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Abstract. When a process is dominated by few important frequencies the obser-
vations of this process can be modelled by a harmonic process (Bloomfield (2000)).
If the amplitudes of these dominating frequencies vary over time their dominance
may not be apparent during the whole process.

To discriminate between frequencies relevant for such a process we determine
the distribution of the periodogram ordinates, and use this distribution to derive
a procedure to assess the relevance of the frequencies. This procedure uses the
standardized median (Gather and Schultze (1999)) to determine the variance of the
error process. In a simulation study we show that this procedure is very efficient even
under difficult conditions such as a low signal-to-noise ratio or AR(1) disturbances.
Furthermore, we show that the necessary transformation to estimate the amplitudes
from periodogram ordinates leads to a good normality approximation which makes
it especially easy to model the development of the amplitudes from these estimates.

1 Introduction

Many processes dominated by few frequencies with varying amplitudes are
well-known, e.g. music, resonance, etc.. When such a non-stationary process
is observed in a noisy environment or the oscillating part of the process is
obscured by an inherent stochastic process it becomes of interest to deter-
mine the really relevant frequencies. We encountered such a difficulty when
investigating the BTA deep-hole drilling process and one process disturbance
— called chatter — observed in this process. It turned out that chatter can
be described by specific eigen-frequencies of the drilling tool bar and the
development of the amplitudes of these frequencies (Weinert et al. (2002)).
As long as the process stays stable the harmonic process is obscured by the
noise in the process which led to the question how to determine the relevant
frequencies from such data and how to model the time development of the
amplitudes on these frequencies.
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In this paper we first determine the distribution of periodogram ordinates
of a harmonic process with only a few relevant frequencies, show how to incor-
porate this distribution to find the relevant frequencies and that there exists
a normality approximation which readily facilitated constructing a model for
time varying amplitudes. Finally we demonstrate the practical value of the
procedure by results from an extensive simulation study.

2 Determination of the Distribution of Periodogram
Ordinates

Gallant et al. (1974) consider analysis of variance (ANOVA) models on pe-
riodograms. Their argument — based on a Taylor series extension of the dis-
tribution function — is to transform the observed ordinates with g(z) = xi
to increase the convergence of the y3-distributed measurements to a normal
distribution and thereby make a common ANOVA sensible in this situation.

The periodogram ordinate at frequency f equals n times the squared
absolute value of the Fourier-transform F' of the time series y; at frequency
f, that is

Iy (f) = nlFly] (NI,

where n is the number of observations in the series.

If y; is a Gaussian process with distribution N(0,02), Fly](f) as a
linear transformation of y; has again a normal distribution. |F[y:](f)|*> =
(Re(Fy](£))* + (Im(F[y.](f))? is therefore x? distributed with 2 degrees
of freedom, which equals an exponential distribution (cf. e.g. Fisz (1970))
with E(|F[y](f)?) = 202. On the basis of this argument and using the fact
that the Fourier-transform is a linear operator it follows that periodogram
ordinates of AR(p) processes are x3,-distributed.

When the amplitudes at the relevant frequencies fr, k = 1,..., K, of a
harmonic process are influenced by some input variables & and possibly time
t, it is of interest to investigate the form of this influence. So the following
model is considered:

M=

Hi(x) = hi(z,t) cos2m(frt + ) + €, (1)

k=1

for t € {0,...,n — 1} and K < n. The functions of the amplitudes of the
relevant frequencies are possibly time-dependent. Since only discrete time
is considered, they are defined by hj : RY x N — [0,00). For hy only the
existence of a Fourier-transform is assumed.

When all h; are time constant it is clear that the expected value of the
periodogram ordinates at the relevant frequencies is

E(Ig, @) (f)) =n(|e™| hy(x)? 4 202) for f = fi,k=1,....K. (2)
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Note that the phase is of no interest in this model because it contributes only
a constant factor in the complex Fourier transform equal to e™¥ of which
the absolute value is 1. So the phase does not contribute to the estimates
described above.

If the amplitudes are slowly time-varying (i.e. slower than the smallest
estimated frequency), the corresponding model in frequency domain is in
terms of the complex Fourier-transform:

_ Flel(f)+ B for f # f,
PUL@IO = { ity e, conomlid + (1) + P o s 20 *
where £ = 1,..., K, and By # 0 is only true for frequencies near to one of

fr, k=1,..., K and possible harmonics.

Again a result on the distribution of the periodogram ordinates is readily
gained by the same arguments as above: they are y2-distributed. It is only
close to the relevant frequencies that you get non-central y2-distribution with
non-centrality parameter v = n(hy(z)? + 202).

A more general determination of the distribution of periodogram ordinates
can be found in Wittwer (1986). In her paper G. Wittwer determines the
moment generating function and the general properties of the distribution of
the periodogram ordinates for stationary sequences.

3 Regression Models on Periodogram Ordinates

3.1 Modelling varying Amplitudes

The periodogram is only able to estimate the amplitudes of Fourier frequen-
cies, so it is of interest to know what happens when the relevant frequencies
are Fourier frequencies. When the amplitudes are varying over time, we want
to estimate the form of this variation. This is done by dividing the time se-
ries into sections of equal length and calculating the periodogram on these
sections. Then the estimates of the amplitudes on each relevant frequency
are used as objective in a — linear or nonlinear — regression to fit a proposed
functional form. It can be easily proved that a linear trend in the amplitudes
is transformed into a linear trend in the periodogram ordinates. When cal-
culating the fourier transformations it turns out that using the periodogram
to estimate a function of the amplitudes over time possibly underestimates
the values of the function (cf. Theis (2004)).

When fi is a non-Fourier frequency the finite Fourier transform intro-
duces additional non-zero terms to the periodogram because it only considers
Fourier frequencies. This comes from the fact that e’27(f¢=) is not only non-
zero at the nearest Fourier frequencies but also in a neighbourhood. This has
to be taken into account when deciding how many significant appearances of
a frequency in an experiment are necessary to make that frequency a relevant
frequency.
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3.2 Estimating the Variance of & (02)

The Fourier-transform of a harmonic process with a small number of rele-
vant frequencies K compared to the number of observations n can be viewed
as a sample from a y2-distribution contaminated by some non-central y2-
distributed observations, where the distributions have the same degrees of
freedom. As remarked before the expected value of the majority of observa-
tions is 202, i.e. proportional to the variance of the disturbance process. A
robust estimator of the expected value of this distribution is thus propor-
tional to an estimator for the variance of the disturbance process with known
proportionality factor.

Since it is assumed that in a regression situation the error processes are
independent between experiments and identically distributed over all exper-
iments, the following procedure looks promising;:

1. Estimate the periodogram I[Hy(x;)] for all input values @, [l € {1,...,L}

2. Merge all I[H¢(x;)](f) into one sample

3. Calculate a robust estimator for the expected value of I[Hy(x;)](f), e.g. the
standardized median medgs (X) = @med(X ) on the merged sample

Step 2 enlarges the database for the robust estimate, because it is as-
sumed, that the observations with different input values are independent and
the realisations of I, (5,)(f) for different Fourier frequencies are independent
due to the orthogonality relations of the Fourier transform. If K < n and
% is lower than breakdown point of the robust estimator, which equals % for
the standardized median (Gather and Schulze (1999)), one gets an estimator
— in the case of Gaussian white noise — for 202.

Transforming Periodogram Ordinates

Given that the goal of the regression on periodogram ordinates is to estimate
the influences on the amplitudes, the observations have to be transformed in
the following way to get an estimator for hy(x) (cf. (2)):

f{k(:c) = \/I[Ht(m)](ik) — 2no?

)

Johnson et al. (1994) state that this square-root of the non-central x2-
distributed variable is a normal approximation. It depends on the value of
the non-centrality parameter, which in return depends here on the value of
the functions hy, k = 1,..., K, and the number of observations. The impact
of this approximation is tested in a simulation study.

4 Simulation Study on Time-Varying Amplitudes

4.1 Design Considerations

We chose a full factorial 27 design to compare the effects on the Normality
assumption, the frequency detection, and the goodness of fits of the following
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influences: the signal-to-noise ratio, the number of frequencies, number of
observations, Fourier or non-Fourier frequencies, and the distance between
the relevant frequencies. Additionally the effect of AR(1)-disturbances was
checked.

For the influences the following values for treatment low, high, respectively
were chosen: Number of frequencies (1 /5), Fourier Frequencies (no/yes), Dis-
tance of frequencies 05 (3 /10 Fourier frequencies), Length of series (2560 /

102400), and Signal-to-Noise ratio (1.1 / 100). The frequencies considered are
546,k—1
nun?erator.

The following functions were chosen as ‘true’ models for the variation of
the amplitudes:

with, in the case of non-Fourier frequencies, addition of % in the

2
hiin(t) = 24 0.001% or hnontin(t) =2 + ——————xr (4)
(14 exp (251))

The parameters m,d in equation (4) are changed for each frequency if 5
frequencies are included in the model. This is done by setting m = 51 or m; =
(2+i)land d =1 or d; = L where i = 1,...,5. These different values for the
parameters in the nonlinear function were chosen to test whether differing
functions on the frequencies can be found in the data.

The choice of these functions had the following reasons: the first slow
linear trend may be useful as an approximation for a slow nonlinear trend in
the amplitude. Generally it can be assumed that amplitudes have an upper
bound because oscillating systems break down when the amplitude becomes
too large. This is the reason for the chosen logistic function. The inclusion of
a mean intercept of 2 in both cases is done to ensure a true harmonic process
right from the start of the observations.

For all settings 100 repetitions were evaluated. The function nls from R
(R Core Team (2003)) was used to fit the nonlinear models. Since it is well
known that nonlinear regressions tend to fail with some starting values, ten
randomly chosen starting values were tested and the first successful set was
used for the fit.

4.2 Results

First we checked whether the procedure to find the relevant frequencies was
influenced by the time varying amplitudes, or the AR(1) disturbances. Both
influences did not show an effect on the performance of the method in the
sense that the correct frequencies are always found. This becomes obvious
from the histograms of the found relevant frequencies in Figure 1.

The left panel in Figure 1 shows the results on relevant frequencies for ex-
periments with the high level of observations, 10240, and high signal-to-noise
ratio of 100 and five non-Fourier frequencies with a distance of ten Fourier fre-
quencies in the simulated model that is, the true values of the frequencies are:
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0.00557 0.0251 0.03487 0.04463 0.0544 That there are more frequencies
found than just the highest peaks, is due to leakage (Bloomfield (2000)) and
does not present a serious problem since it is easily possible to narrow the
relevant frequencies by e.g. using higher significance levels or adding a further
step where the peak(s) of the amplitudes of the found relevant frequencies is
determined.
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Fig. 1. The histograms of the found relevant frequencies f show clearly that at least
the true frequencies (black vertical lines) are found and only a few others besides.

The right panel in Figure 1 gives an impression of the more difficult
situation with only 2560 observations and AR(1) disturbances but Fourier
frequencies. From this panels it is clear that at least the true frequencies are
found by the method for the detection of relevant frequencies. In this case
the true frequencies are: 0.0195 0.0977 0.1367 0.1758 0.2148

The proposed normality approximation was checked for appropriateness.
First we applied a Shapiro-Wilk test (Shapiro et al.(1968)) to the obser-
vations. For each true relevant frequency and each of the ten observations
the 100 repetitions were collected and tested for normality on the 5%—level.
The test rejected the hypothesis only in 4.86% of the cases for hy,., and
in 5.82% of the cases for hponiin.. The number of rejections of normality
of the observations for the normal disturbances is slightly higher than with
AR(1) disturbances (linear case: 5.21% vs. 4.51%; nonlinear case: 6.04% vs.
5.63%). This was expected by the theoretical model because the goodness
of the approximation is influenced by the number of stochastic components,
i.e. the order of the disturbance process and the value of the non-centrality
parameter. No assignable pattern was found in the rejections.

The distribution of the parameter estimates was also investigated. In the
linear case the parameters displayed an even greater degree of normality. The
Shapiro-Wilk test rejected only in 3.47% of the situations. In the nonlinear
case it cannot be expected to find normality in the parameters. It is hard to
define a distribution for the parameters in nonlinear regression, only when
a linear approximation approach is chosen as fitting procedure normality is
expected (cf. e.g. Ratkowski (1990), p. 20).
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Figures 2 gives an insight into the goodness of the fits of the functions
on the truely relevant frequencies. In all cases it was obvious that the ob-
servations lie below the values of the true functions and therefore the fitted
functions underestimate the true values as well.
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Fig. 2. Left: fitted linear functions (true: dashed line) on varying amplitudes, with
AR(1) disturbances on a non-Fourier frequency, therefore two lines on the neigh-
bouring Fourier frequencies. Right: non-linear functions of five non-Fourier frequen-
cies, marked by numbers. True functions are again in the upper half of the graphic.

The left panel of Figure 2 shows a fit for the case of non-Fourier frequency
and linear time dependence of the amplitude. This graphic gives the impres-
sion that the underestimation may be cured by summing over neighbouring
frequencies in an appropriate way. This is emphasized by the dotted line
which is the sum of the fitted values.

The right panel in Figure 2 underlines the previous impression as well.
Furthermore, it is obvious that the general form of the influences on the
amplitudes is found even if they are different for the different frequencies.
This is also not influenced by the number of observations or the kind of
disturbances. All fits show that the general fit of the regressions is very good
which was also found when checking for the goodness of fit over all situations
in the simulation study.

Studying the effect of the varying amplitudes on the performance of the
proposed variance estimator, a slight overestimation of the true standard
deviation o occured. The two most important influences on the difference
between the true and the estimated o are the signal-to-noise ratio followed by
the number of observations. It turns out that a high signal-to-noise ratio also
leads to better estimates of the standard deviation of the disturbance term.
Of course a higher number of observations leads to a better estimation since
then there are more observations following the distribution of the Fourier
transformation of the AR(1) or white noise normally distributed disturbances.
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5 Conclusions

We introduced a method for the identification of relevant frequencies of a
harmonic process with error processes based on the normal distribution. The
crucial idea for this method is to look at the estimates of the periodogram
ordinates as a contaminated sample of a x? distribution and use this to get an
estimate of the variance of the error process. Additionally we showed that the
necessary transformation of the periodogram ordinates to get an estimator
for the amplitude leads to a normal approximation. Finally, we established
the fact that the linearity of the Fourier transformation makes it possible to
evaluate time trends in the amplitude by regression methods.

Our simulation proved all theoretical results to work even in difficult sit-
uations, i.e. low signal-to-noise ratio, non-Fourier frequencies and differing
influences on the relevant frequencies. The only significant drawback of the
method is the underestimation of the true amplitudes which may be tack-
led by summing over an approprate neighbourhood of the found relevant
frequencies.
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