] by Thomas D. Seeley.

1.4. The Dances of Honey Bees

Honey bees do different types of dances. Eeach one conveys special information to

comrade bees. The three most important types are: the round dance, the waggle dance

and the tremble dance, which all are closely related to the forager bees.

Round and waggle dances serve the recruitment and reactivation of foragers. Inter-

estingly it is distinguished between two distance ranges. The round dance is for food

sources near the hive and doesn’t contain information about direction or distance. If

the food source is farther, this information is passed by doing waggle dances. The exact

identification of a certain food source is done by the bee’s sense of smell. On the one

hand bees smell the special flower scent adhered to the dancer and on the other hand

they smell foragers already collecting nectar at the food source, which are secreting a

special odour helping nearby foragers flying around finding the source.

1.4.1. The Round Dance

If a rich nectar source near the hive is found, then inactive foragers are asked to share

exploitation of this source by the so called round dance. Passing a part of it’s nectar to

storer bees the forager keeps still. ”Now the round dance begins. With quick, tripling

steps the forager is moving around in a circle so narrow, that mostly only a single comb

cell is lying inside this circle. She runs around on the six adjacent cells in which she soon

turns around in a sudden turn and runs on in the opposite direction, to turn around

once again in a new swing and run in the earlier direction again and so on. Often one or

two whole rounds are done between two swings, often also only three-quarter or a half

of a round.” ([Fri65], page 29) After the dance is interrupted or after the dance lasted

for several rounds, the forager cleans itself, loads fuel for the next flight and starts its

next forage flight quickly.
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”It is never danced on an empty or poor populated comb, but only in dense crowd.

Thus, during its rounds, the dancer is in direct contact with other bees, which – in right

mood – are tripping after her, putting their feelers on her rear body.” ([Fri65], page 30).

If a forager already knows the destination indicated by the scent, she will take the

usual short preparations and will take up her collect flights to the remembered source

again. A certain forager will only fly to a single food source and if the flights doesn’t

appear worthy, because of missing nectar for example, she won’t look for a new source

(neither on her own nor by following some dances). Instead, she flies home again and

rests near her comrades exploiting the same source. Comrades of the same group are

possible to be reactivated only by the scent of an active forager, without a dance, though

only in 40% of the cases. Contact to a dancing group comrade has a success rate of 90%.

exploiting the same source. In 40% of all cases, it is possible to reactivate comrades of

the same group only by emmitting the scent of an active food source, without a dance.

Direct contact to a dancing group comrade has a success rate of 90%.

Does an inactive, recruited bee not know the destination yet, she will leave for a flight

only knowing the scent of the nectar source. The forager searches the whole area in all

directions around the hive for the special scent. The more often and the more lively the

dances are, the more foragers are being recruited.

1.4.2. The Waggle Dance

The normal flight area of bees of the Krainer breed (Apis mellifera carnica) for example,

is about six kilometres in every direction from the hive, even more in special cases. For

this distances it’s obviously not possible to communicate the nectar sources through

round dances because the searched area is large.

so, how are distance and direction passed to a potential recruit in this dance? First, a

description of this dance: ”During the typical waggle dance, the bee runs a short distance

straight ahead, returns to the other side in a half circle, runs the straight distance again

and returns in another half circle in the direction and so forth in a regular change. The

run straight ahead receives a special emphasis through the lively waggling. This arises

from quick deflections to the side of the whole body which are greatest at the tip of the

rear body and smallest at the head: The axis around which the side swinging is done,

must be thought of as been short in front of the bees head and vertical to the subsoil.

The back-and-forth-moving is repeated 13 to 15-times per second; expressed different:

the movement has a frequency of 13-15 Hz.” ([Fri65], page 56f.) The waggle phase is

emphased additionally by a sound, which the bees, for lack of a sense of hearing, only

notice as vibrations transmitted through the floor. Even if the sound is assumed to
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support the effectiveness of the dance it doesn’t seem to contribute any information.

The distance instruction arises from the waggle time, i.e. the time which the dancer

takes for the straight distance during the waggle dance. The waggle time is not constant

during a whole dance but varies in narrow bounds in which the mean value of the waggle

time is correlated closely to the distance from hive to source.

The direction to the destination is plainly shown by the direction of the straight waggle

distance. The direction is determined during the flight and passed as described above.

If the food source can’t be reached on a direct beeline, the values for it are passed

anyway. Recruited bees are looking for a roundabout route themselves when they come

across an obstacle. Afterwards they take the roundabout route directly.

1.4.3. The Tremble Dance

”It is as if they suddenly acquired the disease St. Vitus’s dance [chorea]. While they run

about the combs in an irregular manner and with a slow tempo, their bodies, as a result

of quivering movements of the legs, constantly make trembling movements forward and

backward, and right and left. During this process they move about on four legs, with the

forelegs, themselves trembling and shaking, held aloft approximately in the position in

which a begging dog holds it forepaws.” ([Fri23], page 90, quoted from [See92], page 375).

Karl von Frisch had no explanation for this dance, except as reaction to unwellness.

Thomas D. Seeley did examine the dance again later and found an other explanation.

Therefore this dance has another meaning as the earlier ones, because it helps orga-

nization within the hive: ”This suggests that the message of the tremble dance is ”I

have visited a rich nectar source worthy of greater exploitation, but already we have

more nectar coming into the hive than we can handle.” It is also shown experimentally

that the performance of tremble dances is followed quickly by a rise in a colony’s nectar

processing capacity and (...) by a drop in a colony’s recruitment of additional bees to

nectar sources. These findings suggest that the tremble dance has multiple meanings.

For bees working inside the hive, its meaning is apparently ”I should switch to the task

of processing nectar,” while for bees working outside the hive (gathering nectar), its

meaning is apparently ”I should refrain from recruiting additional foragers to my nectar

source.”” ([See92], page 375). Through this dance, a match between collecting activity

and processing capacity is adjusted and a bottleneck is avoided. Since the tremble dance

isn’t performed only on the dance floor but in other areas of the hive too, bees resting

or doing unimpatient tasks switch to the role of nectar processing, to increase nectar

processing capacity.
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1.4.4. Other Dances

Many other forms of dances do exist. Information about them and their meaning are

hardly available in literature.

Of special interest could be, that bees are dancing too, if they look for a new nesting

place. If a colony divides itself, one part swarms and settles somewhere nearby in

the open air. Scouts are searching the neighbourhood for suitable nesting places and

perform waggle dances pointing to the found location. Over some days these dances can

be performed until only dances for a single location are left. First when all dancers ”are

of the same opinion” the swarm moves into the new nesting place.

1.5. Formalized Models of Honey Bees

The described decentralized decision making in honey bee colonies, where foragers work

without the help of any central authority and organize their activities through dances.

In this way a colony distributes its work force to different food sources according to their

quality.

Some models describing honey bees and their behaviour can be found in literature.

The emphasis is on the nectar collecting through communication. A model based on

differential equations can be found in [See95] and an agend-based model in [Sum00].
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2. The BeeHive Routing Algorithm

By Thorsten Pannenbäcker (thorsten.pannenbaecker@uni-dortmund.de)

2.1. Introduction

The BeeHive routing algorithm was developed for energy efficient routing in wireless

ad hoc networks. The other standard algorithms for such an environment are DSR

(Dynamic Source Routing), AODV (Ad-hoc On-Demand Vector Routing) and DSDV

(Destination Sequenced Distance Vector). It is a layer 3 protocol following the ISO/OSI

standard and is completely independent from higher (nearly) and lower layers. Like

DSR it uses the strict source routing option of IP, this means the complete route for a

packet is part of the header. Additionally, some packets used by BeeHive contain other

information in the optional part of the IP header as well. A reference implementation

was developed for the network simulator ns-2 (see chapter 3 for details) and it was also

implemented in Linux (see section II for details). This chapter refers to the reference

implementation and should help to understand the principles of BeeHive.

The algorithm was inspired from natural honey bees and their behaviour for collecting

nectar. Like them, it has no global information about state of the network, instead bees

communicate with each other to organize the routing framework on similar bee principles,

as described in the last chapter.

BeeHive is based on three main thoughts:

• information feedback from the routes

• load balancing and adjusted capacities for each route, according to their quality

• specialized routing behaviours for different optimizations

Abstractly, all packets sent over the network are assumed to be bees. Each node is a

hive, where the routing layer consists of the three logical parts: entrance, dance floor and

packing floor, as shown in figure 2.1. These three parts do different jobs. The entrance

is the interface to the lower layers, the packing floor is the interface to higher transport

layers, like TCP or UDP and the dance floor is the main routing instance.
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Like it’s natural example, BeeHive is kept as simple as possible to reduce the used

computing power and also, to avoid complicated interdependencies between the parts.

Each bee can be treated without the knowledge of all other bees. Only very little not

totally local (bee local) information is needed inside a node.

2.1.1. Analogies Between Natural Honey Bees And The BeeHive Routing

Algorithm

As natural honey bees appear to organize their work very efficiently (refer to chapter 1)

it was tried to copy the behaviour of honey bees to the algorithm of BeeHive.

Like in nature bee colonies there exist different kinds of bees which have different

jobs. In BeeHive different kinds of workers exist, but the most important are the foragers

responsible of transporting the payload. In nature they fly from the hive to a exploitation

site, collect the nectar there, and return back to the hive with it. In contrast to this

natural example the payload in computer networks don’t need to be brought to the

home hive, but transported from there to other places, so this process is inverted. Every

outgoing forager takes a data packet and brings it to its destination. The transmission

of data is limited to the presence of foragers. If there aren’t foragers available, no data

packets are transmitted.

On its way to the destination a forager collects information about the quality or the

costs of its route to be able to judge the quality of the route, when it arrives back at

destination (refer to chapter 1.3.1). The judgment of the nectar quality itself is replaced

by the amount of data waiting to be delivered to a certain destination as the main

indicator for dancing (refer to chapter 1.4). The dancing again is been abstracted to a

number of possible clones, which is calculated by an evaluation function. During the

duration of a dance, the forager is copied as often as this number allows, if it is requested.

Through this mechanism the bees are able to distribute the delivering of the data packets

to different routes according to their capacity and quality.

Normally, foragers are flying two ways: one to their nectar source and one home to

their hive again. For BeeHive this would mean doubling the traffic. As this doesn’t

seem to be acceptable, foragers only fly to their destination and stay there. But as many

communication links are bi-directional, the destination node is also a source node sending

packets to the original source node, becoming the destination. So such bi-directional

links enable a two way flight for the foragers. If the number of packets in both directions

is equal (like TCP, which acknowledges every packet), it will not cause any problems.

If there are great differences between the two streams (like UDP, which has a major

stream in one direction and a very small control stream in the other direction), a special
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swarming technique is used (see 2.2.3).

2.2. Types of Bees

In this sub chapter the different bee types are described that will help the reader in

understanding the routing and working behaviour of BeeHive. For technical details of a

real implementation please refer to the according chapter in the section ”BeeHive inside

the Linux kernel” (section II).

For the routing (assumed, that a route is already known) the normal IP header is

extended with the standard optional part. This optional part exists for normal source

routing option provided by IP. For example, this is also used in DSR. Additionally, the

BeeHive header contains some bytes with some special BeeHive information. How these

bytes are used will be described later. So, all bees (packets) transferred between the

nodes on the net conform to a standard IP header.

On its way from the source to a destination this form of representation is kept as

well. The packets are treated as normal source routed packets except, that the special

information bytes of BeeHive must be updated at these nodes.

When a packet arrives at its destination, its data is passed to the higher layers. From

the route and the information bytes a struct is generated, representing a bee. It contains

the route and some other information needed. What this additional information is

exactly will be described later on.

The BeeHive algorithm uses three types of bees. Normal foragers transport the data

from one node to another. Scouts are used to retrieve routes if they aren’t available yet.

Packers are not sent at all. They are used to receive data from application layers and

pass it to the foragers, or if no foragers are available to buffer these data.

2.2.1. Scouts

Scouts are used to find connections between two nodes, if no route is already available.

Technically, it is a broadcast packet with a TTL (time to live) mechanism, very similar

to the route discovering in DSR, for example.

In the BeeHive header only the route taken so far and an ID is saved. The destination

and the TTL values are part of the regular IP header. If the TTL value isn’t exceeded, a

scout is broadcasted to all neighbours of a node and their address is added to the scouts

route, until it has reached its destination. The ID helps to identify each scout uniquely.

Scouts are created in the packing floor if a packer bee can’t find an appropriate forager

and some other conditions are met. After it has found it’s destination it is sent back
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as a normal source route packet and passed to the dance floor, where a forager is built

from it.

2.2.2. Foragers

The foragers are the real workers in BeeHive. Foragers are bees that transport data.

There are different kinds of foragers helping to provide adaptive routing behaviour with

respect to different need of communication links, like delay or throughput. Of course,

the BeeHive header consists of a route and a code for the foragers kind. Different to most

other protocols, it also provides a field for gathering information about the condition of

a route. This information is provided by the nodes and helps to have a feedback from

the routes in order to route data packets over the best available routes.

Foragers are stored in the dance floor when they have finished a flight and are waiting

for the next data packet to be transported.

Here, the three main ideas appear. As information is collected for every forager kind,

all routes can be evaluated in terms of a special criterion, like delay. This information

helps to find the best routes for certain packets so they aren’t sent through randomly

chosen routes but the best ones. As this information will get worse because more traffic

is on a certain route, less bees will be recruited for this route. Other routes, originally

not so good, may become evaluated better, because their is less traffic. So, the capacity

of each route varies through time, not flooding one link as soon as it’s available. This

behaviour helps to balance the load and to avoid congestions, since the transport is

limited to the available foragers.

Basic Foragers

They are not specialized at all. They don’t collect data and their dancing behaviour is

only determined by the amount of waiting data packets. In real applications this kind

of foragers should not be used.

Delay Foragers

The aim of the delay foragers is to reduce the delay. For that purpose it stores its

departure time at the source node. When it arrives at the destination the difference

between arrival and departure time is calculated. This value is compared to a mean

value of the proceeding delay values and together with the number of waiting packers it

leads to a dancing number.
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The limitation to available foragers might seem quite contra productive since all pack-

ets could be send immediately once a route is known, it shows that the delay isn’t worse

then with other routing algorithms or even better. One reason for that might be, that

the load balancing and limitation of the traffic helps avoiding congestions.

Throughput Foragers

The throughput foragers are not implemented at this moment. They should contain a

mixture of the minimal throughput rate during the route and the delay. The throughput

rates must be obtained from the network interface.

Energy Foragers

Energy foragers aren’t implemented, too. They should contain information about the

total energy consumpting caused by all transmission, receivings, and computing. These

values must be obtained from the network interface.

Lifetime Foragers

Lifetime foragers tries to improve the lifetime of an ad hoc network by avoiding the nodes

with low batteries. For this purpose all battery levels between the source and destination

are stored in some bits in the information bytes. Together with the number of waiting

packers the minimum and the average of these values lead to a dancing number.

2.2.3. Swarms

Swarms are control packets. They are needed when a communication link isn’t balanced

in both direction in terms of the amount of data packets. This will lead to the sending

node running out of foragers all the time and a flooding of the destination by incoming

foragers. To avoid this the swarming technique is developed.

If the difference between incoming and outgoing foragers reaches a certain threshold a

swarm of foragers is flying back to their originating node, controlled by the dance floor

(see 2.3.3). To avoid a quadruplicating of the necessary control overhead, a forager is

chosen as swarm leader, while the others are put into a data part of this swarm leader,

represented by their routes, their kind, and their last route information. When this

swarm, sent only as one control packet, arrives at its destination, the data part of the

swarm leader is evaluated and the foragers are rebuilt from the contained information

and added to the dance floor like they had arrived normally.
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2.2.4. Packers

Unlike the other bees, packers are only consisting inside the nodes and not sent over the

network. They represent data packets received from higher layers. It is their job to find

a matching forager, which can transport the data to its destination. Packers are stored

in the packing floor until they find a forager.

2.3. Architecture of BeeHive

Each node in a wireless ad hoc network represents a hive. The hives again are containing

the bees and through that, the routing information. The nodes are independent from

each other and do not need to interchange control packets to be able to route. All the

information necessary to route a packet is generated locally or its retrieval is initiated

locally.

As an ISO/OSI level 3 protocol, BeeHive provides interfaces to the levels 2 (MAC) and

4 (connection securing, like TCP or UDP). These interfaces are called entrance (interface

to the MAC layer) and packing floor (interface to the transport layer). Between these

two entities the dance floor is positioned where the routing information is stored.

All the layers and actions underneath level 3 are seen as outside a hive (the world) and

packets entering from or going to there must pass the entrance, like in natural honey bee

hives. The entrance must control the acceptance, refusing and forwarding of packets.

The layers above layer 3 are seen as the local part (the home hive). The job of

BeeHive is to transport packets from its home hive to their destinations and so, there

is an interface where the data is accepted from application layers and distributed to the

workers, the foragers. This packing floor is an instance to coordinate the packers (bees

containing data from the application to be sent) and the foragers from the dance floor.

2.3.1. Entrance

As seen in figure 2.1 the entrance is the interface to the network layers, especially the

MAC layer. Although BeeHive was developed and implemented for and simulated with

IEEE 802.11 ad hoc networks, it is completely independent from certain MAC protocols.

It doesn’t take advantage of information available from for example the IEEE 802.11

protocols information like signal strength etc., although there would be some possibilities

of improving the performance in terms of energy efficiency and other performance issues.

The entrance must handle all incoming packets as it’s the interface to the MAC layer.

In terms of BeeHive that will be scouts and foragers. And of course it must sent the
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BeeHive

packing floor

entrance

dance floor

application layers (TCP, UDP, etc.)

network layers (MAC, i.e. IEEE 802.11)  

Figure 2.1.: Overview of the BeeHive architecture

outgoing packets of a hive.

The scouting mechanism of BeeHive is very similar to for example DSR. So the han-

dling of scouts in the entrance isn’t very different, too. The forwarding is done with

respect to the scout’s TTL (refer to chapter 2.2.1). They are broadcasted until they

have reached their destination and are sent back to their source from there.

Scouts with exceeded TTL are deleted. So are scouts that have been seen already. The

source and ID of every incoming forager are compared to a list of already seen scouts

and added if not in this list already. This helps avoid broadcast storms but has some

disadvantages in terms of route diversity. If there is only a single connection between

to parts of a network, only the first scout is forwarded to the other part. All following

scouts are deleted, even if they have taken different routes in the first part. The only

exception is the arrival of scouts at the destination. All arriving scouts are sent back

from there.

Before a scout is broadcasted to the neighbours, each hive looks if it maybe has a route

to the destination already by demanding a forager from the dance floor. If so, the route

is completed and the scout sent back immediately. This mechanism helps improving the

route diversity an saves a lot of broadcasted scouts.

The handling of foragers is more interesting as BeeHive has one main difference to

other protocols. Of course they are handled like in every other source routing protocol

but additionally, they are provided information of their routes quality. This is a major
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BeeHive
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Figure 2.2.: The entrance
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condition for the working of BeeHive. Dependent on the foragers type (refer to chapter

2.2.2), for example the nodes battery level or the bandwidth of the last taken hop is

written into the BeeHive header. By evaluating this information after a flight, the

forager is able to judge its routes quality and decide if it’s promising to recruit more

foragers for it.

Even if the information provided can be difficult to get technically, it shouldn’t be to

great a problem in theory. All information is based on local states and there is no need

for global information at all. The effort to provide this information is payed back by

specialized foragers able to transport the data specialized, having the edge on the other

protocols.

2.3.2. The Packing Floor

Like the entrance is the interface to the layer 2, the packing floor is the interface to

layer 4 the transport layer, like TCP or UDP. It takes all the packets from this layer

and handles them as data packets. This means, it builds packers (refer to chapter 2.2.4)

each time a packet arrives. They try to find a matching forager, which can transport

the data to its destination.

It must be stressed here, that BeeHive takes one assumption; the only point in which

it is not completely independent from other layers. To work properly, it’s necessary that

all data packets arrive at the routing layer, that means at the packing floor, as soon as

they are available. BeeHive puts them into an internal buffer and uses this buffer filling

level as one criterion for the evaluating of the dance number of the foragers, leading to

an adaptation of the capacity for a link as needed. With UDP this is no problem at all,

since it sends packets without any form of acknowledgment. But TCP will acknowledge

every or every few packets. In blocking mode TCP will wait for these acknowledgments

before it sends the next packet to the routing layer. This will lead to an empty buffer all

the time and hence, the returning foragers think that there is no need to dance at all.

So, there are very few foragers available leading to very poor performance. So the non

blocking mode of TCP is absolutely recommendable for good performance with BeeHive.

This mode does not wait for the acknowledgments before sending the next packets.

Now, there are two possibilities of entering the packing floor. Either from the internal

part of the hive through the arrival of a data packet from the transport layer, or external

from the world through the entrance if a forager or scout is returning home.

The handling of scouts and foragers is limited to the providing of the buffers fill level,

the number of packers waiting and for the foragers the forwarding of its transported data

to the higher layer. This was already described in the paragraph above, so it should only
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Figure 2.3.: The packing floor

18



2. The BeeHive Routing Algorithm

be pointed out that this information is extremely important for the dancing of scouts

and foragers.

The packing floor’s real task is the placement of suitable foragers to the received

packers. For that purpose it also handles the generation of scouts if destinations are not

available yet. This is a bit more challenging than in other protocols because BeeHive

can run out of foragers for a certain destination. So the packing floor must be aware of

the possibility that foragers return home soon and not sent scouts immediately.

But if enough foragers are available after the first few transmission because of their

dancing, it should be no problem to find some. So the demanded destination and op-

timization criterion are passed to the dance floor which returns a matching forager, if

available. The packers data is passed to the forager and it’s deleted, while the forager is

forwarded to the entrance where it can start its flight.

2.3.3. The Dance Floor

The dance floor is the heart of BeeHive. Here the actual routing decisions are taken,

the real job of BeeHive. Like in nature, inside BeeHive the foragers are trying to recruit

new foragers for their route or rest while they are waiting for the next flight.

There are two main possibilities of using the dance floor in BeeHive: either in adding

a forager after a flight or in demanding a forager for a flight.

Adding a forager is normally very simple, even if one thing is extremely important

here. Before the forager is stored the collected information must be evaluated, leading

to a amount of dancing. The number of dances is the base for the recruitment of new

foragers. So if it’s not determined very good, all routing decisions may lead to wrong or

at least bad decisions.

For every type of forager a own evaluating function is existing. The first thing this

function does, is judging the quality of the route through the information, which the

forager has collected on its flight. So, a forager which likes to optimize the network

lifetime for example will somehow look at the mean battery level, the minimum battery

level on that route and also the total route length. If these values are good the evaluating

function will return a high value, otherwise a low one.

After the judgment of the routes quality, the value is scaled by looking at the number

of waiting packers. If very many packers are waiting, a low quality route may as well

lead to relative high dance numbers. Because many packets are waiting it’s possible that

no better routes are available and they must be sent using a less good route. The other

way around, when no packers are waiting it’s also possible that a forager with a very

good route and a good evaluation doesn’t dance at all, because many other foragers are
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Figure 2.4.: The dance floor
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available. This dancing and recruiting procedure should copy the natural example of the

waggle dances, see 1.4.2. This mechanism is responsible for adjusting the capacity (the

number if available foragers) for each route.

The last paragraph has shown the importance of the dance numbers. The evaluation

functions calculating them are therefore very important. They should of course prefer

good routes. Additionally, they should converge against a bound, so that there aren’t

too many foragers lying around in the dance floor being of no use. But they should

have enough clearance to allow the replacement of already available foragers by newer

ones, because it is possible that available routes become much worse with time and vice

versa. Last, they shouldn’t be too costly to calculate because they are performed for

every returning foragers and con potentially waste a lot of computing time.

If a forager is demanded by the packing floor to send the data of a waiting packer, the

dance floor looks for a matching one. The first criterion is of course the destination and

afterwards the optimization criterion. If available, a foragers is chosen randomly of all

matching foragers. If not, a alternative forager with another optimization is returned.

The chosen foragers is then examined with respect to its age and the dance number.

If it’s older than the specified life time of a forager it’s deleted and BeeHive will choose

another one. This corresponds to becoming disloyal foragers in nature (compare to

chapter 1.2). If the forager is so young that the specified dance time hasn’t expired, the

dance number is examined. Dance numbers greater than zero will lead to a copy of that

forager which is forwarded to the packing floor while the original forager is stored in the

dance floor again with a decreased number of dances. If the dance number is zero, the

forager itself is forwarded to the packing floor and completely deleted from the dance

floor.

In terms of routing in ad hoc networks this mechanism means a potentially extension

of good routes which are quite young and accordingly should still exist. Good routes

should be considered by this mechanism, because they will lead to high dance numbers

and can be copied often. When they are copied often, plenty of foragers for this good

route exists in the dance floor, once they’ve returned from their flights. If there are

many of them they will amount to a great fraction of the available foragers and hence

it is very probable that they are chosen randomly of all the available foragers. So, good

routes will take a great load of the transmitted data.

If the last forager is leaving, BeeHive has no routing information to this destination

anymore and must wait for returning bees. At first view, this might seem quite stupid.

But by really deleting the foragers from the dance floor, an external route maintenance

is obsolete. If a forager leaves the hive and doesn’t return, it might be an indication that
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this route is broken. Otherwise, a returning forager guaranties a working route. Only in

the beginning phase of a link that might lead to increased delay because the number of

foragers is to small. After this phase there should always be enough foragers inside the

hive, guarantying an immediate transport of data packets.

As foragers with a broken route are lost, it’s necessary that higher layers are aware of

that. If the data is absolutely necessary for an application, a higher layer like TCP must

take care of this. On the other hand, BeeHive only tries to sent packets over a broken

route as long as it still has foragers, so the loss will be small.

2.4. Conclusion

It was tried to follow the natural example as close as possible, although there had to

be made some concessions because of the obvious differences between natural honey

bees and a wireless ad hoc network and the traffic on it. But even then the result is

a quite competitive algorithm for these networks, at least as far as the results of the

reference implementation are showing (see chapter 5). At the end the main advantages

and disadvantages of BeeHive are repeated.

2.4.1. Advantages

• The most important advantage of BeeHive is the distribution of the traffic to

different routes proportional to their quality and capacity. This is done by a very

simple mechanism, without wasting much computing time and energy.

• The second great advantage is the absence of many control packets compared to

other algorithms. The control messages are limited to the scouts which obviously

are necessary and the swarms for not balanced bidirectional or even unidirectional

communication links.

• Another point is the abdiction of global information, which should be self under-

stood normally. The is no such global information needed, all decisions are taken

locally.

• As the BeeHive algorithm doesn’t take advantage of any information provided by

other layers, it is completely independent from these and should work with all

underlying and above protocols, except the small assumption from 2.3.2.
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2.4.2. Disadvantages

• The most important disadvantage of BeeHive is the use of source routing. This also

appears quite unnatural compared to real bees, because they use a vector guidance.

But even they remember special landmarks on their flights. The disadvantage in

computer networks comes from the control overload per packet and the limitation

of the maximal route length.

• Another real disadvantage is the higher memory use for storing every forager.

Although they are really small it is more than storing every route only once.

• The artificial limitation to available foragers can appear as a disadvantage because

packets are not sent, respectively must wait some time even if a route is known

because all matching foragers have left the hive for a flight. But as BeeHive

needs this behaviour for its functioning and it also has advantages it seems to be

acceptable. This is indeed true if the simulation results (see chapter 5) are taken

into account.

2.5. Psedo Code

BeeHives code is quite large even if the algorithm is quite simple. To provide a overview

of BeeHives working, a short pseudo code description is provided here, corresponding to

figures 2.1 to 2.4.

2.5.1. BeeHive

BeeHive::send(packet) {

packingFloor::send(packet);

}

BeeHive::receive(packet) {

entrance::letIn(packet);

}

2.5.2. Entrance

Entrance::letIn(packet) {

buildBeeFromPacket();

if(forager) {
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if(arrived)

packingFloor::receive(forager);

else {

updateInformation(optimization);

buildPacketFromForager(forager);

MAC::send(packet);

}}

if(scout) {

if(returningScout) {

updateNextHop();

buildPacketFromScout(scout);

MAC::send(packet);

}

if(scouting) {

if(arrived) {

reverseFoundRoute();

updateNextHop();

buildPacketFromScout(scout);

MAC::send(packet);

}

else {

if(danceFloor::getForager(destination)!=NULL) {

completeRouteFromForager();

reverseFoundRoute();

updateNextHop();

buildPacketFromScout(scout);

MAC::send(packet);

}

else {

if(TTL==0)

delete scout;

else {

if(isInSeenScoutList(source, ID)

delete scout;

else {

addToSeenScoutList(source, ID);
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insertOwnAddress();

buildPacketFromScout(scout);

MAC::broadcast(packet);

}}}}}}}}

Entrance::letOut(bee) {

if(scout) {

addToSeenScoutList(source, ID);

insertOwnAddress();

buildPacketFromScout(scout);

MAC::broadcast(packet);

}

if(forager) {

updateInformation(optimization);

buildPacketFromForager(forager);

MAC::send(packet);

}}

2.5.3. Packing floor

PackingFloor::send(packet) {

buildPackerFromPacket(packet);

if(danceFloor::getForager(destination, optimization)!=NULL) {

handDataFromPacketToForager(packer, forager);

delete packer;

Entrance::letOut(forager);

}

else {

addPackerToWaitingPackers();

createScout(destination, initialTTL, ID);

setScoutTimer(initialTTL*delay);

entrance::letOut(scout);

}}

PackingFloor::scoutTimerExpired(destination, lastTTL) {

if(danceFloor::getForager(destination) == NULL) {

createScout(destination, newTTL, newID);
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setScoutTimer(initialTTL*delay);

entrance::letOut(scout);

}}

PackingFloor::receive(bee) {

if(forager) {

passDataToTransportLayer(data);

updateWaitingPackers(destination)

danceFloor::addForager(forager);

}

if(scout) {

updateWaitingPackers(destination)

danceFloor::addScout(scout);

}

while(waitingPackers>0 && danceFloor::getForager(destination)!=NULL) {

handDataFromPacketToForager(packer, forager);

delete packer;

Entrance::letOut(forager);

}}

2.5.4. Dance floor

DanceFloor::addBee(bee) {

if(destListNode(destination)==NULL)

createDestListNode(destination);

if(scout)

createForagerFromScout(scout);

calculateDances(forager);

}

DanceFloor::getBee(destination, optimization) {

if(destListNode(destination)==NULL)

return NULL;

else {

forager=NULL;

if(foragerAvailable(destination) {
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while(forager==NULL && foragerAvailable(optimization)) {

chooseForager(random);

if(lastFlight+lifeTime<now) {

if(lastFlight+danceTime<now && danceNumer>0)

forager=copyForager();

else

forager=removeForagerFromDanceFloor();

}

else

delete forager;

}

forager=getYoungestForager(destination);

}

return forager;

}}
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3. Implementation of Beehive in ns-2

By Christian Mueller (christian.mueller@uni-dortmund.de)

3.1. Introduction

As the development and evaluation of routing protocols with real world hardware is

expensive and very difficult to do, we made heavy use of network simulations. A key to

successfully achieve the desired results in reality, is to have a good simulation model of

the targeted environment. Several network simulators are available, such as ns-2 [ns2]

and Omnet++ [omn]. They aided us in evolving the Beehive routing algorithm.

3.1.1. History

The concrete development of the Beehive algorithm began using the Omnet++ simulator

together with AdHocSim [adh]. It provided the necessary tools to implement the basic

version of Beehive and to test various enhancements like scout and forager caching.

Unfortunately at the end of the first semester it became clear, that we could not get

reliable results in terms of a real world usage. Our competitors at this point of time were

AODV and DSR. The biggest Problem was the framework itself, which wasn’t developed

to fully implement the various layers, like a compliant 802.11 MAC, a full TCP/IP stack

or the physics behind wireless connections.

Luckily enough the design of the already written code allowed us to switch the simulator

without rewriting everything, since a single class (beehive.cc) handles nearly all simulator

specific details.

In the beginning of the second semester the decision was made to use ns-2 for further

evaluation. Although it was not that trivial to convert the Beehive code, due to a lack

of documentation about ns-2 routing internals (the ns-2 manual gets overhauled at the

time of this writing), the final result was a nearly complete simulation environment with

tested algorithms and methods.
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3.1.2. Ns-2

Ns is a discrete event simulator targeted at networking research. Ns provides

substantial support for simulation of TCP, routing, and multicast protocols

over wired and wireless (local and satellite) networks. [ns2]

The features of ns-2 regarding our simulation are:

• extensive TCP/IP stack (FullTCP, similar to a 4.x BSD stack)

• various traffic generators (CBR, VBR, FTP, HTTP, stochastic)

• Visualization of nodes and data flows [nam]

• Mobile Nodes with programmable trajectories

• Complete implementation of the IEEE 802.11 DCF MAC protocol

• Complete implementation of the Address Resolution Procotol (ARP)

• Implementation of DSR, DSDV, TORA and AODV

• Wireless network interface modeling the Lucent WaveLAN DSSS radio

• Modeling of signal attenuation, collision, and capture

• Two Ray Ground Reflection radio propagation model

• Simple energy model

• The scripting language OTcl to set-up the scenarios

3.2. OTcl

Ns-2 makes a twofold approach: the core is written in C++ for speed and efficiency,

while the scenario configurations are described in OTcl [otc]. Furthermore the complete

class hierarchy is available to both parts, which lets the user easily manipulate aspects

of C++ objects in OTcl, or extend the simulator with rapidly written scripts, with the

penalty of execution speed and memory requirements. Using a programming language

to control the simulation eases the set-up in complex cases, but a little effort has to be

done to glue both worlds together.

A short (non-working) TCL batch script to run a Beehive simulation may look like

this:
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set val(rp) Beehive

Agent/Beehive set VERBOSE 0

set ns_ [new Simulator]

set tracefd [open "$val(rp).tr" w]

$ns_ use-newtrace

$ns_ node-config -adhocRouting $val(rp)

$ns_ run

(This batch script won’t work, since we have to set a lot more options, see tcl/beehive/s-

cenario/results.tcl for reference.)

After setting up variables (line 1), an option is set in the Beehive Agent. Line 3 instances

the global ns object, the simulator itself. The next line opens a file descriptor (the last

part of the command) and binds it to the variable tracefd. In line 4 ns is told to generate

a trace file in the new trace format, as shown in chapter (parsing a tracefile). The follow-

ing line is one command, which sets up the mobile node framework. Finally the event

scheduler starts and the simulation is launched. The command ns sample.tcl results

in a tracefile called Beehive.tr, a NAM visualization file called Beehive.nam and a lot of

debugging messages on stdout (and hopefully nothing on stderr). The tracefile can be

analyzed with parser.pl < Beehive.tr and the scenario can be seen with executing

nam Beehive.nam.

3.3. Scenario generation

Although there are tools to generate movement and traffic patterns, we decided to use

ns-2’s scripting abilities. The tools we found generated incorrect files or were just not

usable. Since our goal was not to test out various movement patterns but to evaluate

routing algorithms, the simple but generally applicable random waypoint method was

used. Our implementation is straightforward and written into the TCL scripts. We

made use of the fact, that ns-2 has a built-in PRNG (pseudo random number generator),

which will generate the same sequence of numbers when fed with the same seed. The

PRNG is independent on the machines hardware and the OS, so that a run with the

same seed and options is exactly reproducible. Furthermore is ns-2 capable of instancing

several independent PRNG streams, so that we do not have to take care if other parts

of the simulator would disturb the contingency of the sequence. This sequence is used

to initially position every node to a (pseudo) random (x, y) value. After that a function

is called for every node, which does the following:

proc move_node {n} {

30



3. Implementation of Beehive in ns-2

(...)

#set new x-value destination

set rnd_pos_x [expr [$rnd value] * $val(x)]

#set new y-value destination

set rnd_pos_y [expr [$rnd value] * $val(y)]

#the speed with which the node should move, \

# in the range between rwpmin and rwpmax

set rnd_speed [expr [$rnd value]]

set rnd_pos_s [($rnd_speed * $val(rwpmin)) + \

((1 - $rnd_speed) * $val(rwpmax))]

#execute the movement

$ns_ at [$ns_ now] "$node_($n) setdest \

$rnd_pos_x $rnd_pos_y $rnd_pos_s"

#wait 0 to rwppause seconds and start movement again, \

# eventually interrupting an ongoing movement

$ns_ at [expr [$rnd value] * $val(rwppause) + \

[$ns_ now]] "move_node $n"

}

The rnd variables are uniformly distributed floating point numbers between 0.0 and 1.0.

To generate traffic we used the built-in CBR traffic agent over full TCP in most of

our evaluations. FTP traffic generation and UDP were also tested.

The nodes are connected in the following way: The first node 0 sends its data to the

last node n, the second node 1 to n-1 and so on, up to m nodes generating the traffic.

In our results m was set equal to n. This scenario ensured that we did not generate

any artificial hotspots, equally to a peer-to-peer network. That has the advantage of

a comparable bandwidth of every node and a standard deviation which is meaningful

concerning the routing itself.

3.4. Beehive implementation

The main implementation of beehive consists on the following files:

• b beeDefinitions.h, defines constants and the structures of the agents. Most of

the constants have been made available to the TCL hierarchy as variables for

convenience.
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• hdr beehive.cc .h, links the beehive packet header into the ns2 structures that is

the source routing and IP options data fields

• beehive.cc, the main class, responsible to handle most of the simulator specific

details to enable easy porting of beehive

• beehive.h, beehive’s global definition file with data structures based on STL [stl]

and class definitions

• beehive.tcl, sets the TCL variables of Beehive to default values

• b entrance.cc, the entrance, which is explained in detail in chapter 1

• b packingfloor.cc, the packingfloor, see above

• b beefloor.cc .h, the dancefloor, see above

• b gridfloor.cc .h, an alternative dancefloor based on graphs, explained in [PGb]

(unused)

To integrate Beehive into ns-2, some sources of the simulator had to be expanded,

with mostly one line changes:

• Makefile.in, of course our sources should be compiled too

• common/packet.cc, adds the Beehive header, defined in hdr beehive to the core

• queue/priqueue.cc, to add the prefer routing protocols flag, although unused in

our simulations

• tcl/lib/ns-lib.tcl, this adds the Beehive routing agent to the TCL hierarchy

• tcl/lib/ns-packet.tcl, which makes our packet header available

Furthermore a few bug fixes (taken from the mailing lists) have been applied to aod-

v/aodv.cc, mac/mac-802 11.cc and tora/tora.cc.

The class beehive.cc provides, as mentioned, an interface to the simulator. It in-

stantiates upon creation the packetfloor, entrance and dancefloor, and binds the TCL

variables. Beehive::command accepts the TCL events send by the core, as setting the

local address per node, or attaching objects like the port demux, but most of the events

are handled by beehive’s parent class, the ns-2 agent. Beehive::recv takes a packet as an

argument and forwards it, depending on the header, to handleFromApp, handleScout or
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handleForager. These and other functions in beehive.cc are helper functions to transform

ns-2 packets in beehive agents and vice versa. Since these are simple pointer operations

or API specific details (or voodoo because of the lack of documentation about ns-2’s

internals), there is no reason to explain this further. Finally the packets will traverse

into the packingfloor, if they are to be sent; into the entrance, if they are coming from

the net; or send/broadcasted out into it.

One detail of the simulation is noteworthy: a problem arose, when we broadcasted our

scouts into the neighborhood, a fast queue built up was experienced. Since the transmit-

ting time and delays between the wireless nodes are exactly the same when no problem

occurs, all neighbor nodes broadcasted their scouts again at the same time, which led to

a massive collision of the scouts. This would not happen in reality, so we added a small

random jitter upon receiving and forwarding a scout on every node. It seems that the

DSR implementation does the same.
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4. Parsing a tracefile

By Rene Jeruschkat (rene.jeruschkat@uni-dortmund.de)

4.1. Introduction

After implementing our routing algorithm the main question was how to compare all

those algorithms available in ns-2? Getting results only for beehive would be a rather

easy task as we did it before in omnet. We would modify some of our classes and gather

statistics during execution time. But this approach would require us to modify all other

algorithms. These algorithms look as if they all were coded by different people although

most of them were implemented within the same university project. There is no unified

approach, no framework, no general picture where to start editing these algorithms.

Even proper comments were missing, variable names are very often cryptic shortcuts

and documentation as usual in ns-2 is really poor. (That doesn’t go for using ns-2, but

it’s definetely true for editing it)

After complaining so much, there was obviously another solution and that’s the one

we followed: All those algorithms produce tracefiles while executing. These tracefiles

have a common structure and contain a lot of information. They don’t contain real

performance indicators though. This is where the parser comes into play.

4.2. Tracefile size / Simulation sequence

Within simulation ns-2 creates tracefiles roughly 200MB in size. In code editing cycles

the usual approach is executing the algorithm, parsing the tracefile and see whether its

an improvement or not. These two steps executing and parsing can’t be split up in a

large simulation. We are simulating round about 1000 different network conditions and

therefore this usual sequence is not possible anymore due to diskspace limitation.

Our first attempt to solve this little problem was to compress the output everytime

one of the 1000 simulation runs completes. Zipped files are one order of magnitude

smaller than their original textfile counterparts. It is still too much and therefore no
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proper solution. The most important fact to skip the compression is the attribute of

ns-2 to write its output chronologically. Enabling the parser to read from standard input

(STDIN) solves the space problem entirely as every tracefile is deleted after parsing ns-2

output (extracted information contains everything needed).

4.3. Parser usage

Given a typical tracefile Beehive-40-50000.tr (Algorithm Beehive, 40 nodes, 50000: seed

for random number generator) a parser call would look like

./parser.pl < Beehive-40-50000.tr

space efficiency can be improved by reading from STDIN and passing the output from

ns-2 directly into the parser. Trace files aren’t generated any more. Therefore the real

parser call is inside a ns-2 specific tcl script which is responsible for starting all of our

simulations. A tcl-parser call looks like

set tracefd [open "|../parser.pl > \$val(filename).txt" w]

4.4. Tracefile structure

So, what is this tracefile all about? To explain the tracefile structure we cut out a small

part of a real file, cleaned it up and made some changes to improve readability. Leading

# lines are comments made by us and are not inherent in any tracefile. Take a look at

the legend to get all those abbreviations in figure ?? explained.

4.4.1. Legend

s alternative of [s,r,f,d] = send,receive,forward,dropped

-t current time

-Ni current node ID

-Ne current batterylevel

-Nl networklayer [AGT,RTR,MAC] = Agent, Routing, MediumAccessControl

-Nw in this example always "---" sometimes collisions are reported

here by COL=collisions

-Mi packettype as seen by MAC [ack, RTS, CTS, beehive, DSR, ...] =

Acknowledge, RequestToSend, ClearToSend, beehive, DSR, and other

routing algorithms
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-Uid UniqueId for following packetflow

-Md MacDestination the destination the MAC wants the packet to send to

-Is IPsource A.B - A is the initiatial node, B shows the port used to

send the packet

-Id IPdestination A.B - A is nexthop, B the port (similar to -Is)

-It IPtype similar to -Mi

-Il packetsize in bytes
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#node 1001
s -t 46.046121273 -Ni 1001 -Ne 98.923240 -Nl AGT -Nw --- -Mi ack -Uid 3709 -Md 0 -Is 1001.1 -Id 1008.0 -It ack -Il 40
r -t 46.046121273 -Ni 1001 -Ne 98.923240 -Nl RTR -Nw --- -Mi ack -Uid 3709 -Md 0 -Is 1001.1 -Id 1008.0 -It ack -Il 40
s -t 46.046121273 -Ni 1001 -Ne 98.923240 -Nl RTR -Nw --- -Mi ack -Uid 3709 -Md 0 -Is 1001.1 -Id 1001.255 -It ack -Il 104
s -t 46.046620273 -Ni 1001 -Ne 98.923240 -Nl MAC -Nw --- -Mi RTS -Uid 3709 -Md 1002

#establish connection 1001<->1002
r -t 46.046972505 -Ni 1002 -Ne 98.998550 -Nl MAC -Nw --- -Mi RTS -Uid 3709 -Md 1002
s -t 46.046982505 -Ni 1002 -Ne 98.998550 -Nl MAC -Nw --- -Mi CTS -Uid 3709 -Md 1001
r -t 46.047286737 -Ni 1001 -Ne 98.923125 -Nl MAC -Nw --- -Mi CTS -Uid 3709 -Md 1001
s -t 46.047296737 -Ni 1001 -Ne 98.923125 -Nl MAC -Nw --- -Mi ack -Uid 3709 -Md 1002 -Is 1001.1 -Id 1001.255 -It ack -Il 156

#node 1002
r -t 46.048544969 -Ni 1002 -Ne 98.998278 -Nl MAC -Nw --- -Mi ack -Uid 3709 -Md 1002 -Is 1001.1 -Id 1001.255 -It ack -Il 104
r -t 46.048569969 -Ni 1002 -Ne 98.998225 -Nl RTR -Nw --- -Mi ack -Uid 3709 -Md 1002 -Is 1001.1 -Id 1001.255 -It ack -Il 104
f -t 46.048569969 -Ni 1002 -Ne 98.998225 -Nl RTR -Nw --- -Mi ack -Uid 3709 -Md 1002 -Is 1001.1 -Id 1002.255 -It ack -Il 104
s -t 46.049228969 -Ni 1002 -Ne 98.998225 -Nl MAC -Nw --- -Mi RTS -Uid 3709 -Md 1003

#establish connection 1002<->1003
r -t 46.049581474 -Ni 1003 -Ne 98.259148 -Nl MAC -Nw --- -Mi RTS -Uid 3709 -Md 1003
s -t 46.049591474 -Ni 1003 -Ne 98.259148 -Nl MAC -Nw --- -Mi CTS -Uid 3709 -Md 1002
r -t 46.049895979 -Ni 1002 -Ne 98.998110 -Nl MAC -Nw --- -Mi CTS -Uid 3709 -Md 1002
s -t 46.049905979 -Ni 1002 -Ne 98.998110 -Nl MAC -Nw --- -Mi ack -Uid 3709 -Md 1003 -Is 1001.1 -Id 1002.255 -It ack -Il 156

#node 1003
r -t 46.051154483 -Ni 1003 -Ne 98.258877 -Nl MAC -Nw --- -Mi ack -Uid 3709 -Md 1003 -Is 1001.1 -Id 1002.255 -It ack -Il 104
r -t 46.051179483 -Ni 1003 -Ne 98.258824 -Nl RTR -Nw --- -Mi ack -Uid 3709 -Md 1003 -Is 1001.1 -Id 1002.255 -It ack -Il 104
f -t 46.051179483 -Ni 1003 -Ne 98.258824 -Nl RTR -Nw --- -Mi ack -Uid 3709 -Md 1003 -Is 1001.1 -Id 1003.255 -It ack -Il 104
s -t 46.051778483 -Ni 1003 -Ne 98.258824 -Nl MAC -Nw --- -Mi RTS -Uid 3709 -Md 1004

...

#establish connection 1007<->1008
r -t 46.070580817 -Ni 1008 -Ne 98.317063 -Nl MAC -Nw --- -Mi RTS -Uid 3709 -Md 1008
s -t 46.070590817 -Ni 1008 -Ne 98.317063 -Nl MAC -Nw --- -Mi CTS -Uid 3709 -Md 1007
r -t 46.070895445 -Ni 1007 -Ne 98.115469 -Nl MAC -Nw --- -Mi CTS -Uid 3709 -Md 1007
s -t 46.070905445 -Ni 1007 -Ne 98.115469 -Nl MAC -Nw --- -Mi ack -Uid 3709 -Md 1008 -Is 1001.1 -Id 1007.255 -It ack -Il 156

#node 1008
r -t 46.072154072 -Ni 1008 -Ne 98.316792 -Nl MAC -Nw --- -Mi ack -Uid 3709 -Md 1008 -Is 1001.1 -Id 1007.255 -It ack -Il 104
r -t 46.072179072 -Ni 1008 -Ne 98.316739 -Nl RTR -Nw --- -Mi ack -Uid 3709 -Md 1008 -Is 1001.1 -Id 1007.255 -It ack -Il 104
r -t 46.072179072 -Ni 1008 -Ne 98.316739 -Nl AGT -Nw --- -Mi ack -Uid 3709 -Md 1008 -Is 1001.1 -Id 1008.0 -It ack -Il 40

37



4. Parsing a tracefile

This ”small” extract describes the whole communication needed to send a single

packet from node 1001 to node 1008. The agent at node 1001 initializes the trans-

mission by deciding to send a packet to node 1008. This decision is communicated to

the Routing layer (line number #2) which receives(#3) the wish, forwards it to the

mac layer(#4) which tests the availability of the transportation medium by sending a

RequestToSend(#5) message. Nexthop 1002 receives the call(#8) is ready and sends

a ClearToSend packet(#9) back to the origin. Node 1001 receives the message(#10)

and backs it up by sending an acknowledge(#11). Finally node 1002 receives(#14) the

ack and completes the handshake. Node 1002 examines the packet, forwards it to node

1003(#16) and another handshake takes place. Even more nodes forward the packet

until finally node 1008 is reached. The last handshake between node 1007 and 1008

provide the medium and presents the data to the destination agent.

Above of this example we mentioned that we cleaned the extract up. The reason for

that lies in another fact we have already stated: Chronological writing in ns-2. Since

ns-2 has to keep track of many connections simultaneously therefore overlapping is a nat-

ural result and causes headaches reading output unformatted. In the example only one

connection is present, therefore obviously no interleaving is possible. Connection track-

ability is achieved by assigning unique IDs to each of them - packets get distinguishable.

Considering parsing the tracefile that comes in handy.

4.5. Parsing

Analyzing line by line the parser stores valuable information needed for future calcula-

tions, ignoring and forgetting redundant or unnecessary data.

As seen in the example the most important lines are the ones containing AGT infor-

mation. These initiate and close connections. In the first case a data structure that is

supposed to track connections is tested against the parsed unique ID. As every connec-

tion start occures only once, a positive test indicates a corrupt tracefile (should never

happen). Usually there is no problem here and data gathered from this AGT start line

is inserted into the data structure indexed by the unique ID. Following information is

stored: The amount of data sent, the current time in tracefile (needed for delay), the

number of hops the route has seen until now (thats always 0) and the energy needed to

send this information.

When reading another line containing this unique ID the associated record in the

data structure is updated. Different data categories have different update frequencies.

The delay for example is updated at the concluding AGT receive, intermediate RTR
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and MAC layers have no effect on it. It is calculated as receive time (current time)

subtracted by send time (gathered at initiation). Hop count and energydata have to be

updated more often, RTR layer information affect them directly. Every occurence of a

unique ID in a RTR layer increases the corresponding hop count by one. That’s of course

quite intuitive, energy on the other hand is a little more complex. Energy is influenced

by the packet size and the hopcount: Some constant and some value proportional to the

packet size has to be added every hop. One could assume it is possible to multiply the

constant with hopcount and add proportionalized packetsize at the finalization of the

connection. That’s not the case though. Packetsize varies over time as sourcerouting

implies increasing headersize at every node visited.

Once the Agent receives its data all important facts can be evaluated and stored in

different overall data structures. On this receive, the delay is calculated, the hopcount

finalized and so is the Send- ReceiveEnergy. Most of these facts will be stored in different

lists each containing one criteria. At the end of every simulation a statistic method is

called upon each list giving back the average, minimum, maximum, standard deviation

and sum of the elements. Although not all of these calculations make sense for all criteria

nevertheless it’s no problem to calculate them. Therefore data can be handled uniformly

and one method fits them all.

Erasing the connection record right now ends this connection. All relevant data was

already analyzed or collected for later analyzation, there is no more need for it.

4.6. Throughput remarks

There are two ways handling throughput, the common (in our opinion rather poor) one is

to divide the amount of received data by the simulation time. This ratio is dominated by

the amount of bytes received, since simulation time is fixed for all competing algorithms.

Bytes received is for sure an important criteria to measure an algorithms performance

but doesn’t really apply to the term throughput as used in common applications.

Let’s take a look at an example: Assuming a simulation is set to 10 seconds simulation

time and two different algorithms competing. Both algorithms should deliver 10 MB from

node A to node B. For simplicity reasons let’s assume there is no packetloss and both

will deliver 100% of the data. Let’s further assume the first algorithm needs 1 second

to deliver the 10 MB to node B and the second algorithm needs 10 seconds for the

same task. Obviously the first algorithm finishes its task faster than the second one and

should therefore be rewarded with a higher throughput. Nevertheless both algorithms

get a rating of 1 MB/s.
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Our suggestion is to ignore the idle time and to reward the first algorithm with a

throughput of 10 MB/s while the second one is one order of magnitude slower. Therefore

the parser calculates both values ”throughput(simTime)” which is the common one -

”Throughput” the min,max,average, stddev and sum of throughput a single connection

has.

4.7. Parser output
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Figure 4.1.: some typical parser output
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5. Simulation Results

By Johannes Meth (J.Meth@landata.de) and Björn Vogel (BjoernVogel@gmx.de)

5.1. Introduction

This chapter deals with the evaluation and simulation of the developed algorithm. The

BeeHive algorithm was developed with the intention to be used in Wireless Networks

with up to 200 nodes. Since it takes enormous efforts and costs to evaluate such large

networks in reality it was decided to do simulation and evaluation with a software-

simulator. In the early days of algorithm development the omnet++ simulator was used

to test the fitness of the algorithm. So some early results were evaluated with the use

of omnet++ but soon it turned out that this simulator does not have the capability to

reflect a real wireless environment in a satisfactorily manner. So in the final phase the

algorithm was migrated to the ns-2 simulator which has more realistic ways to simulate

an environment (see chapter 3 of Part I).

5.1.1. Tested algorithms

Beside BeeHive there were simulated some more algorithms which are the following:

AODV - On-Demand Distance Vector Routing Protocol

The AODV protocol is a next-hop routing algorithm therefore every node has its own

routing-table [CEPD02]. This table is updated on demand only. When a source node

desires to send a message to some destination node and does not have a valid route to

that destination the route discovery is as follows: The Source S sends a Route-Request

(RREQ) as a kind of broadcast to all its neighbours. These neighbours forward the

RREQ to all reachable nodes, until the destination D has been reached. Has the RREQ

packet arrived at its destination, the destination node sends a Route-Reply packet back

to the source. If an intermediate node on the way of an RREQ messages has an up-to-

date route to the destination, it could also sent an RREP on behalf of the destination.

This RREP packet uses the reverse path of the RREQ message. Nodes along this
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reverse path set up forward route entries in their route tables which point to the node

from which the RREP came. If no RREP packet arrives at the source node after a fixed

period of time, the node repeats sending an RREQ packet with a higher TTL. In case of

this RREQ also not being successful the destination is marked as unreachable. AODV

utilizes destination sequence numbers to ensure all routes are loop-free and contain the

most recent route information. Each node maintains its own sequence number, as well

as a broadcast ID. The broadcast ID is incremented for every RREQ the node initiates,

and together with the node’s IP address, uniquely identifies an RREQ. Along with its

own sequence number and the broadcast ID, the source node includes in the RREQ

its most recent sequence number for the destination. Intermediate nodes can reply to

the RREQ only if they have a route to the destination whose corresponding destination

sequence number is greater than or equal to that contained in the RREQ.

The route maintenance process is as follows: When a node detects a link failure, it sends

a Route-Error message (RRER) to each neighbour for which it is forwarding traffic

through the link. This RRER is thus propagated to each source for which traffic is being

routed through the link failed link, causing if necessary the route discovery process to

be reinitiated. An additional aspect of the protocol is the use of hello messages. These

messages are periodic local broadcasts to inform each mobile node about other nodes in

its neighbourhood. This can help the nodes to maintain there local connectivity’s and

detect failed links fast.

DSR - Dynamic Source Routing Algorithm

The DSR protocol [DBJH04] is an on-demand routing protocol that is based on the

concept of source routing. The route discovery process of DSR is much similar to the

behaviour of AODV. The source sends an RREQ packet via broadcast to all reachable

nodes. These nodes add their node IDs into the route header and forward the packet

to all its neighbour nodes. If the packet reaches the destination the header contains a

complete route to the source, which is inserted in the route header of the RREP. To

avoid loops every node checks the route header of the RREQ packet for its own node

ID. If the own node ID is found the packet has already been forwarded by this node

and has to be discarded. When the source receives a route reply, it caches the source

route and includes it in the header of each data packet. Intermediate nodes forward

the packet according to the route specified in the header and also cache the route of

the route header in their route cache. The nodes are responsible for the accurate trans-

mission of a packet. Therefore acknowledges are send from every node after receiving

a data or RREP message. If a node does not receive an acknowledge after sending a
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packet, the node will resend the packet. Route error packets are generated at a node

when the data link layer encounters a fatal transmission problem. When a route error

messages is received, the hop in error is removed from the node’s route cache and all

routes containing this hop are truncated at that point.

Many optimizations for DSR passed on aggressive caching and analysis of topology infor-

mation are incorporated into this scheme. From the source route included in each data

and RREP packet, each intermediate node can trivially extract routes to all downstream

nodes. Additional topology information can be reduced by combining information about

several routes. Further information can be obtained by nodes operating their network

interface in promiscuous mode. In this mode a node can overhear the transmitted pack-

ets between its neighbours and can additionally add the routes of these packets to its

route cache. This aggressive caching can lead to a high cache hit rate that reduces the

expensive route discovery and finds routes more quickly. On the other hand it can also

increase the risk of stale route information being injected into the network. An advantage

of the DSR protocol compared to AODV is that the route cache can contain multiple

routes to one destination and that it uses much less messages for network maintenance.

On the opposite the demand of memory in the packet for route header and in the nodes

for the route cache is a lot higher than for AODV.

DSDV - Destination-Sequenced Distance-Vector

In the opposite to the on-demand DSR and AODV protocols the DSDV algorithm is

a proactive table-driven protocol in which every node has its own routing table and

the nodes exchange there information about active routes via messages to update these

tables. Each node maintains the following information in its routing table [Fee99]:

• next hop towards each destination

• a cost metric for each destination

• a destination sequence number that is created by the destination itself (to detect

stale routes form new ones)

• a new sequence number unique to the broadcast (to avoid loops)

Every node periodically sends its routing table to its neighbour. Meanwhile the node

increments and appends its sequence number. This sequence number will be attached

to route entries created for this route. Each receiving node compares the broadcast

sequence number for each destination with the one in its routing table. If the sequence
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number is higher, the receiver updates its routing table entry, naming the sender as the

next-hop and incrementing the distance by one hop. If the sequence numbers are equal,

the route with the smaller metric is used to shorten the path. When a link failure is

detected by a node the distance to each destination via this node is set to infinity and

the sequence number are all incremented.

To reduce network traffic there are two ways of broadcasting the routing table. The

first is known as a ”full dump” and contains the full routing table. The other one is

the ”incremental” update that is used to relay only the information’s which has changed

since the last ”full dump”. The mobile nodes maintain a separate table in which the

”incremental” updated information is stored.

5.2. Simulation Runs

To compare all these algorithms with each other, a testing environment had to be created

in which the starting position and conditions are the same for all algorithms. This could

be done through creating a simulation environment in ns2. But testing these algorithms

in one simulation case (or test case) only can provide very specific results, so, to get more

”across the board” results, many different test cases were created as shown in tables 5.1

and 5.2.

The amount of nodes in the TCP-simulations was set to 50 (UDP: 30) with each of

this nodes acting as a sending node. The amount of simulated seconds was set to 1000

for every simulation run. Each of the runs was simulated five times with different seeds,

which result in a slightly changed order of events but keeping the general simulation

case equal. These five results for each run were merged together to build an average

case, which was then used for comparisons. Actually we simulated many cases more,

but the ones listed above are the ones which are relevant for our evaluations. Since one

simulation for one seed takes some time to complete, the simulations were split up onto

several different machines to speed up the overall simulation process. This was achieved

by distributing several blocks of simulations to some machines by creating a small shell

script that looks like this:

#!/bin/bash

WORKINGDIR="/home/pg439/share/simulation/"

ssh -f fluor "cd ${WORKINGDIR};nice +18 ./Sim1" &

ssh -f mangan "cd ${WORKINGDIR};nice +18 ./Sim2" &

ssh -f chlor "cd ${WORKINGDIR};nice +18 ./Sim3" &
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Transport Protocol: TCP
BeeHive: x=0; DSR: x=300; AODV: x=600; DSDV: x=900

mobility packets topology
Run-Nr. minSpeed maxSpeed pauseTime 1/sec size x-size y-size #nodes

1+x 0 5 60 10 512 2400 480 50
2+x 0 10 60 10 512 2400 480 50
3+x 0 15 60 10 512 2400 480 50
4+x 0 20 60 10 512 2400 480 50
6+x 0 20 60 30 512 2400 480 50
8+x 0 20 60 60 512 2400 480 50
10+x 0 20 60 100 512 2400 480 50
16+x 0 20 60 100 512 2400 480 50
20+x 0 20 30 100 512 2400 480 50
24+x 0 20 1 100 512 2400 480 50
26+x 0 20 60 100 512 1073 1073 50
28+x 0 20 60 100 512 3400 340 50
102+x 0 10 60 10 2048 2400 480 50
202+x 0 10 60 10 4096 2400 480 50

Table 5.1.: TCP-Runs for BeeHive, DSR, AODV and DSDV

Transport Protocol: UDP
BeeHive: x=0; DSR: x=300; AODV: x=600

mobility packets topology
Run-Nr. minSpeed maxSpeed pauseTime 1/sec size x-size y-size #nodes

51+x 0 5 60 10 512 2400 480 30
52+x 0 10 60 10 512 2400 480 30
53+x 0 15 60 10 512 2400 480 30
54+x 0 20 60 10 512 2400 480 30

Table 5.2.: UDP-Runs for BeeHive, DSR and AODV
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ssh -f barium "cd ${WORKINGDIR};nice +18 ./Sim4" &

ssh -f gold "cd ${WORKINGDIR};nice +18 ./Sim5" &

ssh -f calcium "cd ${WORKINGDIR};nice +18 ./Sim6" &

ssh -f blei "cd ${WORKINGDIR};nice +18 ./Sim7" &

ssh -f eisen "cd ${WORKINGDIR};nice +18 ./Sim8" &

In the following you can see an example for a shell script like Sim1:

#!/bin/bash

simtime=1000

nodes=50

tnodes=50

#RUN 1

for i in 86430 68431 53142 61313 14874;

do

./ns results.tcl -rp Beehive -seed $i -rwpmin 0 -rwpmax 5 -rwppause 60 -pktsize 512 -pktrate 0.041 \

-nn $nodes -tn $tnodes -$simtime simtime -filename r0001-$nodes-$simtime-$i -ifqlen 100

./ns results.tcl -rp DSR -seed $i -rwpmin 0 -rwpmax 5 -rwppause 60 -pktsize 512 -pktrate 0.041 \

-nn $nodes -tn $tnodes -$simtime simtime -filename r0301-$nodes-$simtime-$i -ifqlen 100

./ns results.tcl -rp AODV -seed $i -rwpmin 0 -rwpmax 5 -rwppause 60 -pktsize 512 -pktrate 0.041 \

-nn $nodes -tn $tnodes -$simtime simtime -filename r0601-$nodes-$simtime-$i -ifqlen 100

./ns results.tcl -rp DSDV -seed $i -rwpmin 0 -rwpmax 5 -rwppause 60 -pktsize 512 -pktrate 0.041 \

-nn $nodes -tn $tnodes -$simtime simtime -filename r0901-$nodes-$simtime-$i -ifqlen 100

done

#RUN 2

for i in 86430 68431 53142 61313 14874;

do

./ns results.tcl -rp Beehive -seed $i -rwpmin 0 -rwpmax 10 -rwppause 60 -pktsize 512 -pktrate 0.041 \

-nn $nodes -tn $tnodes -$simtime simtime -filename r0002-$nodes-$simtime-$i -ifqlen 100

./ns results.tcl -rp DSR -seed $i -rwpmin 0 -rwpmax 10 -rwppause 60 -pktsize 512 -pktrate 0.041 \

-nn $nodes -tn $tnodes -$simtime simtime -filename r0302-$nodes-$simtime-$i -ifqlen 100

./ns results.tcl -rp AODV -seed $i -rwpmin 0 -rwpmax 10 -rwppause 60 -pktsize 512 -pktrate 0.041 \

-nn $nodes -tn $tnodes -$simtime simtime -filename r0602-$nodes-$simtime-$i -ifqlen 100

./ns results.tcl -rp DSDV -seed $i -rwpmin 0 -rwpmax 10 -rwppause 60 -pktsize 512 -pktrate 0.041 \

-nn $nodes -tn $tnodes -$simtime simtime -filename r0902-$nodes-$simtime-$i -ifqlen 100

done
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Figure 5.1.: Energy results depending on
node velocity (from runs 1+x,
2+x, 3+x, 4+x)
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Figure 5.2.: Delay results depending on
node velocity (from runs 1+x,
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5.3. Testing Mobility Be(e)haviour

5.3.1. Node Velocity

At first, the influence of different node movement behaviours was tested using four cases

with maximum speeds vmax of 5, 10, 15 and 20 m/s and a minimum speed of vmin = 0

m/s.

Figure 5.1 describes the influence of the movement speed towards the energy that has

been used to deliver one kB of user data to the desired destination in average. This

includes as well the proportional energy of the involved control packets as the pure

energy consumption to send and receive this data.

As one can see BeeHive does consume less energy (per delivered user data) than any

other algorithm tested. This may be a result of the simplicity of the BeeHive algorithm in

comparison to the others. AODV and DSR do consume significantly more energy than

BeeHive. This is a result of the AODV and DSR specific behaviour, like route error

messages and packet salvaging (DSR) which both does not exist in any comparable

way in BeeHive. BeeHive abandons these mechanisms and so accepts to lose some

more packets but as one can see in figure 5.4, BeeHive is also able to deliver a higher

amount of user packets to the destinations. AODV also has a higher energy consumption

which partially is a result of the route error mechanisms similar to DSR. Since AODV

has no extensive broadcast route detection mechanism like DSR (and BeeHive) the

energy consumption is slightly less than DSR. Both algorithms (DSR, AODV) have route

caching mechanisms, which are theoretically promisingly mechanisms, but practically

they seem to deteriorate the results. In the developing time of BeeHive there were also
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made some experiments of using route caches but they all made the results rather worse

than better. Keeping old routes too long results in more route faults which can explain

the rising energy consumption. DSR has a disadvantage in comparison to AODV because

AODV maintains route table with the use of ”hello”-messages which are non-existent

in DSR. Furthermore, DSR uses packet salvaging which - in combination with very old

cached routes - is bad for energy behaviour. If a node realises that a route, which should

be used for sending a data packet, is down, it searches its cache and maybe chooses a

route that that itself is also very old and already down which may result in another route

error and packet salvaging (maybe over an old, non-existing route again, and again, and

so on). Like BeeHive, DSDV is a quite simple algorithm that is less complicated and

hence less power-consuming.

Figure 5.2 describes the influence of the movement speed towards the average delay

it takes to deliver a user data packet from its source to its destination. This includes as

well the time it takes to discover a new route (only necessary in some protocols (DSR,

AODV (if no route is cached), BeeHive (if no bee is available) as the pure travelling

(transmitting/receiving) time of a packet.

Simulations show that all algorithms have decreasing delays with increasing mobility

(node velocity) whereas BeeHive is significantly better than AODV and DSDV. DSR

has a disproportionate long, but nearly constant delay. These cognitions have to be

taken as they are, since there is no real explanation for this, yet.
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livered to destination (from
runs 1+x, 2+x, 3+x, 4+x)

Figures 5.3 and 5.4 describe the throughput achieved and the total amount of suc-

cessfully delivered packets. Both diagrams are connected closely together so they look

similar. As one can see BeeHive, AODV and DSDV do not care much about the ve-

locity of the nodes in the network. The throughput and amount of delivered packets

49



5. Simulation Results

nearly remain the same. Only the throughput of DSR decreases with increasing node

velocity. This may rather be a result of DSR-specific mechanisms like caching and/or

packet salvaging. BeeHive deals with this problem in a good manner: simplicity and

not using these mechanisms. DSR also has problems to keep its delivery ratio on a

certain level with increasing speed so one can conclude that caching routes too long is a

problem in ”fast” networks. Since BeeHive does not have a similar mechanism BeeHive

doesn’t suffer from this effect. Also the two other algorithms have ways bypassing this

problem by using ”hello”-messages (AODV) or broadcasting routing tables (DSDV).

These mechanisms refresh the known routes in certain time intervals. DSR has to wait

for route errors (after retrying to retransmit the packet several times) and salvage the

packet costly. This is also an explanation for the long delay.

5.3.2. Pause Time

Now, the pause time is varied (figures 5.5, 5.6 and 5.7). Each node moves randomly to

a specific destination, waits there for a time which is represented by pause time. Then

it moves to another point, waits again and so on.

Generally the results are quite comprehensible. All algorithms have decreasing values of

delay. If a node rests for a longer time all algorithms have got more time to adapt to

this new situation. Routes exist a longer period of time, which decreases the time that

packets have to wait while new routes have to be discovered, so, the delay of all algo-

rithms decrease with increasing pause time. This also provides the possibility to send

more packets over known, working routes, that results in a higher throughput. BeeHive’s

energy consumption benefits of this situation as well, but all other algorithms have in-

creasing energy consumption with decreasing network mobility. Until now we don’t have

an explanation for this behaviour. We analyzed the simulation data and found the rea-

son for the increasing energy consumption. In networks with longer pause times (60

seconds) BeeHive (as comparison) needs less control packets to deliver more user data

to the destinations (which is perfectly clear). On the other hand, for example, DSR uses

six times more control packets to deliver only 8% more data packets to its destination

and DSDV needs twice as much control packets to deliver ”only” 69% more data packets.
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pause time BeeHive DSR AODV DSDV
control delivered control delivered control delivered control delivered

1 second 65575 148544 60361 141451 962799 139925 116516 157080
60 seconds 61929 220850 396038 152651 701780 199108 235517 226285

Table 5.3.: table: packet delivery depending on pause time
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5.4. Testing Send Rate Be(e)haviour

Sending more packets per time unit will result in a higher amount of sent packets and so

a higher amount of packets delivered successfully, which results in a higher throughput.

The delay of all four algorithms is slightly decreasing (but nearly constant, anyway)

only the high delay of DSR is decreasing from 1000 to 800 ms. This is explainable by

the fact that the beginning route discovery time (that is wasted) can be portioned to

more overall packets. The energy consumption decreases with an increasing amount of

packets sent because with the same amount of control packets more user data can be

sent. This effect pertains all four algorithms.
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5.5. Testing Packet Size Be(e)haviour

5.6. Testing Packet Size Be(e)haviour

In figures 5.11, 5.12 and 5.13 the influence of varying packet sizes is shown. When

increasing the packet size the energy needed to deliver one byte of user data is decreasing

(figure 5.11). There are two explanations for this. First, the send energy is calculated

by a constant factor per packet plus a factor multiplied with the packet size. With

increasing packet size the constant factor is so portioned to more bytes. The second

reason is that the same amount of energy used for control packets can be portioned to

a bigger amount of delivered user bytes. For example, if you use 20 control packets to

deliver 10 user packets it is sure, that when the user packet size is bigger in size you can

deliver more data with the same amount of control packet energy used. As shown all
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algorithms benefit from this effect in the same way, whereas BeeHive does consume the

least energy at all, closely followed by DSDV. The more complex algorithms here show

also their disadvantages.

In figure 5.12 one can see that the delay increases with increasing packet size, which

can be explained by the longer transmission time for each packet. One could think

actually it shouldn’t make this big difference but the results seem to be unequivocal.

Due to Wireless LAN characteristics in an accumulation of nodes a transmission of a

packet block other nodes for short time interval. So, the bigger the packet size, the

longer the blocking interval inside this accumulation will be. And since every single

node does send data packets in the simulations performed, this effect dominates with an

increase in packet size.

For sure one can see, that BeeHive still has the shortest delay, closely followed by

DSDV and AODV and DSR still has a disproportionate long delay.

The throughput (figure 5.13) surely increases when increasing packet size, because the

same amount of packets should be sent and sending the same amount of bigger packets

will increase the throughput. ”Should be sent” is here used because the simulations

did not really send the same amount of packets (although they should) which may be a

result of the increased delay: the TCP agent just sends a new packet on receive of the

acknowledge of the previous packet. So with a longer delay the amount of packets sent

by TCP will decrease.
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packet size(bit)
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Figure 5.14.: Success results depending on
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5.7. Success Rates

The success rate as shown in figures 5.14, 5.15 and 5.16 describes the percentage of data

packets which reach the destination successfully. In this contest the DSR algorithm has

slightly the best success rates. BeeHive places second (with a nearly negligible leeway

of 0.5%-point max), followed by DSDV with another leeway of 0.4%. AODV seems

to have big problems in mobile networks; the success rate gets worse with increasing

node mobility. The send rate does not influence the success rate of any algorithm in a

mentionable manner.
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Figure 5.16.: Success results depending on
send rate (from runs 4+x,
6+x, 8+x, 10+x)
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5.8. Testing Area Size Be(e)haviour

This section is not really important for rating an algorithm but it is still nice to know

how algorithms behave in different topologies. For this, three different topologies with

each the same amount of footprint (in m2) where created:

• 2400 x 480 meters

• 1073 x 1073 meters

• 3400 x 340 meters

As one can see in figure 5.17, the topology does not have a big effect on the energy used

for delivering user data.

Figure 5.18 shows that the delay increases in squared topologies which may be a result

of send and receive collisions of the wireless node (since only one node can send at one

time, and all others in range only can listen (receive) or have to wait). If the topology

is now a rectangle with clearly unequal side lengths the delay and throughput will be

better because of more widely-spread nodes not blocking each others transmission by

forming some kind of line.
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Figure 5.17.: Energy results depending
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Figure 5.18.: Delay results depending on
different topologies (from
runs 16+x, 26+x, 28+x)

5.9. UDP

All the simulations above were performed with TCP as the responsible transport proto-

col. This section will evaluate the results performed with UDP.
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At first the number of nodes in the simulation was reduced to 30 nodes, to reduce

the complexity of the simulation. First simulations with 50 nodes often aborted after

less than 200 seconds (simulated time). The NS2 implementation of DSDV seems to be

not compatible with UDP, because no simulation run was finished. Hence we have only

compared BeeHive with DSR and AODV. For UDP, we also activated the scout caching,

since without it the results where quite bad. If further UDP developing is desired, the

reason has to be figured out.

The main difference between the UDP and the TCP agent is that UDP does not care

about the successful delivery of its packets. It keeps sending packets all the time with

the justified send rate. TCP instead waits for the acknowledge that the previous packet

did reach its destination successfully before sending another packet. Because of these

circumstances it was predictable that the success rate will crash, what actually occurred

(see figure 5.21). This also lead to higher energy values (figure 5.22), because a lot of

”wasted” energy of lost packets had to be portioned to the successful delivered packets.

Overall, the figures (5.22 - 5.24) show that BeeHive still is the most auspicious algorithm.

BeeHive is able to deliver about 24-25% of packets, whereas DSR only is able to deliver

13-15% and AODV 23-25% (figure 5.21). This, for sure, reflects in the throughput (more

delivered packets = more throughput) (figure 5.24) and energy (more delivered packets

= more packets to portion the ”wasted energy” to) (figure 5.22).
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Figure 5.21.: UDP: Success results depend-
ing on velocity (from runs
51+x, 52+x, 53+x, 54+x)
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Figure 5.22.: UDP: Energy results on node
velocity (from runs 51+x,
52+x, 53+x, 54+x)
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Figure 5.23.: UDP: Delay results depend-
ing on node velocity (from
runs 51+x, 52+x, 53+x,
54+x)
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5.10. Examination of Delay

In the previous sections one can see that the delay results are conspicuously high. As

further examination we have tried to find out whether outliers are responsible for these

values. Therefore we created a table (5.4) that shows how long it took until a certain

percentage of packets reached their destinations.

Delay TCP Delay UDP
BeeHive DSR AODV DSDV BeeHive DSR AODV

80% delay 105.64 167.73 156.85 117.89 61.92 1257.67 1006.9
90% delay 153.84 278.58 220.52 176.01 180.2 1897.6 1761.29
95% delay 191.36 396.29 269.31 223.76 348.3 2398.54 2310.29
100% delay 280.97 969.39 387.96 372.55 807.83 3544.73 3307.6

Table 5.4.: comparison of TCP and UDP delay (from runs 1+x)

5.11. Appendix/Conclusion

In comparison with DSR, AODV and DSDV BeeHive shows quite good results in all

”disciplines”. The results indicate that the target to develop an energy-aware routing

algorithm has been achieved. In all cases, the energy consumed by BeeHive to deliver

a certain amount of user data is less than the one’s consumed by the other algorithms.

Furthermore the success rate is not impaired. Through renouncement of complicated

mechanisms the delay and throughput could also be in improved. During the develop-

mental period of BeeHive we also made some attempts to improve these parameters.

Most of these improvement has lead to converse results, so they were cancelled in early

stages of development or even called off. This let’s conclude that for wireless ad-hoc

networks simple algorithms are the best solution to achieve good energy, delay and

throughput ratios. This is also underpinned by the results of DSDV, which is also quite

simple and so places second in the competition of the four algorithms (although the

results could not be verified with UDP).

Last, but not least, a little annotation concerning the send rate in ns2. In NS2,

one can find the parameter ”-pktrate” to set the rate the packets should be send with.

Theoretically the value to set is the pause time between the transmissions of two packets.

If it is set to 0.1, for example, the packet rate should be 10 packets per second. While

evaluating it was discovered that this assumption is wrong, although it should be correct.

We found out, that the packet size also affects the send rate. So, if the ”-pktsize”

parameter is modified, the send rate also changes although the ”-pktrate” is not touched.
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Since the effects of the modifications were predictable, we had to find out the correct

values by the ”trial-and-error” method. For this, we build a small 2 node network, one

node sending and counted the packets sent/received (whereas packets sent = packets

received) and modified packet rate and size until we got the values we needed. The

following table shows the results (columns: packet size; rows: desired packet rate, the

cells represent the values that have to be set as ”-pktrate”):

512 bit 2048 bit 4096 bit

10 0.041 0.01025 0.005125

30 0.0137 N/A N/A

60 0.00684 N/A N/A

100 0.00411 N/A N/A

N/A: not ascertained

5.11.1. Detailed Result for each Simulation

Tables 5.5 up to 5.72 (5.5 - 5.60:TCP; 5.61 - 5.72:UDP) provide the detailed average

results received from each result. For this, another parser was written (in Java) that

parsed the output provided by the first (ns2-output-)parser, merged the ones with same

run numbers together (that is, merging together the different seeds from a run) and

automatically generated a TeX file for each run containing a table providing the detailed

results.

TCP
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Algorithm: Beehive, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.4 µJ/B
Throughput: 500.076 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1073.896 496.0 15782.4 821.39
rcvDataEnergy 494.266 346.8 5860.32 282.639

Control: sendCtrlEnergy 372.91 310.8 556.8 79.978
rcvCtrlEnergy 85.983 72.0 360.24 53.763

→ sendCtrlP2PEnergy 502.975 488.4 556.8 20.965
→ rcvCtrlP2PEnergy 348.251 345.12 360.24 4.656
→ sendCtrlBCEnergy 325.861 310.8 379.2 16.277
→ rcvCtrlBCEnergy 74.981 72.0 90.0 4.067

Miscellaneous: batteryLevel (%): 6.008 0.0 68.417 10.143
delay 80%: 528.22 2.0 633.59 554.41
delay 90%: 769.18 2.0 1020.02 871.63
delay 95%: 956.82 2.0 1503.47 1170.96
delay 98%: 1130.56 2.0 2305.31 1521.49
delay 99%: 1217.98 2.0 3155.79 1747.03

delay 100%: 280.97 2.0 44564.22 579.36

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 63237 217908 62508 215183 98.85% 98.75% 728 2725 N/A N/A
Data 69027 217378 68461 215183 99.18% 98.99% 564 2195 N/A 529

Route Net Data 75124 235592 74559 233397 99.25% 99.07% 564 2195 0 0
Net Control 567 14225 3097 83095 546.21% 584.15% N/A N/A N/A N/A
→ peer2peer 160 3769 139 3289 86.88% 87.26% 20 480 N/A N/A
→ broadcast 407 10455 2957 79806 726.54% 763.33% N/A N/A N/A N/A

MAC Net Sum 75693 249817 77657 316492 102.59% 126.69% N/A -66675 2329 18255

Table 5.5.: Average Result Table: Run 00001
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Algorithm: Beehive, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.23 µJ/B
Throughput: 489.4 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1037.724 496.0 15782.4 672.093
rcvDataEnergy 477.868 346.8 5860.32 211.233

Control: sendCtrlEnergy 371.067 310.8 556.8 79.146
rcvCtrlEnergy 84.935 72.0 360.24 50.297

→ sendCtrlP2PEnergy 506.885 488.4 556.8 21.047
→ rcvCtrlP2PEnergy 349.066 345.12 360.24 4.695
→ sendCtrlBCEnergy 326.896 310.8 379.2 16.115
→ rcvCtrlBCEnergy 75.391 72.0 90.0 4.105

Miscellaneous: batteryLevel (%): 4.048 0.0 47.639 7.634
delay 80%: 538.3 2.0 394.45 474.26
delay 90%: 740.21 2.0 760.13 739.12
delay 95%: 907.12 2.0 1223.76 1016.44
delay 98%: 1065.17 2.0 1962.45 1347.3
delay 99%: 1146.73 2.0 2677.13 1567.55

delay 100%: 273.02 2.0 97853.73 678.41

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 62057 213554 61164 210666 98.56% 98.65% 892 2888 N/A N/A
Data 67576 212813 66964 210666 99.09% 98.99% 611 2147 N/A 740

Route Net Data 71044 223265 70432 221117 99.14% 99.04% 611 2147 0 0
Net Control 552 13560 3085 80895 558.88% 596.57% N/A N/A N/A N/A
→ peer2peer 148 3323 123 2812 83.11% 84.62% 23 511 N/A N/A
→ broadcast 404 10236 2961 78082 732.92% 762.82% N/A N/A N/A N/A

MAC Net Sum 71597 236825 73518 302012 102.68% 127.53% N/A -65187 2448 19664

Table 5.6.: Average Result Table: Run 00002
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Algorithm: Beehive, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.12 µJ/B
Throughput: 482.93 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1017.9 496.0 15782.4 586.266
rcvDataEnergy 469.006 346.8 5860.32 167.423

Control: sendCtrlEnergy 371.753 310.8 556.8 79.707
rcvCtrlEnergy 85.253 72.0 360.24 50.529

→ sendCtrlP2PEnergy 508.896 488.4 556.8 21.979
→ rcvCtrlP2PEnergy 349.621 345.12 360.24 4.931
→ sendCtrlBCEnergy 327.639 310.8 379.2 16.743
→ rcvCtrlBCEnergy 75.644 72.0 90.0 4.323

Miscellaneous: batteryLevel (%): 6.151 0.0 40.218 8.099
delay 80%: 518.06 2.0 327.67 422.5
delay 90%: 674.58 2.0 553.13 604.55
delay 95%: 803.03 2.0 823.08 806.61
delay 98%: 921.0 2.0 1205.56 1040.68
delay 99%: 981.86 2.0 1785.51 1200.55

delay 100%: 231.29 2.0 51607.02 571.32

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 61405 211078 60365 207831 98.31% 98.46% 1039 3247 N/A N/A
Data 66766 210210 66072 207831 98.96% 98.87% 693 2379 N/A 868

Route Net Data 68830 216586 68136 214207 98.99% 98.9% 693 2379 0 0
Net Control 481 11670 2595 67240 539.5% 576.18% N/A N/A N/A N/A
→ peer2peer 129 2844 107 2359 82.95% 82.95% 21 485 N/A N/A
→ broadcast 351 8825 2488 64881 708.83% 735.2% N/A N/A N/A N/A

MAC Net Sum 69312 228256 70732 281448 102.05% 123.3% N/A -53191 2151 15643

Table 5.7.: Average Result Table: Run 00003
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Algorithm: Beehive, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.07 µJ/B
Throughput: 479.83 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1006.314 496.0 15782.4 553.743
rcvDataEnergy 463.661 346.8 5860.32 149.155

Control: sendCtrlEnergy 369.503 310.8 556.8 78.732
rcvCtrlEnergy 84.825 72.0 360.24 48.373

→ sendCtrlP2PEnergy 513.625 488.4 556.8 21.503
→ rcvCtrlP2PEnergy 350.71 345.12 360.24 4.809
→ sendCtrlBCEnergy 328.537 310.8 379.2 16.515
→ rcvCtrlBCEnergy 76.076 72.0 90.0 4.346

Miscellaneous: batteryLevel (%): 11.154 0.0 50.043 9.095
delay 80%: 484.09 2.0 308.77 375.79
delay 90%: 611.33 2.0 495.79 508.67
delay 95%: 708.74 2.0 679.44 648.18
delay 98%: 797.7 2.0 939.08 814.77
delay 99%: 842.21 2.0 1353.11 924.79

delay 100%: 196.87 2.0 37984.33 519.23

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 61021 209749 59977 206713 98.29% 98.55% 1043 3036 N/A N/A
Data 66295 208799 65644 206713 99.02% 99.0% 651 2086 N/A 950

Route Net Data 67511 212601 66859 210515 99.03% 99.02% 651 2086 0 0
Net Control 467 11131 2493 63119 533.83% 567.06% N/A N/A N/A N/A
→ peer2peer 118 2461 96 2007 81.36% 81.55% 21 453 N/A N/A
→ broadcast 349 8670 2397 61111 686.82% 704.86% N/A N/A N/A N/A

MAC Net Sum 67979 223732 69353 273634 102.02% 122.3% N/A -49901 2054 15463

Table 5.8.: Average Result Table: Run 00004
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Algorithm: Beehive, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.11 µJ/B
Throughput: 502.522 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1016.668 496.0 12495.2 563.402
rcvDataEnergy 468.764 346.8 4659.36 153.2

Control: sendCtrlEnergy 369.541 310.8 556.8 77.538
rcvCtrlEnergy 85.092 72.0 360.24 47.681

→ sendCtrlP2PEnergy 513.83 488.4 556.8 19.863
→ rcvCtrlP2PEnergy 350.753 345.12 360.24 4.453
→ sendCtrlBCEnergy 329.721 310.8 379.2 16.172
→ rcvCtrlBCEnergy 76.571 72.0 90.0 4.268

Miscellaneous: batteryLevel (%): 7.679 0.0 41.663 8.653
delay 80%: 507.35 2.0 297.76 375.37
delay 90%: 630.49 2.0 453.34 499.69
delay 95%: 723.57 2.0 639.21 630.15
delay 98%: 809.26 2.0 991.28 789.54
delay 99%: 854.4 2.0 1654.01 906.45

delay 100%: 197.93 2.0 65406.81 493.23

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 63735 219357 62814 216397 98.55% 98.65% 919 2959 N/A N/A
Data 69458 218710 68756 216397 98.99% 98.94% 702 2312 N/A 646

Route Net Data 71493 225072 70790 222759 99.02% 98.97% 702 2312 0 0
Net Control 472 11113 2470 61103 523.31% 549.83% N/A N/A N/A N/A
→ peer2peer 115 2397 90 1882 78.26% 78.51% 24 514 N/A N/A
→ broadcast 356 8716 2379 59220 668.26% 679.44% N/A N/A N/A N/A

MAC Net Sum 71966 236185 73261 283862 101.8% 120.19% N/A -47676 2162 16276

Table 5.9.: Average Result Table: Run 00006
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Algorithm: Beehive, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.11 µJ/B
Throughput: 520.202 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1016.279 496.0 14131.2 573.451
rcvDataEnergy 468.667 346.8 5258.16 159.917

Control: sendCtrlEnergy 371.564 310.8 556.8 78.954
rcvCtrlEnergy 85.51 72.0 360.24 48.041

→ sendCtrlP2PEnergy 516.931 488.4 556.8 19.625
→ rcvCtrlP2PEnergy 351.502 345.12 360.24 4.394
→ sendCtrlBCEnergy 330.614 310.8 379.2 16.26
→ rcvCtrlBCEnergy 76.883 72.0 90.0 4.315

Miscellaneous: batteryLevel (%): 7.145 0.0 41.123 8.035
delay 80%: 509.41 1.74 297.76 359.04
delay 90%: 622.28 1.74 453.34 467.64
delay 95%: 700.78 1.74 636.61 567.84
delay 98%: 776.46 1.74 931.92 706.55
delay 99%: 815.58 1.74 1267.6 804.67

delay 100%: 186.56 1.74 45855.8 448.37

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 65878 226882 65024 224035 98.7% 98.75% 853 2847 N/A N/A
Data 71828 226267 71175 224035 99.09% 99.01% 652 2232 N/A 615

Route Net Data 73984 232953 73331 230720 99.12% 99.04% 652 2232 0 0
Net Control 517 11984 2694 65668 521.08% 547.96% N/A N/A N/A N/A
→ peer2peer 130 2634 102 2055 78.46% 78.02% 27 579 N/A N/A
→ broadcast 386 9349 2592 63613 671.5% 680.43% N/A N/A N/A N/A

MAC Net Sum 74503 244937 76026 296389 102.04% 121.01% N/A -51452 2171 17039

Table 5.10.: Average Result Table: Run 00008
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Algorithm: Beehive, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.07 µJ/B
Throughput: 520.944 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1008.743 496.0 12495.2 546.846
rcvDataEnergy 465.291 346.8 4659.36 143.977

Control: sendCtrlEnergy 369.817 310.8 556.8 78.006
rcvCtrlEnergy 85.021 72.0 360.24 46.676

→ sendCtrlP2PEnergy 518.282 488.4 556.8 20.595
→ rcvCtrlP2PEnergy 351.803 345.12 360.24 4.612
→ sendCtrlBCEnergy 330.801 310.8 379.2 16.338
→ rcvCtrlBCEnergy 76.919 72.0 90.0 4.34

Miscellaneous: batteryLevel (%): 7.731 0.0 42.066 8.409
delay 80%: 519.37 2.0 297.76 373.21
delay 90%: 636.47 2.0 453.34 485.86
delay 95%: 718.02 2.0 636.61 589.76
delay 98%: 793.11 2.0 931.92 721.6
delay 99%: 831.5 2.0 1218.74 813.44

delay 100%: 190.16 2.0 38957.63 460.2

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 65965 227195 65117 224449 98.71% 98.79% 847 2746 N/A N/A
Data 71919 226579 71273 224449 99.1% 99.06% 646 2130 N/A 616

Route Net Data 73512 231569 72865 229439 99.12% 99.08% 646 2130 0 0
Net Control 499 11497 2604 63119 521.84% 549.0% N/A N/A N/A N/A
→ peer2peer 120 2393 93 1854 77.5% 77.48% 26 539 N/A N/A
→ broadcast 378 9104 2510 61265 664.02% 672.95% N/A N/A N/A N/A

MAC Net Sum 74012 243067 75469 292558 101.97% 120.36% N/A -49491 2117 16368

Table 5.11.: Average Result Table: Run 00010
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Algorithm: Beehive, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.07 µJ/B
Throughput: 512.652 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1008.981 496.0 15782.4 545.516
rcvDataEnergy 465.421 346.8 5860.32 143.893

Control: sendCtrlEnergy 370.913 310.8 556.8 78.739
rcvCtrlEnergy 85.238 72.0 360.24 47.526

→ sendCtrlP2PEnergy 517.234 488.4 556.8 19.909
→ rcvCtrlP2PEnergy 351.573 345.12 360.24 4.467
→ sendCtrlBCEnergy 330.471 310.8 379.2 16.23
→ rcvCtrlBCEnergy 76.811 72.0 90.0 4.295

Miscellaneous: batteryLevel (%): 8.242 0.0 44.54 8.588
delay 80%: 520.07 2.0 289.73 375.46
delay 90%: 636.96 2.0 405.3 487.64
delay 95%: 727.12 2.0 614.88 614.22
delay 98%: 811.29 2.0 955.79 771.63
delay 99%: 854.86 2.0 1351.34 882.21

delay 100%: 197.54 2.0 42629.58 471.07

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 64948 223641 64081 220850 98.67% 98.75% 867 2790 N/A N/A
Data 70804 223020 70139 220850 99.06% 99.03% 664 2169 N/A 621

Route Net Data 72440 228152 71774 225983 99.08% 99.05% 664 2169 0 0
Net Control 488 11306 2537 61929 519.88% 547.75% N/A N/A N/A N/A
→ peer2peer 121 2434 94 1889 77.69% 77.61% 26 545 N/A N/A
→ broadcast 367 8872 2443 60040 665.67% 676.74% N/A N/A N/A N/A

MAC Net Sum 72929 239459 74313 287912 101.9% 120.23% N/A -48453 2133 16252

Table 5.12.: Average Result Table: Run 00016
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Algorithm: Beehive, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.17 µJ/B
Throughput: 495.14 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1027.199 496.0 10874.4 578.676
rcvDataEnergy 473.742 346.8 4063.92 160.659

Control: sendCtrlEnergy 373.6 310.8 556.8 80.344
rcvCtrlEnergy 85.18 72.0 360.24 48.237

→ sendCtrlP2PEnergy 514.886 488.4 556.8 20.369
→ rcvCtrlP2PEnergy 351.04 345.12 360.24 4.596
→ sendCtrlBCEnergy 329.981 310.8 379.2 16.087
→ rcvCtrlBCEnergy 76.479 72.0 90.0 4.249

Miscellaneous: batteryLevel (%): 2.574 0.0 27.417 4.419
delay 80%: 625.68 2.0 438.04 479.2
delay 90%: 806.17 2.0 717.27 692.53
delay 95%: 947.76 2.0 988.35 907.15
delay 98%: 1078.7 2.0 1611.71 1164.54
delay 99%: 1147.99 2.0 2303.81 1349.24

delay 100%: 277.09 2.0 198281.25 788.74

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 62749 216061 61892 213000 98.63% 98.58% 857 3061 N/A N/A
Data 68473 215561 67749 213000 98.94% 98.81% 723 2561 N/A 499

Route Net Data 71260 224246 70535 221685 98.98% 98.86% 723 2561 0 0
Net Control 505 11781 2749 68293 544.36% 579.69% N/A N/A N/A N/A
→ peer2peer 135 2776 104 2149 77.04% 77.41% 29 626 N/A N/A
→ broadcast 369 9005 2644 66143 716.53% 734.51% N/A N/A N/A N/A

MAC Net Sum 71765 236028 73286 289978 102.12% 122.86% N/A -53950 2418 18737

Table 5.13.: Average Result Table: Run 00020
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Algorithm: Beehive, simulation time: 1000s , 50 nodes
Average Network Lifetime: 989.6
Energy / UserData: 5.7 µJ/B
Throughput: 349.184 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1132.324 496.0 15782.4 962.193
rcvDataEnergy 520.442 346.8 5860.32 346.003

Control: sendCtrlEnergy 376.904 310.8 556.8 83.159
rcvCtrlEnergy 85.534 72.0 360.24 49.461

→ sendCtrlP2PEnergy 518.509 488.4 556.8 20.567
→ rcvCtrlP2PEnergy 351.832 345.12 360.24 4.602
→ sendCtrlBCEnergy 330.12 310.8 379.2 15.838
→ rcvCtrlBCEnergy 76.403 72.0 90.0 4.205

Miscellaneous: batteryLevel (%): 0.522 0.0 5.931 0.91
delay 80%: 3796.97 2.0 3038.14 3822.22
delay 90%: 5332.83 2.0 4536.77 5695.09
delay 95%: 6382.74 2.0 6003.86 7129.93
delay 98%: 7217.17 2.0 8083.1 8460.99
delay 99%: 7574.33 2.0 9705.22 9133.6

delay 100%: 1636.11 2.0 71348.0 2282.18

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 43729 150662 43167 148544 98.71% 98.59% 561 2118 N/A N/A
Data 47888 150513 47307 148544 98.79% 98.69% 580 1969 N/A 148

Route Net Data 54775 171305 54194 169336 98.94% 98.85% 580 1969 0 0
Net Control 469 10791 2637 65575 562.26% 607.68% N/A N/A N/A N/A
→ peer2peer 134 2673 110 2172 82.09% 81.26% 24 501 N/A N/A
→ broadcast 333 8117 2526 63403 758.56% 781.11% N/A N/A N/A N/A

MAC Net Sum 55245 182097 56831 234911 102.87% 129.0% N/A -52814 2281 20588

Table 5.14.: Average Result Table: Run 00024
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Algorithm: Beehive, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.07 µJ/B
Throughput: 413.156 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1006.109 496.0 10874.4 536.306
rcvDataEnergy 464.042 346.8 4063.92 138.463

Control: sendCtrlEnergy 379.14 310.8 556.8 81.487
rcvCtrlEnergy 87.407 72.0 360.24 51.998

→ sendCtrlP2PEnergy 515.844 488.4 556.8 18.743
→ rcvCtrlP2PEnergy 351.261 345.12 360.24 4.206
→ sendCtrlBCEnergy 332.794 310.8 379.2 17.215
→ rcvCtrlBCEnergy 77.216 72.0 90.0 4.561

Miscellaneous: batteryLevel (%): 2.297 0.0 25.349 3.467
delay 80%: 537.43 2.0 363.33 415.43
delay 90%: 699.79 2.0 602.4 612.33
delay 95%: 829.35 2.0 886.98 814.81
delay 98%: 946.34 2.0 1393.96 1042.83
delay 99%: 1006.32 2.0 2005.75 1197.64

delay 100%: 234.63 2.0 51285.15 577.29

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 52428 180443 51643 177838 98.5% 98.56% 784 2605 N/A N/A
Data 57120 179892 56519 177838 98.95% 98.86% 600 2054 N/A 551

Route Net Data 58249 183477 57648 181423 98.97% 98.88% 600 2054 0 0
Net Control 459 10362 2312 55411 503.7% 534.75% N/A N/A N/A N/A
→ peer2peer 129 2636 101 2052 78.29% 77.85% 27 584 N/A N/A
→ broadcast 328 7726 2210 53358 673.78% 690.63% N/A N/A N/A N/A

MAC Net Sum 58709 193840 59962 236834 102.13% 122.18% N/A -42994 2019 15529

Table 5.15.: Average Result Table: Run 00026
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Algorithm: Beehive, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.11 µJ/B
Throughput: 590.746 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1018.758 496.0 15782.4 565.121
rcvDataEnergy 469.748 346.8 5860.32 153.762

Control: sendCtrlEnergy 362.548 310.8 556.8 73.136
rcvCtrlEnergy 83.993 72.0 360.24 45.151

→ sendCtrlP2PEnergy 512.554 488.4 556.8 19.06
→ rcvCtrlP2PEnergy 350.491 345.12 360.24 4.307
→ sendCtrlBCEnergy 328.584 310.8 379.2 15.584
→ rcvCtrlBCEnergy 76.401 72.0 90.0 4.103

Miscellaneous: batteryLevel (%): 10.831 0.0 52.978 11.711
delay 80%: 519.04 2.0 283.24 361.47
delay 90%: 628.76 2.0 385.95 462.64
delay 95%: 705.05 2.0 587.34 558.24
delay 98%: 778.53 2.0 924.4 690.88
delay 99%: 814.9 2.0 1296.71 777.14

delay 100%: 183.77 2.0 68732.15 424.85

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 74779 257553 73842 254457 98.75% 98.8% 937 3096 N/A N/A
Data 81548 256869 80831 254457 99.12% 99.06% 716 2412 N/A 684

Route Net Data 84210 265108 83492 262695 99.15% 99.09% 716 2412 0 0
Net Control 490 11758 2483 62002 506.73% 527.32% N/A N/A N/A N/A
→ peer2peer 102 2173 81 1709 79.41% 78.65% 21 464 N/A N/A
→ broadcast 386 9585 2402 60292 622.28% 629.02% N/A N/A N/A N/A

MAC Net Sum 84700 276866 85976 324698 101.51% 117.28% N/A -47831 2135 15608

Table 5.16.: Average Result Table: Run 00028
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Algorithm: Beehive, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 3.25 µJ/B
Throughput: 769.854 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 2563.995 496.0 40396.8 2190.716
rcvDataEnergy 813.082 346.8 11064.24 504.919

Control: sendCtrlEnergy 369.297 310.8 556.8 77.321
rcvCtrlEnergy 84.728 72.0 360.24 46.608

→ sendCtrlP2PEnergy 514.837 488.4 556.8 19.313
→ rcvCtrlP2PEnergy 350.927 345.12 360.24 4.368
→ sendCtrlBCEnergy 330.001 310.8 379.2 15.567
→ rcvCtrlBCEnergy 76.618 72.0 90.0 4.056

Miscellaneous: batteryLevel (%): 4.522 0.0 59.589 7.734
delay 80%: 1148.96 2.0 885.37 931.47
delay 90%: 1498.12 2.0 1612.09 1338.51
delay 95%: 1765.04 2.0 2443.95 1738.76
delay 98%: 2016.95 2.0 4039.59 2235.26
delay 99%: 2147.13 2.0 5737.22 2576.66

delay 100%: 505.18 2.0 113977.87 1291.34

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 98443 93995 96231 91999 97.75% 97.88% 2211 1996 N/A N/A
Data 100324 93525 98761 91999 98.44% 98.37% 1562 1526 N/A 470

Route Net Data 104459 97438 102896 95912 98.5% 98.43% 1562 1526 0 0
Net Control 553 12939 2945 72595 532.55% 561.06% N/A N/A N/A N/A
→ peer2peer 133 2750 103 2135 77.44% 77.64% 29 614 N/A N/A
→ broadcast 418 10189 2840 70460 679.43% 691.53% N/A N/A N/A N/A

MAC Net Sum 105012 110377 105841 168507 100.79% 152.66% N/A -58130 3407 19382

Table 5.17.: Average Result Table: Run 00102
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Algorithm: Beehive, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 2.9 µJ/B
Throughput: 781.95 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 4581.055 496.0 58541.6 4248.579
rcvDataEnergy 1255.537 346.8 14600.88 951.559

Control: sendCtrlEnergy 371.444 310.8 556.8 78.242
rcvCtrlEnergy 84.779 72.0 360.24 45.229

→ sendCtrlP2PEnergy 516.849 488.4 556.8 18.367
→ rcvCtrlP2PEnergy 351.435 345.12 360.24 4.154
→ sendCtrlBCEnergy 331.085 310.8 379.2 15.359
→ rcvCtrlBCEnergy 77.147 72.0 90.0 4.05

Miscellaneous: batteryLevel (%): 5.432 0.0 66.56 9.005
delay 80%: 1972.47 2.0 1307.34 1558.8
delay 90%: 2517.79 2.0 2236.4 2157.88
delay 95%: 2921.24 2.0 3309.64 2732.67
delay 98%: 3294.08 2.0 4895.14 3434.15
delay 99%: 3485.32 2.0 7149.76 3914.68

delay 100%: 793.23 2.0 199195.64 1649.16

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 101128 49081 97743 47491 96.65% 96.76% 3384 1589 N/A N/A
Data 101588 48708 99048 47491 97.5% 97.5% 2540 1217 N/A 372

Route Net Data 105074 50465 102534 49248 97.58% 97.59% 2540 1217 0 0
Net Control 644 14789 3588 85834 557.14% 580.39% N/A N/A N/A N/A
→ peer2peer 160 3215 116 2344 72.5% 72.91% 43 871 N/A N/A
→ broadcast 483 11573 3471 83490 718.63% 721.42% N/A N/A N/A N/A

MAC Net Sum 105719 65254 106123 135083 100.38% 207.01% N/A -69828 4853 24418

Table 5.18.: Average Result Table: Run 00202
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Algorithm: DSR, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 7.97 µJ/B
Throughput: 433.604 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1563.77 496.0 77860.8 1949.059
rcvDataEnergy 716.584 346.8 27972.48 759.037

Control: sendCtrlEnergy 524.709 480.8 1438.4 42.296
rcvCtrlEnergy 157.636 72.0 582.0 111.144

→ sendCtrlP2PEnergy 524.709 480.8 2192.8 42.296
→ rcvCtrlP2PEnergy 358.773 345.12 582.0 15.899
→ sendCtrlBCEnergy 0.0 NaN NaN NaN
→ rcvCtrlBCEnergy 100.81 72.0 530.0 33.528

Miscellaneous: batteryLevel (%): 1.356 0.0 28.807 3.736
delay 80%: 838.67 1.94 978.71 925.0
delay 90%: 1392.9 1.94 2248.08 1858.82
delay 95%: 1981.47 1.94 4598.89 3139.03
delay 98%: 2727.96 1.94 10053.77 5331.22
delay 99%: 3236.16 1.94 18010.95 7364.03

delay 100%: 969.39 1.94 492376.73 4719.31

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 54673 188607 54200 187138 99.13% 99.22% 472 1469 N/A N/A
Data 64105 208495 58141 187138 90.7% 89.76% 5963 21357 N/A -19888

Route Net Data 95530 311112 83500 270441 87.41% 86.93% 12029 40671 0 0
Net Control 3570 46063 10096 122313 282.8% 265.53% N/A N/A N/A N/A
→ peer2peer 1225 22762 1816 27010 148.24% 118.66% -590 -4247 N/A N/A
→ broadcast 0 0 8279 95303 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 99101 357176 93597 392755 94.45% 109.96% N/A -35579 5914 33609

Table 5.19.: Average Result Table: Run 00301
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Algorithm: DSR, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 7.87 µJ/B
Throughput: 386.728 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1492.36 496.0 93248.0 2209.278
rcvDataEnergy 679.823 346.8 33094.56 851.894

Control: sendCtrlEnergy 538.334 480.8 2023.6 63.981
rcvCtrlEnergy 167.865 72.0 701.28 121.428

→ sendCtrlP2PEnergy 538.334 480.8 3097.2 63.981
→ rcvCtrlP2PEnergy 366.939 345.12 701.28 27.102
→ sendCtrlBCEnergy NaN NaN NaN NaN
→ rcvCtrlBCEnergy 97.575 72.0 444.0 28.35

Miscellaneous: batteryLevel (%): 1.301 0.0 30.795 3.555
delay 80%: 601.78 1.94 548.43 571.95
delay 90%: 974.03 1.94 1510.92 1241.66
delay 95%: 1431.98 1.94 3784.72 2350.32
delay 98%: 2114.52 1.94 10290.27 4646.46
delay 99%: 2670.09 1.94 21943.22 7288.88

delay 100%: 1041.86 1.94 740913.04 7046.26

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 48889 168468 48340 166871 98.88% 99.05% 548 1596 N/A N/A
Data 58167 187701 51834 166871 89.11% 88.9% 6332 20830 N/A -19233

Route Net Data 84400 269759 71109 228998 84.25% 84.89% 13290 40761 0 0
Net Control 9338 99356 18498 224335 198.09% 225.79% N/A N/A N/A N/A
→ peer2peer 2705 44427 5005 58163 185.03% 130.92% -2300 -13736 N/A N/A
→ broadcast 0 0 13491 166172 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 93740 369115 89608 453333 95.59% 122.82% N/A -84218 8563 54929

Table 5.20.: Average Result Table: Run 00302
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Algorithm: DSR, simulation time: 1000s , 50 nodes
Average Network Lifetime: 947.8
Energy / UserData: 8.53 µJ/B
Throughput: 352.888 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1566.994 496.0 88642.0 2565.577
rcvDataEnergy 710.561 346.8 31776.96 994.287

Control: sendCtrlEnergy 545.358 480.8 1955.2 70.316
rcvCtrlEnergy 175.996 72.0 763.44 125.217

→ sendCtrlP2PEnergy 545.358 480.8 3378.4 70.316
→ rcvCtrlP2PEnergy 369.488 345.12 763.44 27.577
→ sendCtrlBCEnergy NaN NaN NaN NaN
→ rcvCtrlBCEnergy 99.228 72.0 444.0 29.22

Miscellaneous: batteryLevel (%): 1.04 0.0 18.192 2.908
delay 80%: 528.03 1.77 458.66 455.41
delay 90%: 805.65 1.77 1209.67 938.83
delay 95%: 1160.36 1.77 2811.56 1813.88
delay 98%: 1701.37 1.77 7257.06 3663.67
delay 99%: 2158.34 1.77 16434.52 5913.79

delay 100%: 946.46 1.77 469996.26 7227.28

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 44754 154024 44110 152180 98.56% 98.8% 643 1844 N/A N/A
Data 53216 170527 47296 152180 88.88% 89.24% 5920 18347 N/A -16502

Route Net Data 80791 254798 67252 215081 83.24% 84.41% 13539 39717 0 0
Net Control 14979 152336 26883 310119 179.47% 203.58% N/A N/A N/A N/A
→ peer2peer 4100 63629 8091 87967 197.34% 138.25% -3990 -24337 N/A N/A
→ broadcast 0 0 18791 222151 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 95771 407135 94135 525200 98.29% 129.0% N/A -118065 10662 69472

Table 5.21.: Average Result Table: Run 00303
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Algorithm: DSR, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 9.09 µJ/B
Throughput: 326.558 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1618.426 496.0 99123.2 2836.109
rcvDataEnergy 731.041 346.8 35341.92 1092.145

Control: sendCtrlEnergy 549.094 480.8 2426.4 72.696
rcvCtrlEnergy 180.067 72.0 827.28 126.088

→ sendCtrlP2PEnergy 549.094 480.8 3978.8 72.696
→ rcvCtrlP2PEnergy 371.473 345.12 827.28 29.721
→ sendCtrlBCEnergy NaN NaN NaN NaN
→ rcvCtrlBCEnergy 102.011 72.0 404.0 31.437

Miscellaneous: batteryLevel (%): 1.162 0.0 16.287 2.768
delay 80%: 502.65 1.94 424.48 418.47
delay 90%: 744.33 1.94 1183.73 825.8
delay 95%: 1051.97 1.94 2791.74 1582.19
delay 98%: 1536.55 1.94 8004.99 3278.0
delay 99%: 1981.36 1.94 19625.34 5608.07

delay 100%: 1001.45 1.94 382769.89 8107.46

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 41502 142717 40819 140817 98.35% 98.67% 682 1899 N/A N/A
Data 49899 159188 43768 140817 87.71% 88.46% 6130 18370 N/A -16470

Route Net Data 77595 242336 63225 201362 81.48% 83.09% 14369 40974 0 0
Net Control 21054 204751 36512 396885 173.42% 193.84% N/A N/A N/A N/A
→ peer2peer 5355 80707 11088 114908 207.06% 142.38% -5732 -34201 N/A N/A
→ broadcast 0 0 25424 281976 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 98650 447087 99738 598247 101.1% 133.81% N/A -151159 12955 84788

Table 5.22.: Average Result Table: Run 00304
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Algorithm: DSR, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 8.57 µJ/B
Throughput: 345.434 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1519.059 496.0 108638.4 2665.155
rcvDataEnergy 688.628 346.8 37445.28 1028.619

Control: sendCtrlEnergy 551.924 480.8 2076.8 77.889
rcvCtrlEnergy 182.74 72.0 830.64 128.099

→ sendCtrlP2PEnergy 551.924 480.8 2076.8 77.889
→ rcvCtrlP2PEnergy 372.552 345.12 830.64 30.216
→ sendCtrlBCEnergy NaN NaN NaN NaN
→ rcvCtrlBCEnergy 101.002 72.0 444.0 30.129

Miscellaneous: batteryLevel (%): 1.114 0.0 17.261 2.942
delay 80%: 485.26 1.94 364.0 387.42
delay 90%: 705.36 1.94 1024.0 755.83
delay 95%: 986.36 1.94 2666.2 1442.89
delay 98%: 1442.01 1.94 8968.96 3069.56
delay 99%: 1853.33 1.94 23607.15 5203.83

delay 100%: 881.0 1.94 527869.33 7054.44

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 43846 150870 43179 148949 98.48% 98.73% 666 1920 N/A N/A
Data 51761 166021 46261 148949 89.37% 89.72% 5499 17071 N/A -15151

Route Net Data 76522 241507 63500 203531 82.98% 84.28% 13021 37975 0 0
Net Control 22139 212085 36271 397488 163.83% 187.42% N/A N/A N/A N/A
→ peer2peer 5646 83302 11830 119564 209.53% 143.53% -6183 -36261 N/A N/A
→ broadcast 0 0 24440 277924 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 98662 453592 99772 601020 101.13% 132.5% N/A -147427 12669 85996

Table 5.23.: Average Result Table: Run 00306
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Algorithm: DSR, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 8.67 µJ/B
Throughput: 347.834 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1541.472 496.0 98885.6 2697.368
rcvDataEnergy 698.641 346.8 35052.24 1047.975

Control: sendCtrlEnergy 550.345 480.8 2373.2 75.58
rcvCtrlEnergy 180.887 72.0 825.6 126.346

→ sendCtrlP2PEnergy 550.345 480.8 4305.6 75.58
→ rcvCtrlP2PEnergy 371.5 345.12 825.6 29.09
→ sendCtrlBCEnergy NaN NaN NaN NaN
→ rcvCtrlBCEnergy 101.813 72.0 404.0 30.964

Miscellaneous: batteryLevel (%): 1.01 0.0 14.585 2.459
delay 80%: 507.14 1.94 371.35 397.04
delay 90%: 717.81 1.94 922.38 730.95
delay 95%: 981.47 1.94 2267.45 1368.33
delay 98%: 1420.26 1.94 7632.19 2947.58
delay 99%: 1833.84 1.94 17949.2 5159.82

delay 100%: 900.16 1.94 396489.8 7479.6

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 44132 151903 43478 150013 98.52% 98.76% 653 1889 N/A N/A
Data 52212 167755 46581 150013 89.22% 89.42% 5629 17742 N/A -15852

Route Net Data 77899 246287 64604 207113 82.93% 84.09% 13295 39173 0 0
Net Control 21496 209510 36701 400637 170.73% 191.23% N/A N/A N/A N/A
→ peer2peer 5563 83012 11327 117271 203.61% 141.27% -5763 -34259 N/A N/A
→ broadcast 0 0 25373 283366 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 99396 455797 101306 607751 101.92% 133.34% N/A -151953 12918 87641

Table 5.24.: Average Result Table: Run 00308
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Algorithm: DSR, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 8.53 µJ/B
Throughput: 353.974 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1517.219 496.0 100665.6 2669.267
rcvDataEnergy 688.128 346.8 35052.24 1031.802

Control: sendCtrlEnergy 549.519 480.8 2373.2 72.932
rcvCtrlEnergy 179.671 72.0 797.04 126.569

→ sendCtrlP2PEnergy 549.519 480.8 3135.2 72.932
→ rcvCtrlP2PEnergy 371.445 345.12 797.04 29.63
→ sendCtrlBCEnergy NaN NaN NaN NaN
→ rcvCtrlBCEnergy 100.778 72.0 404.0 30.038

Miscellaneous: batteryLevel (%): 1.001 0.0 14.848 2.574
delay 80%: 496.55 1.94 345.4 381.94
delay 90%: 698.85 1.94 826.11 702.51
delay 95%: 948.94 1.94 1976.09 1300.76
delay 98%: 1351.47 1.94 5988.11 2716.94
delay 99%: 1702.28 1.94 13545.93 4479.71

delay 100%: 832.26 1.94 431635.79 7359.98

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 44886 154544 44246 152651 98.57% 98.78% 640 1892 N/A N/A
Data 52639 169484 47392 152651 90.03% 90.07% 5246 16832 N/A -14940

Route Net Data 77621 246107 64805 208120 83.49% 84.56% 12815 37987 0 0
Net Control 21315 208686 35792 396038 167.92% 189.78% N/A N/A N/A N/A
→ peer2peer 5525 82927 11176 115488 202.28% 139.26% -5650 -32561 N/A N/A
→ broadcast 0 0 24616 280549 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 98937 454794 100598 604158 101.68% 132.84% N/A -149363 12664 87282

Table 5.25.: Average Result Table: Run 00310
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Algorithm: DSR, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 8.53 µJ/B
Throughput: 353.974 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1517.219 496.0 100665.6 2669.267
rcvDataEnergy 688.128 346.8 35052.24 1031.802

Control: sendCtrlEnergy 549.519 480.8 2373.2 72.932
rcvCtrlEnergy 179.671 72.0 797.04 126.569

→ sendCtrlP2PEnergy 549.519 480.8 3135.2 72.932
→ rcvCtrlP2PEnergy 371.445 345.12 797.04 29.63
→ sendCtrlBCEnergy NaN NaN NaN NaN
→ rcvCtrlBCEnergy 100.778 72.0 404.0 30.038

Miscellaneous: batteryLevel (%): 1.001 0.0 14.848 2.574
delay 80%: 496.55 1.94 345.4 381.94
delay 90%: 698.85 1.94 826.11 702.51
delay 95%: 948.94 1.94 1976.09 1300.76
delay 98%: 1351.47 1.94 5988.11 2716.94
delay 99%: 1702.28 1.94 13545.93 4479.71

delay 100%: 832.26 1.94 431635.79 7359.98

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 44886 154544 44246 152651 98.57% 98.78% 640 1892 N/A N/A
Data 52639 169484 47392 152651 90.03% 90.07% 5246 16832 N/A -14940

Route Net Data 77621 246107 64805 208120 83.49% 84.56% 12815 37987 0 0
Net Control 21315 208686 35792 396038 167.92% 189.78% N/A N/A N/A N/A
→ peer2peer 5525 82927 11176 115488 202.28% 139.26% -5650 -32561 N/A N/A
→ broadcast 0 0 24616 280549 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 98937 454794 100598 604158 101.68% 132.84% N/A -149363 12664 87282

Table 5.26.: Average Result Table: Run 00316
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Algorithm: DSR, simulation time: 1000s , 50 nodes
Average Network Lifetime: 991.8
Energy / UserData: 7.64 µJ/B
Throughput: 366.204 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1337.693 496.0 100445.2 2179.83
rcvDataEnergy 609.582 346.8 35356.56 842.835

Control: sendCtrlEnergy 540.239 480.8 2054.0 62.226
rcvCtrlEnergy 170.638 72.0 691.2 124.274

→ sendCtrlP2PEnergy 540.239 480.8 3849.6 62.226
→ rcvCtrlP2PEnergy 366.612 345.12 691.2 25.156
→ sendCtrlBCEnergy NaN NaN NaN NaN
→ rcvCtrlBCEnergy 94.886 72.0 402.0 24.675

Miscellaneous: batteryLevel (%): 0.725 0.0 12.589 1.798
delay 80%: 477.5 1.92 325.35 357.59
delay 90%: 673.79 1.92 885.89 680.81
delay 95%: 943.17 1.92 2408.26 1375.59
delay 98%: 1445.44 1.92 9177.55 3318.75
delay 99%: 1931.9 1.92 25591.45 5988.75

delay 100%: 991.72 1.92 503066.68 8380.53

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 45957 158342 45379 156626 98.74% 98.92% 577 1716 N/A N/A
Data 53970 173432 48590 156626 90.03% 90.31% 5379 16806 N/A -15090

Route Net Data 70928 226104 59786 192944 84.29% 85.33% 11141 33160 0 0
Net Control 16523 183690 29369 373926 177.75% 203.56% N/A N/A N/A N/A
→ peer2peer 5313 85979 8845 103818 166.48% 120.75% -3531 -17839 N/A N/A
→ broadcast 0 0 20524 270107 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 87452 409795 89156 566870 101.95% 138.33% N/A -157075 11731 89907

Table 5.27.: Average Result Table: Run 00320
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Algorithm: DSR, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 6.07 µJ/B
Throughput: 327.65 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1191.235 496.0 59253.2 1054.179
rcvDataEnergy 547.139 346.8 21792.72 386.691

Control: sendCtrlEnergy 519.972 480.8 1567.6 38.231
rcvCtrlEnergy 153.772 72.0 659.28 113.27

→ sendCtrlP2PEnergy 519.972 480.8 2314.4 38.231
→ rcvCtrlP2PEnergy 355.578 345.12 659.28 13.323
→ sendCtrlBCEnergy NaN NaN NaN NaN
→ rcvCtrlBCEnergy 93.763 72.0 402.0 29.245

Miscellaneous: batteryLevel (%): 0.204 0.0 4.865 0.528
delay 80%: 2876.32 1.94 3016.55 3258.15
delay 90%: 4677.24 1.94 6038.22 6097.36
delay 95%: 6353.28 1.94 10984.52 9375.56
delay 98%: 8303.64 1.94 22221.16 14563.74
delay 99%: 9471.98 1.94 32571.99 18605.47

delay 100%: 2379.16 1.94 195908.43 6408.78

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 41413 142784 40955 141451 98.89% 99.07% 456 1333 N/A N/A
Data 50238 161431 43904 141451 87.39% 87.62% 6333 19980 N/A -18647

Route Net Data 59018 190543 51145 165748 86.66% 86.99% 7872 24795 0 0
Net Control 1596 22017 4454 60367 279.07% 274.18% N/A N/A N/A N/A
→ peer2peer 666 12873 813 13462 122.07% 104.58% -145 -589 N/A N/A
→ broadcast 0 0 3640 46904 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 60615 212560 55600 226115 91.73% 106.38% N/A -13554 2591 17790

Table 5.28.: Average Result Table: Run 00324
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Algorithm: DSR, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 9.63 µJ/B
Throughput: 236.354 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1592.227 496.0 111882.0 3085.583
rcvDataEnergy 718.516 346.8 38873.76 1191.163

Control: sendCtrlEnergy 548.613 480.8 2160.4 70.675
rcvCtrlEnergy 203.571 72.0 755.04 134.2

→ sendCtrlP2PEnergy 548.613 480.8 3272.0 70.675
→ rcvCtrlP2PEnergy 369.445 345.12 755.04 26.579
→ sendCtrlBCEnergy NaN NaN NaN NaN
→ rcvCtrlBCEnergy 100.238 72.0 530.0 31.276

Miscellaneous: batteryLevel (%): 0.785 0.0 12.648 1.906
delay 80%: 500.74 1.94 431.76 404.94
delay 90%: 791.36 1.94 1333.88 968.28
delay 95%: 1221.93 1.94 3471.52 2147.25
delay 98%: 2035.93 1.94 12725.59 5366.99
delay 99%: 2919.33 1.94 33331.07 10546.04

delay 100%: 1314.46 1.94 385909.3 8930.88

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 30124 103550 29543 101775 98.07% 98.29% 579 1774 N/A N/A
Data 37282 119950 31685 101775 84.99% 84.85% 5595 18174 N/A -16399

Route Net Data 56684 178226 43858 139839 77.37% 78.46% 12825 38386 0 0
Net Control 21288 219847 29691 335577 139.47% 152.64% N/A N/A N/A N/A
→ peer2peer 6245 94500 11810 128779 189.11% 136.27% -5565 -34279 N/A N/A
→ broadcast 0 0 17880 206798 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 77973 398073 73550 475416 94.33% 119.43% N/A -77343 12720 89478

Table 5.29.: Average Result Table: Run 00326
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Algorithm: DSR, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 8.33 µJ/B
Throughput: 410.035 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1510.881 496.0 96622.4 2632.222
rcvDataEnergy 686.382 346.8 33840.48 1022.52

Control: sendCtrlEnergy 557.209 480.8 2373.2 82.018
rcvCtrlEnergy 177.37 72.0 844.08 123.363

→ sendCtrlP2PEnergy 557.209 480.8 2373.2 82.018
→ rcvCtrlP2PEnergy 375.356 345.12 844.08 32.386
→ sendCtrlBCEnergy NaN NaN NaN NaN
→ rcvCtrlBCEnergy 106.473 72.0 486.0 35.266

Miscellaneous: batteryLevel (%): 2.956 0.0 40.229 6.443
delay 80%: 385.66 1.84 336.96 289.64
delay 90%: 541.71 1.84 775.23 540.1
delay 95%: 742.32 1.84 1943.18 1034.39
delay 98%: 1075.3 1.84 5758.92 2231.42
delay 99%: 1360.47 1.84 12412.06 3648.89

delay 100%: 726.68 1.84 575495.41 5501.15

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 51837 178681 51254 176879 98.88% 98.99% 582 1801 N/A N/A
Data 60873 196120 54914 176879 90.21% 90.19% 5958 19241 N/A -17439

Route Net Data 89501 283833 75178 241157 84.0% 84.96% 14322 42676 0 0
Net Control 25295 223987 46606 463397 184.25% 206.89% N/A N/A N/A N/A
→ peer2peer 5604 79493 12883 121902 229.89% 153.35% -7278 -42409 N/A N/A
→ broadcast 0 0 33722 341495 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 114797 507820 121785 704554 106.09% 138.74% N/A -196734 14737 93692

Table 5.30.: Average Result Table: Run 00328
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Algorithm: DSR, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 4.77 µJ/B
Throughput: 623.53 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 3544.562 496.0 248263.2 6307.773
rcvDataEnergy 1114.646 346.8 67761.36 1677.716

Control: sendCtrlEnergy 538.362 480.8 1575.2 61.071
rcvCtrlEnergy 159.242 72.0 654.24 117.398

→ sendCtrlP2PEnergy 538.362 480.8 3074.4 61.071
→ rcvCtrlP2PEnergy 365.505 345.12 654.24 23.915
→ sendCtrlBCEnergy NaN NaN NaN NaN
→ rcvCtrlBCEnergy 95.785 72.0 404.0 27.245

Miscellaneous: batteryLevel (%): 1.134 0.0 28.936 3.156
delay 80%: 1028.32 1.94 956.29 841.35
delay 90%: 1492.72 1.94 2347.52 1599.78
delay 95%: 2072.84 1.94 5487.4 2999.43
delay 98%: 2955.48 1.94 16545.61 5996.32
delay 99%: 3657.42 1.94 36561.81 9286.25

delay 100%: 1370.72 1.94 498941.47 8790.6

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 79491 76037 77941 74752 98.05% 98.31% 1550 1285 N/A N/A
Data 92139 86058 79503 74752 86.29% 86.86% 12634 11306 N/A -10020

Route Net Data 126905 118267 102888 97280 81.07% 82.25% 24016 20986 0 0
Net Control 9339 106515 18619 236040 199.37% 221.6% N/A N/A N/A N/A
→ peer2peer 3024 49792 4562 55308 150.86% 111.08% -1537 -5515 N/A N/A
→ broadcast 0 0 14056 180731 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 136246 224782 121508 333320 89.18% 148.29% N/A -108538 12129 63047

Table 5.31.: Average Result Table: Run 00402
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Algorithm: DSR, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 4.34 µJ/B
Throughput: 695.842 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 6485.674 496.0 373802.8 12854.403
rcvDataEnergy 1761.842 346.8 90997.92 3087.834

Control: sendCtrlEnergy 537.459 480.8 1962.8 59.536
rcvCtrlEnergy 157.739 72.0 659.28 116.448

→ sendCtrlP2PEnergy 537.459 480.8 2778.0 59.536
→ rcvCtrlP2PEnergy 364.926 345.12 659.28 23.223
→ sendCtrlBCEnergy NaN NaN NaN NaN
→ rcvCtrlBCEnergy 95.419 72.0 404.0 26.374

Miscellaneous: batteryLevel (%): 1.129 0.0 31.093 3.199
delay 80%: 1508.73 1.94 1246.45 1183.45
delay 90%: 2135.61 1.94 3119.39 2188.94
delay 95%: 2907.72 1.94 7151.68 4019.62
delay 98%: 4028.25 1.94 16074.45 7672.03
delay 99%: 4881.16 1.94 30377.58 11552.62

delay 100%: 1781.18 1.94 517215.45 10736.96

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 89432 43558 86979 42461 97.26% 97.48% 2451 1096 N/A N/A
Data 107577 51198 87876 42461 81.69% 82.93% 19700 8736 N/A -7640

Route Net Data 148939 70777 114119 55392 76.62% 78.26% 34819 15385 0 0
Net Control 9121 106560 17898 229437 196.23% 215.31% N/A N/A N/A N/A
→ peer2peer 3049 50549 4298 52930 140.96% 104.71% -1248 -2380 N/A N/A
→ broadcast 0 0 13599 176507 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 158061 177338 132018 284829 83.52% 160.61% N/A -107491 15461 63628

Table 5.32.: Average Result Table: Run 00502
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Algorithm: AODV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 999.4
Energy / UserData: 7.56 µJ/B
Throughput: 448.396 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1428.285 496.0 1756549.2 3340.975
rcvDataEnergy 665.315 355.2 1215149.76 2242.972

Control: sendCtrlEnergy 350.501 310.8 584.4 39.328
rcvCtrlEnergy 82.587 72.0 348.48 27.027

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 340.529 310.8 584.4 5.229
→ rcvCtrlBCEnergy 79.837 72.0 144.0 1.222

Miscellaneous: batteryLevel (%): 1.811 0.0 34.288 4.727
delay 80%: 784.23 1.71 691.05 785.73
delay 90%: 1102.62 1.71 1133.23 1179.66
delay 95%: 1346.54 1.71 1696.63 1554.07
delay 98%: 1575.41 1.71 2650.65 2010.85
delay 99%: 1690.52 1.71 3547.68 2305.38

delay 100%: 387.96 1.71 171176.77 799.23

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 57902 197733 56001 190297 96.72% 96.24% 1900 7436 N/A N/A
Data 61706 197556 0 0 0.0% 0.0% 61706 197556 N/A 177

Route Net Data 87042 277585 25323 79972 29.09% 28.81% 61718 197613 0 0
Net Control 3115 67485 27560 592454 884.75% 877.9% N/A N/A N/A N/A
→ peer2peer 169 3952 259 6062 153.25% 153.39% -90 -2109 N/A N/A
→ broadcast 2828 60796 27299 586392 965.31% 964.52% N/A N/A N/A N/A

MAC Net Sum 90158 345070 52883 672426 58.66% 194.87% N/A -327356 17667 174449

Table 5.33.: Average Result Table: Run 00601
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Algorithm: AODV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 7.51 µJ/B
Throughput: 407.07 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1399.368 496.0 1724318.8 3339.387
rcvDataEnergy 651.165 355.2 1192847.04 2251.769

Control: sendCtrlEnergy 350.607 310.8 630.0 39.323
rcvCtrlEnergy 82.259 72.0 348.48 25.306

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 340.588 310.8 630.0 4.949
→ rcvCtrlBCEnergy 79.838 72.0 156.0 1.188

Miscellaneous: batteryLevel (%): 2.421 0.0 42.671 6.126
delay 80%: 707.29 1.69 527.99 607.53
delay 90%: 951.99 1.69 900.3 911.57
delay 95%: 1148.5 1.69 1326.25 1225.07
delay 98%: 1335.59 1.69 2149.69 1611.44
delay 99%: 1434.91 1.69 3087.29 1885.31

delay 100%: 339.14 1.69 227085.43 831.23

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 52807 180057 50883 172929 96.36% 96.04% 1923 7127 N/A N/A
Data 56266 179892 0 0 0.0% 0.0% 56266 179892 N/A 164

Route Net Data 78116 248802 21832 68836 27.95% 27.67% 56282 179965 0 0
Net Control 3491 75548 33325 716235 954.6% 948.05% N/A N/A N/A N/A
→ peer2peer 192 4491 274 6403 142.71% 142.57% -81 -1911 N/A N/A
→ broadcast 3184 68392 33050 709832 1038.0% 1037.89% N/A N/A N/A N/A

MAC Net Sum 81607 324351 55158 785071 67.59% 242.04% N/A -460720 21654 215786

Table 5.34.: Average Result Table: Run 00602
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Algorithm: AODV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 7.9 µJ/B
Throughput: 407.626 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1448.455 496.0 1805902.0 2926.114
rcvDataEnergy 672.125 355.2 1249300.8 1843.423

Control: sendCtrlEnergy 353.567 310.8 630.0 44.135
rcvCtrlEnergy 82.688 72.0 348.48 27.488

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 340.635 310.8 630.0 4.864
→ rcvCtrlBCEnergy 79.847 72.0 156.0 1.173

Miscellaneous: batteryLevel (%): 1.644 0.0 25.547 4.148
delay 80%: 637.6 1.94 477.46 509.68
delay 90%: 827.18 1.94 763.14 728.46
delay 95%: 979.01 1.94 1132.05 964.24
delay 98%: 1130.75 1.94 1764.72 1287.24
delay 99%: 1214.71 1.94 2664.52 1531.48

delay 100%: 296.17 1.94 583093.79 1027.9

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 53109 180708 50952 173279 95.94% 95.89% 2155 7429 N/A N/A
Data 56561 180521 0 0 0.0% 0.0% 56561 180521 N/A 187

Route Net Data 81415 258360 24786 77638 30.44% 30.05% 56628 180721 0 0
Net Control 4433 96012 38911 836058 877.76% 870.78% N/A N/A N/A N/A
→ peer2peer 319 7438 376 8783 117.87% 118.08% -57 -1344 N/A N/A
→ broadcast 3971 85259 38534 827275 970.39% 970.31% N/A N/A N/A N/A

MAC Net Sum 85849 354372 63698 913696 74.2% 257.84% N/A -559324 23197 229489

Table 5.35.: Average Result Table: Run 00603
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Algorithm: AODV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 7.72 µJ/B
Throughput: 433.45 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1426.094 496.0 2051658.8 3626.88
rcvDataEnergy 661.484 355.2 1419359.04 2401.51

Control: sendCtrlEnergy 353.329 310.8 599.6 44.133
rcvCtrlEnergy 83.155 72.0 348.48 29.761

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 340.53 310.8 599.6 5.256
→ rcvCtrlBCEnergy 79.816 72.0 148.0 1.293

Miscellaneous: batteryLevel (%): 1.409 0.0 29.175 3.397
delay 80%: 578.48 1.81 342.06 442.53
delay 90%: 737.25 1.81 549.61 619.69
delay 95%: 862.08 1.81 851.05 807.25
delay 98%: 984.96 1.81 1481.32 1061.63
delay 99%: 1054.62 1.81 2242.53 1265.59

delay 100%: 256.6 1.81 183418.88 755.67

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 56479 192145 54180 184429 95.93% 95.98% 2298 7716 N/A N/A
Data 60151 191951 0 0 0.0% 0.0% 60151 191951 N/A 194

Route Net Data 85170 270039 24945 77888 29.29% 28.84% 60225 192150 0 0
Net Control 4164 90312 33983 731279 816.11% 809.73% N/A N/A N/A N/A
→ peer2peer 292 6807 390 9088 133.56% 133.51% -97 -2281 N/A N/A
→ broadcast 3713 79825 33592 722190 904.71% 904.72% N/A N/A N/A N/A

MAC Net Sum 89335 360351 58928 809167 65.96% 224.55% N/A -448816 19495 191076

Table 5.36.: Average Result Table: Run 00604
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Algorithm: AODV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 7.43 µJ/B
Throughput: 459.644 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1381.783 496.0 1557123.6 3020.886
rcvDataEnergy 640.989 355.2 1077151.68 1967.028

Control: sendCtrlEnergy 353.354 310.8 614.8 44.043
rcvCtrlEnergy 82.964 72.0 348.48 28.805

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 340.576 310.8 614.8 4.928
→ rcvCtrlBCEnergy 79.83 72.0 152.0 1.227

Miscellaneous: batteryLevel (%): 1.263 0.0 19.335 3.139
delay 80%: 607.23 1.73 346.38 442.1
delay 90%: 762.95 1.73 565.77 613.36
delay 95%: 888.47 1.73 874.88 804.83
delay 98%: 1009.83 1.73 1492.99 1053.66
delay 99%: 1076.62 1.73 2143.65 1242.57

delay 100%: 259.15 1.73 255939.85 787.73

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 59579 203145 57454 195948 96.43% 96.46% 2123 7196 N/A N/A
Data 63470 202956 0 0 0.0% 0.0% 63470 202956 N/A 188

Route Net Data 87293 277362 23766 74250 27.23% 26.77% 63527 203112 0 0
Net Control 3956 85732 32214 692759 814.31% 808.05% N/A N/A N/A N/A
→ peer2peer 278 6491 346 8065 124.46% 124.25% -67 -1574 N/A N/A
→ broadcast 3539 76035 31868 684694 900.48% 900.5% N/A N/A N/A N/A

MAC Net Sum 91250 363095 55981 767010 61.35% 211.24% N/A -403915 18625 183844

Table 5.37.: Average Result Table: Run 00606
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Algorithm: AODV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 7.5 µJ/B
Throughput: 454.324 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1395.783 496.0 1725356.4 3125.625
rcvDataEnergy 647.804 355.2 1193550.72 2044.448

Control: sendCtrlEnergy 353.44 310.8 584.4 44.198
rcvCtrlEnergy 83.031 72.0 348.48 29.153

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 340.562 310.8 584.4 5.009
→ rcvCtrlBCEnergy 79.826 72.0 144.0 1.236

Miscellaneous: batteryLevel (%): 1.252 0.0 21.878 3.212
delay 80%: 639.3 1.94 373.73 466.34
delay 90%: 799.69 1.94 607.1 638.79
delay 95%: 927.2 1.94 923.29 828.93
delay 98%: 1052.59 1.94 1546.81 1087.36
delay 99%: 1122.56 1.94 2210.15 1287.95

delay 100%: 267.79 1.94 221875.34 724.48

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 58972 200958 56790 193671 96.3% 96.37% 2181 7287 N/A N/A
Data 62818 200753 0 0 0.0% 0.0% 62818 200753 N/A 205

Route Net Data 86759 275881 23905 75014 27.55% 27.19% 62854 200866 0 0
Net Control 3884 84212 31553 678694 812.38% 805.94% N/A N/A N/A N/A
→ peer2peer 274 6397 346 8074 126.28% 126.22% -71 -1677 N/A N/A
→ broadcast 3471 74573 31206 670619 899.05% 899.28% N/A N/A N/A N/A

MAC Net Sum 90645 360094 55459 753708 61.18% 209.31% N/A -393614 18207 179351

Table 5.38.: Average Result Table: Run 00608

93



5
.

S
im

u
la

tio
n

R
esu

lts

Algorithm: AODV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 7.49 µJ/B
Throughput: 457.252 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1392.303 496.0 1725356.4 3075.505
rcvDataEnergy 646.481 355.2 1193550.72 2009.559

Control: sendCtrlEnergy 353.581 310.8 584.4 44.344
rcvCtrlEnergy 82.967 72.0 348.48 28.859

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 340.58 310.8 584.4 4.954
→ rcvCtrlBCEnergy 79.828 72.0 144.0 1.228

Miscellaneous: batteryLevel (%): 1.268 0.0 19.558 3.224
delay 80%: 629.08 1.94 373.74 455.88
delay 90%: 785.2 1.94 607.1 623.08
delay 95%: 908.73 1.94 923.29 806.09
delay 98%: 1030.96 1.94 1546.81 1058.96
delay 99%: 1100.69 1.94 2210.15 1263.88

delay 100%: 269.37 1.94 339457.12 953.7

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 59348 202246 57156 194868 96.31% 96.35% 2192 7378 N/A N/A
Data 63216 202040 0 0 0.0% 0.0% 63216 202040 N/A 206

Route Net Data 87083 277023 23825 74851 27.36% 27.02% 63258 202172 0 0
Net Control 3925 85072 32001 688250 815.31% 809.02% N/A N/A N/A N/A
→ peer2peer 281 6563 345 8055 122.78% 122.73% -63 -1492 N/A N/A
→ broadcast 3507 75345 31655 680194 902.62% 902.77% N/A N/A N/A N/A

MAC Net Sum 91009 362095 55827 763101 61.34% 210.75% N/A -401005 18293 180515

Table 5.39.: Average Result Table: Run 00610
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Algorithm: AODV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 998.8
Energy / UserData: 7.33 µJ/B
Throughput: 467.96 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1363.548 496.0 1774709.2 3097.39
rcvDataEnergy 633.299 355.2 1227701.76 2024.133

Control: sendCtrlEnergy 353.572 310.8 584.4 44.398
rcvCtrlEnergy 82.929 72.0 348.48 28.724

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 340.565 310.8 584.4 4.94
→ rcvCtrlBCEnergy 79.825 72.0 144.0 1.232

Miscellaneous: batteryLevel (%): 1.267 0.0 22.8 3.175
delay 80%: 592.54 1.94 336.88 430.73
delay 90%: 738.3 1.94 526.77 584.58
delay 95%: 850.54 1.94 809.72 746.5
delay 98%: 962.29 1.94 1345.36 974.98
delay 99%: 1025.76 1.94 2093.88 1159.96

delay 100%: 250.05 1.94 424763.25 927.57

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 60441 206312 58419 199108 96.65% 96.51% 2021 7203 N/A N/A
Data 64394 206114 0 0 0.0% 0.0% 64394 206114 N/A 198

Route Net Data 87493 278146 23047 71890 26.34% 25.85% 64445 206256 0 0
Net Control 3986 86417 32627 701780 818.54% 812.09% N/A N/A N/A N/A
→ peer2peer 284 6626 347 8104 122.18% 122.31% -62 -1478 N/A N/A
→ broadcast 3565 76598 32279 693675 905.44% 905.6% N/A N/A N/A N/A

MAC Net Sum 91481 364563 55675 773670 60.86% 212.22% N/A -409107 18789 185540

Table 5.40.: Average Result Table: Run 00616
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Algorithm: AODV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 6.73 µJ/B
Throughput: 450.432 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1242.739 496.0 1175394.8 1929.154
rcvDataEnergy 577.896 355.2 813003.84 1176.377

Control: sendCtrlEnergy 353.479 310.8 538.8 44.007
rcvCtrlEnergy 81.994 72.0 348.48 23.859

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 340.688 310.8 538.8 4.394
→ rcvCtrlBCEnergy 79.859 72.0 132.0 1.087

Miscellaneous: batteryLevel (%): 1.253 0.0 22.433 2.963
delay 80%: 675.67 1.71 403.77 512.84
delay 90%: 860.01 1.71 663.1 720.66
delay 95%: 1012.0 1.71 1028.16 959.26
delay 98%: 1167.75 1.71 1787.15 1300.34
delay 99%: 1258.65 1.71 2836.21 1581.27

delay 100%: 306.54 1.71 334492.38 889.65

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 58436 199182 56303 192105 96.35% 96.45% 2133 7076 N/A N/A
Data 62269 199026 0 0 0.0% 0.0% 62269 199026 N/A 155

Route Net Data 77405 246363 15114 47280 19.53% 19.19% 62290 199083 0 0
Net Control 3847 83218 40123 861539 1042.97% 1035.28% N/A N/A N/A N/A
→ peer2peer 273 6368 293 6841 107.33% 107.43% -20 -473 N/A N/A
→ broadcast 3477 74604 39829 854698 1145.5% 1145.65% N/A N/A N/A N/A

MAC Net Sum 81253 329582 55238 908819 67.98% 275.75% N/A -579237 27298 274041

Table 5.41.: Average Result Table: Run 00620
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Algorithm: AODV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 926.4
Energy / UserData: 6.28 µJ/B
Throughput: 331.3 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1163.435 496.0 486470.0 1243.702
rcvDataEnergy 543.586 355.2 336283.2 736.8

Control: sendCtrlEnergy 347.95 310.8 630.0 33.912
rcvCtrlEnergy 80.52 72.0 348.48 13.82

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 340.673 310.8 630.0 4.344
→ rcvCtrlBCEnergy 79.812 72.0 156.0 1.225

Miscellaneous: batteryLevel (%): 0.317 0.0 5.608 0.763
delay 80%: 2156.66 1.93 1654.86 1997.88
delay 90%: 3003.25 1.93 2680.94 3084.53
delay 95%: 3627.24 1.93 3714.37 4017.2
delay 98%: 4144.96 1.93 5057.66 4923.41
delay 99%: 4371.62 1.93 6138.62 5390.25

delay 100%: 948.7 1.93 256214.38 1432.65

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 43830 148229 41412 139925 94.48% 94.4% 2418 8304 N/A N/A
Data 46690 148122 0 0 0.0% 0.0% 46690 148122 N/A 106

Route Net Data 54152 171704 7467 23613 13.79% 13.75% 46683 148091 0 0
Net Control 2341 50474 44767 962799 1912.3% 1907.51% N/A N/A N/A N/A
→ peer2peer 95 2221 108 2541 113.68% 114.41% -13 -319 N/A N/A
→ broadcast 2213 47512 44657 960258 2017.94% 2021.09% N/A N/A N/A N/A

MAC Net Sum 56493 222178 52235 986413 92.46% 443.97% N/A -764234 51331 524498

Table 5.42.: Average Result Table: Run 00624
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Algorithm: AODV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 7.57 µJ/B
Throughput: 327.396 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1364.117 496.0 1875902.4 2492.578
rcvDataEnergy 632.654 355.2 1297739.52 1507.475

Control: sendCtrlEnergy 352.043 310.8 645.2 41.68
rcvCtrlEnergy 82.716 72.0 348.48 27.536

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 340.683 310.8 645.2 4.789
→ rcvCtrlBCEnergy 79.866 72.0 160.0 1.112

Miscellaneous: batteryLevel (%): 0.994 0.0 13.093 2.251
delay 80%: 662.32 1.79 507.07 510.03
delay 90%: 869.94 1.79 865.48 770.84
delay 95%: 1045.46 1.79 1353.57 1065.52
delay 98%: 1223.88 1.79 2276.16 1464.87
delay 99%: 1323.93 1.79 3299.65 1767.84

delay 100%: 319.71 1.79 204640.13 914.15

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 42808 145480 40923 138960 95.6% 95.52% 1884 6519 N/A N/A
Data 45601 145376 0 0 0.0% 0.0% 45601 145376 N/A 103

Route Net Data 62042 196416 16385 50892 26.41% 25.91% 45656 145524 0 0
Net Control 4036 87322 33318 715379 825.52% 819.24% N/A N/A N/A N/A
→ peer2peer 252 5884 325 7572 128.97% 128.69% -72 -1687 N/A N/A
→ broadcast 3647 78264 32993 707807 904.66% 904.38% N/A N/A N/A N/A

MAC Net Sum 66079 283738 49704 766271 75.22% 270.06% N/A -482533 20976 208941

Table 5.43.: Average Result Table: Run 00626
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Algorithm: AODV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 7.41 µJ/B
Throughput: 530.466 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1398.374 496.0 2084392.8 3152.073
rcvDataEnergy 649.3 355.2 1442010.24 2064.601

Control: sendCtrlEnergy 352.197 310.8 523.6 42.372
rcvCtrlEnergy 83.362 72.0 348.48 30.684

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 340.498 310.8 523.6 5.174
→ rcvCtrlBCEnergy 79.809 72.0 128.0 1.309

Miscellaneous: batteryLevel (%): 2.834 0.0 48.708 6.536
delay 80%: 614.13 1.94 342.72 431.66
delay 90%: 752.82 1.94 522.61 570.11
delay 95%: 857.63 1.94 782.36 715.23
delay 98%: 955.23 1.94 1265.57 898.38
delay 99%: 1006.83 1.94 1859.42 1031.69

delay 100%: 235.9 1.94 454279.4 843.34

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 68599 234127 66307 226421 96.66% 96.71% 2291 7705 N/A N/A
Data 73078 233851 0 0 0.0% 0.0% 73078 233851 N/A 276

Route Net Data 101800 324484 28637 90381 28.13% 27.85% 73162 234102 0 0
Net Control 3662 79408 27538 592794 751.99% 746.52% N/A N/A N/A N/A
→ peer2peer 234 5468 336 7849 143.59% 143.54% -101 -2380 N/A N/A
→ broadcast 3286 70672 27201 584945 827.78% 827.69% N/A N/A N/A N/A

MAC Net Sum 105462 403892 56176 683176 53.27% 169.15% N/A -279284 15254 147538

Table 5.44.: Average Result Table: Run 00628
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Algorithm: AODV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 4.32 µJ/B
Throughput: 676.68 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 3186.802 496.0 1053050.4 4443.732
rcvDataEnergy 1019.958 355.2 728329.92 2317.011

Control: sendCtrlEnergy 353.452 310.8 569.2 43.779
rcvCtrlEnergy 82.039 72.0 348.48 23.893

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 340.782 310.8 569.2 4.037
→ rcvCtrlBCEnergy 79.895 72.0 140.0 0.956

Miscellaneous: batteryLevel (%): 1.481 0.0 42.647 4.352
delay 80%: 1180.49 1.69 772.73 935.35
delay 90%: 1539.01 1.69 1286.79 1360.6
delay 95%: 1817.14 1.69 2106.46 1784.24
delay 98%: 2083.53 1.69 3794.83 2330.2
delay 99%: 2233.56 1.69 5404.79 2762.14

delay 100%: 542.1 1.69 187953.58 1450.06

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 89008 83867 84584 79662 95.03% 94.99% 4423 4205 N/A N/A
Data 90452 83699 0 0 0.0% 0.0% 90452 83699 N/A 168

Route Net Data 115115 105982 24645 22248 21.41% 20.99% 90470 83733 0 0
Net Control 3345 72272 31432 673854 939.67% 932.39% N/A N/A N/A N/A
→ peer2peer 235 5499 229 5345 97.45% 97.2% 6 154 N/A N/A
→ broadcast 3033 65005 31202 668508 1028.75% 1028.39% N/A N/A N/A N/A

MAC Net Sum 118461 178255 56077 696103 47.34% 390.51% N/A -517848 22780 217377

Table 5.45.: Average Result Table: Run 00702
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Algorithm: AODV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 3.7 µJ/B
Throughput: 786.042 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 5452.214 496.0 761939.2 6435.812
rcvDataEnergy 1508.082 355.2 526901.76 2463.237

Control: sendCtrlEnergy 354.091 310.8 584.4 44.337
rcvCtrlEnergy 81.626 72.0 348.48 21.278

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 340.935 310.8 584.4 3.232
→ rcvCtrlBCEnergy 79.93 72.0 144.0 0.777

Miscellaneous: batteryLevel (%): 1.91 0.0 42.118 4.48
delay 80%: 1734.38 1.94 986.66 1276.36
delay 90%: 2169.38 1.94 1453.89 1733.7
delay 95%: 2469.07 1.94 2168.15 2120.97
delay 98%: 2745.4 1.94 3874.14 2626.89
delay 99%: 2908.95 1.94 6787.92 3105.52

delay 100%: 707.31 1.94 463186.66 2119.72

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 104108 49931 98255 47013 94.38% 94.16% 5852 2917 N/A N/A
Data 104839 49784 0 0 0.0% 0.0% 104839 49784 N/A 146

Route Net Data 127188 60276 22387 10494 17.6% 17.41% 104800 49782 0 0
Net Control 3724 80312 35437 758616 951.58% 944.59% N/A N/A N/A N/A
→ peer2peer 274 6402 206 4807 75.18% 75.09% 67 1594 N/A N/A
→ broadcast 3393 72619 35231 753808 1038.34% 1038.03% N/A N/A N/A N/A

MAC Net Sum 130913 140589 57825 769111 44.17% 547.06% N/A -628521 26405 249875

Table 5.46.: Average Result Table: Run 00802
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Algorithm: DSDV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 6.22 µJ/B
Throughput: 489.114 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1204.471 496.0 10737.6 823.398
rcvDataEnergy 561.01 355.2 5683.2 271.004

Control: sendCtrlEnergy 923.836 310.8 1428.0 384.224
rcvCtrlEnergy 248.581 72.0 366.0 96.988

→ sendCtrlP2PEnergy NaN NaN NaN NaN
→ rcvCtrlP2PEnergy NaN NaN NaN NaN
→ sendCtrlBCEnergy 923.836 310.8 1428.0 384.224
→ rcvCtrlBCEnergy 248.581 72.0 366.0 96.988

Miscellaneous: batteryLevel (%): 2.588 0.0 53.689 6.341
delay 80%: 589.47 1.94 561.01 620.7
delay 90%: 880.04 1.94 1053.76 1026.72
delay 95%: 1118.79 1.94 1646.3 1433.11
delay 98%: 1351.24 1.94 2649.57 1938.46
delay 99%: 1476.73 1.94 4025.3 2300.32

delay 100%: 372.55 1.94 495622.33 1791.15

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 62154 213816 61138 209806 98.37% 98.12% 1015 4009 N/A N/A
Data 66322 213790 0 0 0.0% 0.0% 66322 213790 N/A 25

Route Net Data 80221 257272 13898 43482 17.32% 16.9% 66322 213790 0 0
Net Control 4987 14185 63598 165454 1275.28% 1166.4% N/A N/A N/A N/A
→ peer2peer 0 0 0 0 NaN% NaN% 0 0 N/A N/A
→ broadcast 4987 14185 63598 165454 1275.28% 1166.4% N/A N/A N/A N/A

MAC Net Sum 85209 271457 77497 208937 90.95% 76.97% N/A 62520 18005 41188

Table 5.47.: Average Result Table: Run 00901
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Algorithm: DSDV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 989.0
Energy / UserData: 5.98 µJ/B
Throughput: 458.9875 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1141.68 496.0 10509.6 720.436
rcvDataEnergy 532.714 355.2 3991.68 224.269

Control: sendCtrlEnergy 899.496 310.8 1428.0 377.243
rcvCtrlEnergy 238.25 72.0 366.0 96.715

→ sendCtrlP2PEnergy NaN NaN NaN NaN
→ rcvCtrlP2PEnergy NaN NaN NaN NaN
→ sendCtrlBCEnergy 899.496 310.8 1428.0 377.243
→ rcvCtrlBCEnergy 238.25 72.0 366.0 96.715

Miscellaneous: batteryLevel (%): 2.527 0.0 54.315 6.616
delay 80%: 460.76 1.94 435.27 419.07
delay 90%: 629.68 1.94 763.56 629.07
delay 95%: 766.87 1.94 1215.34 850.43
delay 98%: 904.79 1.94 2077.66 1150.78
delay 99%: 981.08 1.94 3033.09 1374.98

delay 100%: 318.32 1.94 587183.17 2313.73

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 57870 198822 56751 194731 98.07% 97.94% 1119 4091 N/A N/A
Data 61747 198802 0 0 0.0% 0.0% 61747 198802 N/A 20

Route Net Data 71085 228482 9337 29681 13.13% 12.99% 61747 198801 0 0
Net Control 5972 17663 76486 211220 1280.74% 1195.83% N/A N/A N/A N/A
→ peer2peer 0 0 0 0 NaN% NaN% 0 0 N/A N/A
→ broadcast 5972 17663 76486 211220 1280.74% 1195.83% N/A N/A N/A N/A

MAC Net Sum 77058 246146 85824 240901 111.38% 97.87% N/A 5244 19209 45814

Table 5.48.: Average Result Table: Run 00902
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Algorithm: DSDV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 6.0 µJ/B
Throughput: 456.9225 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1132.66 496.0 12016.4 713.893
rcvDataEnergy 528.526 355.2 4561.92 222.001

Control: sendCtrlEnergy 918.802 310.8 1428.0 374.683
rcvCtrlEnergy 239.812 72.0 366.0 96.255

→ sendCtrlP2PEnergy NaN NaN NaN NaN
→ rcvCtrlP2PEnergy NaN NaN NaN NaN
→ sendCtrlBCEnergy 918.802 310.8 1428.0 374.683
→ rcvCtrlBCEnergy 239.812 72.0 366.0 96.255

Miscellaneous: batteryLevel (%): 2.363 0.0 38.869 5.236
delay 80%: 447.49 1.94 364.81 379.71
delay 90%: 589.9 1.94 640.14 546.25
delay 95%: 707.28 1.94 1019.5 733.21
delay 98%: 820.72 1.94 1552.61 969.73
delay 99%: 881.15 1.94 2258.98 1137.92

delay 100%: 296.1 1.94 720034.49 3089.63

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 58293 200183 57114 196040 97.98% 97.93% 1178 4143 N/A N/A
Data 62193 200159 0 0 0.0% 0.0% 62193 200159 N/A 24

Route Net Data 71041 228505 8847 28345 12.45% 12.4% 62193 200159 0 0
Net Control 7482 21655 86767 240234 1159.68% 1109.37% N/A N/A N/A N/A
→ peer2peer 0 0 0 0 NaN% NaN% 0 0 N/A N/A
→ broadcast 7482 21655 86767 240234 1159.68% 1109.37% N/A N/A N/A N/A

MAC Net Sum 78524 250160 95615 268580 121.77% 107.36% N/A -18419 19492 46029

Table 5.49.: Average Result Table: Run 00903
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Algorithm: DSDV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.96 µJ/B
Throughput: 480.8475 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1121.372 496.0 13523.2 712.063
rcvDataEnergy 522.667 355.2 5132.16 220.838

Control: sendCtrlEnergy 854.875 310.8 1428.0 360.606
rcvCtrlEnergy 218.421 72.0 366.0 93.465

→ sendCtrlP2PEnergy NaN NaN NaN NaN
→ rcvCtrlP2PEnergy NaN NaN NaN NaN
→ sendCtrlBCEnergy 854.875 310.8 1428.0 360.606
→ rcvCtrlBCEnergy 218.421 72.0 366.0 93.465

Miscellaneous: batteryLevel (%): 3.354 0.0 37.658 6.108
delay 80%: 391.07 1.94 307.51 316.47
delay 90%: 507.1 1.94 498.19 447.76
delay 95%: 597.24 1.94 756.87 583.3
delay 98%: 685.11 1.94 1262.26 762.94
delay 99%: 732.84 1.94 1842.58 896.42

delay 100%: 274.62 1.94 719776.26 4280.16

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 61438 210806 60106 206505 97.83% 97.96% 1332 4301 N/A N/A
Data 65546 210784 0 0 0.0% 0.0% 65546 210784 N/A 22

Route Net Data 74175 237900 8628 27116 11.63% 11.4% 65546 210784 0 0
Net Control 7827 25067 80805 253000 1032.39% 1009.3% N/A N/A N/A N/A
→ peer2peer 0 0 0 0 NaN% NaN% 0 0 N/A N/A
→ broadcast 7827 25067 80805 253000 1032.39% 1009.3% N/A N/A N/A N/A

MAC Net Sum 82003 262967 89434 280116 109.06% 106.52% N/A -17148 17012 43779

Table 5.50.: Average Result Table: Run 00904
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Algorithm: DSDV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.75 µJ/B
Throughput: 507.474 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1092.609 496.0 13523.2 660.719
rcvDataEnergy 510.737 355.2 5132.16 198.07

Control: sendCtrlEnergy 820.66 310.8 1428.0 351.919
rcvCtrlEnergy 209.405 72.0 366.0 90.926

→ sendCtrlP2PEnergy NaN NaN NaN NaN
→ rcvCtrlP2PEnergy NaN NaN NaN NaN
→ sendCtrlBCEnergy 820.66 310.8 1428.0 351.919
→ rcvCtrlBCEnergy 209.405 72.0 366.0 90.926

Miscellaneous: batteryLevel (%): 3.134 0.0 33.627 5.474
delay 80%: 511.15 1.94 304.55 396.31
delay 90%: 650.32 1.94 489.14 547.96
delay 95%: 760.55 1.94 775.62 713.8
delay 98%: 866.21 1.94 1305.36 926.55
delay 99%: 923.03 1.94 1895.72 1082.47

delay 100%: 252.72 1.94 730514.37 3178.04

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 64584 221974 63434 218076 98.22% 98.24% 1149 3898 N/A N/A
Data 68908 221947 0 0 0.0% 0.0% 68908 221947 N/A 27

Route Net Data 76031 245034 7122 23087 9.37% 9.42% 68908 221947 0 0
Net Control 6879 23414 69939 232289 1016.7% 992.09% N/A N/A N/A N/A
→ peer2peer 0 0 0 0 NaN% NaN% 0 0 N/A N/A
→ broadcast 6879 23414 69939 232289 1016.7% 992.09% N/A N/A N/A N/A

MAC Net Sum 82911 268448 77062 255376 92.95% 95.13% N/A 13072 15181 41918

Table 5.51.: Average Result Table: Run 00906
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Algorithm: DSDV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.74 µJ/B
Throughput: 517.955 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1091.466 496.0 10509.6 661.861
rcvDataEnergy 509.925 355.2 3991.68 197.094

Control: sendCtrlEnergy 820.608 310.8 1428.0 354.815
rcvCtrlEnergy 209.894 72.0 366.0 92.146

→ sendCtrlP2PEnergy NaN NaN NaN NaN
→ rcvCtrlP2PEnergy NaN NaN NaN NaN
→ sendCtrlBCEnergy 820.608 310.8 1428.0 354.815
→ rcvCtrlBCEnergy 209.894 72.0 366.0 92.146

Miscellaneous: batteryLevel (%): 2.61 0.0 30.986 5.34
delay 80%: 418.92 1.94 316.43 309.07
delay 90%: 518.89 1.94 443.02 408.55
delay 95%: 593.38 1.94 629.5 510.89
delay 98%: 664.23 1.94 992.42 645.4
delay 99%: 702.65 1.94 1603.97 748.32

delay 100%: 246.97 1.94 677192.22 3693.36

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 65787 226319 64743 222590 98.41% 98.35% 1043 3728 N/A N/A
Data 70198 226296 0 0 0.0% 0.0% 70198 226296 N/A 23

Route Net Data 77452 248853 7252 22557 9.36% 9.06% 70198 226295 0 0
Net Control 6917 23538 71282 236032 1030.53% 1002.77% N/A N/A N/A N/A
→ peer2peer 0 0 0 0 NaN% NaN% 0 0 N/A N/A
→ broadcast 6917 23538 71282 236032 1030.53% 1002.77% N/A N/A N/A N/A

MAC Net Sum 84369 272391 78535 258589 93.09% 94.93% N/A 13802 14406 39974

Table 5.52.: Average Result Table: Run 00908
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Algorithm: DSDV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.74 µJ/B
Throughput: 521.0625 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1087.55 496.0 13523.2 659.028
rcvDataEnergy 508.188 355.2 4561.92 196.212

Control: sendCtrlEnergy 834.016 310.8 1428.0 346.081
rcvCtrlEnergy 214.264 72.0 366.0 89.079

→ sendCtrlP2PEnergy NaN NaN NaN NaN
→ rcvCtrlP2PEnergy NaN NaN NaN NaN
→ sendCtrlBCEnergy 834.016 310.8 1428.0 346.081
→ rcvCtrlBCEnergy 214.264 72.0 366.0 89.079

Miscellaneous: batteryLevel (%): 2.793 0.0 22.992 5.246
delay 80%: 421.51 1.94 297.0 311.31
delay 90%: 521.41 1.94 413.83 409.61
delay 95%: 597.74 1.94 642.79 516.77
delay 98%: 672.67 1.94 1039.38 664.99
delay 99%: 713.47 1.94 1544.96 777.04

delay 100%: 243.99 1.94 727020.2 3357.92

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 66138 227591 65132 223941 98.48% 98.4% 1006 3650 N/A N/A
Data 70574 227568 0 0 0.0% 0.0% 70574 227568 N/A 23

Route Net Data 77522 249441 6947 21874 8.96% 8.77% 70573 227566 0 0
Net Control 7368 24244 77050 244498 1045.74% 1008.49% N/A N/A N/A N/A
→ peer2peer 0 0 0 0 NaN% NaN% 0 0 N/A N/A
→ broadcast 7368 24244 77050 244498 1045.74% 1008.49% N/A N/A N/A N/A

MAC Net Sum 84890 273685 83999 266372 98.95% 97.33% N/A 7313 15728 41558

Table 5.53.: Average Result Table: Run 00910
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Algorithm: DSDV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.79 µJ/B
Throughput: 526.864 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1102.743 496.0 10509.6 683.651
rcvDataEnergy 515.223 355.2 3991.68 208.476

Control: sendCtrlEnergy 822.403 310.8 1428.0 350.828
rcvCtrlEnergy 209.824 72.0 366.0 90.389

→ sendCtrlP2PEnergy NaN NaN NaN NaN
→ rcvCtrlP2PEnergy NaN NaN NaN NaN
→ sendCtrlBCEnergy 822.403 310.8 1428.0 350.828
→ rcvCtrlBCEnergy 209.824 72.0 366.0 90.389

Miscellaneous: batteryLevel (%): 2.507 0.0 22.591 4.781
delay 80%: 535.38 1.94 303.88 395.77
delay 90%: 661.43 1.94 441.27 518.77
delay 95%: 758.17 1.94 683.07 654.67
delay 98%: 852.72 1.94 1038.5 840.77
delay 99%: 903.65 1.94 1506.61 978.94

delay 100%: 246.76 1.94 755810.0 3323.07

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 66934 230240 65857 226285 98.39% 98.28% 1076 3955 N/A N/A
Data 71421 230216 0 0 0.0% 0.0% 71421 230216 N/A 24

Route Net Data 79511 255825 8090 25610 10.17% 10.01% 71421 230215 0 0
Net Control 7008 23646 71580 235517 1021.4% 996.01% N/A N/A N/A N/A
→ peer2peer 0 0 0 0 NaN% NaN% 0 0 N/A N/A
→ broadcast 7008 23646 71580 235517 1021.4% 996.01% N/A N/A N/A N/A

MAC Net Sum 86520 279472 79671 261127 92.08% 93.44% N/A 18344 15072 41356

Table 5.54.: Average Result Table: Run 00916
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Algorithm: DSDV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.65 µJ/B
Throughput: 488.56 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1072.516 496.0 12016.4 634.951
rcvDataEnergy 501.124 355.2 4561.92 184.731

Control: sendCtrlEnergy 937.862 310.8 1428.0 380.761
rcvCtrlEnergy 247.487 72.0 366.0 97.201

→ sendCtrlP2PEnergy NaN NaN NaN NaN
→ rcvCtrlP2PEnergy NaN NaN NaN NaN
→ sendCtrlBCEnergy 937.862 310.8 1428.0 380.761
→ rcvCtrlBCEnergy 247.487 72.0 366.0 97.201

Miscellaneous: batteryLevel (%): 1.606 0.0 25.471 3.854
delay 80%: 373.7 1.94 375.7 288.89
delay 90%: 474.37 1.94 618.0 398.66
delay 95%: 557.7 1.94 989.62 528.72
delay 98%: 646.06 1.94 1917.88 727.98
delay 99%: 699.97 1.94 3307.28 904.53

delay 100%: 331.43 1.94 503830.97 2747.43

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 62215 213793 61069 209768 98.16% 98.12% 1145 4025 N/A N/A
Data 66379 213764 0 0 0.0% 0.0% 66379 213764 N/A 28

Route Net Data 72099 231116 5719 17352 7.93% 7.51% 66379 213764 0 0
Net Control 6970 19725 93497 250087 1341.42% 1267.87% N/A N/A N/A N/A
→ peer2peer 0 0 0 0 NaN% NaN% 0 0 N/A N/A
→ broadcast 6970 19725 93497 250087 1341.42% 1267.87% N/A N/A N/A N/A

MAC Net Sum 79069 250842 99218 267440 125.48% 106.62% N/A -16597 24951 57340

Table 5.55.: Average Result Table: Run 00920
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Algorithm: DSDV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 999.4
Energy / UserData: 5.49 µJ/B
Throughput: 366.368 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1076.856 496.0 5989.2 627.437
rcvDataEnergy 503.259 355.2 2280.96 181.647

Control: sendCtrlEnergy 930.885 310.8 1428.0 440.779
rcvCtrlEnergy 268.442 72.0 366.0 106.094

→ sendCtrlP2PEnergy NaN NaN NaN NaN
→ rcvCtrlP2PEnergy NaN NaN NaN NaN
→ sendCtrlBCEnergy 930.885 310.8 1428.0 440.779
→ rcvCtrlBCEnergy 268.442 72.0 366.0 106.094

Miscellaneous: batteryLevel (%): 0.385 0.0 6.348 0.823
delay 80%: 2606.72 1.94 2374.51 2705.03
delay 90%: 3881.1 1.94 3957.04 4479.59
delay 95%: 4828.95 1.94 5560.43 5955.19
delay 98%: 5620.4 1.94 7837.42 7383.62
delay 99%: 5974.96 1.94 9665.98 8146.15

delay 100%: 1320.44 1.94 401271.86 2612.57

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 46592 160210 45755 157080 98.2% 98.05% 836 3129 N/A N/A
Data 49708 160178 0 0 0.0% 0.0% 49708 160178 N/A 32

Route Net Data 54090 174434 4382 14256 8.1% 8.17% 49708 160178 0 0
Net Control 1917 5477 48364 116516 2522.9% 2127.37% N/A N/A N/A N/A
→ peer2peer 0 0 0 0 NaN% NaN% 0 0 N/A N/A
→ broadcast 1917 5477 48364 116516 2522.9% 2127.37% N/A N/A N/A N/A

MAC Net Sum 56009 179911 52746 130773 94.17% 72.69% N/A 49138 23424 47792

Table 5.56.: Average Result Table: Run 00924
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Algorithm: DSDV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 6.12 µJ/B
Throughput: 364.508 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1125.263 496.0 12016.4 714.809
rcvDataEnergy 524.593 355.2 4561.92 222.234

Control: sendCtrlEnergy 1032.821 310.8 1428.0 360.036
rcvCtrlEnergy 267.0 72.0 366.0 92.051

→ sendCtrlP2PEnergy NaN NaN NaN NaN
→ rcvCtrlP2PEnergy NaN NaN NaN NaN
→ sendCtrlBCEnergy 1032.821 310.8 1428.0 360.036
→ rcvCtrlBCEnergy 267.0 72.0 366.0 92.051

Miscellaneous: batteryLevel (%): 1.214 0.0 12.152 2.542
delay 80%: 607.83 1.94 437.97 486.46
delay 90%: 802.86 1.94 767.12 728.76
delay 95%: 965.23 1.94 1219.17 996.3
delay 98%: 1126.17 1.94 2020.32 1345.74
delay 99%: 1216.93 1.94 3158.76 1618.25

delay 100%: 347.89 1.94 609966.69 4001.09

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 46654 160063 45563 156083 97.66% 97.51% 1090 3980 N/A N/A
Data 49770 160039 0 0 0.0% 0.0% 49770 160039 N/A 24

Route Net Data 56541 181106 6770 21067 11.97% 11.63% 49770 160039 0 0
Net Control 8875 21990 89225 215450 1005.35% 979.76% N/A N/A N/A N/A
→ peer2peer 0 0 0 0 NaN% NaN% 0 0 N/A N/A
→ broadcast 8875 21990 89225 215450 1005.35% 979.76% N/A N/A N/A N/A

MAC Net Sum 65417 203097 95996 236518 146.74% 116.46% N/A -33420 21188 46290

Table 5.57.: Average Result Table: Run 00926
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Algorithm: DSDV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 5.62 µJ/B
Throughput: 538.38667 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1072.719 496.0 12016.4 637.863
rcvDataEnergy 502.406 355.2 3991.68 188.451

Control: sendCtrlEnergy 691.73 310.8 1428.0 305.465
rcvCtrlEnergy 173.963 72.0 366.0 79.137

→ sendCtrlP2PEnergy NaN NaN NaN NaN
→ rcvCtrlP2PEnergy NaN NaN NaN NaN
→ sendCtrlBCEnergy 691.73 310.8 1428.0 305.465
→ rcvCtrlBCEnergy 173.963 72.0 366.0 79.137

Miscellaneous: batteryLevel (%): 9.256 0.0 57.807 11.732
delay 80%: 297.29 1.94 287.24 207.8
delay 90%: 365.15 1.94 405.14 275.73
delay 95%: 411.92 1.94 604.37 336.75
delay 98%: 456.19 1.94 888.6 417.88
delay 99%: 479.56 1.94 1241.17 476.9

delay 100%: 220.03 1.94 796864.72 3908.26

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 68135 234788 67298 231665 98.77% 98.67% 837 3123 N/A N/A
Data 72719 234778 0 0 0.0% 0.0% 72719 234778 N/A 10

Route Net Data 78969 255164 6249 20386 7.91% 7.99% 72718 234777 0 0
Net Control 6026 26576 59565 259125 988.47% 975.03% N/A N/A N/A N/A
→ peer2peer 0 0 0 0 NaN% NaN% 0 0 N/A N/A
→ broadcast 6026 26576 59565 259125 988.47% 975.03% N/A N/A N/A N/A

MAC Net Sum 84996 281740 65815 279512 77.43% 99.21% N/A 2228 10329 36097

Table 5.58.: Average Result Table: Run 00928
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Algorithm: DSDV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 3.46 µJ/B
Throughput: 777.228 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 2663.379 496.0 30938.4 2309.442
rcvDataEnergy 852.696 355.2 8507.52 534.324

Control: sendCtrlEnergy 776.398 310.8 1428.0 360.186
rcvCtrlEnergy 202.424 72.0 366.0 94.046

→ sendCtrlP2PEnergy NaN NaN NaN NaN
→ rcvCtrlP2PEnergy NaN NaN NaN NaN
→ sendCtrlBCEnergy 776.398 310.8 1428.0 360.186
→ rcvCtrlBCEnergy 202.424 72.0 366.0 94.046

Miscellaneous: batteryLevel (%): 1.876 0.0 44.998 5.111
delay 80%: 1086.23 1.94 778.81 894.36
delay 90%: 1415.8 1.94 1388.29 1270.21
delay 95%: 1668.1 1.94 2187.8 1649.0
delay 98%: 1920.63 1.94 3988.98 2177.0
delay 99%: 2061.96 1.94 5688.13 2587.01

delay 100%: 538.7 1.94 586617.63 3659.09

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 99707 95086 97152 92412 97.44% 97.19% 2554 2674 N/A N/A
Data 101532 95064 0 0 0.0% 0.0% 101532 95064 N/A 22

Route Net Data 109709 102977 8176 7913 7.45% 7.68% 101532 95064 0 0
Net Control 3962 14647 47914 167521 1209.34% 1143.72% N/A N/A N/A N/A
→ peer2peer 0 0 0 0 NaN% NaN% 0 0 N/A N/A
→ broadcast 3962 14647 47914 167521 1209.34% 1143.72% N/A N/A N/A N/A

MAC Net Sum 113671 117624 56091 175435 49.35% 149.15% N/A -57810 14696 37922

Table 5.59.: Average Result Table: Run 01002
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Algorithm: DSDV, simulation time: 1000s , 50 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 3.07 µJ/B
Throughput: 861.47 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 4774.266 496.0 49860.4 4518.872
rcvDataEnergy 1316.568 355.2 12453.12 1015.702

Control: sendCtrlEnergy 758.839 310.8 1428.0 357.05
rcvCtrlEnergy 198.854 72.0 366.0 93.63

→ sendCtrlP2PEnergy NaN NaN NaN NaN
→ rcvCtrlP2PEnergy NaN NaN NaN NaN
→ sendCtrlBCEnergy 758.839 310.8 1428.0 357.05
→ rcvCtrlBCEnergy 198.854 72.0 366.0 93.63

Miscellaneous: batteryLevel (%): 2.695 0.0 51.66 6.262
delay 80%: 1018.8 1.94 1022.43 811.34
delay 90%: 1311.5 1.94 1722.04 1138.94
delay 95%: 1530.42 1.94 2733.1 1458.78
delay 98%: 1754.04 1.94 5115.96 1929.94
delay 99%: 1884.85 1.94 6886.95 2322.37

delay 100%: 816.11 1.94 542584.48 4801.63

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 112098 54215 107683 51983 96.06% 95.88% 4414 2231 N/A N/A
Data 113109 54200 0 0 0.0% 0.0% 113109 54200 N/A 15

Route Net Data 121361 58374 8254 4175 6.8% 7.15% 113107 54199 0 0
Net Control 3707 14101 44423 158517 1198.35% 1124.15% N/A N/A N/A N/A
→ peer2peer 0 0 0 0 NaN% NaN% 0 0 N/A N/A
→ broadcast 3707 14101 44423 158517 1198.35% 1124.15% N/A N/A N/A N/A

MAC Net Sum 125069 72476 52677 162692 42.12% 224.48% N/A -90216 16181 38033

Table 5.60.: Average Result Table: Run 01102
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Algorithm: Beehive, simulation time: 1000s , 30 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 19.28 µJ/B
Throughput: 271.896 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1463.851 1392.8 15022.4 504.876
rcvDataEnergy 614.668 545.04 5692.32 309.705

Control: sendCtrlEnergy 326.23 310.8 556.8 30.366
rcvCtrlEnergy 75.428 72.0 360.24 15.787

→ sendCtrlP2PEnergy 518.621 488.4 556.8 26.467
→ rcvCtrlP2PEnergy 351.385 345.12 360.24 5.775
→ sendCtrlBCEnergy 322.586 310.8 379.2 15.428
→ rcvCtrlBCEnergy 74.531 72.0 90.0 3.921

Miscellaneous: batteryLevel (%): 11.831 0.0 50.88 10.577
delay 80%: 309.62 5.47 1429.41 429.97
delay 90%: 900.99 5.47 3780.71 1972.61
delay 95%: 1741.49 5.47 6482.47 4241.49
delay 98%: 2666.5 5.47 10328.33 6774.75
delay 99%: 3131.96 5.47 13868.37 8188.28

delay 100%: 807.83 5.47 284550.06 2614.28

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 140237 280474 33986 67973 24.23% 24.24% 106250 212500 N/A N/A
Data 44916 84813 35876 67973 79.87% 80.14% 9039 16839 N/A 195661

Route Net Data 52175 98202 43135 81362 82.67% 82.85% 9039 16839 0 0
Net Control 23276 614985 97901 2677828 420.61% 435.43% N/A N/A N/A N/A
→ peer2peer 527 10725 390 8154 74.0% 76.03% 137 2571 N/A N/A
→ broadcast 22748 604259 97511 2669674 428.66% 441.81% N/A N/A N/A N/A

MAC Net Sum 75452 713187 141037 2759191 186.92% 386.88% N/A -2046004 60562 612531

Table 5.61.: Average Result Table: Run 00051
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Algorithm: Beehive, simulation time: 1000s , 30 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 16.82 µJ/B
Throughput: 301.914 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1447.052 1392.8 15022.4 393.243
rcvDataEnergy 589.25 545.04 5692.32 218.74

Control: sendCtrlEnergy 327.577 310.8 556.8 31.891
rcvCtrlEnergy 75.724 72.0 360.24 15.487

→ sendCtrlP2PEnergy 515.555 488.4 556.8 27.775
→ rcvCtrlP2PEnergy 350.377 345.12 360.24 6.127
→ sendCtrlBCEnergy 323.813 310.8 379.2 17.617
→ rcvCtrlBCEnergy 74.923 72.0 90.0 4.59

Miscellaneous: batteryLevel (%): 8.497 0.0 39.594 8.628
delay 80%: 182.28 5.47 378.63 135.4
delay 90%: 627.58 5.47 2918.76 1587.16
delay 95%: 1413.85 5.47 4803.72 3759.03
delay 98%: 2156.11 5.47 8394.88 5624.0
delay 99%: 2533.28 5.47 11974.17 6746.32

delay 100%: 650.95 5.47 284439.68 2184.04

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 146744 293489 37739 75478 25.72% 25.72% 109005 218010 N/A N/A
Data 50195 94794 39822 75478 79.33% 79.62% 10372 19316 N/A 198694

Route Net Data 56025 105583 45652 86267 81.49% 81.71% 10372 19316 0 0
Net Control 20358 532360 91137 2456588 447.67% 461.45% N/A N/A N/A N/A
→ peer2peer 525 10533 347 7259 66.1% 68.92% 177 3273 N/A N/A
→ broadcast 19833 521827 90788 2449329 457.76% 469.38% N/A N/A N/A N/A

MAC Net Sum 76385 637943 136790 2542856 179.08% 398.6% N/A -1904912 59647 576325

Table 5.62.: Average Result Table: Run 00052
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Algorithm: Beehive, simulation time: 1000s , 30 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 17.87 µJ/B
Throughput: 292.484 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1447.463 1392.8 11940.4 379.676
rcvDataEnergy 587.912 545.04 3991.68 207.078

Control: sendCtrlEnergy 330.274 310.8 556.8 34.89
rcvCtrlEnergy 76.652 72.0 360.24 16.257

→ sendCtrlP2PEnergy 521.451 488.4 556.8 27.886
→ rcvCtrlP2PEnergy 351.753 345.12 360.24 6.338
→ sendCtrlBCEnergy 325.821 310.8 379.2 19.133
→ rcvCtrlBCEnergy 75.781 72.0 90.0 5.195

Miscellaneous: batteryLevel (%): 11.466 0.0 40.495 7.593
delay 80%: 171.25 5.47 250.47 124.63
delay 90%: 673.07 5.47 2499.61 1769.02
delay 95%: 1451.73 5.47 4151.23 3774.7
delay 98%: 2096.42 5.47 5445.33 5203.51
delay 99%: 2376.4 5.47 8074.98 5882.7

delay 100%: 599.04 5.47 143260.64 1845.89

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 149119 298239 36559 73120 24.52% 24.52% 112559 225118 N/A N/A
Data 52277 98620 38578 73120 73.8% 74.14% 13699 25499 N/A 199619

Route Net Data 58252 109684 44552 84184 76.48% 76.75% 13699 25499 0 0
Net Control 22452 571231 99735 2575255 444.21% 450.83% N/A N/A N/A N/A
→ peer2peer 685 12982 419 8185 61.17% 63.05% 266 4797 N/A N/A
→ broadcast 21766 558248 99316 2567070 456.29% 459.84% N/A N/A N/A N/A

MAC Net Sum 80704 680915 144289 2659440 178.79% 390.57% N/A -1978524 69238 644593

Table 5.63.: Average Result Table: Run 00053
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Algorithm: Beehive, simulation time: 1000s , 30 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 17.88 µJ/B
Throughput: 282.11 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1425.36 1392.8 10600.8 275.254
rcvDataEnergy 569.492 545.04 3458.4 143.277

Control: sendCtrlEnergy 329.55 310.8 556.8 38.435
rcvCtrlEnergy 76.277 72.0 360.24 17.936

→ sendCtrlP2PEnergy 522.917 488.4 556.8 25.831
→ rcvCtrlP2PEnergy 352.382 345.12 360.24 6.01
→ sendCtrlBCEnergy 323.506 310.8 379.2 17.751
→ rcvCtrlBCEnergy 75.177 72.0 90.0 4.791

Miscellaneous: batteryLevel (%): 21.69 4.377 47.935 6.615
delay 80%: 192.62 5.47 976.17 235.2
delay 90%: 822.38 5.47 3165.13 2120.6
delay 95%: 1620.39 5.47 4362.05 4016.54
delay 98%: 2243.42 5.47 5482.35 5297.92
delay 99%: 2491.52 5.47 8794.01 5820.56

delay 100%: 599.15 5.47 796446.53 2148.52

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 149760 299520 35264 70528 23.55% 23.55% 114495 228991 N/A N/A
Data 47910 90470 37202 70528 77.65% 77.96% 10708 19942 N/A 209049

Route Net Data 51490 97109 40781 77166 79.2% 79.46% 10708 19942 0 0
Net Control 19879 518557 83737 2227453 421.23% 429.55% N/A N/A N/A N/A
→ peer2peer 845 15753 463 8824 54.79% 56.01% 381 6928 N/A N/A
→ broadcast 19033 502804 83273 2218629 437.52% 441.25% N/A N/A N/A N/A

MAC Net Sum 71370 615666 124519 2304620 174.47% 374.33% N/A -1688953 56430 537861

Table 5.64.: Average Result Table: Run 00054

120



5
.

S
im

u
la

tio
n

R
esu

lts

Algorithm: DSR, simulation time: 1000s , 30 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 41.08 µJ/B
Throughput: 141.496 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 2537.872 1392.8 89829.2 2434.953
rcvDataEnergy 1094.179 545.04 30695.52 1099.33

Control: sendCtrlEnergy 516.694 480.8 1332.0 31.319
rcvCtrlEnergy 170.001 72.0 573.6 122.599

→ sendCtrlP2PEnergy 516.694 480.8 2572.8 31.319
→ rcvCtrlP2PEnergy 354.112 345.12 573.6 9.811
→ sendCtrlBCEnergy NaN NaN NaN NaN
→ rcvCtrlBCEnergy 90.298 72.0 366.0 22.587

Miscellaneous: batteryLevel (%): 2.685 0.0 28.295 5.647
delay 80%: 6288.37 5.42 6957.61 7426.25
delay 90%: 9487.98 5.42 11468.62 11604.48
delay 95%: 11992.72 5.42 16963.72 15607.26
delay 98%: 14292.95 5.42 25412.37 20189.68
delay 99%: 15440.78 5.42 36243.33 23117.44

delay 100%: 3544.73 5.42 165156.0 6806.25

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 114551 229103 17686 35374 15.44% 15.44% 96864 193729 N/A N/A
Data 122697 234450 18454 35374 15.04% 15.09% 104242 199076 N/A -5347

Route Net Data 218789 413850 90362 171217 41.3% 41.37% 128426 242632 0 0
Net Control 3247 52895 6342 99587 195.32% 188.27% N/A N/A N/A N/A
→ peer2peer 1542 31048 1676 29888 108.69% 96.26% -133 1160 N/A N/A
→ broadcast 0 0 4666 69698 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 222037 466745 96705 270804 43.55% 58.02% N/A 195941 77788 159508

Table 5.65.: Average Result Table: Run 00351

121



5
.

S
im

u
la

tio
n

R
esu

lts

Algorithm: DSR, simulation time: 1000s , 30 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 42.58 µJ/B
Throughput: 129.844 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 2513.442 1392.8 56927.6 2355.491
rcvDataEnergy 1089.223 545.04 20576.64 1064.402

Control: sendCtrlEnergy 521.429 480.8 1636.0 40.556
rcvCtrlEnergy 182.069 72.0 630.72 127.388

→ sendCtrlP2PEnergy 521.429 480.8 3044.0 40.556
→ rcvCtrlP2PEnergy 357.065 345.12 630.72 15.444
→ sendCtrlBCEnergy NaN NaN NaN NaN
→ rcvCtrlBCEnergy 91.919 72.0 404.0 24.111

Miscellaneous: batteryLevel (%): 1.703 0.0 20.301 3.781
delay 80%: 5444.37 5.4 6387.95 6692.78
delay 90%: 8541.44 5.4 11049.87 10981.61
delay 95%: 11163.71 5.4 18222.59 15591.87
delay 98%: 14027.73 5.4 32683.54 22529.72
delay 99%: 15694.95 5.4 51611.44 27994.44

delay 100%: 3784.2 5.4 264742.85 9034.32

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 113639 227279 16230 32460 14.28% 14.28% 97409 194818 N/A N/A
Data 127848 244401 16932 32460 13.24% 13.28% 110915 211940 N/A -17121

Route Net Data 221002 418820 86100 163282 38.96% 38.99% 134901 255538 0 0
Net Control 4533 66369 7503 110750 165.52% 166.87% N/A N/A N/A N/A
→ peer2peer 1942 37231 2377 37666 122.4% 101.17% -434 -435 N/A N/A
→ broadcast 0 0 5125 73083 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 225536 485189 93604 274032 41.5% 56.48% N/A 211157 83489 173315

Table 5.66.: Average Result Table: Run 00352
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Algorithm: DSR, simulation time: 1000s , 30 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 44.04 µJ/B
Throughput: 128.228 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 2497.898 1392.8 75357.6 2379.08
rcvDataEnergy 1115.698 545.04 24650.64 1091.72

Control: sendCtrlEnergy 527.214 480.8 1598.0 52.794
rcvCtrlEnergy 185.522 72.0 849.12 129.483

→ sendCtrlP2PEnergy 527.214 480.8 2869.2 52.794
→ rcvCtrlP2PEnergy 360.806 345.12 849.12 21.344
→ sendCtrlBCEnergy NaN NaN NaN NaN
→ rcvCtrlBCEnergy 92.673 72.0 444.0 24.355

Miscellaneous: batteryLevel (%): 1.351 0.0 20.881 3.183
delay 80%: 4610.96 5.4 4898.38 5680.2
delay 90%: 7389.83 5.4 9001.09 9690.02
delay 95%: 9897.44 5.4 16364.76 14393.96
delay 98%: 12768.38 5.4 31960.33 21853.58
delay 99%: 14558.4 5.4 54234.4 28186.14

delay 100%: 3661.17 5.4 404150.68 9740.97

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 115630 231261 16028 32056 13.86% 13.86% 99602 199204 N/A N/A
Data 127720 244188 16729 32056 13.1% 13.13% 110991 212131 N/A -12926

Route Net Data 221211 419180 85175 161520 38.5% 38.53% 136035 257660 0 0
Net Control 7015 90607 10002 139262 142.58% 153.7% N/A N/A N/A N/A
→ peer2peer 2519 45728 3432 47928 136.24% 104.81% -913 -2200 N/A N/A
→ broadcast 0 0 6568 91333 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 228227 509787 95178 300782 41.7% 59.0% N/A 209005 84009 179343

Table 5.67.: Average Result Table: Run 00353
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Algorithm: DSR, simulation time: 1000s , 30 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 47.69 µJ/B
Throughput: 123.548 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 2522.736 1392.8 56388.0 2450.927
rcvDataEnergy 1150.655 545.04 20457.36 1139.281

Control: sendCtrlEnergy 529.905 480.8 2206.0 60.461
rcvCtrlEnergy 189.028 72.0 724.8 131.395

→ sendCtrlP2PEnergy 529.905 480.8 3834.4 60.461
→ rcvCtrlP2PEnergy 362.934 345.12 724.8 24.606
→ sendCtrlBCEnergy NaN NaN NaN NaN
→ rcvCtrlBCEnergy 93.296 72.0 366.0 25.084

Miscellaneous: batteryLevel (%): 1.288 0.0 18.408 3.095
delay 80%: 4613.05 5.41 4731.58 5752.27
delay 90%: 7477.27 5.41 9192.98 9954.92
delay 95%: 10003.64 5.41 16923.35 14603.55
delay 98%: 13027.92 5.41 36187.24 22707.85
delay 99%: 14870.93 5.41 52250.4 29181.96

delay 100%: 3673.75 5.41 519848.8 9550.22

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 118143 236288 15443 30886 13.07% 13.07% 102700 205401 N/A N/A
Data 129715 247956 16126 30886 12.43% 12.46% 113588 217069 N/A -11668

Route Net Data 227431 430725 86752 164417 38.14% 38.17% 140678 266307 0 0
Net Control 8687 106020 11492 154896 132.29% 146.1% N/A N/A N/A N/A
→ peer2peer 2920 51694 4213 54964 144.28% 106.33% -1292 -3270 N/A N/A
→ broadcast 0 0 7279 99931 NaN% NaN% N/A N/A N/A N/A

MAC Net Sum 236119 536745 98244 319313 41.61% 59.49% N/A 217432 84881 183076

Table 5.68.: Average Result Table: Run 00354
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Algorithm: AODV, simulation time: 1000s , 30 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 20.47 µJ/B
Throughput: 228.382 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1995.527 1392.8 2463996.8 4058.574
rcvDataEnergy 952.85 553.44 1704067.2 4232.073

Control: sendCtrlEnergy 352.514 310.8 538.8 46.187
rcvCtrlEnergy 84.901 72.0 348.48 38.228

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 338.947 310.8 538.8 9.529
→ rcvCtrlBCEnergy 79.364 72.0 120.0 2.425

Miscellaneous: batteryLevel (%): 4.373 0.0 40.663 8.547
delay 80%: 5034.51 5.4 7307.38 7565.77
delay 90%: 8806.46 5.4 12438.52 13022.36
delay 95%: 11551.43 5.4 17065.39 17272.31
delay 98%: 13860.82 5.4 24142.97 21476.23
delay 99%: 14941.06 5.4 30278.46 23910.76

delay 100%: 3307.6 5.4 86954.32 5786.16

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 119216 238432 28547 57094 23.95% 23.95% 90669 181338 N/A N/A
Data 83239 160222 0 0 0.0% 0.0% 83239 160222 N/A 78210

Route Net Data 134775 259418 53914 103776 40.0% 40.0% 80860 155642 0 0
Net Control 3941 86921 22850 501342 579.8% 576.78% N/A N/A N/A N/A
→ peer2peer 290 6779 440 10258 151.72% 151.32% -149 -3479 N/A N/A
→ broadcast 3451 75515 22409 491084 649.35% 650.31% N/A N/A N/A N/A

MAC Net Sum 138717 346339 76765 605118 55.34% 174.72% N/A -258778 27510 136613

Table 5.69.: Average Result Table: Run 00651
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Algorithm: AODV, simulation time: 1000s , 30 nodes
Average Network Lifetime: 1000.0
Energy / UserData: 20.68 µJ/B
Throughput: 220.248 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1969.896 1392.8 2771192.8 4122.65
rcvDataEnergy 909.796 553.44 1916640.0 4320.194

Control: sendCtrlEnergy 354.247 310.8 584.4 48.738
rcvCtrlEnergy 85.133 72.0 348.48 39.011

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 338.9 310.8 584.4 9.694
→ rcvCtrlBCEnergy 79.359 72.0 124.0 2.437

Miscellaneous: batteryLevel (%): 3.317 0.0 37.429 6.639
delay 80%: 5770.94 5.4 7169.72 7949.28
delay 90%: 9311.68 5.4 11105.03 12679.58
delay 95%: 11864.91 5.4 15819.06 16491.62
delay 98%: 14008.98 5.4 22944.5 20289.88
delay 99%: 14982.58 5.4 28733.91 22388.41

delay 100%: 3292.57 5.4 102242.51 5408.68

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 118824 237650 27530 55061 23.17% 23.17% 91294 182588 N/A N/A
Data 86591 166673 0 0 0.0% 0.0% 86591 166673 N/A 70976

Route Net Data 135671 261142 51558 99240 38.0% 38.0% 84112 161901 0 0
Net Control 4118 90897 23540 516637 571.64% 568.38% N/A N/A N/A N/A
→ peer2peer 345 8059 474 11060 137.39% 137.24% -128 -3001 N/A N/A
→ broadcast 3576 78282 23064 505577 644.97% 645.84% N/A N/A N/A N/A

MAC Net Sum 139790 352039 75099 615878 53.72% 174.95% N/A -263838 29694 142267

Table 5.70.: Average Result Table: Run 00652

126



5
.

S
im

u
la

tio
n

R
esu

lts

Algorithm: AODV, simulation time: 1000s , 30 nodes
Average Network Lifetime: 999.8
Energy / UserData: 20.14 µJ/B
Throughput: 231.726 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1973.527 1392.8 2384931.6 3269.652
rcvDataEnergy 906.791 553.44 1649355.84 3222.663

Control: sendCtrlEnergy 354.634 310.8 508.4 49.349
rcvCtrlEnergy 85.691 72.0 348.48 40.877

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 338.842 310.8 508.4 9.754
→ rcvCtrlBCEnergy 79.345 72.0 124.0 2.461

Miscellaneous: batteryLevel (%): 2.326 0.0 29.997 4.748
delay 80%: 4480.97 5.4 5727.25 6117.2
delay 90%: 7379.29 5.4 9499.45 10165.26
delay 95%: 9519.25 5.4 13382.44 13492.17
delay 98%: 11323.32 5.4 19193.31 16778.64
delay 99%: 12148.79 5.4 23647.38 18598.05

delay 100%: 2689.75 5.4 126394.48 4618.28

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 121179 242358 28959 57918 23.9% 23.9% 92220 184440 N/A N/A
Data 86000 165535 0 0 0.0% 0.0% 86000 165535 N/A 76823

Route Net Data 136599 262930 52941 101902 38.76% 38.76% 83658 161027 0 0
Net Control 4123 91067 22042 484086 534.61% 531.57% N/A N/A N/A N/A
→ peer2peer 356 8304 489 11400 137.36% 137.28% -132 -3095 N/A N/A
→ broadcast 3571 78217 21552 472686 603.53% 604.33% N/A N/A N/A N/A

MAC Net Sum 140723 353997 74983 585989 53.28% 165.54% N/A -231991 26562 128182

Table 5.71.: Average Result Table: Run 00653
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Algorithm: AODV, simulation time: 1000s , 30 nodes
Average Network Lifetime: 999.8
Energy / UserData: 20.49 µJ/B
Throughput: 234.986 kbit/s

Energy Mean Minimum Maximum Standard Deviation

Data: sendDataEnergy 1995.27 1392.8 2479792.0 4163.53
rcvDataEnergy 940.983 553.44 1713250.56 4331.684

Control: sendCtrlEnergy 355.128 310.8 538.8 49.95
rcvCtrlEnergy 86.231 72.0 348.48 42.496

→ sendCtrlP2PEnergy 503.6 503.6 503.6 0.0
→ rcvCtrlP2PEnergy 348.48 348.48 348.48 0.0
→ sendCtrlBCEnergy 338.897 310.8 538.8 9.849
→ rcvCtrlBCEnergy 79.358 72.0 128.0 2.464

Miscellaneous: batteryLevel (%): 2.294 0.0 27.154 4.52
delay 80%: 3826.97 5.4 4687.77 5231.72
delay 90%: 6257.26 5.4 7461.57 8568.26
delay 95%: 7998.38 5.4 10889.63 11187.18
delay 98%: 9489.12 5.4 15658.47 13891.02
delay 99%: 10169.69 5.4 19775.15 15388.78

delay 100%: 2248.54 5.4 210472.92 3836.54

Sent Received Delivery-Ratio Lost Dropped
kB packets kB packets kB packets kB packets kB packets

App: Wish 123588 247178 29361 58722 23.76% 23.76% 94227 188455 N/A N/A
Data 84332 162323 0 0 0.0% 0.0% 84332 162323 N/A 84854

Route Net Data 137690 265028 55488 106806 40.3% 40.3% 82201 158222 0 0
Net Control 4218 93129 21019 461422 498.32% 495.47% N/A N/A N/A N/A
→ peer2peer 374 8727 505 11776 135.03% 134.94% -130 -3048 N/A N/A
→ broadcast 3642 79737 20514 449646 563.26% 563.91% N/A N/A N/A N/A

MAC Net Sum 141908 358158 76508 568228 53.91% 158.65% N/A -210070 23416 114033

Table 5.72.: Average Result Table: Run 00654
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6. Energyefficent TCP-IP stack

By Gero Kathagen (gero.kathagen@uni-dortmund.de)

6.1. Generally

There are many ways to make the TCP-IP stack energyefficent. One can start at every

layer of the stack. But most promising is the TCP layer. The following approaches are

promising: ”TCP-Probing”[TL], ”E2TCP”[DHSS] and ”Double Retransmissions”[KSC99].

Energy is consumed by sending and receiving of packets, so there are two ways to

waste energy: data- and time overhead. These two are playing together: Reduction in

dataoverhead will reduce the consumed time for a transmission too. For this reason, the

whole protocol is more efficient. The main problem of reliable TCP is, that it is not

clear if a packet is lost by transmission-errors in a wireless environment or by congestion.

Because TCP is very optimized for wired networks, it is clear: if a packet is lost, there

is a congestion on the route. For resolving this problem, its wise to reduce the traffic for

this connection, as a result the congestion window will be set to a much lower size. This

reduces the speed of the transmission. If we are in wireless environments, the packet-

losses are not only caused by congestion, the most losses are caused by a low signal or

by interferences in the environment. It is wrong to conclude from a packet loss that

congestion exists on the line. This prevents the use of full bandwith of the connection,

as a result, there is a time-overhead.

6.2. Proposals

6.2.1. TCP-Probing

Because of this reason, V. Tsaoussidis and A. Lahanas have developed the follow-

ing proposal: they introduce a ”Probing-Device” and call their new protocoll ”TCP-

Probing”[TL]. It works as follows:

• it monitors the network traffic, and if a packet-loss is detected, it tries to analyze

the reason for it (if it is due to congestion, or an error in the transmission, ...)
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• it stops the traffic as long as the failure exists, and afterwards the sending will be

adapted to the conditions

If a packet is delayed and possibly lost, then it holds the transfer and initiates a probing-

cycle. A few packets, which only consit of headers, are sent to watch the end-to-end

behavior of the connection. Once the first packet returns the second is sent. If there are

reproducable packet losses, it points to a problem with the network, and the congestion-

window is shrinked normally. In the other case (both packets came back without im-

portant delay), it seems to be a random packetloss and it would be wrong to reduce the

congestion-window. Connection traffic is resumed normally.

The simulations results of the authors show, that this protocoll has the same or better

results as TCP-Reno in all cases. But the realization in Linux-Kernel is quite compli-

cated.

6.2.2. E2TCP

The implementation of Donkers, E2TCP [DHSS] is even more complicated. It takes 4

points on which to try to optimize.

First point, E2TCP will accept a partial (adjustable) reliability. For video or audio-

streams it prevents expensive retransmissions, as a result it saves a lot of energy. For

normal TCP-transport this option could be turned off, but in this case, it saves no

energy.

The second point is a header-compression. The most unchanged fields like source or

destination etc. are sent only in the first packet, in the following they will be represented

by a unique number. This saves a little bit of transfer-volume as well as energy.

The third point is concerning the selective acknowledgments. Packets which are received

out of order can be acknowledged. If one packet is lost but the following packets have

reached the destination there is no need to retransmit all the packets.

The last point meets the congestion-window control, in a similar way as TCP-Probing.

Recapitulating we can say, that this protocol is not appropriate for our implementa-

tion. If we have a look to the first point, we can see, that UDP can do the same. The

second point, the header-compression, is very hard to implement into an existing stack

inside Linux kernel. Moreover it makes the packet format non-standard. The last point,

the acknowledgements, is realized inside the linux-kernel, it is turned on per default.

And the forth point is like TCP-Probing.
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6.2.3. Double Retransmissions

We read a paper ”Double Retransmissions” [KSC99]. The main idea is, that if a packet-

delivery fails, a double retransmission of the same packet has much more chances to

reach its destination. It should be energy efficient, because the transmission should be

finished in a shorter amount of time, and the network card can fall in a sleep-state, when

the transmission is done. This should save energy because a networkcard in its ”active”

state (while sending) needs just a little bit more energy than in the waiting state. In

sleepstate, where it is not able to send, it needs a lot less energy.

6.3. Realisation

6.3.1. Double Retransmissions

The first attempt we realized was the ”Double Retransmissions” concept. We have

modified the Linux-Kernel in that way, that every retransmission is done twice. It took

a long time for us to find the correct function and the correct call, but in the end, we

have inserted the following few lines of code at the right position in tcp output.c:

struct s k bu f f ∗ skb r t2 ;

skb r t2 = skb c lone ( skb ,GFP ATOMIC) ;

t cp r e t r an sm i t s kb ( sk , skb c l one ( skb ,GFP ATOMIC) ) ;

Listing 6.1: additions in tcp output.c

For testing purposes we have taken two UML (UserModLinux) machines on a workstation

(Athlon 1200) and modified the uml_switch so that it drops a defined percentage of

packets. The results are not as good as expected: In some cases, it was better than the

standard tcp, but in other cases it was even worse.

We believe there are many improvements into the Wireless-Lan-Technology, and as a

result, the concept does not hold anymore. In the work of Kravets, Schwan and Calvert

they work with a 915 MHz Lucent WaveLAN PCMCIA wlan card with 150 KBps, this

is about 2 Mbit. Since then some improvements are made in 802.11 to have new 802.11b

standard. But we did not work in a wireless environement, we have worked only with a

couple of two UML-machines on a uml switch, so that this might be a reason.

Another quite more important reason might be, that some improvements in the Linux

kernel, for example TCP NewReno [Flo99] was not used in their experiments. NewReno

includes some improvements for Fast Retransmission, that have an impact on the results.
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Figure 6.1.: Measurements of the variants

6.3.2. Realizability of TCP Probing

The problem with TCP-Probing is, that it assumes, we have two additional states in the

statemachine of the TCP/IP stack inside Linux. The authors of this concept did not

send the X-Kernel code to us. For this reason, we took the main idea, not to reduce the

size of the congestion window, and set an option for disabling the function to set the

size of the congestion-window to one and another option to disable the multiplication of

the timeout-timer with two. For this option the patch creates two entry’s in the /proc

filesystem. They are initialized with the standard-value, but one can set it anytime. The

first entry calls /proc/sys/net/ipv4/tcp_no_cwnd_reset and is normally set to 0, so

that the kernel acts in a normal standard way. Setting it to 1 will anticipate the reset

of the congestion window if a packet-loss is detected.

in : void t c p e n t e r l o s s ( struct sock ∗sk , int how)

i f ( ! s y s c t l t c p no cwnd r e s e t ) tp−>s nd s s t h r e sh =

t c p r e c a l c s s t h r e s h ( tp ) ;

i f ( ! s y s c t l t c p no cwnd r e s e t ) tp−>snd cwnd = 1 ;

i f ( ! s y s c t l t c p no cwnd r e s e t ) tp−>snd cwnd cnt = 0 ;

Listing 6.2: changes in tcp input.c

The second entry is called /proc/sys/net/ipv4/tcp_no_timeout_timerdouble and

is also initialized with the standard-0. If it is set to 1, the timeout-timer for each packet
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which is sent will not be doubled, if a packetloss is detected. These changes are done in

tcp timer.c:

in : stat ic void t cp r e t r an sm i t t ime r ( struct sock ∗ sk )

at : o u t r e s e t t im e r :

i f ( s y s c t l t c p no t imeou t t ime rdoub l e ) tp−>r to = min( tp−>rto ,

TCP RTO MAX) ;

else tp−>r to = min ( tp−>r to << 1 , TCP RTO MAX) ;

Listing 6.3: changes in tcp timer.c

We have tested this configuration with UML and the random-drop from the uml switch.

The results with the modifications are much better than the original. So we patched two

notebooks with the changes and tested it with the Wireless 802.11b network cards. At

the beginning, we had no success with the tests, the influences of the environment was

erratic, so that the results are not comparable. Moreover, in reality the packet losses

are not as ”regular” as in the UML, in reality the connection was often lost for more

then 10 seconds. As a result the modification of the timeout timer works against us,

the retransmission-timers fail with the retransmission of the packet and the connection

times completely out. Therefore we tested only with and without the congestion window

resetting. We have done 32 runs for each parameter and got the following results: for

a packet with length of 15 Megabytes transfer from one wireless node to the next it

takes without our modifications 78 seconds mean value with a variance of 13. With the

modification of not resetting the congestion-window, it takes the mean of 74 seconds with

a variance of 16. Because of this small advantage we decided to remove our modifications

inside the TCP-IP stack and to carry on developing with the linux standard stack.

The Linux Kernel Developers have added an implementation of TCP Westwood in the

version change from 2.6.2 to 2.6.3, so there is a new way to save energy. TCP Westwood

has a lot of optimizations for wireless connections, and is a sender-side-only modification.
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7. Beehive implementation

By Lars Bensmann (lars.bensmann@uni-dortmund.de) and Mike Duhm

(mike.duhm@udo.edu)

7.1. Overview

After investigating several methods of implementing a new routing algorithm for the

Linux kernel we decided to use source routing in combination with the existing Linux

Netfilter Architecture. The bee type is encoded into the IP header TOS field. For

collecting and transporting bee information we introduced an RFC-compliant [rfc81]

new IP-option. In addition to this we split the algorithm - as shown in Figure 7.1 - into

a kernel space part responsible for manipulating the IP packets, and a user space part

responsible for seraching new routes. These two units communicate with help of the

proc filesystem and networking sockets. As a result, we get following advantages:

• Even computers not running the Beehive software can be part of the ad-hoc net-

work as long as they accept RFC-compliant IP options, including source routing.

• Runnable with a really small kernel patch, needed for using the beehive- option.

• New code is encapsulated in a kernel module: Easy sharing and distribution.

• Relatively independent of the kernel version.

• Good for debugging, because the new code is in just a couple of new files and not

scattered around the kernel source tree.

• Putting the route finding code into userspace lets us use standard C structures

and library functions which are not available inside kernel space and this might

improve stability of the kernel
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Kernelspace

ACPI proc−fsStructs

proc filesystemSocket

Userspace
Scout daemon

(w) (r,w)

Beehive Modul waitqueue
sendqueue

Figure 7.1.: Implementation overview

7.1.1. The Linux Netfilter Architecture

Netfilter ([net]) is the firewalling subsystem of the Linux 2.4/2.5 kernels. Although it’s

main purpose is to filter packets it can also do NAT (network address translation) as

well as packet mangling.

Although there is no function present in the netfilter code that helps us directly with

altering the routing table or decisions of the kernel there are several (five to be precise)

hooks already present in the kernel that are called at different locations in the network

--->PRE------>[ROUTE]--->FWD---------->POST------>

Mangle | Mangle ^ Mangle

NAT (Dst) | Filter | NAT (Src)

| |

| [ROUTE]

v |

IN Mangle OUT Mangle

| Filter ^ NAT (Dst)

| | Filter

v |

Figure 7.2.: Netfilter hooks
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0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Version| IHL |Type of Service| Total Length |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Identification |Flags| Fragment Offset |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time to Live | Protocol | Header Checksum |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Destination Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Options | Padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 7.3.: Standard conform IP header

stack. Kernel modules may register functions that get called at each of these hooks.

Figure 7.2 shows the different path of network packets through the kernel.

Remote packets enter the kernel on the left and the PREROUTING-hook is called.

After this the kernel makes the routing decision. If the packet is to be delivered locally the

INPUT-hook is executed and the packet leaves the kernel. Otherwise the FORWARD-

hook is called. If the packet was generated locally it first passes the OUTPUT-hook

and is then routed by the kernel. Now its path merges with forwarded packets. Before

leaving the system both types of traffic once again are handed to a netfilter hook: The

POSTROUTING-hook.

7.1.2. Using the IP header for transporting bee data

All additional beehive specific data is encapsulated inside the standard IP header of

every data packet to achieve maximum compatibility with the existing networks. A

standard conform IPv4 header consists of at least 20 bytes, its format is shown in fig.

7.3.

Bee types

First of all we have to define the type of bee we are using. Simulation in NS-2 works

with three types of bees and so do we. The type is coded plainly into the TOS field

whereas we use a straight mapping to existing TOS values. A delay bee carries the TOS
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low delay bit, a throughput bee has set the TOS high throughput bit and last but not

least an energy bee has the mincost bit set.

IP options

The BEEHIVE-Routing-Algorithm is based on source routing which means that a packet

has all the information required for routing. In addition to this we have to collect data

from every hop to evaluate the quality of a route according to our demands.

To realize this with IPv4 we use IP options which are defined in RFC 791 [rfc81]. We

utilise the options field which may have a maximum length of 40 bytes and has to be a

multiple of 4 bytes. There are two kinds of options:

• Type 1 consists of just one option-type octet: the NOOP (no operation) option

and the EOL (end of option list) option.

• Type 2 consists of an option-type octet, a length octet and a variable count of data

octets.

The option type octet has three fields:

Bit 7 6 5 4 3 2 1 0

+------+------+------+------+------+------+------+------+

| copy |option class | option number |

+------+------+------+------+------+------+------+------+

If the copy bit is set, this option has to be copied into each fragment while fragmen-

tation. The classes are 0 (control), 1 (reserved), 2 (debugging and measurement) and 3

(reserved).

Source routing

As the Linux Netfilter Architecture is not intended for routing algorithms we use source

routing to guide the packets along their way. The source routes are inserted into (nearly)

every packet by the Netfilter Beehive module (exceptions are broadcast packets). This

way the routing table of the kernel consists of just one dummy entry. So all (non-

local) packets are sent out through the standard WLAN network interface by the kernel

without a need to apply a patch. This can work because we put all computers of the

ad-hoc network in the same subnet 10.0.0.0/255.255.255.0. So the routing table of the

kernel looks like this:
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$ route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

10.0.0.0 * 255.0.0.0 U 0 0 0 eth0

192.168.1.0 * 255.255.255.0 U 0 0 0 eth1

default 192.168.1.1 0.0.0.0 UG 0 0 0 eth1

As can be seen from this example, it is still possible for a computer to be in several

subnets. It does not have to use the Beehive algorithm for every subnet. If it still has a

wired network interface (like in this example) it can use the conventional routing side by

side with the Beehive algorithm. This enables an easy employment of the new algorithm.

There are two types Source Routing options, loose source routing (type 131) and strict

source routing (type 137). We are using the second one because the complete route is

calculated at the source host. The first data byte is a pointer which points to the first

byte of the next hop address. Route data is composed of a series of IP addresses (four

bytes per hop).

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-//-+-+-+-+-+

|1 0 0 0 1 0 0 1| length | pointer | route data |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-//-+-+-+-+-+

To send a source routed packet it has to be built in the following way: The source

address has to contain the IP address of the sender, the destination address must not

contain the address of the final recipient but of the next hop. The pointer has to point

to byte four, the beginning of the route, which is the second hop on the way through

the network. Route data begins with the third hop address and ends with the address

of the final destination.

As options data is limited to 40 bytes, we will use three bytes for the source routing

option beginning, 8 x 4 bytes = 32 bytes for hops, and are able to use five bytes for the

beehive option. That means the longest possible route has a length of 10 hops.

The Beehive option

For data collection we introduce a new IP option. Our first task was to give our option

a name. According to the database mentioned in [(Ed02] number 162 (copy, option class

1, option number 2) is free so we were able to (ab)use it for our interests. We decided

to give it length five, which means having three data bytes. So we are able to collect
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three bit of data from every hop, excluding source and destination hop. Our option is

structured as follows:

byte: 1 | 2 | 3 | 4 | 5 |

+-+//+-+-+//+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| 162 | 5 |0 0 0|0 0 0|0 0 0|0 0 0|0 0 0|0 0 0|0 0 0|0 0 0|

+-+//+-+-+//+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

type |length| | | | | | | | |

host: 8 7 6 5 4 3 2 1

Host 1 contains the data of the direct predecessor, host 2 the data of the pre-predecessor

and so on. To insert it’s own data every host has do a three bit left-shift on the 24 bit

data field and to insert the value at the very right side (host 1).

7.1.3. Introduction to our implementation

As mentioned earlier we want to use the existing Netfilter Architecture. It offers us the

possibility to hook us into the packet processing chain at different stages: PREROUTING,

INPUT, FORWARD, OUTPUT and POSTROUTING (see fig. 7.2).

Netfilter FORWARD-chain

Because all forwarded packets need to pass the FORWARD-chain, we decided to collect the

our routing relevant data here. Afterwards we return with a NF_ACCEPT-code.

Netfilter OUTPUT-chain

The OUTPUT-chain is called for locally generated packets. This means we need to enter

the source routing information into the header unless we are dealing with a scout packet.

Broadcasts don’t need any source routing information in the header either, because they

are not routed anyway. Fortunately scouts are using broadcasts we don’t need to handle

them separately. We just pass broadcast packets without doing anything.

When a “regular” packet is generated, we need to check the stored foragers if a route

to the desired destination is already present. If so, we just copy it into the IP header

and delete the appropriate forager (unless it is the last one for this destination).

The next possibility is that no route information is present. In this case we need to

check if we have already sent out a scout. If so we need to store the packet for a short

amount of time and wait for the scout to return. Then we continue as described in
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the last paragraph. Otherwise we send out a scout and initiate a search for the desired

destination.

A single TCP connection does not generate a lot of packets before receiving an answer

from the other side. This way the number of waiting packets is limited. But UDP does

not wait for acknowledgements before sending the next packet. So packets to different

or even the same target might need a lot of space. This might prove to be a problem

when running netscans or similar traffic intense programs.

Netfilter INPUT-chain

The INPUT-chain is the last station of a packet before being delivered to the application.

All packets destined for the local computer pass this hook. This is why we chose to use

it to record all important information from the network packets.

Again we ignore broadcast. As we don’t route broadcasts there is nothing for us to

do. This way we ignore scouts as well (see 7.1.3).

Now we are just dealing with regular packets that are delivered through the Beehive

routing algorithm. This means they contain valuable information that needs to be saved.

Every packet is regarded as a forager which can find it’s way back to the source computer.

Of course we don’t need to store the whole packet just the bits of information that are

important for us. Once extracted we evaluate the efficiency with a rating function and

store it in a table hashed with the source address.

7.2. Kernelspace

7.2.1. Necessary modifications inside the original Linux kernel code

Our goal was to touch the original kernel code as little as possible but a few modifications

were necessary to fully include our new beehive option. Reader can find the complete

kernel patch in the file ipv4options.diff inside our repository.

Modifications inside /include/linux/ip.h

Diff file 19 shows two passages out of the kernel header file ip.h. In the first part we see

definitions of different IP header options. We just added the definition of our beehive

option according to the description in 7.1.2.

The second part is inside the IP header data structure (struct iphdr). It contains

kind of pointers (unsigned char) to the number of the octet inside the header in which

one particular option starts. These pointers can contain values between 21, which points
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to the first octet inside the options field - see 7.3, and 40, which points to the last octet

inside the options field. We just added a pointer to the beginning of the beehive option

here.

−−− l inux −2.6.6− o r i g / inc lude / l inux / ip . h

+++ l inux −2.6.6− beeh ive / inc lude / l inux / ip . h

@@ −60,6 +60 ,7 @@

#de f i n e IPOPT SID (8 | IPOPT CONTROL| IPOPT COPY)

#de f i n e IPOPT SSRR (9 | IPOPT CONTROL| IPOPT COPY)

#de f i n e IPOPT RA (20 |IPOPT CONTROL| IPOPT COPY)

+#de f i n e IPOPT BEEHIVE (2 | IPOPT RESERVED1| IPOPT COPY)

#de f i n e IPVERSION 4

#de f i n e MAXTTL 255

@@ −100 ,6 +101 ,7 @@

ts needt ime : 1 , /∗ Need to record

timestamp ∗/
t s needaddr : 1 ; /∗ Need to record

addr o f outgo ing dev ∗/
unsigned char r o u t e r a l e r t ;

+ unsigned char beeh ive ;

unsigned char pad1 ;

unsigned char pad2 ;

unsigned char data [ 0 ] ;

Listing 7.1: Changes in ip.h

Modifications inside /net/ipv4/ip options.c

This patch is inside the function ip_options_compile(..), which is responsible for

checking the correctness of IP options in incoming packets, detecting all known IP options

and for filling the option pointers (see above) inside struct iphdr with correct values.

As the beehive option is new we had to integrate finding it into this function as you can

see in patch 18.

−−− l inux −2.6.6− o r i g /net / ipv4 / i p op t i on s . c

+++ l inux −2.6.6− beeh ive /net / ipv4/ i p op t i on s . c

@@ −433 ,6 +433 ,14 @@

i f ( optptr [ 2 ] == 0 && optptr [ 3 ] == 0)

opt−>r o u t e r a l e r t = optptr − iph ;

break ;

+ case IPOPT BEEHIVE:
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+ i f ( opt len < 3) {
+ pp ptr = optptr + 1 ;

+ goto e r r o r ;

+ }
+ opt−>beeh ive = optptr − iph ;

+ break ;

case IPOPT SEC:

case IPOPT SID :

default :

Listing 7.2: Changes in ipoptions.c

Adding and modifying ipv4options match

To make life easier while building netfilter rules we took the ipt ipv4options match

(ipt\_ipv4options.c, ipt\_ipv4options.h) from the netfilter extensions and added

it to the kernel patch. We slightly modified it to match against the beehive option. Of

course the Makefile and Kconfig were adapted to be able to compile the new kernel.

7.2.2. Optional modifications inside the original Linux kernel code

In addition to this we had to make bigger changes inside the linux ACPI code to

be able to collect energy data for evaluating the most energy aware route. We were

forced to mesh with the code because all battery values have been declared static inside

/drivers/acpi/battery.c and the only way to get the actual battery state was to

read it from procfs. We did not change functionality but only changed accessibility of

the needed data. You can find the patch in acpi-beehive.diff inside our repository.

For people who do not like to work with modified ACPI code (and especially for UML

which does not have real ACPI code) we made this patch optional. A machine without

this patch or even without any ACPI support at all will be able to run inside a beehive

network without any restrictions. The point is that such a machine will allways claim

its battery to be full.

7.2.3. The kernel module

For this to work, we need to write the target (in this case BEEHIVE) as a kernel module

named ipt_BEEHIVE.c and a shared library for the iptables-frontend.

To become as independent as possible from the actual kernel version we did not work

inside the kernel source tree but in an extra directory. That gives us the opportunity to
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work with the latest kernel version without having to modify our code (with exception

of the kernel patches).

We divided the kernel module code into four units: The module specific code, like ini-

tialisation and module unloading as well as the packet handling code can be found in

ipt_BEEHIVE.c. Data structures and constants are defined in ipt_BEEHIVE.h, meth-

ods for accessing and manipulating these structures are in ipt_BEEHIVE_struct.c. All

functions regarding to the procfs can be found in ipt_BEEHIVE_proc.c, ACPI function-

ality for reading the battery state lies in ipt_BEEHIVE_acpi.c.

All files are joined together by #include<> directives inside ipt_BEEHIVE.c.

We start with the description of three functions that implement the core functionality

of a netfilter module.

These functions are:

• static int __init init(void)

• static void __exit fini(void)

• static int ipt_beehive_checkentry(const char *tablename,

const struct ipt_entry *e,

void *targinfo,

unsigned int targinfosize,

unsigned int hook_mask)

The first two are the initialisation code which is executed by the kernel on loading

or unloading the Beehive kernel module. The macro __init shows the kernel that this

function can be unloaded from memory once the module has been loaded correctly. For

initialisation a struct ipt_target is filled with function pointers and module name

and registered with the kernel in init(). Inside these functions we call the initialise or

rather the tidying up functions of our submodules.

The third function ipt_beehive_checkentry is called every time a netfilter rule is

inserted with the BEEHIVE-target. It can make some sanity checks whether this rule

is to be accepted or not. To test this functionality the module verifies that the rule is

intended for the mangle-table. Otherwise it prints an error message and returns an error

code, so the rule is not inserted into the specified netfilter table.

IP datagram manipulation is done inside the ipt_beehive_target function which we

describe after handling the internal data structures and the API.
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7.2.4. Data structures

Structures

All C structs are defined in the header file ipt_BEEHIVE.h.

The most important data structure in the kernel is the hash table.

struct l i s t h e a d ∗ f o r a g e r ha sh ;

Listing 7.3: Main hash table.

It is an array of size HASHSIZE (currently 256) entries. Every entry is the head of a

linked list. In these linked list entries of the form struct daddr_list_entry are stored.

struct dadd r l i s t e n t r y {
struct l i s t h e a d l i s t ;

u32 daddr ;

int count [ IPT BEEHIVE OPT MAX ] ;

int countsum ;

unsigned long timestamp ;

struct f o r a g e r ∗ f o r a g e r [ IPT BEEHIVE ARRAYSIZE ∗
IPT BEEHIVE OPT MAX ] ;

} ;

Listing 7.4: daddr list entry struct

For every destination IP with stored foragers one of these struct daddr_list_entry

exists. They contain the destination IP for quick reference and housekeeping information

about the stored foragers. countsum is the total amount of foragers stored of any type

whereas count[] is set to the number of foragers of the given type (energy, delay,

throughput). The member timestamp helps for the garbage collection when overaged

entries are removed. The last member is the actual array containing pointers to the

stored struct forager.

struct f o r a g e r {
struct s ou r c e r ou t e ∗ route ;

u32 daddr ;

unsigned long timestamp ;

u32 i n f o ;

u8 nr dances ;

} ;

Listing 7.5: Forager struct
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These structs contain all the information we collect from the foragers that “land” on

our node: Source route, destination address (or from the point of the landed forager it’s

source address), timestamp of its arrival, information regarding energy, throughput or

delay and the number of dances used to recruit new foragers.

The struct source_route is just another linked list used to record all hops of the

taken route.

struct s ou r c e r ou t e {
struct l i s t h e a d l i s t ;

u32 hop ;

} ;

Listing 7.6: Source route struct

The BeeHive-API

To ease the programming and provide consistent locking an API was implemented. It

consists of a few calls to aid in modifying the above structures.

• static int beehive forager get( u32 daddr, u8 opt type, u8 remove, struct for-

ager** forager);

• static int beehive forager put(struct forager *forager, u8 opt type);

• static void beehive struct free forager(struct forager*);

• static struct forager* beehive struct copy forager(struct forager* forager);

• static void beehive struct debugp forager(struct forager* forager);

• static void beehive struct debugp hash(void);

All these calls are implemented in a single source file (ipt_BEEHIVE_structs.c).

On loading the module the function beehive_struct_init() is called. It allocates

the memory for the hash table and initializes the linked list for every entry.

On unloading the function beehive_struct_fini is called. It calls the garbage col-

lection beehive_struct_gc with a maximum age of 0 seconds. This way all entries are

removed as they are considered out-dated. Afterwards the hash table is freed.
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beehive forager get

The first essential call. It returns a struct forager (passed by reference) for the given

daddr. If available a forager of type opt_type is returned (IPT_BEEHIVE_OPT_ENERGY,

IPT_BEEHIVE_OPT_DELAY or IPT_BEEHIVE_OPT_THROUGHPUT). The option remove indi-

cates if the forager should be deleted if appropriate (IPT_BEEHIVE_FORAGER_REMOVE or

IPT_BEEHIVE_FORAGER_KEEP). Even if IPT_BEEHIVE_FORAGER_REMOVE is passed the for-

ager is not necessarily removed from the kernel. If the route was good and it is still

young enough it might dance and in this case a copy is made and returned instead of

the original forager.

The return value indicates how many foragers are left for this destination address. If

−1 is returned no forager was found and a scout should be sent out.

beehive forager put

The second essential call. As the name suggests it inserts a struct forgager into

the data structure. The option opt_type indicates the type of the forager to insert

(IPT_BEEHIVE_OPT_ENERGY, IPT_BEEHIVE_OPT_DELAY or IPT_BEEHIVE_OPT_THROUGHPUT).

For a returned scout this call should be made three times with the three different

opt_types. Care should be taken not to make this call with the same struct forager*

pointer, but instead with copies of the original forager. beehive_struct_copy_forager

can help with this.

Before inserting the forager the garbage collection will eventually be called. The prob-

ability of these calls can be influenced by the constant IPT_BEEHIVE_GARBAGE_PROBAB.

All destination addresses without traffic in the last IPT_BEEHIVE_MAXAGE seconds are

removed and the used memory is freed.

The return value indicates how many foragers are left for this destination address and

opt_type.

beehive struct free forager

As the struct forager contains a linked list, all items need to be freed. To ease this

job a simple call to beehive_struct_free_forager will do this.

beehive struct copy forager

For the same reason mentioned above copying foragers should be left to this call. It

copies all items of the struct source_route-list and returns a pointer to an identical

forager.
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beehive struct debugp forager

As the name suggests this function is for debugging purposes. It prints a forager with

all its information into the kernel log.

beehive struct debugp hash

The second debugging call. It iterates over the complete hash table finding all destination

addresses and prints information regarding the age of the entries and also about every

forager. This call should be used sparingly (preferably inside an #ifdef-statement) as

it clutters the screen and the kernel log.

Helper functions

The API-calls depend on a number of helper functions. The most important ones are

explained below. These are not meant to be called directly. They are just included to

help understand the implementation of the API-functions.

beehive struct gc

As the name suggests this is the garbage collection function. It loops through the whole

hash table and examines every struct daddr_list_entry. If the entry is considerd too

old (compared to the passed option maxage) it and all its foragers are deleted.

/∗
∗ Do Garbage c o l l e c t i o n .

∗ Cycle through hash t a b l e and remove a l l d a d d r l i s t e n t r i e s

∗ unused f o r maxage seconds

∗/
stat ic void b e e h i v e s t r u c t g c (unsigned int maxage )

{
stat ic unsigned int i ;

stat ic struct dadd r l i s t e n t r y ∗ dadd r l i s t , ∗n ;

stat ic unsigned age ;

WRITE LOCK(&beeh ive hash lock ) ;

for ( i = 0 ; i < IPT BEEHIVE HASHSIZE; i++) {
l i s t f o r e a c h e n t r y s a f e ( dadd r l i s t , n ,

&f o r ag e r ha sh [ i ] ,

l i s t ) {
age = get s e conds ( ) − dadd r l i s t−>timestamp ;
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i f ( age >= maxage ) {
remove daddr entry ( d add r l i s t ) ;

l i s t d e l ( ( struct l i s t h e a d ∗)

d a dd r l i s t ) ;

k f r e e ( d add r l i s t ) ;

}
}

}
WRITE UNLOCK(&beeh ive hash lock ) ;

}

Listing 7.7: beehive struct gc

forager rate lifetime

This function determines the value of nr_dances. It does not set the value directly but

instead returns the correct value.

First of all the length of the source route is calculated. If the destination is a direct

neigbour the forager gets a maximum rating as there is no better route.

If this test fails the information gathered by the forager is examined. Every hop stores

a 3-bit value in the info field. This is extracted and put into an array. From this array

the minimum and the average is calculated. Based on these numbers an appropriate

value is returned.

/∗
∗ Look at i n f o and dec ide how o f t en the fo rage r shou ld dance .

∗ Direc t ne ighbours ge t a maximum ra t i n g .

∗/
stat ic int f o r a g e r r a t e l i f e t i m e ( struct f o r a g e r ∗ f o r a g e r )

{
stat ic unsigned int r ou t e l e ng th ;

stat ic u32 i n f o ;

stat ic unsigned short va lue s [ IPT BEEHIVE MAXHOPS ] ;

stat ic unsigned short i ;

r ou t e l e ng th = ge t r ou t e l e ng th ( f o r ag e r ) ;

i f ( r ou t e l e ng th < 2) /∗ Direc t ne ighbour ∗/
return IPT BEEHIVE MAX DANCES;

i n f o = fo rage r−>i n f o ;
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for ( i = 0 ; i < r ou t e l e ng th ; i++) {
va lue s [ i ] = i n f o && 7 ;

i n f o = i n f o >> 3 ;

}

unsigned short min = 7 ;

unsigned int avrg = 0 ;

for ( i = 0 ; i < r ou t e l e ng th ; i++) {
min = min(min , va lue s [ i ] ) ;

avrg += va lue s [ i ] ;

}
avrg = avrg / r ou t e l e ng th ;

// Do the b l a c k magic .

return ( ( ( IPT BEEHIVE MAXHOPS − ( route l eng th −1)) ∗ min ∗
avrg ) + 1) / 44 ;

}

Listing 7.8: forager rate lifetime

insert forager into array

This is a helper function for beehive_forager_put. Given a forager, its opt_type and

its struct daddr_list_entry the function checks if the array used to store the foragers

is already full. In this case the forager is freed and discarded.

Otherwise a rating is obtained and the forager is stored at the approriate location of

the forager array of the struct daddr_list_entry. This location is calculated from

the offset for the given opt_type and the number of foragers already stored there. Af-

terwards count[] and countsum are incremented. Before returning the timestamp for

the struct forager is set to the current time.

stat ic int i n s e r t f o r a g e r i n t o a r r a y ( struct f o r a g e r ∗ f o rage r ,

struct dadd r l i s t e n t r y ∗ l i s t

,

u8 opt type )

{
l i s t −>timestamp = get s e conds ( ) ;

/∗
∗ Check i f array i s f u l l .

∗/

150



7. Beehive implementation

i f ( l i s t −>count [ opt type ] == IPT BEEHIVE ARRAYSIZE) {
b e e h i v e s t r u c t f r e e f o r a g e r ( f o r ag e r ) ;

return −1;

}

f o rage r−>nr dances = f o r a g e r r a t e l i f e t i m e ( f o r ag e r ) ;

l i s t −>f o r a g e r [ l i s t −>count [ opt type ] + opt type ∗
IPT BEEHIVE ARRAYSIZE ] = f o r ag e r ;

l i s t −>count [ opt type ]++;

l i s t −>countsum++;

fo rage r−>timestamp = l i s t −>timestamp ;

return 0 ;

}

Listing 7.9: insert forager into array

get opt forager

This is a helper function for the API-call beehive_forager_get. It is already called

with the correct daddr_list_entry, the opt_type and a flag if the forager is to be

removed from the array.

As all foragers are stored in an array in their respective daddr_list_entry getting

a random forager is relatively simple: Generate a random number 0 < random <

count[opt_type], add an opt_type-related offset and read the forager from the array.

Now we calculate the age of the chosen forager. If it is not too old and we don’t want

to keep it (IPT_BEEHIVE_FORAGER_KEEP), we can just return it.

If we want to remove the forager more care must be taken. First we check if it is a

candidate for dancing. If so, we copy it and return the copy.

Otherwise we decrement the members count[] and countsum, and copy the last for-

ager in the array to the slot where we removed our random forager. The last slot is

overridden with a NULL-pointer to easy error detecting. This way the array is always

filled from the start and selecting one at random stays very simple. At last we check the

foragers lifetime and discard it if it is already too old unless it is the last forager for this

destination.

It might happen that we discard the last forager for a specific opt_type, but more

foragers of different types are still available. In this case we return NULL and the calling

function is responsible for getting a forager with another opt_type.
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Again at the end of the function we update the timestamp of the daddr_list_entry

to aid the garbage collection.

stat ic struct f o r a g e r ∗ g e t o p t f o r a g e r ( struct dadd r l i s t e n t r y ∗ l i s t ,

u8 opt type ,

u8 remove )

{
stat ic struct f o r a g e r ∗ f o r a g e r ;

stat ic unsigned int random ;

stat ic unsigned int age ;

stat ic unsigned int o f f s e t ;

o f f s e t = opt type ∗ IPT BEEHIVE ARRAYSIZE ;

do {
/∗
∗ I know modulo ’ count ’ i s not r e a l l y random ,

∗ but i t ’ s good enough f o r smal l ’ count ’

∗/
random = ( net random ( ) % l i s t −>count [ opt type ] ) +

o f f s e t ;

f o r a g e r = l i s t −>f o r a g e r [ random ] ;

age = get s e conds ( ) − f o rage r−>timestamp ;

i f ( remove == IPT BEEHIVE FORAGER KEEP) {
i f ( age < IPT BEEHIVE FORAGER LIFETIME)

break ;

} else {
i f ( ( f o rage r−>nr dances > 0) &&

( age < IPT BEEHIVE FORAGER DANCETIME)

) {
f o rage r−>nr dances−−;

f o r a g e r = b e e h i v e s t r u c t c o p y f o r a g e r

( f o r ag e r ) ;

break ;

}
}
l i s t −>count [ opt type ]−−;

l i s t −>countsum−−;

l i s t −>f o r a g e r [ random ] = l i s t −>f o r a g e r [ l i s t −>count [

opt type ] + o f f s e t ] ;

l i s t −>f o r a g e r [ l i s t −>count [ opt type ] + o f f s e t ] = NULL;

i f ( age < IPT BEEHIVE FORAGER LIFETIME) {
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/∗ We found him . Let ’ s e x i t ∗/
break ;

}
i f ( l i s t −>countsum == 0) {

break ;

}
b e e h i v e s t r u c t f r e e f o r a g e r ( f o r ag e r ) ;

i f ( l i s t −>count [ opt type ] == 0) {
return NULL;

}
} while (1 ) ;

l i s t −>timestamp = get s e conds ( ) ;

return f o r a g e r ;

}

Listing 7.10: get opt forager

7.2.5. The module core: ipt BEEHIVE.c

As mentioned before all threads run together inside ipt_BEEHIVE.c. It is home of the

module functionality, the packet mangling and some helping functions.

Concurrency

Ordinary netfilter code does not include concurrency. A packet is put into a chain

and leaves it at the end if not dropped or rejected. Because we have to queue packets

while waiting for a route there was a necessity to think about events happening almost

parallel to the standard packet handling thread. Using tasklets is the solution. Tasklets

are a form of soft IRQ suitable for small tasks. If scheduled by the kernel, their code is

executed once, after the hardware interrupt service routines are finished next time.

Our three tasklets have serve the following purposes:

• whenever a scout comes in, the queue_tasklet runs through the bufferqueue

and tries to build packets containing the destination address of the incoming scout.

Packets, ready for takeoff are put on the sendqueue.

• the send_tasklet is responsible for sending out packets from the sendqueue into

the wireless network.
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Figure 7.4.: sk buff

• everytime the module is does not have a matching route to the destination, the

scout tasklet is scheduled to send out scouts to the userspace daemon.

Core initialisation

As in every submodule we have to do some initialisation stuff inside the core. In-

side static int __init beehive_tasklet_init(void) we initialise the tasklets, two

linked lists, and create a socket, which will be used later for sending out data to the

scout daemon. The linked lists are the bufferqueue and the sendqueue. We use the

first one for queueing packets, waiting for a route; the second one will contain all packets

which are ready to send.

The ipt beehive target function

The core functionality is implemented in the ipt_beehive_target()-function. This

function is called with a pointer to a so called sk buff (see 7.4). A sk buff is a data

region and a collection of pointers (see fig. 7.4). Its pointers point to the network

headers of the different layers in the data region. This way the payload can be copied

into the region. Network headers of different layers can now be copied in front of (and

eventually after) the payload data without moving or copying it.
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This sk buff also contains a pointer to an IP options struct, but unfortunately we

cannot use this. The struct is filled while the packet is generated by the kernel. After-

wards the packet is build, so that the data area of the sk buff is already filled with the

RFC-compliant IP-header directly followed by the payload data.

Independent from the hook from which the function is called, the first action is to

recognise the type of bee it is actually handling from the IP header TOS field.

u8 to s = iph−>to s ;

u8 bee type = IPT BEEHIVE OPT ENERGY;

i f ( ( IPTOS TOS( to s ) && IPTOS LOWDELAY)==IPTOS LOWDELAY)

bee type = IPT BEEHIVE OPT DELAY;

i f ( ( IPTOS TOS( to s ) && IPTOS THROUGHPUT)==IPTOS THROUGHPUT)

bee type = IPT BEEHIVE OPT THROUGHPUT;

i f ( ( IPTOS TOS( to s ) && IPTOS MINCOST)==IPTOS MINCOST)

bee type = IPT BEEHIVE OPT ENERGY;

After getting the bee type we branch depending on the hook. The most interesting

case is an outgoing packet which means we are inside the OUTPUT chain.

Netfilter OUTPUT-chain

The main code in the output chain is really compact. It asks the data structure for a

forager to the matching destination address with a correct bee type. If it gets such a

forager it is able to build the route into the packet by the function

ipt_beehive_build_packet(forager, sk_buff) and to return NF ACCEPT. This

should be the most usual case, so that we do not produce much calculation overhead in

our code (we will show you the overhead of the build function later).

If we do not get back a suitable forager we set nextScoutDest to the destination

address, schedule the scout_tasklet, store the corresponding sk buff in the bufferqueue

and report it as NF_STOLEN. Fate of that packet is now in the hands of our module, we

take it out of its ordinary way through the kernel.

struct f o r a g e r ∗my forager ;

i f ( b e e h i v e f o r a g e r g e t ( iph−>daddr , bee type ,

IPT BEEHIVE FORAGER REMOVE,

&my forager )== −1) {
nextScoutDest = iph−>daddr ;

t a s k l e t s c h e du l e (& s c o u t t a s k l e t ) ;

s kb queue t a i l ( buf f e rqueue , skb ) ;

return NF STOLEN;

} else {
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i f ( i p t b e e h i v e bu i l d p a c k e t (

my forager , skb )

==−1) {
return NF DROP;

} else {
skb−>nfcache |= NFCUNKNOWN;

return NF ACCEPT;

}
}

Listing 7.11: Output chain code

The scout_tasklet uses the socket, created in the init phase, to send out a scout

packet for the address, contained in nextScoutDest to the daemon when running next

time. If a scout comes back its destination address is written into LastForagerDest and

the queue_tasklet is scheduled.

Functionality of the queue_tasklet wrapped inside a loop over the bufferqueue. As

it knows a scout came in carrying a route to the address stored in LastForagerDest, it

takes every packet having that destination out of the bufferqueue and does nearly the

same as the OUTPUT-chain code then: It tries to get a forager and puts the route into

the packet. If a packet cannot be built because of a missing forager a new scout will

be sent out and the loop breaks - no more packets to the particular destination can be

sent. The difference to the OUTPUT-chain code is, that we are outside the standard

thread; every packet has to be sent manually. To manage this, completed packets are

put onto the sendqueue and the send_tasklet is scheduled if one or more packets are

built successfully.

stat ic void QueueTaskletFunction (unsigned long data )

{
u32 ip = LastForagerDest ;

do {
nex t s k bu f f = temp sk buf f−>next ;

iph = temp sk buf f−>nh . iph ;

i f ( iph−>daddr==ip ) {
i f ( b e e h i v e f o r a g e r g e t ( iph−>daddr ,

IPTOS( iph−>to s ) ,

IPT BEEHIVE FORAGER REMOVE,

&my forager )== −1) {
nextScoutDest = iph−>daddr ;

t a s k l e t s c h e du l e (& s c o u t t a s k l e t ) ;

} else {
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skb un l ink ( temp sk buf f ) ;

i p t b e e h i v e bu i l d p a c k e t ( my forager ,

temp sk buf f )

;

s kb queue t a i l ( sendqueue ,

temp sk buf f ) ;

need to send = 1 ;

}
}
counter −−;

t emp sk buf f = nex t s k bu f f ;

} while ( counter >0) ;

i f ( need to send == 1 )

t a s k l e t s c h e du l e (& s e nd t a s k l e t ) ;

}
}

Listing 7.12: QueueTaskletFunction - Read the queue and build packets

Sending out queued packets is done by the send_tasklet. It removes the first sk buff

from the sendqueue and instructs the kernel to reroute it. This has to be done because

we manipulated the destination address. While rerouting the kernel for example looks

up the correct MAC address for the next HOP. Now the packet will be sent out. If the

sendqueue is not empty it schedules itself for sending out the next packet. We did not

use a loop over the sendqueue to save system ressources by keeping this interrupt action

as short as possible.

stat ic void SendTaskletFunct ion (unsigned long data )

{
int counter = skb queue l en ( sendqueue ) ;

struct s k bu f f ∗ temp sk buf f ;

struct iphdr ∗ iph ;

i f ( counter >0) {
temp sk buf f = skb dequeue ( sendqueue ) ;

iph = temp sk buf f−>nh . iph ;

skb un l ink ( temp sk buf f ) ;

t emp sk buf f−>nfcache |= NFC ALTERED;

ip route me harde r(&temp sk buf f ) ;

dst output ( temp sk buf f ) ;

i f ( skb queue l en ( sendqueue )>0)

t a s k l e t s c h e du l e ( &s e nd t a s k l e t ) ;

}

157



7. Beehive implementation

}

Listing 7.13: SendTaskletFunction - Sending out packets

The central function - invoked by the OUTPUT-chain code as wall as by the queue_tasklet

code is ipt_beehive_build_packet. Its job is to take the sourceroute from the given

forager and to put it into the IP packet header. In addition to this it has to add the

beehive option exactly there, too. The main problem was to figure out the proper way

to add the IP options. Unfortunately we cannot be sure that there is enough room free

in front of the transport layer header to move it to the front and add our IP options

afterwards. So we need to make some room in front of the IP header if necessary. This

is done with a call to the function skb_cow(struct sk_buff *skb, int headroom).

(The parameter headroom is the amount of bytes to reserve in front of the data area. If

the headroom is already large enough this call does nothing.) Now we have to memmove

the IP header to the beginning of the buffer, so that exactly the number of bytes we

need between the header and the payload data is freed. After changing some pointers so

that the new beginning of the network header is known and after changing the length of

the packet and the IP header, we can go on filling the freed space with our own options.

opt = &(IPCB(my skb )−>opt ) ; // po in t e r to op t i ons array

i f ( opt )

o ldopt l en=opt−>opt len ;

i n c l e n = ( route l eng th >1) ? IPT BEEHIVE OPTION LENGTH

+ rou t e l e ng th ∗4 − 1 : IPT BEEHIVE OPTION LENGTH ;

f i l l e n = (4 − ( i n c l e n + o ldopt l en )%4)%4;

i n c l e n+=f i l l e n ;

i ph l en = iph−> i h l + ( i n c l e n >> 2) ;

/∗ t e s t i n g , i f op t i ons l en g t h i s s t i l l OK∗/
i f ( iph l en > 15) {

pr in tk ( ” Sorry . Header length %i i s too b ig \n” , iph l en ) ;

return −1;

}
i f ( skb cow (my skb , 60 − i ph l en ) ) {

DEBUGP(”skb cow f a i l e d \n” ) ;

return −1;

}
new = skb push (my skb , i n c l e n ) ;

i f ( opt ) {
memmove(new , new + inc l en , s izeof ( struct iphdr ) +

opt−>opt len ) ;
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} else {
memmove(new , new + inc l en , s izeof ( struct iphdr ) ) ;

}

Listing 7.14: creating space for IP options inside an sk buff

If the length of the route is equal to one, which means we are sending data to our

neighbour host, we just have to include the beehive option. if it is greater than one we

have to include the beehive option and source routing information into the header. Of

course we have to manipulate the destination address in this case. To achieve options

length to be a multiple of four we will add padding in form of NOPs.

i popt s [ 0 ] = IPOPT BEEHIVE;

ipopt s [ 1 ] = IPT BEEHIVE OPTION LENGTH ;

ipopt s [ 2 ] = 0 ; // BeeHive data

i popt s [ 3 ] = 0 ; // BeeHive data

i popt s [ 4 ] = 0 ; // BeeHive data

i f ( route l eng th >1) {
i popt s [ 5 ] = IPOPT SSRR;

ipopt s [ 6 ] = ( r ou t e l e ng th ∗4)−1;

ipopt s [ 7 ] = 4 ; /∗ po in t e r ∗/

/∗ s e t d e s t i n a t i on address to next hop : ∗/
iph−>daddr = route [ 1 ] ;

opt−>faddr = route [ 1 ] ;

/∗ i n s e r t hops in to i p op t s ∗/
for ( count=2; count<=rou t e l e ng th ; count++) {

int ∗ t e s t = ( int ∗)&

ipopt s [ IPT BEEHIVE OPTION LENGTH

+3+(count−2) ∗ 4 ] ;

∗ t e s t=route [ count ] ;

}
}

/∗ f i l l u p op t i ons wi th NOOPs to reach l en g t h % 4 = 0 ∗/
for ( count=0; count< f i l l e n ; count++){

i popt s [ i n c l en−1−count ]=IPOPT NOOP;

}

Listing 7.15: Inserting IP options
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Netfilter FORWARD-chain

Inside the FORWARD-chain bees we put relevant information about the HOP into each

bee, flying by, dependent on the bee type. In contrast to the simulation we are only

able to collect energy data in reality. Energy data, represented by the remaining battery

capacity, stored in ipt_beehive_battery_status, is put into the IP packet by the

energy_check function.

For mapping the real data to a three bit value we use the mapping function similar to

the one inside simulation. Next step is to read the value of the existing beehive option.

As we are not able to work on 24 bit values directly (remember: the beehive option data

field consists of 24 bit, three bit for each host), we additionally take the length octet

and put these four bytes into an u32, which has to be converted from networking to

host byte order. After the length octet is stored in an extra variable, because we have to

restore it, we just shift beedata left about three bit and put the actual battery data of

our host into the very right three bit. Bee data can now been written into the IP packet,

the procedure is finished after restoring the length octet. Handling of other data, like

delay or throughput data, is works in a similar way.

stat ic void energy check ( struct s k bu f f ∗ skb )

{
int batStand = i p t b e e h i v e b a t t e r y s t a t u s ;

unsigned char batLeve l=0;

i f ( batStand <= 9) batLeve l = 0 ;

else i f ( batStand > 9 && batStand <= 14) batLeve l = 1 ;

[ . . . . . ]

else i f ( batStand > 65) batLeve l = 7 ;

struct i p op t i on s ∗opt ;

opt = &(IPCB( skb )−>opt ) ;

unsigned char∗ bee pt r = (unsigned char∗) skb−>nh . iph +

opt−>beeh ive +1;

u32 ∗ bee data = ( u32 ∗) bee pt r ;

unsigned char saveme = ∗ bee pt r ;

u32 beedata = ntoh l (∗ bee data ) ;

beedata = beedata <<3;

beedata |= batLeve l ;

∗bee data=hton l ( beedata ) ;

∗ bee pt r= saveme ;
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}

Listing 7.16: Energy check function

Netfilter INPUT-chain

In LOCAL_IN we have to produce a forager from every incoming IP packet. First of all

we extract the bee data field from the IP options. As we have to extract a 24 bit data

field we have to do some shifting to get the correct value. If the source of the packet

is a computer, connected directly to this host, we are now able to create a forager,

containing bee data and the source address of the IP packet, otherwise we have to

extract source routing information and to add them to the forager. The next step is to

add the forager, together with the bee type (see above, TOS field) to the data structure

by using beehive_forager_put(newForager, bee_type).

We have noticed that most applications answer source routed packets by using the

reverse source route on the way back. To prevent this we will have to delete source

routes from all incoming packets and fill up the options with NOOP options.

Using ACPI

If ACPI is deactivated ipt_beehive_battery_status will allways pretend the remain-

ing battery capacity to be 100%. But if the kernel is patched (see 7.2.2) and the system

is capable of using ACPI we are able to read the correct battery state at every moment.

All implementation details about using the ACPI battery state can be found in

ipt_BEEHIVE_acpi.c. During initialisation the battery handle has to be found. We

use acpi_get_devices for this task. The first parameter is the internal name for ACPI

batteries, the second is the name of a little call back function, doing nothing but putting

the handle of the first found battery into the battery struct, which is handed over as

a third parameter. Now we are able to access the actual battery data. For reading

the remaining battery capacity regularly we use a kernel thread. There are two reasons

for this: a) we can do the reading independent from all other iptables code and b) we

cannot access battery data from the interrupt context (taking a kernel timer would have

been our choice then). Starting the kernel thread is the last thing which is done during

initialisation of this submodule.

stat ic int i n i t

b e e h i v e a c p i i n i t (void )

{
// Bat tery HID i s PNP0C0A
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battery = kmal loc ( s izeof ( struct a cp i ba t t e r y ) , GFP KERNEL) ;

// Look f o r a c p i b a t t e r y

a c p i g e t d e v i c e s ( ”PNP0C0A” , battery probe , battery , NULL) ;

in i t wa i tqueue head (&wq) ;

ThreadID=kerneBatteryWatcherFunctionrFunct ion , NULL,

CLONE KERNEL) ;

i f ( ThreadID==0)

return −EIO;

return 0 ;

}

Listing 7.17: ACPI initialisation

A kernel thread is handled like an ordinary userspace process (you can even see it inside

the process table) but is able to access every kernel data structure. After it started it

is daemonized, which means put into the background. Otherwise the insmod process

would be blocked until the thread dies. To be able to kill it - and to unload the module -

sending SIGTERM has to be allowed. As we do not want to run it all the time and to block

everything else, the thread is sleeping for most of its lifetime on a waitqueue. Every five

seconds it wakes up, puts the remaining capacity into ipt_beehive_battery_status

and sleeps again. It does so until it catches a SIGTERM.

stat ic int BatteryWatcherFunction ( void ∗data )

{
daemonize ( ”BatteryWatcher ” ) ;

a l l ow s i g n a l ( SIGTERM ) ;

while (TRUE) {
timeout=HZ ∗ 5 ;

timeout=wa i t e v e n t i n t e r r u p t i b l e t im e ou t ( wq , (

timeout==0) , timeout ) ;

a c p i b a t t e r y g e t s t a t u s ( battery , &ba t s t a t ) ;

a c p i b a t t e r y g e t i n f o ( battery , &ba t i n f o ) ;

int bat max = ( int ) ba t in f o−>de s i gn capa c i t y ;

int energy = ( int ) ba t s ta t−>r ema in ing capac i ty ;

i f ( bat max == 0){ // no ba t t e r y −> power from

l i n e

i p t b e e h i v e b a t t e r y s t a t u s =

IPT BEEHIVE BATTERY FULL ;

} else {
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i p t b e e h i v e b a t t e r y s t a t u s =

IPT BEEHIVE BATTERY FULL

∗ energy / bat max ;

}
i f ( timeout==−ERESTARTSYS ) {

ThreadID=0;

break ;

}
}
comp le t e and ex i t ( &OnExit , 0) ;

}
Listing 7.18: Battery watcher kernel thread

7.3. Communication between kernel and scout-daemon

By Gero Kathagen (gero.kathagen@uni-dortmund.de)

7.3.1. ProcFS Entrys

The scout-daemon is taken into userspace, because it has a few advantages not to be

inside the kernel. The main benefits are, that in userspace its more easy to program,

there are a lot of usefull data structures we can use, and its easier to send and to handle

UDP-packets which have data bytes in the body of the packet. Because the scout runs

in userspace whereas the other functionality is inside the kernel, they need a way to

communicate and interact. This can happen with syscalls or via the ProcFS system.

One reason to do it via the ProcFS is, that its easier to implement and a subgroup could

work on its own part without need to interact with the other subgroups of the project

group everytime. We have implemented and associated the Scout-Daemon without need

a ProcFS-interface. We could independently test our ProcFS extensions via cat or echo,

without need for a functioning Scout-Daemon.

The ProcFS is a virtual filesystem mounted onto the filesystem-tree. It is provided

by the kernel itself. Some of the entries only display information, some display settings

and allow to change them, and the some entries are just able to write informations to

the kernel.

At the beginning of the programming work we have to decide, where to put the model

inside the procfs. For our purposes its usefull, to put it into one of the ”net” sub-

directories, there are /proc/net or /proc/sys/net. Because for creating and using
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/proc/sys/ subdirectory there are a system controll tables, which are built before com-

piling. So we decided to create a folder called /proc/net/beehive, which consists an

input-file, called /proc/net/beehive/route_in, in which new routes can be written by

the scoutdaemon. For each destination it will create one entry, and if anyone reads it,

it gives a random choice of any route to this destination stored inside the kernel.

/proc | ...

|-net| ...

|-beehive | route_in to write new route to the kernel

| dest_1 to read a random-route to dest_1

| dest_2 ...

| ...

7.3.2. scoutdaemon to kernel

As mentioned above, a source-route is pushed from the scout-daemon to the kernel via

the route_in entry. This entry will be created at module loading time.

beeh iveDir = proc mkdir ( ” beeh ive ” , p roc ne t ) ;

i npu tF i l e = c r e a t e p r o c en t r y ( ” r ou t e i n ” , S IWUGO, beeh iveDir ) ;

. . .

i nputF i l e−>wr i t e proc = ProcWrite ;

Listing 7.19: initialisation of beehive in procfs

With this (incomplete) listing of commands the directory will be created, that has

(at the moment) for all users write permissions. If anyone writes something into the

route_in-file, the function ProcWrite is called.

The scout-daemon has to give the route in the following format:

DDCCBBAA:HHGGFFEE:LLKKJJII:.... :ZZYYXXWW,

in words:

Hop1 :Hop2 :Hop3 :.... :Destination

where the signs between the ”:” are IP-addresses in IPV4 hexadecimal network-byteorder.

For example: 192.168.1.70 in network-byteorder is 70.1.168.192, and its translation to

hexadecimal it is 4601A8C0. So, if the string: 4601A8C0:4701A8C0:4501A8C0:4401A8C0

is written to the route_in-Entry, it will create a forager for 192.168.1.68 over the Hops

192.168.1.70, 192.168.1.71, 192.168.1.69.

ProcWrite uses the KernelBuffer, where the text written to route_in is found, and

does some little correctness-checks on it. If it passes sanity check then eight characters
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are joined into a __u32 value. Then it appends it to a list. At the end of the given

string, there is a complete source-route, which have to be inserted into a forager-struct.

while ( i<Hops ) {
[ . . . ]

u32 address u32 = s imp l e s t r t o u l ( Adresse , NULL ,

16) ;

struct s ou r c e r ou t e ∗nextHop = kmal loc ( s izeof ( struct

s ou r c e r ou t e ) ,GFP KERNEL) ;

nextHop−>hop = address u32 ;

[ . . . ]

l i s t a d d t a i l (&nextHop−> l i s t , &route−> l i s t ) ;

i f ( i == Hops−1) {
u8 opt type ;

for ( opt type = 0 ; opt type <

IPT BEEHIVE OPT MAX−1; opt type++) {
struct f o r a g e r ∗ o th e r f o r ag e r =

b e e h i v e s t r u c t c o p y f o r a g e r (

newForager ) ;

b e eh i v e f o r ag e r pu t ( o the r f o rage r ,

opt type ) ;

}
be eh i v e f o r ag e r pu t ( newForager ,

IPT BEEHIVE OPT MAX − 1) ;

LastForagerDest= newForager−>daddr ;

t a s k l e t s c h e du l e (&queue t a s k l e t ) ;

}
i++;

}
}

Listing 7.20: functionality of route in in /proc/net/beehive/

In this section the route is packed into a list of hops and finally a forager is created. This

forager is copied for each possible optimisation type and inserted into the data structure

with beehive forager put.

If there is no forager other for this destination in the structure, then it creates a new

entry with the following function:

stat ic void BeeProcInitFunct ion (void ∗ destaddr )

{ [ . . . ]
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newEntry = c r e a t e p r o c en t r y ( DestAddr , S IRUGO, beeh iveDir ) ;

newEntry−>owner = THIS MODULE;

newEntry−>read proc = BeehiveProcRead ;

newEntry−>data = kmal loc ( s izeof ( u32 ) , GFP ATOMIC) ;

memcpy( newEntry−>data , destaddr , s izeof ( u32 ) ) ;

[ . . . ]

}

Listing 7.21: creation of route-entries in procfs

This creates a new entry called as a string in DestAddr with the parent directory

beehiveDir (/proc/net/beehive). Then it sets the ”data” field to the identifier for this

entry. This is important because at this field one can decide which entry has called the

BeehiveProcRead function. It is called once a scout-daemon writes to the route_in or

a forager arrives from an unknown destination.

7.3.3. kernel to scout-daemon

Every time, a process reads out a forager via the entry in the ProcFS, the read-function

is called. This can be done by the scout-daemon, or a simple ”cat” command. With the

data-field, we know, which file is read and we can ask the structure to get us a random

route. This route have to be written in a string and given out.

stat ic int BeehiveProcRead ( char ∗buf , char ∗∗ s ta r t , o f f t o f f s e t ,

int s i z e , int ∗ eof , void ∗data )

[ . . . ]

int e r f = b e e h i v e f o r a g e r g e t (∗ ( u32 ∗) data , IPT BEEHIVE OPT ENERGY,

IPT BEEHIVE FORAGER KEEP

, &

newForager

) ;

[ . . . ]

l i s t f o r e a c h e n t r y ( hop , newForager−>route , l i s t )

BytesWritten += snp r i n t f ( buf +

BytesWritten , s i z e − BytesWritten ,

”%08x : ” , hop−>hop ) ;

[ . . . ]

Listing 7.22: reading a route out

These are the essential commands of the BeehiveProcRead-function. We simply get

a copy of a forager for the destination and print it to the output buffer (BytesWritten).
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With the return-statement the length of the written string is given and the kernel prints

it to the file-handle. The output is formatted in the same way as input except entry for

destination is omitted from string.

In the normal transfer-behaviour its possible, that the last forager is sent, and there

is no other forager for his destination. In this case, we do not know any route to the

destination, so there is no need for a entry in the proc-fs anymore. In the communication-

API for the procfs we have also a function for removing an entry, and this is called if

the last forager is read out. The function is called BeeProcRemove.

7.4. Userspace

7.4.1. iptables shared libraries

Iptables BEEHIVE-target

Writing the shared library for iptables was the easiest part. It does not need to check

any parameters, so there is very little logic inside the code. Consequently the code was

copied from the TARPIT-target and modified to support the BEEHIVE-target. The code

for this library can be found in the repository at the following location:

/oseg/BEEhiveTools/iptables/extensions/libipt_BEEHIVE.c

The code consists of mostly empty (required) functions and a struct with pointers to

these.

Iptables IPV4OPTIONS-match

The shared library for the ipv4options match is included in the standard iptables dis-

tribution. We just had to modify it to be able to direct iptables to match against

our beehive option. The usage stays the same, we just added --beehive for matching

beehive packets and ! --beehive for matching anything but beehive packets into the

known command line options of this module.

Using iptables

We want our algorithm to work on every outgoing IP packet on the specified interface

to the beehive network. Exceptions to this rule are packets directed to ourself (to the

IP of our outgoing beehive interface), packets to the broadcast address and packets to

UDP port 1124. All other packets on the beehive directed interface have to pass the

BEEHIVE target. Reasons for these exceptions are obvious: a) We do not to ask the
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# outgoing traffic

iptables -A OUTPUT -t mangle -d {IP} -j ACCEPT

iptables -A OUTPUT -t mangle -d {BCAST} -j ACCEPT

iptables -A OUTPUT -t mangle -p udp --dport 1124 -j ACCEPT

iptables -A OUTPUT -t mangle -d {IP}/{NETMASK} -j BEEHIVE

#incoming traffic

iptables -I INPUT -t mangle -m ipv4options --beehive -j BEEHIVE

#traffic to be forwarded

iptables -A FORWARD -t mangle -m ipv4options --beehive -j BEEHIVE

Figure 7.5.: Configuring netfilter for our needs

way to ourselves, b) taking influence on the route of broadcasted packets does not make

sense, c) our scout daemon is listening on port 1124, we do not have to care about scout

packets.

Only incoming packets carrying the beehive option are interesting for our algorithm

to build foragers from them. All others can be ignored by us.

It is the same principle for forwarded packets. Just the ones carrying the beehive

option have to be modified to insert the specific bee data for the actual host.

The resulting configuration is shown in fig. 7.5.

7.4.2. scout-daemon

The scout daemon takes care of an essential part of the beehive routing protocol. It is

responsible for searching and finding new routes. This task is not done inside the kernel,

but in the user-space by the scout daemon.

On every host of our network the scout daemon is running. If the kernel wants to

send a packet to a certain host and recognizes that no route to that host is known it

finds a route to that destination by sending an initial scout to the local scout daemon.

A scout is a udp packet containing and collecting information about the route which it

is searching for, that means the source, the hops, and the destination.

typedef struct {
u in t 8 t mode , id ;

u i n t 8 t t t l , nh ;

iaddr src , dest ; // network by t e order

i addr hop [MAXHOPS] ; // network by t e order
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} packet ;

Listing 7.23: the scout datastructure

Every scout daemon which has received a scout adds its ip address to the route inside

the packet and rebroadcasts it, so that all reachable hosts can receive it. If the scout

reaches the destination it is sent back to the source via source routing where the scout

daemon imparts the route to the kernel via the proc filesystem.

To reduce the number of scouts sent, we use three extensions:

1. Every scout gets a unique ID from its source host and every host ignores scouts

with an ID and source it has already seen.

2. On every host we have a look at the dance-floor via the proc filesystem if that

host already knows a route to the destination. If so we take that route and do not

continue broadcasting.

3. We start scouting with a small ttl (time to live). If the source daemon does not

receive a reply within a certain amount of time the ttl is increased and the scout

is sent again and so on. Relating to the simulation group this decreases the total

number of scouts sent.

implementation of the scout daemon

The implementation of the scout daemon consists of a couple of files:

• scoutd.h The paths to the configuration file and dancefloor-directory are stored

in this file as well as the optimization parameters of the beehive algorithm.

• scoutd.c This is the main program. Here the daemon starts and the configuration

file is read.

• config.l config.y These are files for flex and bison used to parse the configura-

tion file.

• dancefloor.h dancefloor.c This is the interface to the proc filesystem. The

two functions search on dancefloor and write to dancefloor are implemented

here. While writing a route to the dancefloor is rather simple, the search is more

complicated, as we have to check if the new route contains loops. This is possible

because the new route consists of the part from the dancefloor and the part already

found by broadcasting.
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// search on dance f l oo r f o r a route and s t o r e i t in p ;

// re turns 0 on success , −1 i f no route i s found

int s e a r ch on danc e f l o o r ( packet ∗p) ;

// wr i t e route s to red in p to dance f l oo r

void wr i t e t o d an c e f l o o r ( packet ∗p) ;

Listing 7.24: dancefloor functions

• list.h list.c Implementation of a simple list used by scouttimer

• scouttimer.h scouttimer.c The functions here are needed for resending scouts

after a timeout with an increased ttl. A datastructure is provided in which the

scouts wait for their next flight.

typedef struct {
l i s t l ;

} s cout t imer ;

typedef struct {
struct t imeva l send t ime ;

packet p ;

} s t node ;

// i n i t i a l i z e s cou t t imer

void s c o u t t im e r i n i t (void ) ;

// re turns 1 i f nex t scout i s due to f l y ,

// o the rw i s e 0 and the time a f t e r he i s due

// i s s t o red in wa i t ing t ime

int next s cout due ( struct t imeva l ∗wai t ing t ime ) ;

// d e l e t e next scout from l i s t and s t o r e i t in p

void ge t next ( packet ∗p) ;

// append scout to l i s t

void append ( packet ∗p) ;

// remove scout f o r de s t from l i s t

// ( on ly one , more shouldn ’ t be in )

void remove dest ( iaddr dest ) ;
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// re turns 1 i f s cou t ing f o r de s t i s in progress , 0 o the rw i s e

int s e a r ch de s t ( iaddr dest ) ;

Listing 7.25: scouttimer functions

• scoutlist.h scoutlist.c Implementation of the scoutlist, which is in fact an array.

Here we store the IDs and sources of the incoming scouts to avoid broadcasting

the same scout again and again.

• scouting.h scouting.c This is the most important part of the scout daemon. The

actual scouting is done here. Have a look at the following listing, which gives an

idea about the algorithm. It is strongly shortened and will not function at all this

way.

stat ic void send back scout ( int sock , struct sockaddr in ∗back ,

packet ∗p , int nh ) {
p−>mode = 2 ;

i f ( nh ) { // the re are hops

i p op t s [ 0 ] = 1 ; // noop

i p op t s [ 1 ] = 0x89 ; // s t r i c t source rou t ing

i p op t s [ 2 ] = (nh << 2) + 3 ;

i p op t s [ 3 ] = 4 ;

for ( i = 1 ; i <= nh ; i++)

memcpy(&( i p op t s [ i <<2]) , &(p−>hop[−−p−>nh ] ) , 4) ;

i f ( s e t sockopt ( sock , SOL IP , IP OPTIONS, ip opt s ,

(nh+1) << 2) < 0)

e r rmsg ex i t ( ” Se t t ing i p op t i on s f a i l e d , e x i t i n g . ” ) ;

}
i f ( sendto ( sock , p , s izeof (∗p) , 0 , ( struct sockaddr ∗) back ,

s izeof (∗ back ) ) < 0)

DEBUGP(”Could not send packet , e r r o r %d” , errno )

i f ( s e t sockopt ( sock , SOL IP , IP OPTIONS, ip opt s , 0) < 0)

e r rmsg ex i t ( ” Se t t ing i p op t i on s f a i l e d , e x i t i n g . ” ) ;

}

void s cout ing ( s c ou td con f i g ∗ s d c o n f i g ) {
while (1 ) {

i f ( nex t s cout due (&wa i t ing t ime ) ) {
// scout in l i s t which wants to be sen t

ge t next (&p) ; // ge t t h i s scout and send i t

i f ( sendto ( sock , &p , s izeof (p ) , 0 , ( struct sockaddr ∗) &bc ,
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s izeof ( bc ) ) < 0)

DEBUGP(”Could not send packet , e r r o r %d” , errno )

// put i t back in to l i s t wi th increased t t l

p . t t l += TTL INCREASE;

i f (p . t t l <= TTL MAX)

append(&p) ;

}

t imer . i t v a l u e = wa i t ing t ime ;

i f ( s e t i t im e r (ITIMER REAL, &timer , NULL) < 0)

e r rmsg ex i t ( ”Error with timer , e x i t i n g . ” ) ;

i f ( ( l = recv ( sock , &p , s izeof (p) , 0) ) < 0) {
i f ( errno == EINTR) // in t e r rup t e d by t imer

continue ;

else

e r rmsg ex i t ( ”Error r e c e i v i n g packet , e x i t i n g . ” ) ;

}

i f (p . mode == 0) { // i n i t i a l scout

i f ( s e a r ch de s t (p . dest ) ) {
// scout wi th t h i s d e s t i n a t i on a l r eady f l y i n g

continue ;

}
p . mode = 1 ;

p . id = ++id ;

p . t t l = TTL INITIAL ;

i f ( sendto ( sock , &p , s izeof (p ) , 0 , ( struct sockaddr ∗) &bc ,

s izeof ( bc ) ) < 0)

DEBUGP(”Could not send packet , e r r o r %d” , errno )

// put i t in to l i s t f o r p o s s i b l e l a t e r resending

p . t t l += TTL INCREASE;

i f (p . t t l <= TTL MAX)

append(&p) ;

} else i f (p . mode == 2) { // scout f l y i n g back to source

i f (p . s r c == ipaddre s s ) { // scout back at source

wr i t e t o d an c e f l o o r (&p) ;

remove dest (p . dest ) ; // remove scout from scou t t imer

}
} else i f (p . dest == ipaddre s s ) {

// we are the d e s t i n a t i on −> route found
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send back scout ( sock , &back , &p , p . nh ) ;

} else { // we are a hop

i f ( ! i n s c o u t l i s t (&p) ) {
p . hop [ p . nh++] = ipaddre s s ;

i f ( s e a r ch on danc e f l o o r(&p) == 0) {
// we found a route to d e s t i n a t i on on dance f l oo r

send back scout ( sock , &back , &p , nh ) ;

} else i f (−−p . t t l ) {
// no route found on dance f l oo r −> keep search ing

i f ( sendto ( sock , &p , s izeof (p ) , 0 ,

( struct sockaddr ∗) &bc , s izeof ( bc ) ) < 0)

DEBUGP(”Could not send packet , e r r o r %d” , errno )

}
}

}
}

}

Listing 7.26: the scouting algorithm

• createscout.c This is a standalone program used for testing. The cs command

creates initial scouts and sends them to the local scout daemon. This task is

normally done by the kernel.

using the scout daemon

The scout daemon is simply started by scoutd and stopped by scoutd stop. It needs

a configuration file (default is /etc/scoutd.conf) which includes the ip address of the

local host. One can also change the netmask and port here if they differ from the defaults

255.255.255.0 and 1124. For example the file could look like this:

address 192.168.0.71

netmask 255.255.255.0

port 1124

The daemon communicates with the kernel via the proc filesystem. Before a scout is

broadcasted the daemon searches for a route in /proc/net/beehive/<destination>.

Only if a route to the destination host does not exist (that means the file does not exist)

broadcasting is done. Found routes are stored in /proc/net/beehive/route in.
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8.1. Testing-Design overview

The testing we have to do can be divided into two parts: functional testing and performance-

testing. And we have to test two environments: Our module in an UML-environment

and in reality on the notebooks. The functional testing is possible in both environments,

but the measurement of the performance is quite difficult. To test our implementation,

we have to create reproducible conditions.

If we want to test a static situation, we can do this in a reproducible way, but the

interesting part of the algorithm is the mobile behaviour. To reproduce a mobile be-

haviour with our budget is impossible. For this reason only functional tests are done in

reality.

In the UML-environment we have other problems: the CPU-power of the hostsystem

is shared by all UML-machines. But the behaviour of the simulated network and the

transfers are reproducible by time-related scripts and the UML-Switch.

8.2. Testing-Environment

8.2.1. Reality

For testing with real devices the Lehrstuhl gives us five Notebooks with 802.11b wireless

lan integrated, 2.4 GHz Intel Pentium 4 CPU. We have developed the following scenario

in fig. 8.1 for testing the functionality of finding new Routes.

8.2.2. UserModeLinux

Switch daemon

After calling testenv <number> the given number (from 1 to 9) of UML computers

start. Possible are 1 to 9 instances. However this is easily adaptable. The network

is realized by a switch daemon. The UML switch available does not support dynamic

connections: all UML instances are linked with each other. So we had to change that.
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Figure 8.1.: Scenario for functional testing with real equipment

Now the switch daemon reads a configuration file when it is starting with an appro-

priate parameter ( uml switch -wlan <filename> ). In this file the connections are

listed which should exist. Here is an example:

default 0

merkur <-> venus 100

venus <-> erde 100

erde <-> jupiter 100

merkur <-> mars 100

mars <-> jupiter 100

venus <-> mars 100

Between merkur and venus 100% of the packets arrive, as well as between venus and

erde and so on. All not explicitely given connections use the default value. By this we

realized a network which looks like the one shown in figure 8.2. Actually not only the

values 0 and 100 are possible, but also any value in between. So for example merkur

<-> venus 60 will result in 60 % of the packets between merkur and venus arriving and

40 % being dropped. The packets which are dropped are randomly chosen. However,

while testing we only used rates of 0 % and 100 %.

As the switch internally works with mac addresses, there must be a mapping from

hostnames to mac addresses. For that purpose with every hostname there must be

declared an ip address, which is mapped by the switch daemon to a mac address the
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merkur

C0A80047
192.168.0.71

venus
192.168.0.72
C0A80048

erde
192.168.0.73
C0A80049

mars
192.168.0.74
C0A8004A

jupiter
192.168.0.75
C0A8004B

Figure 8.2.: example UML network

same way as the UML computers do. If that is not sufficient, one can declare the mac

address directly. An example:

merkur: 192.168.0.71

venus: 192.168.0.72

jupiter: a0:c1:34:91:2b:f2

saturn: 192.168.0.76

If the configuration file is changed, the switch will read it and the changes will imme-

diately become valid.

It is doubtful if the packet dropping performed by the switch daemon sufficiently

simulates wireless networks with different connection qualities and transmission rates,

but we can at least easily simulate networks in which a computer is not connected with all

the other ones. This is very good for testing the principle functionality of our algorithm.

A reasonable performance test is not possible with UML anyway.

Scenario editor

For testing our algorithm in UML it will be useful to have a scenario of different ar-

rangements of the UML computers, i.e. different configurations of the switch daemon.

The scenario editor helps to build such scenarios. Figure 8.3 shows a screen-shot of
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Figure 8.3.: the scenario editor
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the editor. With the scrollbar at the bottom of the window one can move within the

arrangements, the Insert button creates a new arrangement, and the Delete button

deletes the current one. With the mouse you can move the computers. The lines between

them and the table at the right side show which of the computers are connected. The

text-field at the bottom right corner specifies the number of seconds this arrangement is

in use. With the corresponding commands of the menu one can open and save scenarios.

The Export command creates a scenario file and the configuration files for the switch

daemon. A separate script is developed to read that scenario file and copies in time the

configuration files to the wlan.conf, which is immediately read by the switch daemon.

Performance and UserModeLinux

For testing in UserModeLinux we have developed a testing environment, in which we

start one to nine machines on one hostsystem.

These ”virtual” machines have identical settings and on each machine we start a Perl-

Script, which starts ftp-transfers at defined times, and measures the response time in

the meantime with a parallel ping-command. The results (transfersize, transfertime,

responsetime) are written to files on the mounted HostFS. At the end of the run on each

machine will be executed a iptables command to find out, how many packets are send

out and received, and how many scouts are needed.

After the run, we run a script to collect the information from the written files and

printed out for a overview.

While doing the tests, we had enormous bad results for a simple static scenario with

a couple of transfers at the same time. There are many things, that point on the theory,

that the CPU of the hostsystem is to slow:

• In the scenario the load of the CPU is growing to 4 or more

• The UML-Switch can not deliver all packets to their targets

• If each machine is connected to each other, there are no problems

• Packets to destinations far away causes a lot CPU-time, because every hop on

the way have to handle them, for a n hop route, a packet needs n-times more

CPU-time.

8.2.3. Test-Scripts for UML and real networks

In order to measure the throughput of the network, we use ftp. For our scripts, on the

machines a ftp-server (like wu-ftpd) and a ftp-client (we use wget) are needed. The
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starter-script is written in perl and needs a few modules for proper working and exact

measurement. This startscript, called starter.pl parses a scenariofile, in witch are

given the points in time, the host, the destination-host are given, and starts at the given

time the ftp-transfer.

The ftp-transferscript does two things: it starts a ftp-get from the target-host, and

at the same time, it starts a ping-session to the target-host, as long as the ftp-transfer

runs. When it has finished, the ping-command stops. The results of the ping-command

(responsetime) is written to a file named host.targethost.pinglog, the result of the ftp-

transfer (size, duration and targethost) is written to a file host.ftplog.

At the end of a testrun, the number of packets send, the number of scouts, etc, are

read out with iptables -L -t mangle -v -x. The interesting numbers are parsed of

the output and written in another logfile.

With an extern perlscript the logs are read out, the pingtimes are written to an

array. Over this array it calculates some results, like mean, geometrical mean, stdandard

deviation of the responsetime and it gives out the mean of throughput.

8.3. Results

8.3.1. UserModeLinux

We have run tests in static and in mobile environments simulated with the UserModeLinux-

tools. As our test scenario we have created a scenariofile for runtime of 300 seconds.

In this time, there are 32 ftp-transfers between the five UML machines. As described

above, echo-pings measures the responsetime in parallel in 0.2 sec cycles. Each FTP-

transfer has a transfervolume of 1 Megabyte. We have choosen this way of measurement,

because it is a realistic test, with all influences of the TCP-features and functions. For

the Results we have no comparison with other algorithms, because we found no other

functional developments for the linux kernel.

In our static environment the machines are connected as follows:

merkur <--> venus <--> erde <--> mars <--> jupiter

In the mobile simulation the machines are connected in a cohesive graph and the con-

nections change every 5 seconds.

The results for the static environment looks as follows:

scouts sent: 1266

scouts received: 11356
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success rate: 99.7569 %

average ping: 18.09 ms

geometric mean: 8.5 ms

trimmed mean: 14.16

throughput: 480504 bytes/sec

In the mobile environment the results are very different:

scouts sent: 773.2

scouts received: 5975

intern scouts: 740

success rate: 98.4674 %

average ping: 21.93 ms

geometric mean: 6.5 ms

trimmed mean: 12.37 ms

throughput: 10446.12 bytes/sec

One reason, that the throughput of the mobile environment are worse then the of

the static are, that the TCP-connections have a resend timeout, if a packet is lost, as

described in the TCP-Section of this final report.

8.3.2. Real wireless Networks

Testing with real networks has caused much more problems as testing in UserModeLinux.

• uncontrollable environment, much influences by other electrical devices, weather,

etc, as a result an erratic range.

• packet loss and resulting TCP slowdowns

• problems with other ethernet-packets like ARP

For this reasons, the results are not coparable with the UserModeLinux-Results and the

NS2 simulation.

But we have re-enacted the scenario above (Fig. 8.1) with the laptops and used

the statistical script to get some results. The number of foragers and scouts is not

countable, because we need other iptables-rules for the real testing, but its possible to

get responsetime and throughput. In order to test if in every case of the scenario a way

from each host to each other host is found, we do 12 ftp transfers per run, every host

to each other in both directions. The transfervolume is set to 1 Megabyte and pings are

done in parallel in 0,2 sec cycles.
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The Results:

1. average ping: 145.53 ms

geometric mean: 77.68 ms

throughput: 215805.45 bytes/sec

2. average ping: 290.80 ms

geometric mean: 64.34 ms

throughput: 60908.75 bytes/sec

3. average ping: 306.21 ms

geometric mean: 98.67 ms

throughput: 81052.85 bytes/sec

shows, that the connections are found, and the ping time is acceptable.
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9. Introduction

By Kai Moritz (kai.m.moritz@gmx.de) and Rene Zeglin (rene.zeglin@udo.edu)

9.1. Motivation

The main goal of the BEEhive Project–Group is to develop an energy efficient ad-hoc

network architecture. To reach this goal, two jobs have to be done. First, an energy

efficient routing protocol has to be developed. Our approach to that objective has been

outlined in the first sections of this report. Second, the single hosts themselves, that now

can communicate with each other without wasting too much energy, should consume as

little energy as possible while fulfilling their tasks. This part of the report describes our

approach to reach that goal.

9.2. Where to Save Energy

Energy can be saved at many points in modern computer architectures. Most often by

simply turning off components that are currently not used. So a modern laptop can turn

of its display, hard-disk or wireless network card if there is no interaction with the user,

the system does not need to fetch any data or there is no network traffic for a certain

period of time. It could even completely turn off itself after a certain period of time. The

turn-off of the hard-disk, the display or the complete computer nowadays is efficiently

managed by the BIOS. But the obvious disadvantage of saving energy by completely

turning off the computer is, that a turned-off computer is not very useful. Especially it

is not very responsive. Often a computer system has to do some work continuously, for

example a small number of periodic tasks, and hence it cannot be turned off. On the

other hand, it needs its full computation power only during short periods, so running at

full speed all the time would mean wasting a lot of energy during the times when the

computer is idle.

There are two solutions for this problem. The first one is to turn off some units of

the CPU temporarily while idling. The advantage of this method is that it needs little
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modifications to the operating system: it only has to inform the CPU when it is idling.

Due to this fact it is already implemented in most present-day computer architectures

and operating systems. The second solution is to reduce the clock rate of the system,

filling up the idle-time by stretching the queued work.1 The advantage of this method

lies within the option to reduce the voltage level which will increase the energy-savings.

As a rule of thumb a system running at halved voltage will consume only a quarter of

the energy needed by the system running at maximum voltage level, even taking into

account the CPU turn-offs during the idle times. This is because the same number of

cycles are executed in both systems, but the system running at halved voltage reduces

the energy consumption by reducing the operating voltage.

Modern processors are able to reduce the voltage level together with the clock rate

of the processor. As explained in [JRL03], the support of dynamic voltage scaling by

today’s operating systems is mostly limited to interval-based DVS algorithms. These

algorithms adjust the clock frequency to the current load by splitting the time into

intervals and setting the frequency of the upcoming interval according to the utilization

of the past intervals. These decisions can only be an approximation of the required

performance and it cannot be guaranteed that an urgent task finishes its work in due

time. Additionally, the behavior of the system may be customized by the definition of

rules that prescribe a certain performance if a set of criteria is fulfilled. For example, the

system could run at the maximal frequency stage when a certain important and urgent

application is executed. However, these rules does not allow for efficient energy savings.

A better strategy is the task-based scheduling which regards the computer’s work as

tasks with a guaranteed amount of computing time in a certain period of time. This

way, the outstanding work up to a certain deadline is always known and the frequency

can be set to a level that saves as much as energy as possible while it is still guaranteed

that the tasks meet their deadlines. However, this approach is only applicable in the

case of reservation based scheduling but a general purpose operating system additionally

requires other forms of scheduling for interactive and batch processes.

Hence, our goal is to develop a DVS algorithm that combines both of these strategies

and is applicable to general purpose operating systems and to implement it into the Linux

kernel. A good DVS algorithm promises noticeable power savings during everyday use

of a computer system, because the maximum CPU-frequency is normally only required

during short periods, while most of the time the system can run at a low frequency

and thus reduce the voltage level. On the other hand dynamic voltage scaling ideally

1This two solutions are not exclusive. It is no problem to scale the clock rate and additionally save
energy by turning off the CPU during idle-loops if there are still some.
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does not slow down the responsiveness of the system, because the CPU-speed will be

dynamically increased when needed.

9.3. Our Approach to Dynamic Voltage Scaling in General

Purpose Operating Systems

A central problem while designing a DVS algorithm for a general purpose operating

system is that the schedulers of such systems are most often fairly complex. As general

purpose operating systems are designed to be used in different scenarios, the designers

of such systems have only limited knowledge of which programs the system has to run

and which of these are the important ones from the user’s point of view. Hence, the

design of a scheduling algorithm for a general purpose operating systems has to be based

on ingenious heuristics, which most often leads to complex dependencies between the

scheduling algorithm and various parts of the system.

Because of this, implementing a DVS algorithm for a general purpose operating system

is a challenging task. Furthermore, the developed algorithm has to be tied together an

operating system, because it has to work closely with the special scheduling algorithm

of that operating system to exchange information about process states etc.

These considerations lead to our central design decision: the design and implementa-

tion of our DVS Algorithm will be based on Hierarchical Scheduling (HS). HS splits up

complex, monolithic schedulers in a hierarchical composition of small and easily main-

tainable schedulers. These schedulers build a tree with a root-scheduler, which receives

the overall computing time of the system. Each scheduler in the hierarchy distributes

the CPU time that it receives to its children which can be schedulers again or tasks. In

such a system the root and the inner nodes of the hierarchy tree are schedulers and the

leaves of the hierarchy tree are the tasks which are scheduled by the system.

The combination of HS and DVS brings several advantages. The first advantage of

HS in regard to our goal is the reduction of complexity through decomposition. Using

HS, complex scheduling behaviors are modeled by a composition of small and simple

schedulers. The main idea is that every scheduler in the hierarchy runs its own DVS

algorithm and the global DVS decision is reached from these locally computed decisions.

This way, the problem to develop a complex DVS algorithm for a multipurpose scheduler

is divided into two – hopefully smaller – problems: First, DVS algorithms for some simple

schedulers must be developed; and second, a way must be found to reach a reasonable

global DVS decision from the locally computed DVS needs. As a side effect of the

decomposition it becomes possible to compose the hierarchy of well known schedulers
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together with dedicated DVS algorithms from literature. Therefore the first problem

vanishes.

Another advantage of HS is that it introduces the possibility to give special tasks

guarantees about how much computation time they will receive and when they will

get it. This establishes the opportunity to create a DVS algorithm that can lower the

operating frequency of a system in order to save energy and, at the same time, ensure

that special tasks will receive a guaranteed amount of computation time, so that they

will not fail when the frequency is lowered. This is a clear advantage over a monolithic

DVS algorithm that is based on heuristics about the scheduling behaviour.

Last but not least, HS makes the scheduling behaviour of the system customizable.

Scheduling hierarchies are composed of independent scheduling modules. Thus, a new

hierarchy that enforces a different scheduling policy can be created very easily by re-

arranging the available schedulers. Furthermore, the implementation of new scheduling

algorithms is simplified, because the HS framework provides a simple API for that pur-

pose. That is, end-users become able to tune the scheduling behavior of their system to

fit their special needs.
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Scheduling and Voltage Scaling

By Kai Moritz (kai.m.moritz@gmx.de) and Rene Zeglin (rene.zeglin@udo.edu)

10.1. Hierarchical Scheduling

As said above, HS splits up the computation of a scheduling decision in smaller parts.

In a system that uses HS the monolithic scheduler is replaced by a collection of smaller

and simpler schedulers that are arranged in a scheduling hierarchy. The available com-

putation time is distributed from the root of this hierarchy to its leaves by means of the

individual schedulers in the hierarchy. Each scheduler in the hierarchy simply takes the

incoming computation time and distributes it to its children. That is, every time a sched-

uler is provided with computation time (generally speaking, every time it is scheduled),

it just schedules one of its children. This modular design has several advantages:

• the complexity of the scheduling decision is reduced

• the single schedulers can be kept very simple because complex scheduling policies

can be achieved through clever combinations of this modules.

• additional schedulers can simply be integrated

• the scheduling policy becomes customizable because it is much easier to build up

a new hierarchy, than to replace a monolithic scheduler, which is usually deeply

embedded in the operating system

10.2. Enforcement of Scheduling Policies Through Modularized

Schedulers

The schedulers in a hierarchy are designed as independent and reusable modules. They

are autonomous, that is they do not have to know anything about the state of the
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scheduling hierarchy as a whole to do their job. Also they do not have to know anything

about the scheduler that provides them CPU time nor do they have to know if their

children are schedulers or tasks. They just take the granted CPU time and distribute it

to their children according to their local scheduling policy.

But although a single scheduler does not have to take into account the scheduling

policies of the other schedulers in order to compute its scheduling sequence, it cannot

fulfil its job independently from the other schedulers in the hierarchy. More precisely,

a single scheduler can compute its scheduling sequence independently from the other

schedulers, but the validity of a scheduling policy assured to a specific task relies upon

a correct scheduling hierarchy. The guarantee that a task at a leave of the hierarchy

receives depends not only on the scheduling policy of its direct parent scheduler, but

on the scheduling policies of all schedulers on the path from the task up to the root of

the scheduling hierarchy. Hence, not every combination of schedulers leads to a useful

hierarchy. For example a real time scheduler cannot guarantee anything to its children

if it is scheduled by a time sharing scheduler.

Whereas a scheduler does not have to know anything about its parent to calculate a

scheduling order, the validity of the scheduling policies which are meant to be provided

by a scheduling hierarchy must be proved before the hierarchy is set in operation. To

solve this problem Regehr has developed a theory for proving that a given scheduler

hierarchy is able to fulfill the scheduling requirements of a set of applications.

10.3. Validating Scheduling Hierarchies

10.3.1. Describing Scheduling Policies through Guarantees

In order to judge the validity of a scheduling hierarchy the scheduling requirements of

the applications are specified in form of scheduling guarantees. A guarantee is a formal

statement describing the allocation and distribution of CPU time. The requirements

that are needed by a certain scheduler and the scheduling policy which it enforces, both

can be described as guarantees. So, a certain scheduler can be satisfactorily described

by an incoming guarantee, which it needs to work correctly, and a set of outgoing

guarantees, which it provides. That is, by means of guarantees one can describe a

scheduler while abstracting from a certain algorithm: in terms of Regehr’s theory of

guarantees a scheduler can simply be seen as a guarantee converter. The purpose of a

scheduling hierarchy then becomes to convert the ALL guarantee, which represents the

overall CPU time, into a set of guarantees matching the requirements of the applications.

Thus, the question if a scheduling hierarchy provides a certain set of scheduling policies
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can be solved by verifying that all nodes in the hierarchy tree receive sufficient guarantees.

In [Reg01] Regehr defines a set of guarantees and shows which schedulers match which

guarantee conversion. Furthermore he claims some rules for direct guarantee conversions

through rewrite rules and substantiates his claims with formal proofs. As some of the

later augmentations are based on the knowledge of that theory, we will briefly describe

some of its fundamentals. For more details about guarantees and guarantee conversions

we refer to [PGc, PGa, Reg01].

10.3.2. Guarantee Types

As first step, some basic types of guarantees will be described.

The ALL Guarantee represents the assignment of 100% of the available CPU time. It

is given to the root scheduler of a hierarchy by the operating system. Obviously it

is an acceptable incoming guarantee for any scheduler.

The NULL Guarantee states, that there can’t be made any guarantees about the amount

of CPU time that will be provided. A normal general–purpose scheduler (like the

one implemented in Linux or Windows) can only promise this guarantee.

CPU Reservation Guarantees (RES) describes soft real time scheduling behavior. A

RES guarantee ensures that a specific amount of CPU time is provided during

each period. Thus RES guarantees are useful for applications that will fail if

they receive less processing time than they require. The basic RES guarantees

are constructed by combining the five properties basic, continuous, hard, soft and

probabilistic:1

• Basic CPU Reservations ensure that the promised amount of CPU time is

provided during each period. They don’t make any statement if it is provided

at the beginning of a period or at the end. So the scheduler could arbitrary

arrange CPU time within a period.

• Continuous CPU Reservations ensure that every arbitrary period–sized time

interval will contain the reserved amount of CPU time. Just recall that a

basic reservation scheduler is allowed to provide the promised CPU time at

the beginning of one period and at the end of the next. Obviously the time

between this two schedules is longer than one period. Claiming a continuous

reservation, this case is forbidden.

1It is essential to not confound the terms hard and soft with the corresponding real–time terms.
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• Hard CPU Reservations provide exactly the requested amount of CPU time.

No extra time will be given to the process.

• Soft CPU Reservations may receive extra CPU time in addition to the guar-

anteed reservation.

• Probabilistic CPU Reservations are a special case of soft CPU reservations.

A specified minimum execution rate and granularity is guaranteed to the

scheduled objects. In addition they have the chance to get extra CPU time

from a shared overrun partition on a probabilistic basis.

Regehr constructs the following RES guarantees from these properties.

• RESBS x, y denotes a basic soft CPU reservation with amount x and period

y.

• RESBH x, y denotes a basic hard CPU reservation with amount x and period

y.

• RESCS x, y denotes a continuous soft CPU reservation with amount x and

period y.

• RESCH x, y denotes a continuous hard CPU reservation with amount x and

period y.

• RESPS x, y, z denotes a probabilistic soft CPU reservation guarantee with

amount x and period y. z is the size of the overrun partition from that

scheduled objects can receive extra CPU time on a problematic basis.

Proportional Share Guarantees can be divided into two classes:

• Proportional Share Guarantees with Bounded Error (PSBE) have

the syntax PSBE s, δ. s denotes the share of the CPU time promised to the

receiving object. s is specified as an absolute procentual value (n ∈ [0..1]),

because this simplifies localized analysis of a hierarchy. δ is a constraint on

the error–term in the provision of CPU time. For any time t the schedulable

object is guaranteed to receive at least a sṫ − δ share of the CPU time. δ is

highly dependent on the used scheduling algorithm and may be difficult to

calculate.

• Weak Proportional Share Guarantees (PS) are proportional share guar-

antees where no deterministic bound on the error–term could be made by the

scheduling algorithm. They have the syntax PS s with s ∈ [0..1]. Like above

s is the absolute procentual value of the promised CPU share. However, since
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no bound on the error–term can be held the provided share is only an ap-

proximation of the promised one. Hence PS is a much weaker guarantee than

PSBE.

The set of basic guarantees presented above is by no means complete. For example

Regehr additionally names the non–preemptive CPU reservation (RESNH), the syn-

chronized CPU reservation (RESSH) and the uniformly slower processor (RESU), that

are all special kinds of the CPU reservation guarantee [Reg01, p. 49].

10.3.3. Guarantee Conversion through Schedulers

Like said above, from the point of view of the guarantee formalization a scheduler takes

a guarantee of one type and converts it into a set of (other) guarantees. (This was

exactly the reason why the guarantee formalization was introduced.) Table 10.1 shows

some conversions that can be achieved through well known scheduling algorithms. The

fact that a scheduler converts a guarantee of type A into a set of guarantees of type B

is noted as: A 7→ B+, where A is the weakest acceptable incoming guarantee for the

scheduler to perform the conversion. any is a placeholder for an arbitrary guarantee.

Exemplary discussion of two of the conversions noted above:

Scheduling Algorithm Guarantee Conversion

Fixed Priority any 7→ (any,NULL+)

Proportional Share PS 7→ PS+,
PSBE 7→ PSBE+,

EEVDF ALL 7→ PSBE+,

Basic CPU Reservation ALL 7→ RESBS+

Probabilistic CPU Reserva-
tion

ALL 7→ RESPS+

Round Robin NULL 7→ NULL+

Linux NULL 7→ NULL+

Table 10.1.: Conversions that can be achieved through well known scheduling algorithms

Fixed Priority: A preemptive fixed priority scheduler gives no guarantee of its own,

rather it passes what ever guarantee it receives to its highest priority child. What

amount of CPU time the other children will receive can not be predicted, because

it depends on the CPU usage of the highest priority child. Hence the other children

only receive the NULL guarantee. Because of that a fixed priority scheduler can
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accept any type of guarantee as incoming one, though an incoming guarantee of

type NULL will not make any sense.

Time Sharing: A time sharing scheduler does not make any guarantees to its children.

Hence it can accept any type of guarantee as incoming guarantee.

10.3.4. Direct Guarantee Conversions through Rewrite Rules

In [Reg01] John Regehr has also shown that it is possible to convert certain guarantees

into others by rewrite rules. A rewrite rule simply interprets a given guarantee as an-

other. However, this is not possible for all guarantee pairs, as they must be semantically

similar. As rewrite rules are only interpreting the incoming guarantee as another one,

they do not really change it. Thus, rewrite rules cannot be used to enforce a certain

scheduling policy. Their purpose is to ease the combination of schedulers.

ALL
√ √

–
√ √ √ √

RESBS –
√ √

(10.1)
√ √

(10.3)
√

(10.2)
√

RESPS –
√ √

(10.1)
√ √

(10.3)
√

(10.2)
√

PSBE –
√

(10.4)
√

(10.4)
√ √ √ √

PS – – – – –
√ √

NULL – – – – – –
√

7→ ALL RESBS RESCS RESPS PSBE PS NULL

Table 10.2.: Direct guarantee conversions by means of rewrite rules (deviated from
[Reg01, p. 56])

Table 10.2 shows the possible direct conversions. In general guarantees can only be

converted into weaker ones or at most in equally powerful ones. The non-trivial rewrite

rules stated in the table are listed below. For their proof please refer to [Reg01].

Theorem 10.1. The guarantees RESBS x, y and RESBH x, y can each be converted

into the guarantee RESCS x, (2y − x + c) for any c ≥ 0.

Theorem 10.2. Any CPU reservation with amount x and period y may be converted

into the guarantee PS x
y
.

Theorem 10.3. The guarantees RESBH x, y or RESBS x, y may be converted to the

guarantee PSBE x
y
, 2x

y
(y − x).

Theorem 10.4. The guarantee PSBE s, δ can be converted into the guarantee RESCS

(ys − δ), y or RESBS (ys − δ), y for any y ≥ δ
s
.

192



10. A Framework for Hierarchical Scheduling and Voltage Scaling

10.3.5. Prerequisites for Using Guarantees

In order to use the rules for guarantee conversion described above to validate scheduling

hierarchies, three simple assumptions must hold.

• The requirements of the applications are known and can be expressed in form of

guarantees.

• All schedulers that are used in a given hierarchy are implemented correctly and are

proved to provide the agreed outgoing guarantees under the condition that they

are given the necessary incoming guarantee.

• The scheduling scenario, i.e. the set of applications and associated guarantees, is

static.

The first two assumptions can be regarded as given. The validity of the third assumption

is not that obvious. In a normal operating systems the set of applications that has to be

scheduled by the system is frequently changing and cannot be foreseen. So, in order to

be able to regard a scheduling scenario as static Regehr differentiates between long-term

and short-term decisions. Short-term decisions are made by a scheduling algorithm in

millisecond-granularity to enforce its scheduling policy. They do not affect the scheduling

scenario. The fact which applications are running and which guarantees are provided

to them is considered as a long-term decision. A change to these long-term decisions

corresponds to a transition from one scheduling scenario to another one. In-between

two long-term decisions, a scheduling scenario can be regarded as static and thus, be

validated using Regehr’s Guarantee System.

10.4. Hierarchical Computed Dynamic Voltage Scaling

Decisions

So far, the basic approach and theoretical fundamentals of HS have been explained. Now

we have to show how HS can be utilized to compute a DVS decision.

The central advantage of HS in connection with our plan to implement a DVS algo-

rithm is the decomposition mentioned above, which decreases complexity. The goal is

to use the modularity of HS for the design of a DVS algorithm. The main idea is, that

the voltage scaling decisions are made locally by the schedulers in the hierarchy. In a

scheduling hierarchy each scheduler knows about its incoming and outgoing guarantees.

That is, it can perform a local DVS algorithm to decide the percentage of its incom-

ing guarantee that is actually needed. Naturally, a single scheduler cannot decide if it
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makes sense to change the CPU frequency of the overall system because in accordance

with the principle of modularization each scheduler has only access to a limited set of

information. Hence, the local scaling decisions made by the particular schedulers have

to be assembled to make up a global voltage scaling decision.

To assemble the global voltage scaling decision we have decided to transfer locally

computed scaling information to the parent scheduler so that they cumulate at the

root of the scheduling hierarchy in the end. If every local DVS algorithm considers

the DVS decisions of its child schedulers all local DVS decisions of a whole sub tree

are automatically assembled in the local DVS decision at the root of this sub tree.

Obviously the local DVS decision at the root of the hierarchy assembles all locally made

DVS decisions and can be used to adjust the frequency of the system accordingly.

10.5. Extensions to Regehr’s Theory of Guarantees

Although the correctness of the DVS decision that is computed by the hierarchical

algorithm described in the previous section seems to be obvious, some extensions have

to be made to the theory of guarantees proposed by Regehr in order to prove this

correctness.

As said in section 10.3 three assumptions must be validated, before Regehr’s theory

of guarantees can be used to judge about hierarchies. The third assumption, which says

that the hierarchy under examination has to be static, is affected by our hierarchical

DVS algorithm, because a consequence of our extension of hierarchical scheduling by a

DVS algorithm is a new dynamic component that is added to the scheduling system.

The DVS algorithm may modify a scheduling scenario at an arbitrary time by adjusting

the incoming guarantee of a scheduler to the current load. Hence, the assumption that

the scheduling scenario is static between two long-term decisions is violated.

In order to be able to use Regehr’s guarantee system to verify that the decisions made

by the DVS algorithm does not perish the guarantees the hierarchy is providing to the

scheduled tasks, this new dynamic component must be considered. In [Reg01] Regehr

mentioned the following three events as long-term decisions, which lead to a transition

between two scheduling scenarios:

• a process forks,

• a process exits and

• a process requests another guarantee.
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By defining the decisions that are computed by our hierarchical DVS algorithm as an

additionally long-term decisions, the dynamic changes to the scheduling hierarchy which

were introduced by our hierarchical DVS algorithm are reduced to a sequence of static

scheduling scenarios. This way, the decisions made by our algorithm can be proved as

correct if each of that static scheduling scenarios can be proved correct in the sense of

the guarantee system.

Thus, by this extension it becomes feasible to validate a hierarchical DVS scheduler

if the following assumption holds in addition to the prerequisites mentioned in section

10.3:

• the decisions made by the DVS algorithms are correct, so that the schedulers are

able to provide the agreed guarantees when they are given the adjusted incoming

guarantee.

10.6. Composing Valid Hierarchical DVS Algorithms

In order to acquire a valid hierarchical DVS algorithm some further restrictions regard-

ing the combination of the DVS algorithms used by the individual schedulers must be

considered while the scheduler hierarchy is composed. In this section we will explain

these additional restrictions and propose some rules to cope with them.

10.6.1. Reclamation of Returned Computation Time is Forbidden

A typical reservation based DVS algorithms tracks unused computation time and exploits

it to reduce the clock frequency of the processor. The algorithm always knows how

much work has to be done until a certain deadline so that the frequency can be set as

minimal as possible without violating the reservations that are provided to the tasks.

The outstanding work can be calculated from the reservations that are provided to the

tasks. Additionally, the tasks indicate when their work for the current period is done so

that the outstanding work up to the task’s deadline can be reduced by the portion of

the task’s reservation that has not been consumed.

The central assumption is, that a task will not expect any more computation time

within the actual period after it has signaled to the scheduler, that its work has been

done. So, if tasks hand back their remaining reservations because they have finished their

job prematurely, they must be aware that they cannot claim the released computation

time back, because the DVS algorithm may have consumed it by lowering the CPU

frequency. However, in a system that uses HS a scheduler can also schedule other
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schedulers which are running their own DVS algorithm. In this case a reservation is

handed back if the DVS algorithm of the child scheduler decides that it does not need

its full incoming guarantee at the moment. Just like a normal task, this DVS algorithm

has to be aware that it cannot claim the released computation time back within the

current reservation period. Unfortunatley, not every DVS algorithm complies with this

assumption.

Typical interval-based DVS algorithms for general purpose operating systems are able

to fulfill this requirement. Information about future needs of processes like deadlines or

periods is generally not available in a general purpose operating system. Thus, a DVS

algorithm cannot be based on slack time estimations like a real time DVS algorithm. To

adjust the clock frequency to the current load, DVS algorithms for general purpose op-

erating systems usually split up time into intervals and regard the utilization of the past

intervals as a prediction for the upcoming interval. If such a DVS algorithm becomes the

child of a real time DVS algorithm in a scheduling hierarchy, the length and positioning

of the intervals can be aligned to the internal reservation period of the parent scheduler.

The positioning can be done, for example, by making the parent scheduler send a signal

to the DVS algorithms of its children at the beginning of a period. This way, the requests

to adjust the incoming guarantee are made exclusively at the beginning of a period and

are not changed and particularly not incremented within a period.

But for example real time DVS algorithms require that the clock frequency can be

changed immediately and all the time. If such an algorithm runs as the child of a

reservation based DVS algorithm it may happen that it tries to increase its incoming

guarantee shortly after reducing it so that both events occure within the same scheduling

period. Therefore, it must be ensured that schedulers which have to change their needs

at an arbitrary time are given the ALL guarantee.2 The ALL guarantee ensures to its

receiver that it is scheduled immediately every time it wants to and is never interrupted.

A scheduler that provides the ALL guarantee (like for example a preemptive fixed priority

scheduler, which provides its incoming guarantee to the child with the highest priority

and therefore can forward the ALL guarantee) must ensure that the child that receives

the ALL guarantee is scheduled immediately every time it becomes runable. Hence, it

must not assign a period to that child. This allows the DVS alrogithm which is associated

with the scheduler that receives the ALL guarantee to change its DVS decision at any

arbritary time. Claiming the ALL guarantee for reservation based schedulers looks like

2Another guarantee that would allow its receiver to change its DVS at any arbitrary time is the RESU

guarantee. RESU stands for REServation Uniformly Slower Processor. That is, receiving the RESU

guarantee with a share of 50% is the same as receiving the ALL guarantee on a system that is only
half as fast.
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a hard restriction. But it is not that worse, because reservation based schedulers (like

for example the earliest deadline first scheduler) require the ALL guarantee as their

incoming guarantee anyway.

10.6.2. Adjusting Guarantees

Once a DVS decision has been calculated by a scheduler, it has to be transferd up to

the parent scheduler. Since the DVS decisions are calculated in percent of the incoming

guarantee we decided to hand up that value and let it up to the parent scheduler to adjust

the single parameters of the associated guarantee accordingly. So far, we assumed that

the adjustment of the guarantee is realized by the parent scheduler simply by adjusting

the amount of computing time that is provided within one period whereas the period

itself is not changed. This assumption is adequate, because all schedulers that provide a

meaningful guarantee (that is not the NULL guarantee) must maintain a period to keep

track of time and some sort of amount to ensure that their children are provided with

the promised guarantees. However, this assumption may be violated if rewrite rules are

used to convert incoming guarantees in order to fit the needs of a scheduler.

The adjustment of a converted guarantee is realized by an adjustment of the original

guarantee. The problem in doing so is that the time limit up to which the converted

guarantee provides a certain amount of computing time may depend on the amount of

computing time that is provided by the original guarantee. For example, the guarantees

RESCH x, y or RESCS x, y can be converted to the guarantee PSBE x
y
, x

y
(y−x). That

is, a reservation of x time units over a period of y time units can be interpreted as a

CPU share of size x
y
. The error term x

y
(y−x) denotes that for any time t the schedulable

receives at least st− δ = xt
y
− x

y
(y−x) units of computing time. Since it depends on the

amount of computing time x that is provied by the original guarantee, the error term

changes when the original guarantee is changed. The maximum of δ = y
4

is reached for

x = y
2

or s = 0.5. So, if a scheduler that is given the converted PSBE sg, δ guarantee

reduces its share from sg > se ≥ 1

2
to se the reserved computing time is decreased

from xg = ysg to xe = yse as expected but, in parallel, the bounded error increases to
xe

y
(y − xe) >

xg

y
(y − xg).

A way to circumvent this problem is to weaken the converted guarantee by setting

the bounded error to its maximum δmax although the actual value will be more than it

when the requested share is set to se 6= min(sg, 0.5).

δmax =

{

ysg − ys2
g if sg < 0.5

y
4

if sg ≥ 0.5
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This way, the bounded error stays constant when the reserved amount of computing

time xe is modified. However, in the case of sg > 0.5 ∧ se 6= 0.5 more computing time

than actually requested is reserved for the schedulable.

With some conversions the upper bound of the length of the period within which

the agreed computing time is provided is not as good as y
4

but practically useless. For

example, the guarantee PSBE s, δ can, for any y ≥ δ
s
, be converted into the guarantee

RESCS (ys − δ), y or RESBS (ys − δ), y. In this case, the length of the reservation

period y is inversely proportional to the reserved CPU share s and increases rapidly for

small values.

10.7. Validating the Assembled Dynamic Voltage Scaling

Decisions

As said in section 10.5, the computation of a DVS decision has to be defined as an

additional long-term decision in order to be able to judge about its validity. That is,

each DVS decision leads to a new scheduling scenario whose validity in terms of the

guarantees system has to be proved, before it is set into operation. Fortunately, this is

not a necessity in practise, as can be seen by the following argumentation.

A scheduler adjusts its incoming guarantee by adjusting the guarantee’s parameters,

i.e. the type of the guarantee is not modified. The parameters can be set at most to the

settings of the primary incoming guarantee, that is the adjusted guarantee cannot exceed

the primarily agreed one. Therefore, a parent scheduler is always able to provide the

adjusted guarantees to it children, because they are just relaxations of the primary agreed

one. Thus, it is sufficient to prove that a scheduler is able to provide the required outgoing

guarantees after its incoming guarantee has been adjusted to the current utilization.

However, the correctness of these DVS decisions of the individual schedulers follows

from the correctness of the implemented DVS algorithms and the assumption that the

restrictions mentioned in the previous section hold.

This way, the validity of the whole resulting scheduling hierarchy can be recursively

proved from the leafs to the root. Since the local DVS decision of the root scheduler is

equal to the global decision of the scheduling hierarchy, the new scheduling scenario is

valid and the calculated frequency will suffice to provide the guarantees required by the

schedulers and processes at the leafs.
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11. Our Implementation of a Hierarchical

Scheduling and Voltage Scaling

Framework

By Kai Moritz (kai.m.moritz@gmx.de) and Rene Zeglin (rene.zeglin@udo.edu)

11.1. The Scheduling Framework

11.1.1. Data Structures

The two basic data types of our framework are the scheduler and the schedulable struc-

tures. A scheduler distributes computing time among its children according to the

implemented scheduling policy. A child of a scheduler is a schedulable and represents

either a process or a scheduler since in HS both of them can be scheduled. Therefore,

processes as well as schedulers are each connected to a schedulable structure. When a

new process is forked or a scheduler is created an appropriate schedulable is constructed

and connected to the process or scheduler respectively. It is destroyed when a scheduler

or the task structure of a process is released.

The schedulable data structure (listing 11.1) stores the pointers sched and task to a

scheduler and a process. Since a schedulable represents either a process or a scheduler

one of the two pointers is a NULL-pointer. So that a process or scheduler is able to

receive computing time, the associated schedulable must be connected to a scheduler.

It is connected to exactly one scheduler which is called its parent scheduler and is refer-

enced by the parent pointer. Scheduler specific data of a schedulable, e.g. a list_head

structure that is queued in the runqueue of the parent scheduler, and parameters, e.g.

the priority in the case of a fixed-priority scheduler, are stored in the sched_data and

sched_param arrays. Although there are schedulers that do not use timeslices we de-

cided to integrate time_slice and first_time_slice into the schedulable structure for

reasons of simplicity. Instead of maintaining them in nearly all schedulers it is less costly

to assign this job to the framework. The pointer progname points to the absolute path
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of the executable in the file system if the schedulable represents a process. It determines

the scheduler the process will be connected to.

struct s chedu lab l e {
s ch edu l e r t ∗parent ;

unsigned int s t a tu s ;

unsigned int t im e s l i c e , f i r s t t i m e s l i c e ;

/∗ s chedu l e r s p e c i f i c data ∗/
int sched data [ SCHED DATA SIZE ] ;

/∗ s chedu l e r s p e c i f i c parameters ∗/
int sched param [SCHED PARAM SIZE ] ;

char ∗progname ;

s ch edu l e r t ∗ sched ;

t a s k t ∗ task ;

struct s chedu lab l e ∗next ;

struct s chedu lab l e ∗prev ;

} ;

Listing 11.1: Schedulable structure

The modifications of the process data structure consist only of an added pointer

this_schedulable to a schedulable and the removal of the timeslice elements that have

been moved to the schedulable data structure (listing 11.2).

struct t a s k s t r u c t {
. . .

#ifdef CONFIG SAADI

s ch edu l ab l e t ∗ t h i s s c h e du l a b l e ;

#endif

. . .

#ifndef CONFIG SAADI

unsigned int t im e s l i c e , f i r s t t i m e s l i c e ;

#endif

. . .
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}
Listing 11.2: Modifications of the process descriptor

A scheduler (listing 11.3) references its schedulable by the pointer this_schedulable,

just like a process. By means of the function interface which is described in 11.2 the

framework accesses the actual implementation of the scheduling algorithm. The rq_data

array stores scheduler specific data, e.g. the list_head of a runqueue. So that the frame-

work knows whether a scheduler is runnable or idle it maintains the number of runnable

schedulables in nr_running. By means of the ioctl-like system call saadi_schedctl()

a process can send messages to its scheduler. The system call is forwarded to the func-

tion schedctl(). In order that potential arguments can be copied from user-space to

kernel-space the size of the parameters is stored in the array schedctl_param_length.

struct s chedu l e r {
unsigned int id ;

char ∗name ;

h i e r a r c h y r o o t t ∗hr ;

struct l i s t h e a d s c h e d l i s t e n t r y ;

unsigned int f l a g s ;

/∗ number o f runnab le s c h e d u l a b l e s ∗/
int nr running ;

/∗ s chedu l e r s p e c i f i c f un c t i on s ∗/
l i n k t o f u n c t l i n k t o ;

un l i nk w i th f un c t un l ink w i th ;

l i n k f u n c t l i n k ;

un l i nk f un c t un l ink ;

j o i n f u n c t j o i n ;

l e a v e f u n c t l eave ;

s c h e du l e r t i c k f u n c t s c h e du l e r t i c k ;

d i s pa t ch f un c t d i spatch ;

y i e l d f u n c t y i e l d ;

d e s t r u c t o r f u n c t d e s t r u c t o r ;

s c h e d c t l f u n c t s ch ed c t l ;

s chedmsg func t schedmsg ;

s e t m i n f r e q f u n c t s e t m in f r e q ;

/∗ l e n g t h s o f s c h e d c t l parameters ∗/
long s chedc t l pa ram length [SCHEDCTL PARAM LENGTHS] ;
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/∗ s chedu l e r s p e c i f i c data ∗/
int rq data [RQ DATA SIZE ] ;

s ch edu l e r t ∗ c h i l d s ;

s c h edu l e r t ∗ s i b l i n g ;

s ch edu l ab l e t ∗ t h i s s c h e du l a b l e ;

} ;

Listing 11.3: Scheduler structure

The interrelationship between the three data structures is depicted in figure 11.1.

Figure 11.1.: Task, Scheduler and Schedulable Structures

The basic data structure in the Linux scheduler is the runqueue which maintains the

list of runnable processes. We replaced the runqueue structure by a hierarchy_root

structure (listing 11.4) that references the root scheduler root_sched of a hierarchy. By

defining the name of the runqueue structure in Linux as an alias for our structure many of

the macros and scheduling functions used in the official kernel, e.g. the code for runqueue

locking, could be used without any modifications. Therefore, the hierarchy root structure

includes, apart from the SAADI elements, all elements of the official runqueue structure

that may be accessed by the reused code. The pointer root_parent_dummy and the

frequency adjustment are described in 11.3. The last four elements store mappings (and

a reference to mappings) from processes or kernel threads to schedulers of the hierarchy.
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The mapping determines the scheduler to which a newly forked process or a process

thats begins executing a new executable is connected to (see 11.1.5).

struct h i e r a r chy r oo t {
/∗ g l o b a l s c h edu l i n g h i e rarchy l o c k ∗/
s p i n l o c k t l o ck ;

unsigned long nr running ;

unsigned long long n r sw i t ch e s ;

unsigned long expired t imestamp , n r un i n t e r r u p t i b l e ;

unsigned long long t ime s t amp l a s t t i c k ;

t a s k t ∗ curr , ∗ i d l e ;

struct mm struct ∗prev mm ;

atomic t n r i owa i t ;

s c h edu l e r t ∗ roo t s ched ;

s ch edu l e r t ∗ root parent dummy ;

struct f r e q a d j u s t s t r u c t ∗ f r e q a d j u s t ;

struct l i s t h e a d ∗ task mapping ;

struct saadi asm defau l t mapping ;

struct saadi asm kthread mapping ;

struct l i s t h e a d a l l s c h e d u l e r s ;

} ;

Listing 11.4: Hierarchy root structure

11.1.2. Selection of the next-to-run Process

When kernel code wants to sleep or a process is to be preempted another runnnable

process must be selected to run as its successor. To select the next-to-run process the

function schedule() in kernel/sched.c is called.

In Linux, the process on the runqueue with the highest priority is chosen whereas the

selection in HS depends on the scheduling decisions of the hierarchy schedulers.

Each scheduler in the hierarchy provides a dispatch function, which selects and returns

the schedulable object from the maintained ones that should be running next according

to the local scheduling policy. If the returned schedulable is connected to a scheduler,

the scheduler hierarchy is descended by one level and the referenced scheduler is queried
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to select a schedulable object. This process continues until a schedulable is returned

that is connected to a process which is finally allocated the CPU.

If the root scheduler returns a NULL pointer there is no runnable process and and the

idle task, which is always runnable, is dispatched to consume the superfluous computing

time.

It is not necessary to start the selection process at the root scheduler everytime. If

no change in the local scheduling situation of a scheduler has occurred, the previously

made decision is still valid. If the scheduler would be queried again, it would make the

same decision as before because the set of runnable processes has not changed. Since the

framework is notified by the hierarchy schedulers when a change in their local scheduling

situation takes place, the selection process can be started at the desired scheduler.

From the set of schedulers with modifications in the local scheduling situation the

upmost one belonging to the path from the current process to the root of the hierarchy

is selected. The selection process starts at the upmost scheduler because, in HS, the

decision of a superior scheduler precedes the decision of an inferior one.

The schedule() function can be called explicitly by kernel code to yield the CPU to

other processes. In addition to this, preemptive scheduling requires that it is also called

when a process runs out of timeslice or when a process with a higher priority than the

currently running one wakes up. Therefore, the need_resched flag can be set to signal a

necessary rescheduling to the kernel. The flag is checked upon returning from a system

call or interrupt handling and induces a rescheduling if it is set. In SAADI, the flag can

be set in saadi_join() (11.1.3), which is called when a process wakes up, and in the

scheduler_tick() functions of the schedulers (11.1.4), which are called in the course

of a timer interrupt.

11.1.3. Sleeping and Waking Up

Generally speaking, a process that waits for an event to occur sets its state from running

to sleeping and removes itself from the runqueue before the scheduler selects another

process to run. This way, the scheduler cannot select a process that does not want to

run. In Linux, a task structure is removed from the runqueue by calling deactivate().

We replaced this function by saadi_leave() which removes a schedulable from the

runqueue of its parent scheduler. If the last runnable schedulable of a scheduler is

removed from the runqueue the scheduler itself is not runnable any more and must be

removed from the runqueue of its parent to prevent it from being selected to run. There-

fore, the framework maintains the number of runnable schedulables for each scheduler.

If it reaches 0 the schedulable connected to the scheduler is removed from the runqueue

204



11. Our Implementation of a Hierarchical Scheduling and Voltage Scaling Framework

of the parent scheduler. This process continues until either a scheduler with further

runnable schedulables or the root scheduler is reached.

Waking up is done by the function try_to_wake_up() which sets the state of the

process to running and appends the process to the runqueue by calling activate(). If

the priority of the woken up process is higher than the priority of the currently running

one a rescheduling is necessary which is indicated by setting the need_resched flag.

Our framework replaces activate() by saadi_join() which enqueues a schedulable

to the runqueue of its parent scheduler. If the scheduler has been idle, i.e. there have not

been any runnable schedulables on its runqueue, it must be appended to the runqueue

of its own parent. This process continues until a scheduler is reached that is already

queued in the runqueue of its parent and terminates because the root scheduler is always

queued.

If the last scheduler of this process is currently running and the woken up schedulable

has a higher priority than the currently running one according to the local schedul-

ing policy, a rescheduling is necessary and the need_resched flag is set. So that the

rescheduling begins at this scheduler or above in the hierarchy the SAADI_NEED_RESCHED

flag is set in the state bitmap of the scheduler.

11.1.4. Aging Schedulables

By means of the system timer the Linux scheduler maintains statistics and activates a

rescheduling if a process runs out of timeslice. The system timer generates interrupts

at a fixed frequency which are handled by the timer interrupt handler.1 The interrupt

handler then calls scheduler_tick() to pass the event on to the scheduler.

As regards HS, each of the schedulers in the hierarchy may internally work with

timeslices or may be interested in the periodic signal for other reasons. Therefore, the

scheduler_tick() function of each scheduler on the path from the currently running

process to the root of the hierarchy is called in the course of a timer interrupt.

If a rescheduling is necessary according to the local scheduling policy, the affected

scheduler returns a certain constant. Thereupon, the need_resched flag is set and

the SAADI_NEED_RESCHED flag is set in the scheduler’s state to indicate a necessary

rescheduling.

1The frequency of the timer interrupt is defined differently from architecture to architecture. It is
usually 1000Hz or 100Hz.
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11.1.5. Fork, Exec and Exit

HS requires a mapping of applications or processes to the schedulers of the hierarchy. In

SAADI, this is realized by mapping absolute paths of program binaries to schedulers. A

mapping consists of the path of the program binary, the target scheduler and scheduling

parameters, like e.g. the priority of a process that is mapped to a scheduler using static

priorities. A newly forked process is mapped to the scheduler its parent is connected to,

since it executes the same executable as its parent. Furthermore, it is assigned the same

scheduling parameters as its parent process.

When a process starts to execute another program by calling the exec() system call, it

may be necessary to move the process from its current scheduler to the target scheduler

specified in the mapping of the new program binary. If a reassignment is necessary the

schedulable is disconnected from the current scheduler and connected to the new one

after the scheduling parameters have been updated.

An exiting process is disconnected from its parent scheduler.

Apart from user processes the scheduler maintains kernel threads. Kernel threads

are processes that do not execute user-space programs but exclusively kernel code and

do not leave the kernel-space. A special mapping assigns all kernel threads to a single

scheduler and stores their scheduling parameters.

11.1.6. System Call Interface

SAADI-aware processes can call scheduler specific functions and set or get the current

scheduling parameters by means of two system calls.

If the scheduler of a process implements the schedctl() function, a call to sys_saadi_schedctl()

is forwarded to this function after an optional argument has been copied from user- to

kernel-space. Multiple operations can be differentiated by the cmd parameter which also

determines the size of the parameter data structure.

Scheduling parameters can be updated by calling sys_saadi_sched_param(). If

scheduling parameters are updated, the schedulable is disconnected from its parent

scheduler (unlink) and re-connected (link) after the new scheduling parameters have

been set. If update is false the current parameters are returned.

asmlinkage long

s y s s a a d i s c h e d c t l ( int cmd , p i d t pid , u s e r void ∗data us )

asmlinkage long

sy s saad i s ched param ( int update , p i d t pid , u s e r void ∗
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sched param us )

Listing 11.5: SAADI System Call Interface

11.2. Scheduler Programming Interface

A scheduler that is to be integrated into the framework defines specific data structures

and implements a function interface. The scheduler can be compiled into the kernel

or as a loadable kernel module which can be dynamically inserted into the kernel and

removed as well when it is not needed any more. The appendix contains the listing of

an exemplary implementation of the programming interface.

11.2.1. Data Structures

A scheduler maintains global information and individual data for each of the connected

schedulables. Considering a priority scheduler, the global data would, for example, con-

sist of a priority array of linked lists and each of the maintained schedulables would be

assigned a list head for insertion into one of the lists. It showed to be advantageous,

to additionally define a parameter data structure, that stores individual parameters for

each schedulable. As regards the example, each schedulable would be assigned a prior-

ity as its scheduling parameter. This way, scheduling parameters may be dynamically

changed without touching the data structure which might contain scheduler internal data

that must not be modified. Thus, each scheduler defines three specific data structures

which store scheduler global data (rq_data) and data (sched_data) and parameters

(sched_param) of a single schedulable. These structures are embedded in the scheduler

and schedulable data structures.

11.2.2. Function Interface

After a scheduler has been created a constructor function is called to initialize the state

of the scheduler, register timers etc. Similarly, the finalize function is called to clean up,

e.g. by unregistering timers, before a scheduler is destroyed.

/∗ s chedu l e r cons t ruc to r ∗/
typedef void (∗ s c h e du l e r c o n s t r u c t t ) ( s ch edu l e r t ∗ sched ) ;

/∗ s chedu l e r d e s t r u c t o r ∗/
typedef void (∗ d e s t r u c t o r f u n c t ) ( s ch edu l e r t ∗ sched ) ;
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The following four functions handle connections and disconnections of schedulables to

the scheduler. link() is called, when a schedulable is to be connected to the scheduler.

While the parameters are set when a schedulable is being linked the scheduler has to

initialize the sched_data structure in the course of the function call. If applicable, a

schedulability test must be accomplished and the schedulable rejected, if accepting it

would overload the capacity of the scheduler. Whether the schedulable is accepted or

not is indicated by the return value of the function.

unlink() is called to disconnect a schedulable from its parent scheduler.

link_to() and unlink_with() are helper functions that are called when this sched-

uler is to be connected to a parent scheduler. They can contain specific actions necessary

in cases like the Join scheduler 2 but if there is no need for these functions default im-

plementations can be used which just call link() or unlink() where the actual work is

done.

/∗ cause a schedu l e r to l i n k to a parent−s chedu l e r ∗/
typedef int (∗ l i n k t o f u n c t ) ( s ch edu l e r t ∗ s e l f , s c h edu l e r t ∗

parent ) ;

/∗ cause a schedu l e r to un l ink from a parent−s chedu l e r ∗/
typedef void (∗ un l i nk w i th f un c t ) ( s ch edu l e r t ∗ s e l f , s c h edu l e r t ∗

parent ) ;

/∗
∗ a s c h edu l a b l e o b j e c t r e qu e s t s to be schedu l ed

∗ by g iven schedu ler , r e tu rns succe s s or f a i l u r e

∗/
typedef int (∗ l i n k f u n c t ) ( s ch edu l e r t ∗ sched , s ch edu l ab l e t ∗ s ) ;

/∗ a s c h edu l a b l e o b j e c t l e a v e s i t s parent s chedu l e r ∗/
typedef void (∗ un l i nk f un c t ) ( s ch edu l ab l e t ∗ s ) ;

The join() and leave() functions are called when a schedulable becomes runnable

or when it blocks waiting for an event, respectively. Blocked schedulable objects do not

take part in the competition for computing time and must be removed from the runqueue

so that they are not returned when the scheduler is queried for a schedulable to run.

In a preemptive scheduler, a woken up schedulable may invalidate a previously made

2A Join scheduler merges the computing time of multiple parents although a scheduler has actually
only a single parent. When a Join scheduler is linked to a scheduler it creates a helper scheduler and
connects it, as a proxy of itself, to the parent. Internally, the Join scheduler is connected to multiple
helper schedulers.
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scheduling decision. This happens if the schedulable has a higher priority than all other

runnable schedulables. By returning the constant SAADI_NEED_RESCHED the scheduler

can indicate that a change in its scheduling situation occurred so that the framework

will perform a rescheduling if it is necessary.

/∗ a s c h edu l a b l e o b j e c t j o i n s the runqueue o f i t s s chedu l e r ∗/
typedef int (∗ j o i n f u n c t ) ( s ch edu l ab l e t ∗ s ) ;

/∗ a s c h edu l a b l e o b j e c t l e a v e s the runqueue o f i t s s chedu l e r ∗/
typedef void (∗ l e a v e f u n c t ) ( s ch edu l ab l e t ∗ s ) ;

The dispatch() function is called when the scheduler is to select the runnable schedu-

lable from the maintained ones that is to run next. If there are no runnable schedulables

this is indicated by returning a NULL pointer.

/∗ d i s p a t c h next s c h edu l a b l e ∗/
typedef s ch edu l ab l e t ∗(∗ d i s pa t ch f un c t ) ( s ch edu l e r t ∗ sched ) ;

When the scheduler is currently running, i.e. it lies on the path from the currently

running process to the root of the hierarchy, the function scheduler_tick() is called

in the course of the timer interrupt. A preemptive scheduler can signal the necessity of

a rescheduling by returning the constant SAADI_NEED_RESCHED.

/∗ proce s s a schedu l e r t i c k ∗/
typedef int (∗ s c h e du l e r t i c k f u n c t ) ( s ch edu l ab l e t ∗ s ) ;

The task of the remaining functions is to receive and handle messages from processes

and other schedulers.

The sys_sched_yield() system call is a method for a process to voluntarily release

the CPU so that other processes get the chance to run. The system call is forwarded to

the yield() function of the process’s parent scheduler.

Scheduler specific messages can be sent using the saadi_schedctl() system call which

copies a potential argument from user- to kernel-space and forwards the request to the

schedctl() function of the parent scheduler of the process.

Messages between schedulers are exchanged by calling the schedmsg() function of

the recipient, whereby there is a special purpose function for exchanging DVS related

information. When the DVS algorithm of a scheduler detects that it needs to adjust

the portion of its incoming guarantee it communicates the required value to the parent

scheduler by means of set_minfreq().

Messages to processes are sent using the asynchronous signal mechanism.

/∗ y i e l d func t i on ∗/
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typedef void (∗ y i e l d f u n c t ) ( s ch edu l ab l e t ∗ s ) ;

/∗ s chedu l e r c on t r o l ∗/
typedef void (∗ s c h e d c t l f u n c t ) ( int cmd , s ch edu l ab l e t ∗ s ,

u s e r void ∗data ) ;

/∗ s chedu l e r messages ( h i e rarchy i n t e r n a l ) ∗/
typedef void (∗ schedmsg func t ) ( s ch edu l e r t ∗ sender ,

s ch edu l e r t ∗ r e c e i v e r , int msg ,

void ∗data ) ;

typedef void (∗ s e t m i n f r e q f u n c t ) ( s ch edu l e r t ∗ ch i ld , unsigned int

p) ;

11.3. Implementation Details

The scheduler hierarchy can be modified at runtime by registering hierarchies with the

framework. Each hierarchy (and an associated mapping of processes to schedulers)

is registered under a unique name and the active hierarchy can be chosen by writing

the name of a hierarchy into a file3 in the virtual proc-file system. Hierarchies can

be compiled into the kernel or loaded at runtime. Since a hierarchy depends on its

schedulers, the corresponding modules must be compiled or loaded into the kernel before

the hierarchy.

We make use of CPUFreq to set the clock frequency of the processor. CPUFreq is

a modular driver which provides a standard architecture independent way to set the

clock frequency of the CPUs in the system[Bro]. The actual frequency transition is

done by architecture drivers which are available for a variety of platforms. Requests

for frequency changes are accepted by so called governors which forward the requests

to the CPUFreq core according to an implemented policy. We created a governor as an

interface between the scheduler and CPUFreq which just forwards our requests to the

CPUFreq core. Implementation details of our governor are described in [PGb].

As a consequence of the decision to use CPUFreq for frequency scaling the hDVS

scheduler is applicable on every platform with an existing CPUFreq architecture driver.

CPUFreq has been designed to be called in process context, because the relevant

functions may sleep. Therefore, we created a kernel thread that is woken up using

a wait queue when a change of the clock frequency is required and accomplishes the

3/proc/hs/active
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requests by means of our governor. A work queue could not be used in this case because

of serialization reasons. The DVS decisions that activate a frequency transition are made

in interrupt context while the scheduler spinlock is held and the ordinary code path to

wake up a process would occupy this lock a second time. The wait queue mechanism

allows setting a customized wake up function which circumvents the problem. 4

So that the required frequency adjustments are made as soon as possible the kernel

thread has a higher priority than all other processes. It is scheduled by a dummy

scheduler doing fixed priority scheduling that is also the parent of the root scheduler

of the hierarchy. The kernel thread has a higher priority than the root scheduler and

preempts the hierarchy whenever it is unblocked. This does not affect the ALL guarantee

that is provided to the root scheduler because the computing time consumed by the

thread can be equated with the stolen time of hardware interrupts.

11.4. Pitfalls

It is not clear how long the frequency transitions take on different architectures. Since

the DVS algorithm might change the clock frequency very frequently it may be necessary

to defer and combine multiple requests for lower frequency stages. Requests for higher

frequencies cannot be buffered without affecting the correctness of the decisions made

by the DVS algorithms.

The definition of a scheduler hierarchy requires the definition of rules describing to

which scheduler an application should be connected. In addition, it may be necessary

to set some scheduler specific parameters, e.g. a priority level. At the moment, the

mapping between applications and schedulers depends exclusively on the path of the

application in the file system and is applied when a process calls the exec() system

call to execute another program. When a process forks a child by means of fork()

the schedulable of the new process is connected to the scheduler of the parent process

because both processes execute the same program. Both the parent and the child are

each connected to the scheduler with the parameters defined in the mapping.

This is a pitfall because forking a new process might result in an invalid scheduling

situation because of overload. A solution to this problem would be to share the appli-

cation guarantee between the parent process and its children either by assigning each

process a part of the guarantee or by inserting a scheduler that distributes it among the

processes.

4Although the work queue implementation is based on wait queues, the programming interface does
not permit setting a customized wake up function.
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12. Testing

By Kai Moritz (kai.m.moritz@gmx.de) and Rene Zeglin (rene.zeglin@udo.edu)

12.1. Introductory Considerations

It is difficult to compare a system based on hierarchical scheduling to other systems

because the scheduling behavior of such a system depends on the actual composition of

the scheduling hierarchy. A normal general purpose operating system has a fix scheduling

policy, which must be designed to do its best in common cases while trying not to be

to bad in special situations. Using HS, the system can easily be equipped with a new

special hierarchy for every scenario it is deployed in. Since scheduling requirements

may be contradictory there is no optimal hierarchy and the hierarchy will always be

customized to the actual scenario. Thus, comparing the scheduling behavior of a system

based on HS is tricky, because it can have thousand different faces.

We decided to take one fix scheduling hierarchy for testing and compare the be-

havior of this hierarchy to the behavior of an unmodified Linux kernel under varying

load situations. To be fair, each program that requires soft real time abilities calls

sched_setscheduler() when running on the unmodified Linux kernel to acquire the

special real time scheduling priority this kernel offers. To achieve comparable results the

testing environment was designed to be able to simulate the chosen scheduling scenarios

in a reproducible manner. This way the SAADI/Linux kernel and the unmodified Linux

kernel can be confronted with exactly the same load situation.

To measure the performance of our kernel level DVS algorithm the powernowd dae-

mon is run on the unmodified Linux kernel and the power savings of both systems are

compared. We chose powernowd because its DVS decision depends only on the CPU

load. That is, it behaves in a similar fashion to the DVS algorithms we implemented for

our time-sharing schedulers and thus, the results should be fairly comparable. Other fre-

quency scaling daemons consider additional information like battery status, AC status,

temperature, fan status, etc. in their DVS decisions, what might mess up the results.

For more details see [pow].
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Figure 12.1.: Scheduling hierarchy used for testing

12.1.1. The Testing Scenarios

To show the usefulness of hierarchical scheduling and voltage scaling and to test our

implementation we designed a set of scheduling scenarios which make typical demands

on the scheduling policy. Each scenario runs for 60 seconds and each simulation consists

of 10 test runs. The presented results are the average values of these 10 runs.

12.1.2. The Scheduling Hierarchy Used for Testing

The hierarchy used for testing was designed to cope with common everyday scheduling

situations. In addition, it provides some extra features that a normal general-purpose

scheduler cannot offer. It supports periodic soft real-time tasks, which require a certain

amount of computing time in a specified time period. In contrast to the Linux scheduler

the hierarchy preempts soft real-time tasks when the agreed timeslice of a period has

been consumed. This way, the CPU cannot be monopolized and starvation is prevented.

Furthermore, the hierarchy provides a first-in-first-out (FIFO) queue for batch jobs.

The hierarchy is shown in figure 12.1. A fixed-priority (FP) scheduler plays the role

of the root-scheduler. It schedules an earliest-deadline-first (EDF) scheduler with high-

est priority. Hence, soft real-time schedulables are always guaranteed to receive the

reserved CPU-time. The FP scheduler also schedules two join (J) schedulers. These two

schedulers are also fed by the EDF scheduler with a small CPU-reservation to prevent

starvation. The join scheduler that is scheduled with priority 2 schedules a round-robin

(RR) scheduler. The RR scheduler is the default scheduler all normal tasks are mapped

to. The join scheduler that is scheduled with the lowest priority by the FP scheduler
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schedules the first-in-first-out (FIFO) scheduler batch processes are mapped to.

12.2. Our Framework for Testing and Evaluating

To be able to test our scheduling system under various load situations in a reproducible

manner we created a testing environment. It consists of a set of test-programs that

run on the target machine and simulate certain categories of programs and a controller

program that runs on a second machine. The controller program starts the test-programs

over a TCP/IP network connection and stores the acquired results in a database. In

addition to these results, kernel events, like for example the forking of a new process,

that have been traced by the mLTT on the target machine can also be recorded.1 The

collected data can be analyzed later by scripts that read the results and sampled events

from the database. Different load situations can be simulated in a reproducible manner

by using so-called scenario files. A scenario file defines which of the test-programs are

started at what time and with which options. A simulation runs for a specified duration

of time and may consist of multiple identical runs.

12.2.1. Implemented Test-Programs

In literature generally three basic program-classes are distinguished: interactive pro-

grams, batch-jobs and (soft) real-time processes. We have implemented a test-programs

for each of these categories.

Simulating Interactive Programs (iclient and iserver)

Simulating interactive programs is the most tricky part since we have to generate events

that make the tested system think a real user is interacting with it. Modern operating

systems apply heuristics to judge if a given program is interactive and I/O-bound or

CPU-bound. The most common rule is that an interactive program spends most of the

time waiting for user input.

For example for every typed character the hardware generates an interrupt to inform

the operating system about this new event. The operating system receives the typed

character on behalf of the program waiting for input and than wakes it up. The program

does whatever computations it wants to do with the new input and than goes back to

sleep waiting for more input. Interactive programs are expected to have only little work

to do, so they will fall asleep again very soon. For example a text editor will decide

1The mLTT is a device driver that samples kernel events and makes them available to a reading process.
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whether it has to echo the character to the display or not and than will wait for more

characters. Furthermore the breaks between single user inputs are long periods in terms

of computation time. Even the latency between two characters typed is a long time for

modern computers. Hence the rule that an interactive program will sleep most of the

time and generate a lot of interrupts compared to the amount of computation time it

needs.

To simulate the interactivity we have built a server-client application that mimics the

behavior of a user typing commands in a shell and reading the results. It consists of two

programs: the iserver that simulates the shell running on the tested system and the

iclient that is running on the second machine and simulates a remotely logged in user.

iserver On the test-candidate a small server-program called iserver is running that

just echoes the characters, which it reads, back to the sending machine after doing some

computations in busy-loops. If this program reads a newline character it will execute a

larger number of busy-loops after the newline character has been sent back and send an

additional special character (the prompt). This is done to simulate the execution of a

small program.

iclient On the second machine a program called iclient is executed. This program

connects to the iserver and writes single characters with an adjustable random latency.

To measure the responsiveness of the test-candidate it tracks down how much time

the remote machine needs to echo the characters. Additionally it will stop writing

new characters if it has not received any echo after writing an adjustable number of

characters and record to its output that it has to interrupt writing because of a lack of

responsiveness. Finally it will start the simulation of a command-execution after writing

a limited random number of characters by sending a newline character to the iserver.

It than will measure how much time the simulation of the command-execution takes by

waiting for the prompt to be sent back. When it receives the prompt-character it will

fall asleep for a limited random time to simulate the reading of the command-output by

the user.

In the final version of our testing environment the functionality of the iclient has been

integrated into one single program that starts up all the tests on the target machine.

This way, no details will be lost, because the evaluated data is received and inserted into

the database in raw form instead of a summarized statistic.
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Simulating Batch-Jobs

To simulate a batch-job we have written a simple program that just computes CPU-

intensive busy-loops for a certain duration of time and than outputs the time it took to

do that.

Simulating Soft Real-Time Processes (srt)

The srt program tries to mimic the behavior of a common multimedia application

which belongs to the class of soft real-time processes. This type of application has to do

a certain amount of computations each period before a critical deadline is reached. For

example a mp3-player has to decode the next frame of audio data before it has to be sent

to the audio-controller or a video-player application has to decode the next video-frame.

If these applications miss their deadlines, they have to throw away the done work and

start over with the work scheduled for the next period. Obviously, it is desirable that

they miss as little deadlines as possible, but if a deadline is missed the system can go on

doing its work.

srt takes a period, an amount and a number of iterations as arguments and tests

whether it is able to busy-loop the given amount of time each period. The program

can be run in vanilla or a SAADI-aware mode. If it is run in vanilla mode, it tries to

use the soft real-time abilities of a normal Linux kernel which are only available if the

program runs with root-privileges. In order to be signaled the beginning of a period it

sets up a periodic timer. The option --SAADI runs srt in SAADI mode and it expects

to be mapped to the EDF scheduler. By means of the sched_param() system call the

program claims the given period and amount as its reservation. The EDF scheduler

supports sending a signal at the beginning of a period so that it is not necessary to set

up a periodic timer.2

In each period the program busy-loops for the given amount of time. If it finishes the

computation before the end of the period it records a successful iteration and goes asleep.

In vanilla mode this is done by calling a sleep function so that the process sleeps until it

is woken up again by the periodic signal. In SAADI mode the EDF scheduler is signaled

that the process has finished its computation for the current period so that it will not be

scheduled until the begin of the next period. If srt is interrupted while busy-looping it

records the number of loops that could not be done and restarts its computation trying

to reach the next deadline.

2A periodic timer that is not in time with the scheduler internal one would make no sense anyway: The
EDF scheduler provides a RESBH guarantee, i.e. the scheduler prescribes the tact of the periods in
which the agreed amount of computing time is provided. For details we refer to [Reg01]
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After the given number of iterations has been done or when the program is terminated

it prints for each period whether the deadline has been reached or not. In addition to

this the number busy-loops that could not be done in due time is printed, too.

Further Test-Programs

For proving the privilege separation provided by the SAADI-Framework we wrote a sim-

ple program called hungry, that eats up all CPU time for a certain while. If this program

is run under a normal Linux kernel it sets its scheduling priority to RT_PRIORITY. If the

program is run in the SAADI-Framework it claims a certain period and amount.

Notes

The batch and srt programs have to be calibrated for exactly the computer architecture

and kernel version it will run on to get correct results. This is necessary because it counts

the amount of work to do in busy-loops and since the computation time of one busy loop

is dependent on the performance of the computer and kernel a correct conversion factor

between busy-loops and time has to be computed.

12.3. Testing Results

In the first four scheduling scenarios SAADI uses the hierarchy shown in figure 12.1

and an alternative version of it. In the simulations called SAADI/1 the SFP-scheduler

is used as root-scheduler instead of the FP-scheduler. The SFP-scheduler is a simple

FP-scheduler, which considers only the needs of the child with the highest priority in

its DVS decision. In other words, only the child-scheduler with the highest priority (the

EDF-scheduler) can force the root-scheduler to raise the CPU-frequency.

In the test runs called SAADI/2 the FP-scheduler is used as root scheduler which

additionally considers the needs of the RR scheduler in its DVS decision. This means

that the CPU-frequency is also increased when the load of the RR scheduler exceeds

a certain threshold. However, the load of the FIFO scheduler is not considered in the

DVS decision. The intention behind this is that most people probably accept longer

turnaround-times of the batch processes if this leads to less energy consumption.

12.3.1. Load Variation

In this scenario two iclients and a soft real-time process with an amount of 10ms and

a period of 100ms are running for the whole time. At the 10th, 20th, 30th and 40th
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second 6 further iclients and 4 batch processes are started simulating a peak load. The

iclients run for 5 seconds and each of the batch processes works for 1 second.
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Figure 12.2.: Average turnaround-times of batch processes
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Figure 12.3.: Distribution of non-idle cycles
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SAADI/1 SAADI/2 Linux SAADI (100%) Linux (100%)

non-idle 1.2 GHz 100 74.08 12.54 0 0

cycles(%) 2.2 GHz 0 25.92 87.46 100 100

response min 0.23 0.15 0.15 0.01 0.14

time(ms) max 105.95 422.80 132.80 66.92 81.53

avg 2.64 1.83 1.61 1.13 1.05

turnaround avg 6.94 5.11 4.26 2.62 4.04

time(s)

missed # 0 0 0 0 0

deadlines % 0 0 0 0 0

loops todo % 0 0 0 0 0

Table 12.1.: Results

The disadvantage of the low frequency used in SAADI are longer average response and

turnaround-times. Compared to the results determined with Linux, they are not as bad

as might be expected comparing the frequency pie-charts. Regarding the turnaround-

times, the reason is that SAADI schedules batch processes first-in-first-out instead of

round-robin. This also explains the low turnaround-times of SAADI without DVS. The

response times of Linux are increased by the soft real-time task which is always preferred

to interactive and batch processes.

12.3.2. Interactive and Batch Processes

In this scenario two iclients run for the whole time. At the 10th second 10 batch processes

are started. Each of these batch processes works for 4 seconds.
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Figure 12.4.: Response times of interactive processes
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Figure 12.5.: Average turnaround-times of batch processes
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Figure 12.6.: Distribution of non-idle cycles

SAADI/1 SAADI/2 Linux SAADI (100%) Linux (100%)

non-idle 1.2 GHz 100 100 6.21 0 0

cycles(%) 2.2 GHz 0 0 93.79 100 100

response min 0.03 0.23 0.03 0.17 0.17

time(ms) max 46.59 24.08 51.93 29.10 33.08

avg 0.61 0.59 0.32 0.58 0.26

turnaround avg 42.00 41.94 41.14 22.26 39.99

time(s)

Table 12.2.: Results

The disadvantage for the low frequency used in SAADI are worse response times of

the interactive processes. Again, the scenario shows the advantage of a FIFO-scheduler

for batch processes. The average turnaround-times are nearly identical.
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12.3.3. Real-time Process and an Increasing Interactive Load

In this scenario a soft real-time process with a period of 100ms and an amount of 20ms

runs for the whole time. At each 5th second an iclient is started that runs till the end of

the test run. In addition, a further iclient is started at the 45th, 50th and 55th second.
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Figure 12.7.: Response times of interactive processes
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Figure 12.8.: Distribution of non-idle cycles

SAADI/1 SAADI/2 Linux SAADI (100%) Linux (100%)

non-idle 1.2 GHz 100 70.21 74.51 0 0

cycles(%) 2.2 GHz 0 29.79 25.49 100 100

response min 0.23 0.15 0.14 0.14 0.14

time(ms) max 257.50 69.77 54.18 91.49 62.99

avg 5.00 2.76 5.30 1.61 2.36

missed # 0 0 0 0 0

deadlines % 0 0 0 0 0

loops todo % 0 0 0 0 0

Table 12.3.: Results
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This scenario shows the advantage of load isolation. The Linux scheduler allows real-

time processes to monopolize the CPU which leads to increased response-times or even

starvation of the time-sharing processes. The scheduling hierarchy prevents this by

reserving a small amount of computing time (in an appropriate period of time) for the

RR and FIFO schedulers.

12.3.4. Interactive Processes and an Increasing Real-Time Load

In this scenario two iclients run for the whole time. At the 10th second a soft real-time

process with a period of 100ms and an amount of 10ms is started. At the 20th second

another real-time process with a period of 100ms and an amount of 50ms is started that

runs for 30 seconds. At the 30th second a third real-time process with a period of 120ms

and an amount of 10ms is started. The first and the third real-time process run till the

end of the test-run.
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Figure 12.9.: Response times of interactive processes
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Figure 12.10.: Distribution of non-idle cycles
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SAADI/1 SAADI/2 Linux SAADI (100%) Linux (100%)

non-idle 1.2 GHz 16.38 14.82 89.86 0 0

cycles(%) 2.2 GHz 83.62 85.18 10.14 100 100

response min 0.17 0.15 0.17 0.17 0.14

time(ms) max 81.22 67.40 4292.34 74.38 62.99

avg 1.69 1.51 65.03 1.15 2.36

missed # 0.30 0 269.40 0 0

deadlines % 0.03 0 30.79 0 0

loops todo % 1.72 0 21.13 0 0

Table 12.4.: Results

This scenario shows the advantage of task-based voltage scaling, as done by the EDF-

scheduler, over an interval-based approach that is used by the cpufreq user-space daemon.

An interval-based DVS algorithm cannot guarantee the meeting of deadlines because the

reaction to an increased load may take some time. As in the last scenario, the lacking

load isolation of the Linux scheduler leads to conspicuously increased response times

of the interactive processes. After the second srt-process has been started the CPU

is completely occupied by the real-time processes until the cpufreq user-space daemon

reacts to the increased load and switches to the high CPU-frequency.
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12.3.5. Real-Time and Interactive Programs and an Increasing Batch-Load

In this scenario one real-time process with a period of 100 and an amount of 15 and

two iclients are running the whole time. At the 5th, 15th 25th, 35th and 45th second

additionally batch-jobs are started. Each of these batch-jobs has work for 12 seconds.

In this and the following scenarios SAADI uses the default-hierarchy shown in figure

12.1. In the simulations marked as SAADI 1 the FP-scheduler used as root-scheduler

accounts for the requirements of all its child-schedulers in its DVS-Algorithm. The

amount of the needs of the RR- and the FIFO-scheduler which is considered in the

DVS decision of the FP-scheduler is limited. But under heavy load the FP-scheduler

can be forced to raise the CPU-frequency by the RR- and the FIFO-scheduler. In the

simulations marked as SAADI 2 the SFP-scheduler is used as root-scheduler. The SFP-

scheduler is a simple FP-scheduler, which considers only the needs of the child with

the highest priority in its DVS decision. In other words, only the child-scheduler with

the highest priority (the EDF-scheduler) can force the root-scheduler to raise the CPU-

frequency.

Linux SAADI 1 SAADI 2

2.2GHz (98.3%)

1.2GHz (1.7%)

2.2GHz (73.4%)

1.2GHz (26.6%)

1.2GHz (100.0%)

Figure 12.11.: Distribution of Non-Idle Cycles

min. max avg.

Linux 0.04 ms 50.78 ms 0.88 ms

SAADI 1 0.11 ms 33.87 ms 0.51 ms

SAADI 2 0.15 ms 44.90 ms 0.76 ms

Linux 100% 0.17 ms 28.12 ms 0.80 ms

SAADI 100% 0.06 ms 25.75 ms 0.43 ms

Figure 12.12.: Response Times
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batchjobs

delay work Linux SAADI 1 SAADI 2 Linux 100% SAADI 100%

5 s 12 s 15.66 s 21.20 s 23.33 s 14.36 s 12.27 s

15 s 12 s 21.58 s 26.78 s 96.26% 19.46 s 14.54 s

25 s 12 s 32.53 s 31.36 s 0.01% 30.88 s 19.04 s

35 s 12 s 71.17% 24.25% 0.01% 74.40% 23.51 s

45 s 12 s 38.60% 0.00% 0.01% 40.39% 9.31%

avg. time 23.26 s 26.45 s 23.33 s 21.57 s 17.34 s

unfinished 40.00 % 40.00 % 80.00 % 40.00 % 20.00 %

Figure 12.13.: Turnaround Times for Batchjobs

• Neither Linux nor SAADI has missed any deadlines.

As can be seen in table 12.14 the price for the low frequency used in SAADI 2 is that

less batchjobs can be done in the same time. But SAADI 1 gets the same number of

batchjobs done as Linux although it is running more time at lower frequency. This effect

comes from the FIFO-Scheduler that is used for the batchjobs. Running at full CPU-

Power SAADI outperforms Linux, because of its FIFO-scheduling for the batchjobs. It

is remarkable, that the delays are a little bit better with SAADI than with Linux. We

suppose that the reason for this is the real-time process which is always preferred over

the iclients when running on the unmodified Linux.

12.3.6. Real-Time and Interactive Programs and Peak Batch-Load

In this scenario one real-time process with period 100 and amount 10 is running. Two

iclient are running for the whole time. At the 15th second 8 batchjobs are started. Each

of these batchjobs has work for 2 seconds.
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Linux SAADI 1 SAADI 2

2.2GHz (77.9%)

1.2GHz (22.1%)

2.2GHz (67.1%)

1.2GHz (32.9%)

2.2GHz (66.7%)

1.2GHz (33.3%)

Figure 12.14.: Distribution of Non-Idle Cycles

min. max avg.

Linux 0.19 ms 26.61 ms 1.63 ms

SAADI 1 0.17 ms 33.41 ms 0.67 ms

SAADI 2 0.11 ms 24.53 ms 0.68 ms

Linux 100% 0.15 ms 17.13 ms 0.84 ms

SAADI 100% 0.06 ms 42.66 ms 0.53 ms

Figure 12.15.: Response Times

batchjobs

delay work Linux SAADI 1 SAADI 2 Linux 100% SAADI 100%

15 s 2 s 19.23 s 6.01 s 6.44 s 17.86 s 3.68 s

15 s 2 s 19.21 s 6.69 s 6.80 s 17.79 s 5.69 s

15 s 2 s 19.21 s 9.24 s 9.33 s 17.86 s 5.01 s

15 s 2 s 19.08 s 11.31 s 12.32 s 17.92 s 9.51 s

15 s 2 s 19.14 s 13.60 s 13.89 s 17.83 s 11.57 s

15 s 2 s 19.16 s 16.78 s 15.30 s 17.90 s 12.70 s

15 s 2 s 19.14 s 18.15 s 18.25 s 17.83 s 15.67 s

15 s 2 s 19.20 s 20.70 s 20.78 s 17.76 s 17.95 s

avg. time 19.17 s 12.81 s 12.89 s 17.85 s 10.22 s

unfinished 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

Figure 12.16.: Turnaround Times for Batchjobs
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• Neither Linux nor SAADI has missed any deadlines.

As can be seen in table 12.17 SAADI again outperforms Linux because it schedules its

batchjobs first-in-first-out. The time the system spends on the lower frequency does not

differ much between the simulations, because most of the time there is nearly nothing

to do. Nevertheless SAADI 1 and 2 spend a little more time on the lower frequency.

The user-space daemon which dose the voltage scaling on Linux cannot react as fast,

because of its interval-based DVS-algorithm. Again the delays are a little bit better with

SAADI, because a real-time process is running.

12.3.7. Interactive Programs and Increasing Batch-Load

In this scenario two iclients are running the whole time. Every 5 seconds a new batch-job

with work for 10 seconds is started until 10 batchjobs were started.

Linux SAADI 1 SAADI 2

2.2GHz (98.8%)

1.2GHz (1.2%)
2.2GHz (23.6%)

1.2GHz (76.4%)

2.2GHz (23.7%)

1.2GHz (76.3%)

Figure 12.17.: Distribution of non-idle cycles

min. max avg.

Linux 0.17 ms 11.84 ms 0.27 ms

SAADI 1 0.18 ms 16.32 ms 0.46 ms

SAADI 2 0.19 ms 25.76 ms 0.47 ms

Linux 100% 0.16 ms 21.70 ms 0.28 ms

SAADI 100% 0.09 ms 18.43 ms 0.34 ms

Figure 12.18.: Response Times
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batchjobs

delay work Linux SAADI 1 SAADI 2 Linux 100% SAADI 100%

0 s 10 s 22.49 s 17.53 s 17.45 s 19.72 s 10.26 s

5 s 10 s 44.82 s 29.71 s 29.62 s 43.80 s 15.42 s

10 s 10 s 88.40% 41.96 s 41.93 s 89.71% 20.67 s

15 s 10 s 72.45% 45.39% 45.67% 74.02% 25.88 s

20 s 10 s 59.98% 0.00% 0.02% 61.19% 31.13 s

25 s 10 s 49.01% 0.00% 0.02% 49.37% 77.19%

30 s 10 s 39.79% 0.02% 0.00% 40.03% 8.73%

35 s 10 s 32.18% 0.02% 0.02% 32.12% 0.04%

40 s 10 s 25.13% 0.02% 0.01% 25.64% 0.02%

45 s 10 s 19.64% 0.02% 0.02% 19.77% 0.03%

avg. time 33.66 s 29.73 s 29.67 s 31.76 s 20.67 s

unfinished 80.00 % 70.00 % 70.00 % 80.00 % 50.00 %

Figure 12.19.: Turnaround Times for Batchjobs

As can be seen in table 12.20 SAADI again gets more batchjobs done in the same

time as Linux although it is running remarkable more time on the lower frequency. In

this scenario the delays are better with Linux because no real-time prevents the Linux-

Scheduler from choosing the interactive programs.

12.3.8. Interactive Programs and Heavy Batch-Load

In this scenario two iclients are running the whole time. Each second a new batch-job

with work for 10 seconds is started until 10 batchjobs are running.

228



12. Testing

Linux SAADI 1 SAADI 2

2.2GHz (98.6%)

1.2GHz (1.4%)
2.2GHz (24.3%)

1.2GHz (75.7%)

1.2GHz (100.0%)

Figure 12.20.: Distribution of non-idle cycles

min. max avg.

Linux 0.15 ms 9.95 ms 0.28 ms

SAADI 1 0.12 ms 17.01 ms 0.53 ms

SAADI 2 0.13 ms 21.87 ms 0.57 ms

Linux 100% 0.16 ms 28.04 ms 0.28 ms

SAADI 100% 0.14 ms 16.55 ms 0.36 ms

Figure 12.21.: Response Times
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batchjobs

delay work Linux SAADI 1 SAADI 2 Linux 100% SAADI 100%

1 s 10 s 69.08% 17.32 s 19.60 s 74.35% 10.35 s

2 s 10 s 64.39% 33.45 s 38.19 s 65.80% 19.47 s

3 s 10 s 61.78% 49.83 s 9/10

56.48 s

98.95%

61.69% 28.71 s

4 s 10 s 59.49% 40.91% 1.82% 59.21% 37.94 s

5 s 10 s 57.00% 0.00% 0.00% 56.89% 47.15 s

6 s 10 s 55.21% 0.01% 0.00% 55.27% 75.78%

7 s 10 s 53.88% 0.02% 0.01% 53.73% 0.00%

8 s 10 s 52.59% 0.02% 0.00% 52.43% 0.00%

9 s 10 s 51.77% 0.02% 0.02% 51.66% 0.03%

10 s 10 s 50.51% 0.02% 0.02% 50.84% 0.02%

avg. time 0.00 s 33.53 s 37.46 s 0.00 s 28.72 s

unfinished 100.00 % 70.00 % 71.00 % 100.00 % 50.00 %

Figure 12.22.: Turnaround Times for Batchjobs

This scenario again shows the advantages of the possibility to schedule batchjobs

first-in-first-out.

12.3.9. A Hungry Real-Time Process

In this scenario a real-time process with period 512 and amount 62 is running. Two

iclients are running the whole time. In the 5th, 10th, 15th, 20th, and 25th second new

batchjobs each with work for 6 seconds are started. Additionally a hungry real-time

process with work for 45 seconds is started in the 15th second. This process eats up all

processing time it gets until it has done as much work as if it was working alone with the

whole CPU-Power for 45 seconds. On the unmodified Linux-Kernel the hungry process

is mapped like a real-time process. The idea is, to show Linux is not able to provide

load-isolation for real-time processes.
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Linux SAADI 1 SAADI 2

2.2GHz (97.4%)

1.2GHz (2.6%)

2.2GHz (94.5%)

1.2GHz (5.5%)

1.2GHz (100.0%)

Figure 12.23.: Distribution of non-idle cycles

min. max avg.

Linux 0.19 ms 4255.38 ms 57.35 ms

SAADI 1 0.17 ms 53.87 ms 0.61 ms

SAADI 2 0.16 ms 62.21 ms 1.38 ms

Linux 100% 0.14 ms 4204.13 ms 56.21 ms

SAADI 100% 0.09 ms 66.12 ms 0.52 ms

Figure 12.24.: Response Times

The response times shown in table 12.25 are not sufficient to show how the normal

Linux-Kernel is blocked during the execution of the hungry real-time process because no

responses are made during that time at all. Because of that, the iclients observe if they

type more than three characters without receiving any response. In this case they stop

typing and wait for the next echo. Just like a real user who stops typing commands if

he cannot see them on the screen. Table 12.26 shows the results.3

3In all other scenarios are no wait times at all, thus that results are only shown for this scenario.
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iclient

1 2

Linux 39.11 s 34.97 s

SAADI 1 0.00 s 0.00 s

SAADI 2 0.00 s 0.00 s

Linux 100% 39.18 s 39.23 s

SAADI 100% 0.00 s 0.00 s

Figure 12.25.: Total Time Waiting for any Response

batchjobs

delay work Linux SAADI 1 SAADI 2 Linux 100% SAADI 100%

5 s 6 s 5/10

36.74 s

96.40%

9.16 s 15.38 s 9.15 s 7.04 s

10 s 6 s 37.88% 11.12 s 0.00% 43.79% 9.06 s

15 s 6 s 2.22% 0.00% 0.03% 2.76% 0.00%

20 s 6 s 1.88% 0.00% 0.02% 1.91% 0.04%

25 s 6 s 1.47% 0.04% 0.00% 1.53% 0.03%

avg. time 36.74 s 10.14 s 15.38 s 9.15 s 8.05 s

unfinished 90.00 % 60.00 % 80.00 % 80.00 % 60.00 %

Figure 12.26.: Turnaround Times for Batchjobs
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iclient

1 2

Linux 39.11 s 34.97 s

SAADI 1 0.00 s 0.00 s

SAADI 2 0.00 s 0.00 s

Linux 100% 39.18 s 39.23 s

SAADI 100% 0.00 s 0.00 s

Figure 12.27.: Total Time Waiting for any Response

Linux 0.10 (0.32%)

SAADI 1 0.00 (0.00%)

SAADI 2 0.00 (0.00%)

Linux 100% 0.00 (0.00%)

SAADI 1 100% 0.00 (0.00%)

Figure 12.28.: Missed Deadlines (Average over all runs)

Again Linux gets more batchjobs done. Even SAADI 2 gets more batchjobs done than

Linux although it is running at the lower frequency the whole simulation. As can be

seen in table 12.29 Linux misses some deadlines, while SAADI 1 and 2 are catching all.

This scenario clearly shows the advantages of privilege separation. An inherit feature

of hierarchical scheduling which cannot be achieved with a normal Linux-Kernel.
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13.1. Conclusion and future work

We demonstrated in our project group, BeeHive, that ideas inspired from natural system

provide a sufficient motivation for designing and developing algorithms for scheduling

and routing problems. We have followed an engineering approach that allowed us to map

concepts from a bee colony to a routing algorithm. We evaluated our algorithm in a sim-

ulation environment, however, our simulation model was developed by an early feedback

from the Linux routing group. In this way, the algorithmic development phase took into

account the constraints of the real routing framework. Such an approach smooth lined

the implementation of BeeHive algorithm under Linux operating system. We have done

extensive testing and evaluation under varying environmental parameters that represent

the real network conditions. The results from all experiments reveal that the perfor-

mance of BeeHive is of the order of the best algorithm (DSR) , however, this excellent

performance is achieved at a much less energy expenditure. Hence, BeeHive is energy

efficient, simple but delivers the best performance. In the second phase of our project,

we implemented BeeHive inside the network framework of Linux operating system. We

designed a testing infra-structure that simulated different scenarios in real time and then

tested the algorithm with the help of this infra-structure. Unfortunately, the simulation

scenarios could not have been mapped to this framework because of the complexity of

modifying Linux network framework. However, with the help of the framework we have

done the functional verification of the algorithm. In the final phase we tested the algo-

rithm on real adhoc networks to verify its functional correctness. This approach gave us

a good insight into the real adhoc network environments. Finally, in this project group,

we have demonstrated that an energy efficient framework is incomplete without energy

efficient scheduler. We have developed a hierarchical DVS scheduling algorithm for the

Linux operating system that gives the user the ability to write scheduling policies. This

system is able to guarantee certain scheduling requirements to the applications while at

the same time trying to meet them with as little energy consumption as possible. The

experiments have demonstrated that SAADI DVS is able to scale the frequency and
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voltage of the processor in a sophisticated manner as compared to the standard Linux

DVS algorithm. We believe that BeeHive opens new dimensions for the routing problem

in adhoc networks. The work in this project group could be extended in the following

manner

1. BeeHive algorithm could be modified in such a manner that it is able to scale to

1000+ nodes. This objective will make BeeHive algorithm to scale to large adhoc

networks and hence suitable for sensor networks.

2. BeeHive algorithm is not secure at the moment. A challenging task is to make it

secure so that the network is not susceptible to security attacks.

3. Developing a Multi-agent System that helps us in doing a multi-objective opti-

mization in a simple and energy efficient manner.

4. SAADI DVS algorithm should be extended in such a manner that the hierarchy

could be modified on the run if there is a change in the application requirements.

BeeHive has shown a novel approach to all of us for the routing and scheduling problems.

We hope that the project will help the research community in exploring the honey bee

colony for other problems as well.
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A. Sample Scheduler-Implementation: The

Simple Fixed-Priority Scheduler

A.1. include/linux/saadi/sched sfp.h

#ifndef _SAADI_SCHED_SFP_H_

#define _SAADI_SCHED_SFP_H_

#ifdef __KERNEL__

#include <linux/module.h>

#include <linux/saadi/saadi.h>

#endif

struct sfp_sched_param {

short prio;

};

typedef struct sfp_sched_param sfp_sched_param_t;

#ifdef __KERNEL__

#define SFP_TYPE_NAME "sfp"

#define SFP_MAX_PRIO 128

#define SFP_BITMAP_SIZE ((SFP_MAX_PRIO + sizeof(long) - 1)/ sizeof(long))

struct sfp_rq_data {

schedulable_t **children;

unsigned long *linked;
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A. Sample Scheduler-Implementation: The Simple Fixed-Priority Scheduler

unsigned long *active;

unsigned int gfrac_sum;

};

typedef struct sfp_rq_data sfp_rq_data_t;

struct sfp_sched_data {

short prio;

unsigned int curr_gfrac;

};

typedef struct sfp_sched_data sfp_sched_data_t;

extern void construct_sfp_scheduler(scheduler_t *sched);

#endif /* __KERNEL__ */

#endif /* _SAADI_SCHED_SFP_H_ */

A.2. include/linux/saadi/sched sfp.c

/*

* kernel/saadi/sched_sfp.c

*

* simplified fixed priority scheduler

*

* This scheduler only accepts one child per priority!

*

* (c) 2004 Kai Moritz <kai.m.moritz@gmx.de>

* (c) 2004 Rene Zeglin <rene.zeglin@udo.edu>

*

*/

#include <linux/saadi/sched_sfp.h>

/* link a schedulable with the scheduler */

static int sfp_link(scheduler_t * sched, schedulable_t * s)
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A. Sample Scheduler-Implementation: The Simple Fixed-Priority Scheduler

{

sfp_sched_data_t *sched_data = (sfp_sched_data_t *)s->sched_data;

sfp_sched_param_t *sched_param = (sfp_sched_param_t *)s->sched_param;

sfp_rq_data_t *rq_data = (sfp_rq_data_t *)sched->rq_data;

/* sfp accepts only schedulers as childs */

if (unlikely(!s->sched))

panic("trying to link task to sfp!");

if (unlikely(sched_param->prio > SFP_MAX_PRIO))

panic("requested priority %i is to big!", sched_param->prio);

sched_data->prio = sched_param->prio;

sched_data->curr_gfrac = 0;

if (unlikely(rq_data->children[sched_data->prio]))

/* There is already a schedulable of this

* priority linked to the scheduler! */

panic("sfp only accepts one child for every priority!");

/* Save a pointer to the new schedulable */

rq_data->children[sched_data->prio] = s;

set_bit(sched_data->prio, rq_data->linked);

MLTT_SCHEDULING_TRACE(

SFP_LINK,

s->task ? 1 : 0,

sched->id,

s->task ?

(unsigned long)s->task->pid :

(unsigned long)s->sched->id

);

return SAADI_ACCEPT;

}
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/* unlink a schedulable with our scheduler */

static void sfp_unlink(schedulable_t * s)

{

sfp_sched_data_t *sched_data = (sfp_sched_data_t *)s->sched_data;

sfp_rq_data_t *rq_data = (sfp_rq_data_t *)s->parent->rq_data;

rq_data->children[sched_data->prio] = NULL;

clear_bit(sched_data->prio, rq_data->linked);

MLTT_SCHEDULING_TRACE(

SFP_UNLINK,

s->task ? 1 : 0,

s->parent->id,

s->task ?

(unsigned long)s->task->pid :

(unsigned long)s->sched->id

);

}

/* a schedulable joins the runqueue (and the competition) */

static int sfp_join(schedulable_t * s)

{

sfp_rq_data_t *rq_data = (sfp_rq_data_t *)s->parent->rq_data;

sfp_sched_data_t *sched_data = (sfp_sched_data_t *)s->sched_data;

int pre_bit;

MLTT_SCHEDULING_TRACE(

SFP_JOIN,

s->task ? 1 : 0,

s->parent->id,

s->task ?

(unsigned long)s->task->pid :

(unsigned long)s->sched->id

);

/* get priority of runnable schedulable with highest priority */
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pre_bit = find_first_bit(rq_data->active, SFP_MAX_PRIO);

set_bit(sched_data->prio, rq_data->active);

if (sched_data->prio < pre_bit && pre_bit < SFP_MAX_PRIO)

/* The new schedulable has a higher priority,

* so signal rescheduling.

*/

return SAADI_NEED_RESCHED;

return 0;

}

/* a schedulable leaves the runqueue (and the competition) */

static void sfp_leave(schedulable_t *s)

{

sfp_rq_data_t *rq_data = (sfp_rq_data_t *)s->parent->rq_data;

sfp_sched_data_t *sched_data = (sfp_sched_data_t *) s->sched_data;

MLTT_SCHEDULING_TRACE(

SFP_LEAVE,

s->task ? 1 : 0,

s->parent->id,

s->task ?

(unsigned long)s->task->pid :

(unsigned long)s->sched->id

);

clear_bit(sched_data->prio, rq_data->active);

}

static schedulable_t *sfp_dispatch(scheduler_t *sched)

{

sfp_rq_data_t *rq_data = (sfp_rq_data_t *)sched->rq_data;

int idx;
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/* Get priority of runnable schedulable with highest priority */

idx = find_first_bit(rq_data->active, SFP_MAX_PRIO);

if (idx == SFP_MAX_PRIO) {

MLTT_SCHEDULING_TRACE(SFP_EMPTY_RUNQUEUE, sched->id);

return NULL;

}

MLTT_SCHEDULING_TRACE(

SFP_DISPATCH,

rq_data->children[idx]->task ? 1 : 0,

rq_data->children[idx]->parent->id,

rq_data->children[idx]->task ?

(unsigned long)rq_data->children[idx]->task-> pid :

(unsigned long)rq_data->children[idx]->sched->id

);

return rq_data->children[idx];

}

/* a yield has no effect for a fixed-priority scheduler */

static void sfp_yield(schedulable_t *s) { }

/* the child with highest priority will never be interrupted */

static int sfp_scheduler_tick(schedulable_t *s) { return 0; }

/* a child scheduler tells the sufficient guarantee fraction */

static void sfp_set_minfreq(scheduler_t *child, unsigned int gfrac)

{

schedulable_t *s = child->this_schedulable;

scheduler_t *sched = s->parent;

sfp_sched_data_t *sched_data = (sfp_sched_data_t *)s->sched_data;

sfp_rq_data_t *rq_data = (sfp_rq_data_t *)sched->rq_data;

unsigned int new_gfrac;
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MLTT_GUARANTEE_TRACE(TELL_G_FRAC, gfrac, child->id, sched->id);

rq_data->gfrac_sum -= sched_data->curr_gfrac;

rq_data->gfrac_sum += gfrac;

sched_data->curr_gfrac = gfrac;

if (rq_data->gfrac_sum > 128)

new_gfrac = 128;

else

new_gfrac = rq_data->gfrac_sum;

MLTT_DVS_TRACE(SFP_DVS, rq_data->gfrac_sum, sched->id);

sched->this_schedulable->parent->set_minfreq(sched, new_gfrac);

}

static void sfp_schedctl(int cmd, schedulable_t *s, void *data)

{

/* this scheduler implements no special schedctl commands */

SAADI_DEBUG("FP: unrecognized schedctl command %i\n", cmd);

}

static void sfp_schedmsg(

scheduler_t *sender,

scheduler_t * myself,

int msg,

void *data)

{

sfp_rq_data_t *rq_data;

schedulable_t *s;

int idx;

switch (msg) {

case SCHED_MSG_PERIOD:

/* propagate signal to child with highest priority */

rq_data = (sfp_rq_data_t *)myself->rq_data;
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idx = find_first_bit(rq_data->linked, SFP_MAX_PRIO);

if (idx < SFP_MAX_PRIO) {

s = rq_data->children[idx];

/* sfp accepts only schedulers as childs,

* so we do not have to check wether the

* child is a task or a process...

*/

s->sched->schedmsg(

myself,

s->sched,

SCHED_MSG_PERIOD,

NULL);

}

break;

case SCHED_MSG_DESCHEDULE:

break;

default:

SAADI_DEBUG("SFP: unrecognized schedmsg %i\n", msg);

}

}

void construct_sfp_scheduler(scheduler_t *sched)

{

sfp_rq_data_t *rq_data = (sfp_rq_data_t *)sched->rq_data;

int j;

sched->name = "sfp";

sched->link_to = saadi_default_link_to;

sched->unlink_with = saadi_default_unlink_with;

sched->link = sfp_link;

sched->unlink = sfp_unlink;

sched->join = sfp_join;

sched->leave = sfp_leave;
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sched->scheduler_tick = sfp_scheduler_tick;

sched->dispatch = sfp_dispatch;

sched->yield = sfp_yield;

sched->destructor = saadi_free_scheduler;

sched->schedctl = sfp_schedctl;

sched->schedmsg = sfp_schedmsg;

sched->set_minfreq = sfp_set_minfreq;

#ifdef CONFIG_SAAID_PROCFS

sched->schedinfo = default_schedinfo;

#endif

rq_data->children =

kmalloc(sizeof(schedulable_t *)*(SFP_MAX_PRIO), GFP_ATOMIC);

if (!rq_data->children)

panic("cannot allocate memory for sfp-scheduler (children)!\n");

rq_data->linked = kmalloc(sizeof(long)*(SFP_BITMAP_SIZE), GFP_ATOMIC);

if (!rq_data->linked)

panic("cannot allocate memory for sfp-scheduler (linked)!\n");

rq_data->active = kmalloc(sizeof(long)*(SFP_BITMAP_SIZE), GFP_ATOMIC);

if (!rq_data->active)

panic("cannot allocate memory for sfp-scheduler (active)!\n");

for (j = 0; j < SFP_MAX_PRIO; j++) {

rq_data->children[j] = NULL;

__clear_bit(j, rq_data->linked);

__clear_bit(j, rq_data->active);

}

rq_data->gfrac_sum = 0;

}

EXPORT_SYMBOL(construct_sfp_scheduler);

MODULE_DESCRIPTION("SAADI scheduler ’sfp’");

MODULE_LICENSE("GPL");
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