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Chapter 1

Introduction

It is now nearly a century since Einstein’s annus mirabilis, 1905, in which he pub-
lished three seminal papers which, in many respects, could be thought to have laid the
groundwork for much of 20" century physics. Particularly relevant here is his paper
on the photoelectric effect[Ein05], in which he uses Planck’s quantisation hypothesis to
explain the emission of photoelectrons from metals as being due to the intrinsic quan-
tisation of the electromagnetic field. As we know now, this led to the development of
quantum mechanics, perhaps the crowning glory of physics in the last century. The
investigation of the interaction of light with matter did not stop with this paper though
and the work presented here is but one piece of research in a hugely varied field which
can trace its roots to these early experiments.

Also of great importance to the work presented here is the massive amount of
research performed on semiconductors in their various guises during the last century.
The development of the transistor in Bell Labs in 1947 promoted the investigation of
semiconductors as electronic devices, while the developments in semiconductor lasers
in the 1960’s provided an impetus for the study of the interaction of semiconductors
with an optical field.

More recently, the ability to grow extremely high-quality semiconductor heterostruc-
tures incorporating two or more different materials, and with control over the compo-
sition down to the sub-monolayer scale, through techniques such as molecular-beam
epitaxy (MBE) and metal-organic chemical vapour deposition (MOCVD), along with
advances in the ability to pattern these materials at sub-micron scales, has lead to
exploration of systems with reduced dimensionality. Examples of such systems, in
which there is a confinement of the charge carriers in one or more directions in length
scales comparable to the De Broglie wavelength, are quantum wells and quantum dots
and show an effective dimensionality of two and zero, respectively. This work focusses
on the examination of the properties of quantum dots. By choosing the right growth
conditions, quantum wells can spontaneously form quantum dots through processes
referred to generically as self-assembly. The details of the formation usually involve
a combination of enhanced interdiffusion of one species in the other and strain relax-
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ation through the formation of features (the dots themselves) which lower the energy
state of the crystal as a whole. As such, dots are characterised both by their geom-
etry and their stoichiometric composition. Interest in the optical properties of dots
arises primarily from their atom-like density of states, leading to their description as
“artificial-atoms”. However, the fact that the dots being investigated here consist of
many (typically > 10*) atoms and are embedded in a matrix of another material means
that this analogy should not be taken too far. This is no bad thing, for the variety
of phenomena exhibited by these structures leads to a rich array of physics to inves-
tigate. A good introductory review article on the optical properties of quantum dots
may be found in Reference [Yof01] while References [Wog97, BGLI9|] are also worth
reading, if somewhat more thorough. Part[[] gives a brief introduction to the physics of
semiconductors and quantum confined systems.

Of particular interest, and forming the core of the work presented here, is the re-
laxation of the quantum dot from excited states back to the crystal ground state. The
dynamics governing such processes are given by timescales ranging from 107 s to
1072 s, thus requiring ultrafast spectroscopic techniques. Such techniques are often
limited in temporal resolution to the pulse duration of the excitation and the devel-
opment of lasers with pulse lengths of a few optical cycles has allowed access to the
femtosecond regime.

Part[[I] details the investigations into the non-coherent spectroscopy of single quan-
tum dots performed during the course of my PhD. In these experiments the charge-
carriers were excited non-resonantly at energies above the dot levels. Subsequent trap-
ping by the dot and relaxation to the ground-state in the dot (distinct from the crystal
ground state), primarily through phonon-mediated processes, leads to a loss of phase-
coherence between the excitation field and the optically-excited carriers. However, such
spectroscopy still represents a powerful tool to obtain insight into both the structure
of the energy levels within the dots and into the processes wherein the recombination
of an electron-hole pair results in the emission of a photon. The techniques described
here include both spectrally and temporally resolved measurements. It is worth noting
that, through the Fourier transform from the time-domain to the frequency-domain and
vice-versa, it is possible to obtain energy-level spacings from time-resolved data and
information on the dynamics of the system from the spectrally-resolved emission. An
example of this is given in Section|3.6] where analysis of the lineshape of the emission
leads to insight into the dynamics of the recombination.

The loss of coherence with the excitation field, referred to as dephasing, has taken on
a particular importance since the realisation that the simulation of quantum systems
is imperfect in a Turing machine, but requires the use of a machine that is itself
quantum-mechanical in nature[Fey82]; a quantum-computer. The power of such a
machine comes from the superposition principle of quantum mechanics; processes that
destroy this superposition or, from the point of view of obtaining a correct answer
in a calculation, perturb the system in an adverse way are referred to as providing a
source of decoherence. Reference [PSE96] provides an interesting introduction to the
role of decoherence in quantum-information processing. If we were to use quantum



dots as components in a quantum computer the dephasing mentioned above would be
a prime source of decoherence. Part[[T]] details the manner in which the technique of
four-wave mizing (FWM) was applied to the investigation of dephasing in quantum
dots. As performed on ensembles, FWM often assumes that the ensemble can be
approximated as consisting of multiple, non-interacting two-level systems, an approach
first applied to the theoretical modelling of masers[FVH57], the microwave equivalent
of lasers. Rather than measure the properties of an ensemble, a novel technique has
been developed which combines high spatial-resolution with a heterodyne detection
method to enable the FWM signal from both small ensembles and even individual
quantum dots be measured. The build-up of a phenomenon known as the photon-
echo, an ensemble effect, could then be measured as a function of ensemble size. A
further advantage of this method is that it uses spectral interferometry of the signal
with a reference pulse to recover the full FWM signal in both amplitude and phase.
The measurement of the phase, in particular, opens up a number of options when
analysing the data. The evolution of the system state with increasing pulse area (a
quantity proportional to the square root of the time-integrated intensity per pulse)
shows Rabi oscillations of single excitonic states. Finally, a method to determine the
coherent coupling between different states is developed. Since any practical quantum
computer will require more than one qubit (the quantum equivalent of a bit in classical
computing) and these qubits will need to be linked in some manner, an understanding
of coherent coupling is of particular importance.
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Chapter 2

Semiconductors

This chapter provides a brief introduction to some of the concepts which are essential
to the work described in this thesis. However, any details of theory which are specific
to the experiments I performed will be either recounted or introduced at the relevant
section of the thesis and so readers familiar with semiconductor physics may safely skip
this chapter and continue to Part[II] of the thesis.

The periodicity of the underlying lattice of atoms in a solid state material leads to
solutions of the Schrodinger equation which describe bands in the electronic structure
of the material which, in reciprocal, or k-space, are equivalent for points separated by
a reciprocal lattice vector. The classification of the material as metal, semiconductor
or insulator is tied directly to the band structure. For metals, the energetically highest
band is either partially filled or overlaps in k-space with other, unfilled bands. In con-
trast, both semiconductors and insulators have a fully-filled band, called the valence
band, as their highest occupied band. The valence band is separated from the next
band, the conduction band, by an energy gap, E,. It is the size of this gap that deter-
mines the classification of the material as a semiconductor or an insulator. However,
there is no hard-and-fast rule, leading to cases like diamond, with E, = 5.48 eV, being
classed as a semiconductor (compare to silicon, £, = 1.12eV'). A further classification
of semiconductors is possible depending on the position of the valence band maximum
and the conduction band minimum. In the case where both occur at the same point in
k-space, the semiconductor is referred to as a direct-gap material. Conversely, indirect
gap materials have an offset in the position of the extrema. To good approximation,
transitions involving photons can be considered vertical in the k-space-energy (x,y)
picture while phonon-induced transitions are horizontal. Thus, for optical applica-
tions (and, naturally, investigation) direct-gap semiconductors are preferable since no
phonon is required for transitions resonant to Fj.

Both materials investigated in this thesis, GaAs and CdSe, are direct gap materials.
GaAs crystallises in the zinc-blende structure, while CdSe can be found in both the
zinc-blende and wurzite forms. Figure[2.1shows both the crystal structure and the first
Brillouin zone for both of these crystal types. Both structures have atoms bonded to



Figure 2.1:  Top: The structure of zinc-blende(left) and wurzite(right) materials|BE73]
Bottom: The first Brillouin zone for each crystal type.

their neighbours in a tetrahedral structure, the difference between the two stems from
a rotation of one of the bonds so that the layering in zinc-blende may be described as
ABCABC, whereas that of wurzite is ABAB. In both GaAS and CdSe, the bonds are
formed through sp?-hybridisation with the resulting band structure being such that the
conduction band at the centre of the Brillouin zone (about the I'-point) is dominantly
formed by the 4s(5s) orbital of gallium(cadmium) and the valence band by the 4p
orbital of arsenic(selenium). At higher values of |k| the mixing is more complex and
the simple picture described above no longer holds true. Figure[2.2shows the calculated
bandstructure for both of these materials. The spin, S, and orbital angular momentum,
L, through the spin-orbit coupling, give rise to important features of the bandstructure
about I' = 0. The important quantity here is the total angular momentum, J = L+ S,
and its projection in the z-direction, j,. The conduction-band has J = 1/2 and is
doubly degenerate in both wurzite and zinc-blende crystals. In zinc-blende crystals
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Figure 2.2: The band-structures of the two materials investigated in this work as calculated
by the nonlocal empirical pseudopotential method. Left: GaAs|CC76] Right: Zinc-blende
CdSe|KKR™ 94]

the sixfold degeneracy of the valence band results in two bands with J = 3/2 that are
both doubly degenerate and which are themselves degenerate at I' = 0. Since they
have different dispersions, they are referred to as the ‘light’ and ‘heavy’ bands. The
third band, with J = 1/2 is known as the split-off band and is lower in energy by
the split-off energy, A = 341 meV in GaAs and A = 420meV in CdSe. This band
can thus be ignored in most optical experiments. Figure[2.3| shows the conduction
and valence bands for both zinc-blende and wurzite structures. The valence band in
wurzite crystals is comprised of three bands - an additional crystal-field splitting leading
to the two upper valence bands being no longer degenerate but forming two bands, the
higher energy being of I'y symmetry and the other of I';. The split-off band also has
['; symmetry. These three bands are then referred to as the ‘A-’, ‘B-" and ‘C-’band
respectively. In agreement with Reference [GWL™99], which found that CdSe quantum
dots of the type investigated in this work could be modelled accurately as being of zinc-
blende structure, and also with Reference [KKR94]| which showed that Zn,Cd;_,Se
structures grown by MBE on GaAs substrates showed zinc-blende structures over the
whole range from ZnSe to CdSe, I will only consider bandstructures of the zinc-blende
type from now on.

2.1 Excitons

Excitation of an electron to the conduction band will leave an empty state in the
valence band. The energy-momentum relationship gives an effective electron mass in
the conduction band of m, = 0.067mg for GaAs and m, = 0.13mg for CdSe, where
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Zinc blende Wurzite

Figure 2.3: Schematic band structure near k = 0 for Left: a zinc-blende structure with
spin-orbit coupling and Right: a wurzite structure with additional splitting, d, of the upper-
valence band due to the crystal field. (From Ref. [PKM93])

myg is the free electron mass. In the valence band, the empty state can be treated as a
quasi-particle of positive charge called a hole. Treating the kinetic energy of the hole
as a negative quantity and assuming parabolicity of the bands, the effective mass of
the hole is given by a reciprocal relationship to the band curvature. The labelling of
the two degenerate bands as ‘heavy’ and ‘light’ is now apparent: the heavy-hole has
mpp (I, 50K) = 0.475my in GaAs and my, (', 1.8 K') = 0.45m in CdSe while the light
hole has my,(I", 50K) = 0.087mg in GaAs and my,(I", 1.8K) = 0.145mg in CdSe. A
Coulomb interaction between the electron and hole can lead to a bound state whereby
one particle orbits the other. Since the resulting interaction lowers the energy of the
combined pair, such bound states are to be found at energies beneath the conduction
band and are known as ezcitonic states. To calculate the energy of an exciton state,
consider the (simple) case of an electron and hole of mass m, and m; moving against
a uniform background material of dielectric constant e. By analogy to the Rydberg
series, which gives the energy levels for a simple H atom, we get

pet 1

Epy=E, — 1~
g 7 2(4meegh)? n?

(2.1)

1

where n is an integer and l% =
€

is given by

+ mih is the reduced mass. The radius of the exciton

<7 = Reqgn? (2.2)
m
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where ag is the 1% Bohr orbit of the H atom (= 0.529 A). In CdSe < r >;= 54 Awhile
in GaAs < r >~ 200 A, which, when compared to the lattice-constants acgs. = 6.05 A
and agaas = 5.65 A, shows that the original assumption of a uniform background is
justified. Such weakly bound, and therefore large, excitons are known as Mott- Wannier
excitons. As the quantity < r > is itself derived from the Bohr radius, I will refer to
it from now on as ap, the excitonic Bohr radius.

2.2 Heterostructures

Control of the bandstructure can be achieved through the growth of alternate layers
of two semiconductors. Figure[2.4] shows the value of two important parameters, the
lattice constant and the bandgap, for a variety of Group IV, III-V and II-VI semicon-
ductors. Appropriate choice of the two semiconductors in such heterostructures can
drastically change the properties of the resulting material: growing a thin layer of ma-
terial (the well) with a bandgap smaller than that of the surrounding material (the
barrier) will result in the confinement of carriers to this inner layer. If the thickness
of the well is comparable to the deBroglie wavelength of the carriers then quantisation
effects come in to play in the growth-direction and the well can be considered to be ef-
fectively two-dimensional. Further reduction in the dimensionality can be achieved, for
example, through the patterning of the material so that the carriers are also confined in
one of the lateral dimensions. Such a quantum wire is an example of a one-dimensional
system. Quantum wires will not be discussed further in this work. Confinement in both
lateral directions as well as the growth direction results in a zero-dimensional structure
known as a quantum dot. The next section will discuss the ways in which the quantum
dots investigated in this work were formed. First, though, it is worth looking at some of
the ways in which the reduced dimensionality affects particles within such structures.
For all following discussion I will assign the growth direction to the z-direction.

First, consider the joint density of states(DOS), D(E) for different dimensionalities.
The DOS gives the number of states in the interval £ — E + dE and, assuming a
parabolic band dispersion and infinite potential barriers, is given by[Sug99|

1 om*\ ¥/? 1/2

Dep(B)=55( 52 ) E (2.3)
m*

Dap(B) = —— > O(E-E,.) (2.4)

Dop(E)=2Np > 6(E-E,, —E,

Ng, Ny, z

—E,.) (2.5)

Y

where m* is the effective mass of the particle, ©(F) is the Heaviside step function, L, ,
and n,, . give the characteristic size of the confinement potential and the (integer)
quantum number in the appropriate direction, and we have introduced Np as the
volume density of quantum dots. Figure[2.5| shows the resulting density of states for
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these three cases. In calculating the DOS, the energies for the different cases were
given by

h2k?
Fyp =5 (2.6)
2l n.m\ >
— [12 2
b [ ()] o

B h? nym\ > nyT 2 n,m\ >

o= |(22) + (2) + (%) e
where k is the wavevector and, in the 2d case, k!l is its component in the plane of
the quantum well. Thus, it can be seen that the effect of the confinement upon the
DOS is large, with reduced dimensionality leading to effects not present in the bulk
material. As such, low-dimensional semiconductor structures have been the source of
much interesting research in recent decades. Furthermore, it is worth nothing that the

effects of reduced dimensionality will also be seen in the excitonic Bohr radius and
binding energy.

2.3 Dots and confined excitonic states

The discrete energy levels in a quantum dot have led to them being dubbed “artificial
atoms”. Useful introductions to their properties may be found in References [Sug99,
Wog97, BGLI9]. There are multiple systems that may be considered dot-like, from
epitaxially-grown dots, to interface fluctuations in quantum wells, to nanocrystals.
Furthermore, when looking at transport processes in semiconductors, it is possible to
induce dots in a quantum well either through the application of electric fields by means
of gates patterned on the surface of the sample or by direct etching of a quantum-well
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sample to reduce the in-plane dimensions|RRAT88]. In this thesis I will report on
work carried out upon self-assembled dots grown through a variation of molecular-
beam epitaxy and upon another sample in which the dots are comprised of monolayer
fluctuations in the thickness of a quantum well.

The trapping and subsequent relaxation of the charge carriers is similar in both
types of dots and is shown schematically in Figure[2.6] All the experiments undertaken
in this work involve optical excitation. For the non-resonant case, charge carriers are
created in the barrier material about the dot. When captured by the dot, these carriers
relax rapidly through the emission of, or scattering by, phonons until they are in the
ground state of the dot. Since most of the experiments were performed at low (< 50K)
temperatures, thermal escape, whereby the carriers absorb phonons until they are once
more in the conduction or valence bands, is not possible. Instead, the only route by
which the dot can relax to the crystal ground state is through optical recombination,
either direct or, as is discussed in Section[3.6] with an additional phonon-interaction.
Due to the multiple scattering events in such non-resonant experiments, the charge
carriers rapidly lose any coherence with the excitation field. Alternatively, it is possible
to directly create an electron-hole pair in the dot. Note that, as is the case with optical
excitation in molecules, a Franck-Condon shift (also commonly referred to as a “Stokes
shift”) due to the effect of the charge carriers on the lattice can lead to a difference
between the energy of absorption and emission from the dot[FP03].

2.3.1 Self-assembled quantum dots

The II-VI quantum dots which we investigate here are an example of epitaxially grown,
self assembled dots. To grow such dots, two semiconductors of differing lattice constants
are required. In this case, a layer of CdSe was grown between ZnSe barriers; CdSe and
ZnSe having a 7% lattice mismatch. The resulting strain field relaxes itself through
the formation of islands with increased concentration of one of the species; in the
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samples studies here, the islands are CdSe inside a mixed Zn; _,Cd,Se layer| GMW™98|
GHLW99, GWLT99|. The geometry of the resulting islands is approximately cylindrical
with a height:radius ratio of > 1 : 4. Other material systems may result in wildly
different geometries - an accepted geometry for some III-V dots is pyramidal.

2.3.2 Excitonic confinement through interface disorder

While technically “self-assembled”, dot-like structures formed by interface fluctuations
in quantum wells of some tens of monolayers thickness have traditionally been consid-
ered somewhat separately from the self-assembled dots described above. In the samples
under investigation in Chapter, an AlAs/GaAs/AlAs quantum well was grown with
a growth interruption of 120 s at each of the interfaces. Since, in the absence of strong
interdiffusion of species at the interface, the spatial distribution at transition surface
from one material to another is frozen by overgrowth with the second material, it is
the growth interruption which determines the geometry of the resulting interface fluc-
tuations. Incomplete growth of the n'* layer will lead to interface roughness which
can be characterised by length scale X such that an interface is described as being
atomically smooth if there are both no changes in thickness over this scale and if the
interface can be described as abrupt, that is, there is no perturbation to the surface
from the overgrowth with the second material KSHB91]. By allowing time for the dif-
fusion of surface atoms to form larger islands, growth interruption can allow a selection
of the size distribution of the interface fluctuations|[KSHT93| with increasing growth
interruption increasing the size of the islands. The resulting surface is thermodynam-
ically stable. References [KSHBOI, IKSHT93] also discuss the possibility of a bimodal
distribution of length scales - larger islands which trap excitons themselves having fluc-
tuations on a scale << apg, the exciton Bohr radius, referred to as nanoroughness. Such
a case is considered pseudo-smooth and will lead to a decrease in the ML-splitting with
increasing impact of the nanoroughness|[Koc03]. The effect of the nanoroughness was
also observed when the energy splitting due to the fluctuations did not correspond to
exactly 1 ML but lay in the range 0.8 — 0.9 M L|GVGT97]. Nevertheless, for conve-
nience [ will still refer to the splitting as a monolayer-splitting, ignoring the effect of
the nanoroughness, a not unreasonable assumption for the purposes of the work here.



2.3 Dots and confined excitonic states

15




Part 11

Non-Coherent Spectroscopy of
Single Dots



Chapter 3

Micro-Photoluminescence from
Single Dots

The emission of light from non-resonantly excited carriers is a source of information
on the structure of the energetic levels within the quantum dot. In particular, the
spectral resolution of the photoluminescence(PL) signal shows features corresponding
to excitonic, bi-excitonic and charged-excitonic states within the dot. Furthermore,
measurements on ensembles of dots can, through the inhomogeneous broadening of
the emission, give an indication of the size distribution of the ensemble. Scattering of
excitons with phonons is also observable as additional peaks at higher(lower) energies
corresponding to phonon absorption(emission) during recombination. Examination of
the polarisation of the emitted light can reveal the presence of anisotropy in the shape
of the dots that leads to linearly polarised emission. Time resolution of the PL recovers
not only the lifetime of excitons in given states but can also show the filling of these
states that occurs when charge carriers relax or are scattered from other states.

The results presented here were obtained through a micro-photoluminescence(uPL)
technique. This differs from normal PL in that the imaging is performed with a high-
spatial resolution. To obtain this resolution we use microscope-objective lenses to
collect the light emitted from the sample. While this does not provide high enough
resolution to isolate single dots on the samples we use, it does reduce sufficiently the
number of dots in the collection region that other techniques can then be used to
identify transitions belonging to individual dots.

3.1 Experimental techniques and apparatus

Figure[3.1] shows the scheme in which we perform pPL. Excitation of carriers is done
with a laser as the light source and there are three options to choose from. Time-
resolved measurements and some of the time-integrated results use frequency dou-
bled pulses from an optically pumped Titanium-Sapphire laser emitting at 800 nm. A
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Figure 3.1: Schematic layout of the apparatus for micro-photoluminescence (imaging optics
not shown). BBO: Barium Borate crystal for 2"% harmonic generation. MC: monochromator.
Iris: High-resolution imaging spectrometer. Not shown explicitly here is the possibility of
confocal excitation.

crystal of Barium-Borate (f—BaB20O,4, BBO) provides the frequency-doubled pulses
through second-harmonic generation. Subsequent filtering removes any remaining
infra-red component. Individual pulses from this source are of approximately 150 fs
duration. There is also the option of using continuous-wave excitation from an Argon-
ion laser or Gallium-Nitride diode laser. The light is then focussed onto the sample
either at a 45° angle from the surface normal giving an excitation spot diameter of
50 um diameter or is coupled into the detection beam-line using the scheme described
in Section[4.2.3 to allow confocal excitation.

The sample is mounted in one of two liquid-helium cooled cryostats. The first has
the sample mounted in vacuum on the cold-finger of the cryostat. A long-working dis-
tance microscope objective of numerical-aperture (NA, also described in Section
0.4 collects the emitted photoluminescence. This microscope objective is mounted on
an x-y-z piezo stage which allows fine control over the region of the sample from which
we collect signal. Coarser control is provided by the mount of the cryostat which also
allows three-dimensional translational control. One downside to this cryostat is given
by the quality of the thermal contact between the sample-mount and the cold-finger
which limits the temperature attainable to approximately 7.5 K. Furthermore, we have
observed some discrepancy between the temperature of the cold-finger and the actual
temperature of the sample as determined by optical properties of the emission such as
the linewidth of the emission from single states.

The second cryostat is a bath-cryostat that both allows for measurements to lower
temperatures (3.5 K') and, through the use of a 0.85 N A objective lens mounted inside
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the bore of the cryostat, gives higher spatial resolution and light-collection efficiency.
This cryostat is also the one used in the heterodyne four-wave mixing experiments
described later in the thesis.

After being collected at the cryostat, the PL is imaged onto a pinhole (not shown
on Figure[3.1) in order to reduce any background luminescence. We then have four
options for detection and imaging of the sample:

A video camera is used as an aid in alignment, both in terms of the position of
the excitation upon the sample and to ensure that the sample has not moved
relative to the collection optics.

e A 0.5m spectrometer with a choice of 300 or 1200 lines/mm gratings and a
liquid-nitrogen cooled CCD as detector is used when a wide spectral range is
required, for example, when correlating states to individual dots.

e To measure time-resolved photoluminescence, a synchro-scan streak camera cou-
pled to a monochromator provides images with a time-resolution of 4 ps and that
are also spectrally-resolved.

e A high-resolution imaging spectrometer provides spectrally resolved data. This
spectrometer is described in more detail below.

Both spectrometers used for time-integrated measurements have two-dimensional
CCD detectors allowing measurement of spectra as a function of position on the input
slit. Taking advantage of this, a calcite (CaCOg3) crystal is used as a polarisation
displacer, resulting in the two linear polarisation components being imaged on different
parts of the input slit. We therefore have simultaneous measurement of both linear
polarisations emitted from the sample.

3.1.1 High-resolution detection with the IRIS spectrometer

High-resolution detection of the emitted PL was performed with the IRIS spectrome-
ter, an imaging grating spectrometer designed here in Dortmund by Wolfgang Langbein
and built here by Wolfgang Langbein and Stephan Schneider[Sch00]. This is a 2m focal
length spectrometer that uses a holographic grating of 1200 lines/mm blazed at 900 nm
as the dispersive element, having a theoretical resolution of 9 ueV" at 800 nm. The large
focal length allows the spectrometer to work with small angles with respect to the opti-
cal axis of the instrument and thus small imaging errors are obtained. Detection is with
a two-dimensional CCD detector that is liquid nitrogen cooled and back-illuminated.
The CCD consists of 2000 x 800 pixels (2000 along the spectrally-resolved axis), each
15 pm square in size. This results in an effective dispersion of 8 eV per pixel. How-
ever, due to imaging errors, the effect of finite slit-width and pixel size the effective
resolution of the system is 12 — 25 peV'.
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Figure 3.2: Upper: HRTEM
image of a single CdSe quan-
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ness of 3 ML Lower: Result of
digital analysis of local lattice
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the increase in lattice constants
starting from the pure ZnSe lat-
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3.2 Mesa-etched CdSe/ZnSe sample

The results presented here were measured on a sample containing of CdSe quantum
dots embedded in ZnSe. This type of sample has previously been characterised in Refer-
ences [GWL99, GMW™98, [LHO™97|. Grown by migration-enhanced epitaxy(MEE),
the dots are islands of increased Cd concentration in nominally 3 monolayer(ML) thick
CdSe grown between ZnSe layers of 25 and 50 nm thickness, the lower layer of which
was grown on a GaAs substrate. GaAs and ZnSe have a lattice mismatch of 0.3%
and so strain due to this mistmatch can be ignored. The Cd in these islands ex-
ceeds 70%, as discussed in Reference [GWLT99] where digital analysis of local lattice
displacement(DALI) techniques were applied to high-resolution transmission electron
microscope images in order to identify the alloy composition through the lattice spac-
ing. It is also worth noting that, due to the diffusion processes, the thickness of the
dots is greater than the nominally deposited thickness; 9ML for the deposited thickness
of 3ML. The lateral dimensions are of the order 5 — 10 nm which is comparible to the
excitonic Bohr radius in CdSe, ag = 5.4nm.

In order to reduce the number of dots observable within the optical resolution,
an array of square mesas was etched into the sample using a process described in
Reference [IBKT95]. With a lateral dimension in the range of 1 pum down to 50 nm,
we observed fewer than 5 optically active dots in the smallest mesas. A separation of
200pum between mesas ensured that only one was visible in the microscope objective’s
field of view at any one time. The time-integrated spectrum is thus one of multiple
sharp lines at low temperature. The spread in energy is related to the inhomogeneous
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broadening of the dots and thus to their size distribution. No further discussion of this
distribution will be held here, save to note that when reporting on measurements of
multiple dots attempts have been made to ensure that the dots from which we took
results were not grouped in any one part of the inhomogeneous broadening.

3.3 Identifying single dots: spectral wandering

Trapping of charge carriers in the nanoenvirons of a quantum dot can lead to a quan-
tum confined Stark effect(QCSE) which manifests as a shift in the position of excitonic
transitions. This change in spectral position, referred to as spectral wandering or diffu-
sion, has been reported in References [ENG96, SWB™00, TRH™01, TRST00, MBT™02,
BKMMO02]. The process by which the charge carriers are trapped and subsequently
scattered from the trapping sites depends on the depth of the trapping site and the
phonon scattering rate. As such, the dynamics show characteristic timescales of mi-
croseconds to seconds and can be used as a fingerprint of transitions from individual
dots: the rate of change of the field is sufficiently slow that the dot may go through
repeated excitation and decay cycles before a resolvable change in the magnitude of the
shift becomes apparent. Thus, although certain features (such as excitons and trions)
may not be present simultaneously, the slow rate of change of the Stark shift compared
to the time scale of the population dynamics and the change in the charge state of the
dots sees them appearing in the same spectra. It is also worth noting that the Stark
shift represents only a small change in the emission energy.

The upper part of Figure|3.3|shows an example of such jitter in the spectral position.
This plot was generated by taking 256 spectra of 1 s integration time. Correlations in
the spectral position of individual transitions are readily apparent. To better quantify
the degree of correlation and to allow the analysis of spectra with multiple individual
transitions we have performed a correlation analysis on the jitter-spectra. We make a
correlation of the form:

(EiE;) — (Ei)(E))

0;0;

C = (3.1)

with F; being the time-dependent position of peak number i, (..) denotes the time-
average, and o; = \/(FE?) — (F;)? is the standard deviation of E;. This correlation
coefficient will be exactly unity for peaks that show up to a scaling factor the same
time-evolution, and we expect peaks with a high correlation coefficient to come from
the same dot.

More specifically, the spectral position of each transition can be expanded in powers
of the local electric field, Fy, at the position of the corresponding QD k:

1
E; = Eio + piFy + SFePFy + O(F?) (3.2)

with p; = p;p; the permanent dipole moment of amplitude p; and direction p;, and the
polarisibility tensor P; of the transition. Using only the linear term, and assuming zero
average field (F) = 0 (which can be satisfied by a suitable choice of Ej), we find:
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The correlation is thus independent of the amplitude p; which instead is a scaling
factor of the fluctuations. For transitions in the same dot (k = [), the correlation is
unity for parallel dipole moments (p; = p;). In other cases, the correlation depends
both on the directional distribution of F and, for transitions in different dots, upon the
correlation between the fields F, and F;. If they are uncorrelated ((FyF;) = 0), C;; will
vanish. Otherwise, the result will be a finite value of the correlation coefficient. Since
the transitions under investigation are all located within the size of the relevant mesa
the fields are likely to be partially correlated, and thus even transitions of different
dots can show some degree of correlation.

To make the jitter correlation described in Equation we take a series of con-
secutive spectra with each individual spectrum having an integration time of approxi-
mately 1 second (naturally, the integration time depends on the intensity of PL from
the mesa). A simple peak finding routine finds the position of each transition for each
spectrum. We can now correlate the change in spectral position for each transition
which allows the grouping of spectral features. Due to the statistical nature of the
shift, the correlation value is subject to error since we measure only a finite ensemble
of emission energies in time (256 in the case of Figure. Additionally, due to the
finite accuracy of the peak position, related both to the resolution of the spectrometer
and the fact that the position of the peak is digitised by the finite array of pixels at our
detector, even fully correlated peak shifts would show a measured correlation smaller
than unity. Taking this into account, about ten mesas, each containing one to three
dots, have been screened to extract reliable data.

The correlation coefficients found for an individual mesa were always arranged in
two groups, one in the range 4+0.2, which we assigned to transitions of different dots,
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and another one in the range 0.7 - 1.0, which we assigned to transitions in the same
dot. An advantage of this correlation method is that it allows the rapid identification
of groups of lines within spectra that would otherwise be laborious to work with. Five
peaks in Figure[3.3] have been labelled. When performing the correlation analysis on
this jitter-plot the following correlation matrix is recovered

1 -0.143 —-0.138 —0.173 —0.108
1 0915 —-0.113  0.907

Cij =| - 1 —0.145 0.882
1 —0.130
1

The matrix is symmetric, hence only the upper half is presented. It can be seen that
peaks 2,3 and 5 are correlated while peaks 1 and 4 belong to two different dots (since
there is no independent correlation between these two transitions). At this point peaks
belonging to a single dot have been identified, however the excitonic species responsible
for the transition is not yet clear. The following section discusses how we label the
peaks.

3.4 Anisotropy in the dots: polarised emission

Of the three transitions labelled above, both transition 3 and 5 show a behaviour
with increasing excitation intensity that is linear at low intensities and then becomes
saturated as we increase the excitation further. This is characteristic of single excitonic
transitions, either charged (trion) or uncharged. At low excitation intensities the PL
is limited by the number of excitons that can be captured by the dot. When, on
average, less than one exciton is captured per pulse (or in a time period governed by
the intradot relaxation and subsequent radiative relaxation to the crystal ground state
for CW excitation) then the emission will depend on the number of charge carriers and
so will be linear with the excitation intensity. As the mean number of charge-carriers
captured on the time scales described above increases past one per cycle we begin to
see a saturation effect, with the capture of multiple excitons quenching the emission of
the single-exciton line. Conversely, peak 2 is absent at the lowest excitation intensities
and shows a quadratic behaviour with increasing intensity. This is characteristic of
biexcitonic transitions; until the carrier density after excitation is sufficiently high to
provide an appreciable probability of capture of multiple excitons there will be no
emission from this state. Figure[3.4] shows this intensity dependence for the emission
at 13K from a different dot to that of Figure[3.3] Only one linear polarisation is
presented here and the peaks in this figure have already been labelled as exciton (X),
trion (T) and biexciton (XX). The reference excitation intensity, I, was 250 uWW in a
spot of 50 um diameter.
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Figure 3.4:  Excitation inten-
sity dependence of puPL. Peaks
labelled are exciton (X), trion
(T) and biexciton(XX). Refer-
ence excitation intensity Iy is
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The labelling of the exciton and trion peaks takes advantage of the linear polarisa-
tion splitting observable in Figure[3.3] Here, the direction of the polarisation is along
the [110] and [110] crystal directions. The fine structure results from exchange in-
teractions which have been treated theoretically in Reference [FWFZ98] and has been
observed in both semiconductor nanocrystals [NNK™95, I(CGLT96, WGWK96] and epi-
taxially grown III-V [BF02, IGSST96] and II-VI quantum dots [PRWH99, BKMO0].
Electron-hole exchange interaction splits the fourfold degenerate heavy-hole exciton
state by a splitting energy dy into a radiative (bright) doublet with total pair angular
momentum of +14 and a non-radiative (dark) doublet of +2A. In QDs of cylindrical
symmetry in the [001] direction the dark doublet is split further by a splitting energy
d9. Breaking the cylindical symmetry, e.g. by an anisotropic confinement potential, as
shown in Figure3.5 splits the bright doublet by a splitting energy d; into two states
which have optical transitions to the ground state which are linearly polarised along
the two orthogonal principal axes of the elliptical part of the anisotropy. For single
excitons in CdSe/ZnSe QDs values of d; between 0 and more than 0.8 meV were re-
ported [KBW™99|. In a CdSe/ZnSe QD ensemble, average values of dp = 1.9meV,
91 = 0.2meV and J, < 0.02meV [PRWH99] were measured. For comparison, in
CdTe/ZnTe quantum dots bright-state splittings ¢; from 0.06 to 0.32 meV were found
IMBTT02].

From the anisotropy-split level diagram in Figure[3.5 it can be seen that, for one
polarisation, the peak for the biexciton transition is expected to be at a lower energy
than for the other polarisation, while the excitonic peak is at a higher energy. This
process whereby the peaks for one polarisation act as bookends to those of the other
polarisation is characteristic of a biexciton/exciton pair within a single dot and hence,
returning to the peaks labelled in Figure[3.3] allows us to identify peaks 2 and 5 as
being such a pair. Consider the case of a negatively charge trion in its lowest state.
This will consist of two electrons of opposite spin and a hole with two possible spin
orientations, that is, the complex is a hole interacting with a spin-singlet electron pair.
Thus, the exchange energy splitting is no longer present[BOST02] and the trion will
exhibit no splitting in the polarisation. It can be seen that this is the case for peak 3.
We have identified the excitonic species responsible for the transitions occurring within
a single dot.



3.4 Anisotropy in the dots: polarised emission 25

8XX
I AU [X> + |Y>
‘ IXX>
X S Y
1
+ - > \
x> x> X I >
o’ o X Y
0> 10>

Figure 3.5: Left: In cylindrically symmetric dots the two optically active exciton states
| X+ ) are spin-degenerate and accessible optically by circularly polarised light,c~ Right:
Elongation along one of the radial axes lifts the degeneracy, resulting in two exciton states
that emit linearly polarised light along (orthogonal) directions labelled X and Y.

As is shown in Figure[3.5] the Coulomb interaction between the two excitons that
comprise a biexciton leads to a shift in the energy of the transition, dxx from that
expected by two non-interacting excitons (shown as |X) + |Y) in the diagram). This
binding energy is derived by calculating the energy difference with respect to the en-
ergy of the bright exciton, i.e. we neglect the correction due to polarisation splitting
introduced in Reference [KBW™99]. Since the observed polarisation splitting is smaller
than the experimentally obtained standard deviation of the biexciton binding energy
itself, this approximation is justified. Figure[3.6{shows the binding energies we derived
using this method for trions and biexcitons plotted versus their emission energy. As
a result of this analysis we have found biexciton binding energies of 19 — 26 mel and
trion binding energies of 15 — 22meV. We have always observed the trion emission
at a higher energy than that of the corresponding biexciton. Note that the binding
energy for both quasi-particles is quite well defined. Interestingly, the trion binding
energy is comparable to energy shifts observed in charged colloidal CdSe nanocrystals
[SWET02]. Theoretical predictions [FZ00] indicate that singly-charged nanocrystals
should emit 22 meV to the red of the neutral exciton emission. For the biexciton bind-
ing energy the data reproduce well the value measured in quantum dot ensembles by
use of femtosecond four-wave mixing (FWM) and two-photon absorption techniques
[GWLT99]. No systematic trend of biexciton binding energies with increasing exciton
localization is observed. This may be due to the 150 meV energy window in which we
detected biexciton emission being too small to observe any pronounced confinement
induced increase in biexciton binding energy.

The lower part of Figure shows the observed polarisation splittings Ejjig —
En1g) = 01 of the exciton peak. Note that we could only determine the orthogonal
directions [110] and [110] by the orthogonal cleavage facets of the crystal which leaves
an ambiguity in the absolute ordering. However, since all QDs are on the same crys-
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tal, their relative polarisation orientation is unambiguous. The results indicate an
anisotropy in the confining potential experienced by the excitons. The asymmetry-
induced splitting does not show a systematic size dependence, as was also the case in
results from InGaAs QDs[BE02]. However, the splitting as given above is dominantly
positive for the exciton, so that the exciton anisotropy is not completely random but
has a size that is preferentially larger in the [110] crystal direction.

The consequences of the exchange interaction for the fine structure of the biexciton
and the trion transitions are the following: The trion ground state is a spin-singlet state
and the wave function overlap of the two electrons (or holes) in the trion gives zero local
spin density of the two electron (holes). The trion’s third carrier does not experience
an exchange interaction and thus the trion peak does not exhibit an exchange splitting.
Indeed, to within the experimental resolution (100 ueV) we have not observed any trion
polarisation splitting. Because the biexciton has no spin degeneracy, the biexciton to
exciton transition shows the (inverted) fine structure of the exciton transition [BKMOQ,
KBWT™99|. Therefore the peak positions of the linearly polarised exciton and biexciton
transitions are inverted relative to each other, as discussed above and as can be observed
in the lower part of Figure[3.3l The polarisation splitting observed for the biexciton is
0.2-1.2meV as can be seen in Figure[3.6 As expected, the observed exchange splitting
of exciton and biexciton is equal to within the experimental accuracy. We have not
seen any relationship between the magnitude of the polarisation splitting and other
parameters such as the biexciton binding energy or the transition energy.
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3.5 Time-resolved photoluminescence

As mentioned in Section [3.1] we have the option of performing time-resolved measure-
ments of the uPL by using a streak camera. In the setup used for these experiments
an imaging monochromator disperses the light collected from the sample. The output
slit of the monochromator is aligned parallel to the input slit of the streak camera
so that we have simultaneous energy- and temporal-resolution of the PL. A stripe-
shaped photo-cathode at the entrance of the streak camera emits electrons which are
accelerated towards a phosphorescent screen. During the transit to the screen they
are deflected perpendicularly to their flight-path by a time-varying electric field which
determines the temporal resolution of the detected image. A CCD array of 640 x 512
pixels detects the light emitted by the screen and allows readout to a PC for subsequent
data analysis.

Figure |3.7| shows the time-resolved decay of a trion and an exciton at a low excita-
tion intensity along with the corresponding time-integrated PL spectrum for this dot.
With an excitation intensity of Iy = 250uW, this figure shows the low intensity regime
of the PL where there is no biexciton population in the dots and in which the intensity
dependence of the excitons has not yet reached the saturation regime. We have fitted
the data for the exciton with a bi-component exponential decay. The initial decay is
dominated by a part with a decay-constant of 240 ps. The second component of the
decay has a decay-constant of 2.5+0.5ns. We attribute this long-time component to
a repopulation process of the bright from the dark exciton states. From the presence
of the long-time component it is clear that there is a finite probability of a transition
between bright and dark exciton states, which presents an additional channel for the
initial population decay of the bright exciton state. The initial decay time of 240 ps
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is thus not purely due to radiative decay. This process is discussed in further detail
in Section where the temperature-dependence of the time-resolved photolumi-
nescence is used to gain additional insights in to the dark-bright state splitting and
scattering processes between the two types of state. Note that the trion does not pos-
sess such a dark ground state and, indeed, we see it exhibit no such behaviour at long
times. Instead we observe a single exponential decay with a time of 320 ps. In addition,
it shows an initial refilling behaviour, which is not shown by the exciton, even at low
excitation intensities. We attribute this to a spin-relaxation process in which the trion
starts from a state with equal spin for all carriers, which is a dark state. One of the
two equally charged carriers is in the first excited electronic state since Pauli blocking
prevents the relaxation into the ground state. A spin-flip lifts the blocking and allows
the carrier to relax. After the spin-flip, the trion state is bright and the radiative re-
combination can be observed. The probability of creating this blocked initial state by
non-resonant optical pumping, assuming a random spin distribution of the carriers, is
only 1/4, so the slow process does not dominate the average trion emission dynamics.
The observed rise has a time constant of 30-50 ps, and we attribute it to this spin-flip
relaxation.

Figure[3.8 shows the time-resolved photoluminescence of the exciton and biexciton
transition for medium and high excitation intensities. The biexciton is fitted by a mono-
exponential decay and was found to have a decay time of 170 ps which is faster than
the exciton. When looking at the biexciton decay time in a selection of dots we found
that, in most cases, the ratio of the exciton decay time to the biexciton decay time was
approximately 2:1, in contrast to some previous results [BWST99] but in agreement
with ensemble data [GWLT99] and recent experiments on InAs quantum dots [SSPY(2]
which also show an enhancement of the biexciton decay-rate over that of the exciton.
For both intensities shown in Figure[3.8] the exciton now shows an initial refilling. A
good fit is obtained by setting the time-constant for this refilling to the decay time of
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the biexciton. At the highest intensities we also see evidence for refilling of the biexciton
from states which have 3 or more excitons in the dot. Examination of the spectra from
the streak camera at times soon after the excitation of the sample showed a short lived
peak 4 meV below the biexciton. Its decay time of 140 ps is comparable to the rise time
of the biexciton at this intensity and so it can be tentatively labelled as a triexciton.
Naturally, further examination of the properties of this peak would be required to
make this identification more trustworthy. At the highest excitation intensities the
trion also begins to show signs of refilling other than the spin-flip refilling discussed
above. Furthermore, the time constant for this additional refilling is comparable to
that of the biexciton, suggesting that a charged biexciton is responsible for this effect.
However, we have been unable to isolate a peak corresponding to this transition and
so also cannot present an energy splitting.

Beside this representative quantum dot discussed in Figures[3.7 and [3.8] we screened
the decay dynamics of a much larger number of quantum dots. Figure|3.9| shows the
resulting decay times for the different transitions in the investigated single dot ensem-
ble. Note that the times given here for the exciton are only those of the fast initial
decay.

As can be seen from Figure[3.9] the trion has a lifetime comparable to that of the
exciton, while the biexciton has a lifetime which is shorter than the exciton, typically
by a ratio of 2:1. This result is in agreement with both earlier data measured on
ensembles [GWLT99| and more recent single-dot experiments [SSPY02]. Furthermore,
the observed systematic increase of the decay times with decreasing transition energy is
in agreement with measurements on the ensemble [GWLT99|, and is attributed to the
decreasing coherence volume of the excitons with increasing localization. While trions
and biexcitons are characterized by an almost monoexponential decay, the presence of
a dark state complicates the analysis of the exciton dynamics.

In the next Section we therefore give an overview of the temperature-dependent
exciton dynamics in the time range < 1 ns using data from a streak-camera.
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3.5.1 Temperature dependent photoluminescence of excitons

Figure [3.10] shows the time-dependent photoluminescence of the exciton at low exci-
tation intensites (ie, no significant population of biexcitons is present). Three regimes
are apparent: At the lowest temperatures there is little repopulation from the dark
state, leading to emission dynamics that are dominated by the decay of the bright
exciton. Increasing the temperature results in an increasing repopulation of the bright
state from the dark. Indeed, by 65 K there is a strong contribution from the dark
state-refilling. Finally, at temperatures above 100 K there is a strong decrease in the
lifetime of all transitions, something that we attribute to the thermal escape of carriers
from the dots and their subsequent non-radiative recombination.

The analysis of the PL dynamics is performed by applying a simple rate equation
model to the observed behaviour. At low temperatures it is expected that the dynamics
after the initial (rapid) capture of carriers by the dots and their relaxation to the ground
state of the dots will be dominated by two decay rates 7, and ~y. The first describes
the radiative recombination of the exciton while the second gives the phonon-assisted
scattering rate between the two bright (spin singlet) and the two dark (spin triplet)
exciton states. Furthermore, a bright-dark splitting, dg, is assumed. As the temperature
increases we need to include contributions from both the thermal population of excited
exciton states and from thermal escape of the excitons into the ZnCdSe quantum well
surrounding the dots. Since the thermal population of excited exciton states is rapid
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when compared to escape and spin-flip we absorb it into a temperature-dependent
effective radiative decay rate . (T) of the bright exciton states. Escape from the dots
is through a phonon-assisted transition with escape energy d. and a scattering rate .
Recapture of charge-carriers by the dot is considered to be negligible: in the small mesa
structures investigated here we expect the carriers to be mostly captured by surface
states. This is supported by the thermally-activated decrease in the time-integrated
emission intensity. We can then write the rate equations governing the probability of
bright excitons (n},) and dark excitons (nq4)as:

Oy, = —np, (% + (14 No)yo + Neve) +naNovo (3.4)
Omg = —na(Noyo + Neve) + np(1 + No)vyo (3.5)

where Ny, denotes the Bose occupation number of phonons (exp(dpe/ksT) — 1)~*
at the energies dyp. of bright-dark splitting and escape, respectively. Since we per-
form non-resonant excitation with linearly polarised light the carriers will lose their
spin polarisation during the initial phonon-assisted relaxation into the dots and we
can also assume an initially equal probability of creating bright or dark excitons, 7.e.
n,(0) = nq(0). Since the excited average exciton number is less than one, the effect of
multiexciton states on the dynamics [IM96] is not considered.

The set of temperature dependent transients of the PL intensity can be fitted with
the analytical solution of Equation for ny(t), since the intensity is proportional
to the probability of the exciton being in the bright state. A consistent fit (see dashed
lines in Figure is found for the parameters Jo = 1.5meV, 6. = 30meV, vg =
0.08ns7 !, 7, = 30ns~!, and the temperature-dependent effective radiative lifetime of
the spin singlet states v, '(7") shown in the inset. The value of dy is similar to previous
findings [PRWH99], and the escape energy d, is close to the LO-phonon energy of ZnSe
(31 meV), indicating that the escape is mediated by LO-phonon absorption. The spin
relaxation time 1is about 13ns, much longer than the radiative decay rate. This
is consistent with previous observations of the bright-state spin dynamics [TEFHLT01].
The radiative lifetime v, ! is 270 ps at low temperature, where only the lowest electronic
states are populated. With increasing temperature, the effective v, 1(T') of the spin
singlet exciton states increases due to the population of excited exciton states, of which
a large fraction has smaller radiative recombination rates due to the small envelope
function overlap between electron and hole.

The temperature dependence of the spectral wandering has also been measured
and is shown in Figure[3.11] The jitter dynamics can be divided into a continuous
jitter of the spectral position and intensity of spectral features, and into a component
with abrupt changes of the spectral intensity. With increasing temperature, the ho-
mogeneous linewidth of the emission increases, so that the spectral jitter becomes less
obvious. The low-frequency components of the spectral jitter decrease with increasing
temperature, so that at 120 K only fast intensity jitter remains. I will leave discus-
sion at this qualitative level, while a quantitative analysis and modelling like that in
References [TRST00, SWB™00, BKMMO02] is not attempted.
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3.6 Non-Lorentzian emission lineshape

The high-resolution images obtained from the IRIS spectrometer open the possibility
of extracting information on the dephasing and relaxation processes directly from the
lineshape of the transitions. The dynamics of the relaxation are related to the lineshape
through a Fourier transform. This can be shown easily for the simplest case of a
monoexponential decay where the intensity as a function of time decays exponentially
I(t) o< e 1If the field responsible for the detected intensity has a centre frequency
wp then it can be written as

] 0 fort <0
E(t) = { Eoe 1 %cos(wot)  for t >0 (3.6)

which has a Fourier transform of

FIE®)] = E)=[;° Ese "?cos(wot)e™" dt
= 1E[ly —i(w+wp)] ™ (3.7)
+3Eo[37 — i(w — wp)] ™

If w &~ wy then we ignore the first term and can recover the frequency-dependent
intensity I(w)

E(w) ~ 1Eo[37 —i(w—wo)] !
2 Eg 7’ (3.8)
[EW)=1w) = Z=pe
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This intensity distribution is known as the Lorentzian. Due to the spectral wandering,
which can be considered to be a random process, an additional Gaussian component, is
added to the lineshape. The resulting spectral profile is described by the Voigt func-
tion, a convolution of Lorentzian and Gaussian functions. The additional broadening
due to the Gaussian can be minimised by choosing spectra whose jitter-spectra show
minimal spectral wandering and by making multiple, short exposures whose change in
spectral position can then be corrected by the spectral-offset matrix used to generate
the correlation matrix described in Equation . This results in spectra that have no
contribution to their lineshape from jitter processes with a lifetime longer than the in-
tegration time for a single acquisition. The cost is greater readout noise since multiple
spectra need to be read out.

Figure[3.12[shows the jitter-corrected spectrum of a single linear-polarisation from a
single exciton at multiple temperatures. The lineshape is clearly neither Lorentzian nor
Gaussian, consisting of a narrow central peak at low temperatures whose spectrally-
integrated weight decreases with increasing temperature. The other component of the
lineshape is a broad background which is asymmetric at low temperature.

Such features have already been noted in PL experiments on both CdTe[BKMMO1]
and InAs|[FCET03, [UMK™04] dots and, more recently, in spectral-hole burning ex-
periments on CdSe dots|PWGT04]. Furthermore, four-wave mixing experiments on In-
GaAs/GaAs dots[BLST01] have shown a non-exponential polarisation decay that corre-
sponds to a sharp central peak with a broad background. The four-wave mixing results
in particular have lead to a number of theoretical papers on the phenomemon[KAK02,
ZR02, FWDKO03| ZM04, [MZ04]. Experimental results show that not only does the
central peak decrease in spectral weight with increasing temperature, but it also shows
an increase in spectral width. This is of importance since the standard theoretical
model for these systems does not predict such an increase in width.

The theoretical understanding of the non-Lorentzian lineshape attributes the broad
background to acoustic-phonon assisted radiative recombination, with phonon emis-
sion(absorption) at energies below(above) the ZPL, while the central peak is the direct
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radiative recombination without phonon participation and is referred to as the zero-
phonon line (ZPL). The model of choice for these systems is the independent-Boson
model since it allows an exact analytical solution for the linear optical polarisation and
for the photon echo observed in FWM experiments. In this model the exciton-phonon
interaction is linear in the phonon displacement operators and excited excitonic states
are neglected. Its exact solution describes the broad-band satisfactorily but fails to
reproduce the broadening of the ZPL.

To model the lineshape measured in 4PL measurements, a model and corresponding
fitting routing developed by Prof. Roland Zimmermann in the Institut fir Physik der
Humbolt-Universitat zu Berlin is used and the derivation below follows the References
[ZMO04] and [MZ04]. Based on the independent-Boson model, it extends the standard
model by adding a phenomenological decay rate which accounts for the long-time decay
of the polarisation and hence the broadening of the ZPL. The Hamiltonian used for
this model is

H =Y EBIB;+ hwealaq+ Y _ MY(al +a_q)B!B, (3.9)
J q

Jjla

where Ej is the energy of the exciton in the j;;, level, B, B;f are the annihilation and
creation operators of the excitons, a phonon with wavevector q and energy hwq has
annihilation and creation operators aq,azl and the coupling is given by the matrix
Méj . It is assumed that the states are separated sufficiently in energy that there is no
comparable phonon energies and so little coupling between states. Thus the matrix
element is diagonal: Méj o 0;. Furthermore, only one level, the QD ground state, is
considered i.e. j —{ = 0. For simplicity the matrix element is now written as My and
the electric charge densities for the electron and hole enter through this element.

As has been mentioned, the exact solution (via a technique known as the cumulant
technique) of this model is possible and leads to a final result for the polarisation of

P(t) = je o0 +R() =S (3.10)
with
M3 .
R(t) = Z F[@Nq + 1)cos(wqt) — i sin(wqt)] (3.11)
q

q
and introducing the Huang-Rhys factor which is a measure of the electron-phonon
coupling strength

S=R0)=)_ f—f(mq +1) (3.12)

and where a thermal average over phonon operators leads to a Bose distribution of
phonons Nq = (afaq) = 1/(exp(hwq/ksT) — 1) where kg is Bolzmann’s constant, T
is the temperature, and @y is the transition frequency after being corrected for the
polaron shift and gives the position of the ZPL.

Since there is no long-time decay of the polarisation in Equation (3.10)), a phe-
nomenological decay rate I' is added by hand and models both the radiative decay
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and higher order phonon scattering. A complex Huang-Rhys factor, which occurs if
phonon-damping is included, is also allowed for: S = S} +155. The polarisation is now
given by

P(t) _ Zvefi(tw1o+Ssz2(t))+R1(t)*51*Ft (313)

Fourier transforming the imaginary part of the polarisation gives the absorption
spectrum

Pylw) = — /0 " Seltp(r) di (3.14)

The ZPL is found to have a weight Z = e~*' and the additional dephasing I' gives
it a Lorentz lineshape. The rapid initial dephasing of the polarisation accounts for
the broad spectral background. Indeed, when fitting to the data it was found that
separating the ZPL led to better results, i.e. Py(w) = PZPE 4 PP The effect
of the spectral wandering is to contribute a Gaussian component to the ZPL and the
Lorentz broadened ZPL will show a Voigt profile instead. Naturally, there will also be
an effect on the broad band, however this will only comprise a small fraction of the
total width of this component of the lineshape.

Since the broad band depends on a thermal distribution of phonons, it can be
used as a ‘phonon thermometer’[ZM04] where the zero of energy is taken to be at the
ZPL. This arises from the difference between phonon emission, o< Nq + 1, and phonon
absorption, oc Ng. Note also that there is a mirror symmetry between absorption and
photoluminescence I (w) = Py(—w), leading to

log ([(_”)) _ fw (3.15)

](+w) kBT

Figure[3.13| shows the result of calculating the phonon temperature from the PL of a
trion at 17 K. The dots indicate the thermal slope, with the solid line showing the
predicted case for a phonon temperature of 18 K.

To fit the data it is necessary to describe the geometry of the dot and a coupling
function for the exciton-phonon interaction. Acoustic phonons of dispersion wq = ¢s,
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where s is the velocity of sound in the material, are used. Furthermore, instead of the
matrix element |M|?, we use a coupling function of the form

1(E) ol [ e (D)~ D )P (B =hes) (316)

 4n2s2py(hs)
where pys is the mass density of the crystal, p. the charge density of the electron or
hole and D, , the deformation potential of the conduction and valence bands. The form
of Equation can be understood as an angular average over q since Ny depends
only on |g|. In the ground state the charge densities of electrons and holes are similar
and so for this fitting we set p.(r) = pn(r) = p(r). What is important is the spatial
distribution of charge. A prolate spheroid (pancake) model is applied; a cylindrically
symmetrical distribution that has a radial size greater than the height (z) extent. The
form of the charge distribution is given by a Gaussian distribution

pa = exp(—q;l; /4 — ¢212/4) (3.17)
remembering that r here is the radial component in a cylindrical geometry.

Figure[3.14] shows the results of applying the independent-Boson model with ad-
ditional dephasing to the CdSe dots under investigation in this chapter of the thesis.
The important parameters of the calculation are as follows:

T (K) 17
[, (nm) 2.4
[, (nm) 1.1
oc (meV) 0.19
Scalep,_q, 1.75

D. — D,(meV)[LS91] | -4250
s (m/s) [Med82] 4070
py (g/em?) [Bha97] | 5.42

where o is the width of the Gaussian used to model the ZPL and Scalep, 4, is an
empirical weighting factor for the band edge deformation potentials. Since the model
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Figure 3.15: Theoretical calculation (solid lines) of trion lineshape at multiple temperatures
using the (non-temperature) parameters given in the table above. Good agreement with
experiment (dotted lines) is evident. Inset(3.5K): Enlarged view of the region about the
ZPL showing that a dip in the acoustic phonon assisted emission which is present at low
temperatures also appears in the modelled data.

assumes bulk-like phonons, the material parameters given here are not those for CdSe,
the dot material, but the relevant values for ZnSe since it is phonons from the ZnSe
barriers that we assume will interact with the excitonic states. Indeed, calculating
the PL spectra using the CdSe values gave neither reasonable extensions, I,.,[,, for
the excitonic wavefunction nor a good fit at multiple temperatures for a single set of
parameters.

Figure|3.15| shows the result of calculating the PL spectrum at varying tempera-
tures using the (non-thermal) parameters given above. In order to optimise the fit it
was necessary to vary the value of Scalep, 4, by some 15 — 20% over the range of
temperatures invesitgated (3.5 — 50K). Futhermore, in contrast to the expected be-
haviour of an increasing ZPL width with increasing temperature, we saw no evidence
of such behaviour here. However, this is not entirely unexpected. Fitting the ZPL with
a Voigt profile instead of the Gaussian one used in this routine shows that, up to ap-
proximately 50K, the Lorentzian component of the Voigt is dominated by the Gaussian
component. In other words, at these low temperatures the effects of spectral wandering
upon the ZPL width dominate any intrinsic width due to the dephasing of the state.
Measurements at higher temperatures, to extract this Lorenztian broadening, are also
complicated by the fact that, as can be seen in Figure[3.16] the fraction of the total
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Figure 3.17: Effect of dot geometry on the PL lineshape. A range of aspect ratios for equal
QD volume, labelled by their extent in the z-direction, are used to generate PL spectra. Also
shown is the observed PL at T = 17 K.

emission which is due to the ZPL decreases rapidly with increasing temperature. Since
the emission efficiency also decreases with temperature, it is somewhat of a challenge
to extract reliable data over a wide temperature range. Nevertheless, the fits to the
experimental data given by this model, and using a Gaussian to represent the ZPL, are
very satisfactory. The inset to the PL at 3.5K in Figure[3.15] expands the view of the
region about the ZPL. The increasing asymmetry in the phonon-assisted band with
decreasing temperature leads to in interesting effect whereby a dip appears in the PL
in the spectral region immediately below the ZPL. This is clearly seen in our data and
is also recovered in the theoretical calculations.

In order to get a feel for the effect of the aspect ratio, [, : [, of the dot upon the
emission, we calculated the PL spectrum for a range of values while keeping the volume
121, of the wavefunction constant. Figure shows the results of these calculations,
indexed by the value [,, and the observed PL at T" = 17 K. The range investigated
runs from an extremely flat dot to one with spherical symmetry. The constraints of
the programme used to calculate the PL. meant that we were unable to move from such
a ‘thin pancake’ to a spherical dot and then on to a ‘cigar’ geometry (I, > 1,.). As can
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be seen, the effect of increasing spherical symmetry serves to reduce the interaction
with phonons at higher energies, and thus |g| values, shown by the increasingly rapid
drop-off of the PL emission with decreasing emission energy. Conversely, the thinnest
geometries show a deterioration of the agreement with the data close to the ZPL line, a
region where we desire a good fit from the model. The fact that these thin geometries
appear to show a good agreement at energies lower than 4 meV is not of importance
here for two reasons. Firstly, in order to maximise the signal from the exciton and
trion it was necessary to use excitation powers close to the saturation regime of the
exciton, where the biexciton begins to become apparent. Since the separation of the
trion and biexciton is of the order of a few mel and the biexciton is below the trion
in emission energy, we cannot be certain that any deviation in the quality of the fit is
due to the model and not due to the fact that there may be some contribution from
the biexciton. Secondly, it is also worth noting that the noise begins to dominate at
these low signal intensities and so it would be foolhardy to weight the fit heavily here.
We have found that the emission is relatively insensitive to the geometry in the range
1.0 < I, < 1.4nm. Hence, our initial estimation of [, = 1.1nm is supported by the
calculations shown here.
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Coherent Spectroscopy of Single
Excitonic States



Chapter 4

Heterodyne Four-Wave Mixing:
Theory and Experimental Detalils

4.1 Theory

In this section we will look at the theoretical grounding for both four-wave mixing
(FWM) and optical heterodyne techniques. The FWM is examined in terms of the
independent two-level model which assumes two states, |¥,) and |¥,), of energy E,
and £}, which are sufficiently far from other states that a photon nearly resonant to the
transition between |¥,) and |¥,) is far off resonance with respect to other transitions.
Using this approximation, we can derive equations that govern the behaviour of the
system under resonant excitation.

4.1.1 Optical Bloch equations

In this formalism we are interested in the effect of an electromagnetic field upon an
ensemble of identical two-level systems. The requirement that the individual systems
be isolated means that this approach works equally well for both a spatial ensemble of
such systems and for repeated measurements upon a single system in such a way that
the results of each measurement may be considered to be independent of the previous
measurements. The derivation of the optical Bloch equations presented here follows
that of Reference [Sha96].

We first define the density matriz operator, p for an ensemble of such systems. This
describes the statistics of such an ensemble

p= ij|q’j><‘1’j| (4.1)
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where P; is the fraction of the systems with state vector |V;) with j € {a,b} for a
two-level system. In this case we can also write the density operator conveniently as

Pvb  Pba
= 4.2
p |:pab paa:| ( )

In such a description it is useful to view the diagonal elements as the probability of
finding the system in the relevant eigenstate, with the off-diagonal elements being the
coherence between the states. In a closed system it is also worth remembering that the
system is normalised to one, ie

Paa + oy =1 (4.3)

Since we are treating the system quantum mechanically, it follows the Schrodinger
equation and, in particular, the Liouville form of the equation. Using p = dp/dt and
the commutator [H, p| = Hp — pH we write the equation as:

ihp = [H, ) (4.4)
with H the Hamiltonian for the system and having the form
H = Hy+ Hypy + Hp (4.5)

where Hj is the Hamiltonian of the isolated system, H;,; describes the effect of the inter-
action between the system and the electromagnetic field and Hpg is a phenomenological
description of relaxation and dephasing processes. In the absence of the interaction
and relaxation terms the Hamiltonian has no explicit time-dependence and so we find
solutions of the form

Uy (r,t) = ¢(r)e 0, Hog; = B¢ (4.6)
with ¢; normalised to one.

Extending the model to a system of n independent, two-level systems we find that
the state-vector for the n-th system is given by

[, () = Can ()W 1, 1)) + 0 (£) W, 1)) (4.7)
and, using Equations (4.2)) and (4.1]), we can write the density matrix for the system
explicitly

_ |Cbn|2 ConCon

p‘zﬂkﬁm%v (45)

noting that the off-diagonal elements are only non-zero where there is a well-defined
phase relationship between all the different n in the ensemble, i.e. there is coherence
in the ensemble. We are interested in interaction Hamiltonians of the form

Hint = —p.E(I’,t), Pi; = _€/d3T¢:r¢j (49)
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The components of H;,; are thus given by

Aij = —pi;-E(r,t) (4.10)

This assumes electric-dipole allowed transitions with an incident electric field E(r, ¢)
and an electric dipole moment of the charged particle p. Furthermore, we are working in
the dipole approximation which assumes that the characteristic size of the wavefunction
describing the particle, ag is much smaller than the wavelength of the incident electric
field. Hence, there is a negligible contribution to the Hamiltonian from the wavevector-
dependent term since qag << 1.

Since H,;,; is the representation of a physical observable it is a self-adjoint operator,
that is, H;; = H};. Furthermore, the matrix H;; can be additionally simplified by taking
into account the fact that p is an odd-parity operator and so the diagonal components
of H,; will be zero.

Consider a monochromatic plane wave, linearly polarised in the direction €, and
with a frequency w. The electric field can then be written as the sum of two fields

E(r,t) = ET(r,t) + E(r,¢) (4.11)
with |
E*(r,t) = §eEoei(q'r_(‘”t+")), E~(r,t) = E*(r,1) (4.12)

where Ej is the (real) electric field amplitude and 7 is an overall phase term. Looking at
the time-dependent terms of Equation and using the field given by Eq. we
see that there are two terms, one with a phase factor oc /¥ where Q = (E, — E,)/h.
The rotating wave approximation is applied and this term is ignored, leading to an
explicit form for Ay, of

Aba = (h/?)e(rba . E)Eoei(qr—(wt—n)) (413)

This can be thought of as making a time-average to remove the rapidly varying terms.
In later sections it will become useful to note that the Rabi-frequency, 2 can be
extracted here from Qg = e(ry, - €)Ep/h at resonance (when w = Q). The interaction
Hamiltonian matrix can thus be written as

0 Aba:|

As mentioned above, the relaxation component Hp of the Hamiltonian is accounted
for phenomenologically with two time constants, 77 and 75 corresponding to the lifetime
of the population and the coherence, respectively

[HR7 P]bb = _ihpbb/Tl

[HR>P]ba = —ihpy /T, (4.15)
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Having the full Hamiltonian, it is now worth rewriting the density matrix to take
into account all important terms. Using the notation for the population n = py,, 1—n =
Paa and polarisation p = py, we get

= s 1t (4.16)

and can recover the optical Bloch equations[Sha90]

n=—n/Ty = (i/h)(Beap” — pAy,) (4.17a)
p=—p(iQ+ 1/T3) — (i/R) Ape (1 — 2n) (4.17b)

These equations form the basis for the analysis of coherent transient equations in two-
level systems. However, they cannot be solved analytically in the general case. Instead,

the density and polarisation are Taylor expanded in order to obtain a solution to the
desired order. With

n = n(0)+n(1)+n(2)+...

4.18
p o= PO p0 @ (4.18)

we use initial conditions of n = 0 and p = 0 and note that odd powers of n and
even powers of p are zero. The optical Bloch equations can then be written to the third
order as

P = =@+ 1/To)p" — (i/h) A, (4.19a)
n® = —n® /T — (i/R)(Dpap™* = pWAL,) (4.19b)
B = —(iQ + 1/To)p'® + 2(i/h) Ayan® (4.19¢)

That is, the ¢ + 1 order of n(p) is influenced by the i order of p(n). On a matter
of terminology, remembering that the polarisation is given by p = ¢yxFE, with x the
susceptibility, it is common to refer to non-linear optic experiments according to the
order in the Taylor expansion in which the processes governing them occur, but using
the susceptibility as the term being expanded. Four-wave mixing would then be referred
to as a x® process.

To look at the four-wave mixing signal we will consider a two-beam, degenerate
experiment in which two pulse trains, seperated by a delay 7 and propagating along
directions qq, qo interact with the sample. For delay times which are small compared to
the dephasing time T3 the polarisations created by pulses 1 and 2 can interfere to create
a grating resulting in the self-diffraction of pulse 2 along the direction qq = 2q2 — q1
In order that Equations are analytically soluble, we consider the case where the
pulses are delta-functions and ignore propagation effects (equivalent to assuming that
the sample is thin). We can write the resulting pulse train at the sample as

E(r,t) = [E10(t)e'M ™ + By (t — )" "] e (4.20)

where F 5 is the amplitude of the relevant field, w is the centre frequency of the laser
pulses and we absorb the refractive index into the coordinate r. Furthermore, we
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assume that the first pulse arrives at time ¢ = 0 and the second at a time ¢t = 7.
Writing the solutions to the Bloch equations to third order directly, we get

p1 = (erpa/ih) { E1eC'O(t) + Bae C1O((t — 7)) } (4.21a)

O(—1)O(t)e t/T+Gr
"91) = (62|Tba’2/h2)E2El { +é)(7§@gt)— T)e—(t—r)/Tl—G*T }

Py = —i(elryal /1)e e PemT B B2 5 ©(r)O(t — T)e ¢HEZEIT (4.21¢)

(4.21D)

where © is the Heaviside step function and G = (1/73 + i(2 — w)). Thus, the first
order polarisation is a sum of two damped oscillations at w displaced by the delay 7
when at resonance (2 = w) while the second order term in n contains two terms of
which only one is non-zero for 7 > 0 and the other non-zero for 7 < 0. Futhermore,
the second-order population is only present after the second pulse (be that pulse 1 or
pulse 2) arrives and then decays exponentially. The third order polarisation (which is
what we measure in a FWM experiment) only appears for positive delays and after the
second pulse arrives. Thereafter it decays with the time 75, the dephasing time.

Since we are dealing with ensembles which may have a distribution of transition
energies it is worth looking at two cases for this distribution. The first, homogeneous
broadening, is described above and is dominant when the distribution of energies is
smaller than the natural linewidth given by I', = 2h/T,. Note that this case also
applies when looking at a time-ensemble of measurements on a single transition in
the absence of any time-dependent change in transition energy (i.e. in the absence
of spectral jitter). As mentioned above, the third order polarisation is created at
t = 7 for positive delays and then Free-Polarisation Decay (FPD) occurs, a process
analogous to free-induction decay in nuclear magnetic resonance, with a decay constant
Tdecay = 12/2. For a finite pulse width 7, the peak of the FPD is delayed to t = 7 + 7,
but the decay time is unchanged.

The other regime of interest is when the broadening of the ensemble is greater than
the homogeneously broadened linewidth. In this inhomogeneously broadened case the
phase evolution of the individual components of the ensemble occurs at different rates
given by the time-dependent Schrodinger equation. Hence, the macroscopic polarisa-
tion rapidly decays to zero even though the individual polarisations have evolved in
the absence of any dephasing processes. However, the second pulse reverses the phase
evolution of the ensemble, resulting in the well known photon echo at a time ¢t = 27
when the components of the ensemble are once more in phase. This phenomenon will
be examined in more detail in Section[5.3l

4.1.2 Vector model of the Bloch equations

An alternative representation of the optical Bloch equations, which will be particularly
useful when looking at Rabi oscillations in the population of the excitonic system, is
the vector representation[Jon03]. We write a unitary vector, the Bloch vector, of the
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Figure 4.1:  Evolution of the
Bloch vector R around the preces-
sion vector Q2g. In the absence of
external fields, and ignoring any
thermal population of the upper
state, the vector will relax towards
the ground state, at w = —1.

form R = (u, v, w). Its components are given by

U= pl?a + pgba V= 2.(pl?a - pf}b)a W = Pvb — Paa (4'22)

where, using the rotating-wave approximation, the substitution py, = ptexp [i(2 — n)t]
gives the temporal envelope of the off-diagonal density-matrix elements, recalling that
Q = (E, — E,)/h and with the detuning n = Q — w. The optical Bloch equations in
the absence of any thermal population of the upper-level are then given by

w=—nv—u/Ty (4.23a)
0= —nu+ Qrw —v/Ty (4.23b)
w=—Qrv—w/T} (4.23¢)

recalling the Rabi-frequency Qg = e(ry, - €) Ey/h. The coordinate w thus describes the
inversion of the system, while v and v are related to the polarisation of the system.
Hence, when measuring the FWM of the system, it is the component of R projected
onto the v — v plane that will determine the signal.

Equations (4.23)) can also be expressed as

R =Qp xR — (u/Ty,v/Ty, (w+1)/T}) (4.24)

N J/
-

Relaxation Terms

where (g is a vector that describes the precession of the Bloch-vector

Qp = (—Qg,0,7) (4.25)

Figure[d.1shows the evolution of the Bloch vector in this model. An external electric
field excites the vector from its equilibrium state (in the absence of thermal occupation
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of the upper level) of R = (0,0, —1). The vectorial form of the optical Bloch equations
is of particular use when looking at the phenomenon of Rabi oscillations (Section,
where the w = € and so the w-component of (g is zero, resulting in a precession of
the Bloch vector about u, i.e. (in the absence of dephasing) a cyclical inversion of the
population followed by a return to the ground state.

4.1.3 Heterodyne four-wave mixing

In the previous section the FWM signal in the spatial-selection case was examined.
However, if the two pulse trains are chosen so that they have different optical centre-
frequencies wy,ws then FWM will also be detected at the frequency 2ws — w;. In
practice, this is achieved by the use of acousto-optic modulators (AOMs), described in
more detail in Section[d.2.1], to achieve a radio-frequency shift in the centre-frequency
of the pulses. Since the pulse width is given by the Fourier transform of the pulse shape
in time and we are using pulses of sub-picosecond duration, the shift induced by the
AOM is negligible compared to the overall pulse width. Such heterodyne FWM mixing
techniques were developed to study FWM in waveguides where spatial selection is not
possible due to the requirement of coupling into the waveguide[HLIR92, MMH96].

4.1.4 Signal to noise ratio

Performing the recovery of the FWM signal through spectral interferometric methods
(see Section[d.2.4)) has an additional benefit in terms of the signal to noise ratio of the
recovered signal [LGX99]. In particular, at the detector, the mean square signal current
is given by
< ig >=2(en/hw)*LreLsignal (4.26)
where 7 is the detector efficiency and I (Zsigna) is the intensity of the reference(signal).
As can be seen, we can increase the measured signal simply by increasing the intensity
of the reference. Furthermore, since the photocurrent is being increased with the
reference, it is possible to reach the shot-noise limit, that is, the point at which detector
and readout noise is negligible compared to the shot-noise of the reference field, given
by
<i2 >=2e’nBl,.;/hw (4.27)
where B is the bandwidth of the receiver. Combining Equations and we

find the signal to noise ratio to be

<i% >/ <i2 >=nlgma/(AwB) (4.28)
giving a minimum detectable signal of
[signal(min) = hWB/T] (429)

Furthermore, since we are using a balanced detection scheme which is shot-noise
limited, we also compensate for classical intensity fluctuations of the laser. Thus the
detection noise can be limited by the reference shot-noise!
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4.2 Experimental setup

In comparison to the microphotoluminescence experiments described earlier the re-
quirements for realisation of this heterodyne four wave mixing scheme are quite steep:

e This is a three-beam experiment; pump, probe and reference. We need control
over

The polarisation of the beams
The pulse width
The centre-frequency of individual pulses

The relative delay between the three beams

e At the sample we need to be able to select a small spatial region to minimise the
number of excitonic states contributing to the signal

e Since the magnitude of the signal is quite small, it is important to have both
a high collection efficiency at the sample and to minimise loss of signal in the
detection path

e The use of an AOM to perform the mixing required for spectral interferometry
requires a careful choice of detection optics. Furthermore, non-standard AOM
driving electronics are required and were specially constructed for the experiments

e Along with the physical requirements for the apparatus, there is also a significant
amount of preprocessing of the data required before analysis of the physics in the
sample is possible. This manifests itself both in the way in which the data are
acquired and in a set of algorithmic routines that are subsequently applied to the
data

e As a coherent technique, the relative phase between each beam should ideally be
constant or at least change slowly enough that phase-correction or compensation
techniques can be applied

This section of the thesis deals with the manner in which the experimental setup
was constructed in order to fulfil these requirements.

4.2.1 The acousto-optical modulator

Acousto-optic modulators, AOMs, serve essential functions in this technique, As such,
it is worth looking at the physics behind these devices. At heart, an AOM is simply a
piece of glass or crystal to which a piezoelectric transducer is bonded. Acoustic waves
generated by the transducer produce periodic regions of compression and expansion
in the material in which they propagate and hence create a periodic structure in the
refractive index with which light can interact. Furthermore, since the light is interacting
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AOM

Figure 4.2:  Diffraction in an
AOM. Angles are exaggerated
for clarity. 60p: Bragg angle.
Iy:  zeroth-order (undeflected)
beam. I,y: First-order (posi-
tive frequency shift) beam. A:
Acoustic wavelength. L: light-
sound interaction length within
device.

with a travelling wave it can be up- or down-shifted in optical frequency through a
Doppler shift process.

In practice, this is a somewhat simplified picture. A more accurate model of diffrac-
tion by an AOM considers collisions between photons and phonons[GP02]. Figure[.2]
shows the geometry of diffraction for an up-shifted beam. Conserving momentum and
energy we have

hkyy = hko+ hK

hwoo = hwp + h9 (4.30)

where ko (wo), ki1 (wy1), K () is the wavevector (frequency) of the incident photon,
scattered photon and phonon respectively. The requirement on wavevectors can be
seen to be a phase-matching condition. In actual operation K is small compared to kg,
ie kg ~ k1. Hence, the angle at which scattering will be optimum is given by

K A
pum— 1 _1 —_— pum— 1 _1 _—
fp = sin <2k0) sin <2A) (4.31)

with 0p the Bragg angle. Equivalent equations hold for incident light travelling along
the other Bragg-vector and so experiencing a frequency down-shift when scattered.
Taking the light-sound interaction length, L, into account, a further condition was
found to be necessary before the device will operate in such a Bragg diffraction geom-
etry. The Klein-Cook coefficient, (), given by

2mAL?
Q=—5— (4.32)

NCsound

where n is the refractive index and cs,unq the speed of sound in the medium, should be
greater than 7.

In practice, we use AOMs made by Intraaction Corp. These are made of crystalline
Tellurium Dioxide (TeO;) and are rated for acoustic driving frequencies centred at
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Figure 4.3: Beam preparation: Input is 250 ps pulses from Ti:Saph at 75.4 M H z repetition
rate. wyq is the optical centre frequency of the pulses. AOM: Acousto-Optic Modulator.
wgrF1,2 are the radio-frequencies at which the AOMs are driven.

80 M Hz. With acoustic velocity cspung = 4260 ms~! in this material and driving them
at the centre frequency, a light beam at 800 nm will be diffracted through an angle

0 =205 = \Q/Csouna ~ 0.015rad (4.33)

4.2.2 Beam preparation

All the data presented here were obtained with an optically pumped titanium:sapphire
laser as the light source. It emits pulses of approximately 150 fs width at a rate of
75.4 M Hz. We then passed the pulses through a pulse-shaper[Man00] which, through
a spectral filtering, increased their duration to within a range of 0.25 — 5ps. Finally,
we focus through a 50 um pinhole to obtain a clean spatial mode.

At this point we are ready to generate our pump, probe and reference beams.
We have chosen to construct a compact, self-contained unit where all three beams
are generated and then recombined in the required configuration for imaging onto the
sample. This allows us to minimise the optical path along which the beams are spatially
separated and so open to relative phase fluctuations induced by environmental effects
(air currents and the like). Should significant fluctuations still be present, we also have
the option of completely enclosing the preparation stage with plexiglass to further
isolate the system.
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Figureld.3| shows the optical layout of our preparation apparatus. A 70:30 non-
polarising beamsplitter separates the probe/reference and pump lines. The 30% line
will form the pump. It passes through an AOM being driven at wgrp; = 79 M Hz and
the first-order diffracted beam is picked up and a subsequent delay-stage, consisting of
a retroreflector mounted on a computer-controlled linear stage, allows us to vary the
pump-probe delay 7. The probe-reference delay in our scheme is fixed. The reason for
this is discussed below in the section on spectral interferometry.

The other beamline will be used to form the probe and reference beams. Here we
pick up both the zero- and first-order diffracted beams from an AOM driven at wrps =
80 M Hz. The zero-order will form the reference, while the first-order diffraction forms
the probe. We also have the option of controlling the polarisation of the probe to allow
cross-polarised pump and probe beams.

Finally, we recombine all three beams in such a way that the pump and probe
propagate in the same spatial mode and so will fully overlap at the sample, while the
reference propagates in a slightly different direction to the other beams and is imaged
on the sample at a point approximately 5pm distant. A telescope (not shown on
Figure is the final optical element in our beam-preparation; it allows the size of
the beams be adjusted to optimally fill the microscope objective with which we perform
the final imaging onto the sample. This is necessary to achieve the maximum resolution
allowed by this lens.

Not shown in Figure[d.3 are three independent, computer-controlled shutters which
allow us to block any combination of beams. This allows the power and spectrum of
individual beams be measured along with spectral interference between pairs of beams.
The latter is important when characterising the delay between the pump, probe and
reference pulses (see below).

4.2.3 Coupling to sample and collection of signal

Figure[4.4]shows the scheme we use for the detection of the signal. The beams from the
preparation stage are coupled into the microscope objective mounted in the cryostat
by reflection from a beam-sampler. This is a wedged piece of glass which has an anti-
reflex coating on one side only. As such it has a nominal coefficient of reflection of
4% (intensity) at the 45° reflection geometry for which it was designed. While this does
mean that over 96% of our excitation power is lost at this one component it nevertheless
offers some serious advantages. Excitation power is not an issue for these experiments;
we have found that an excitation power of 1 W time-integrated at the sample to be
sufficient for FWM. On the other hand, when detecting the signal we wish to avoid
losses wherever possible. As we are using a confocal geometry with excitation and
detection on the same side of the sample the optics we use to couple in the excitation
beam must also be traversed by the signal. Thus we wish to have as high a transmission
as possible - something which the beam sampler lends itself to perfectly.
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Figure 4.4: Schematic of detection apparatus. PH: Pinhole AOM: Acousto-Optic Modulator
IRIS: 2m imaging spectrometer with liquid-nitrogen cooled CCD

Imaging of the sample when performing the HFWM is done using a high (0.85)
numerical aperture (NA) microscope objective. With the confocal geometry we have
both a very high resolution on the sample surface (some hundreds of nanometres de-
pending on our excitation wavelength) and a high collection efficiency. The resolution
attainable by a lens can be looked at in terms of the highest order of diffraction which
can be admitted by the finite aperture of that lens. For an object of given size, d, the
first order will appear at an angle ¢ given by:

sin(6)) = A/d (4.34)

Rearranging, we can see that the resolution will be limited by the angular ad-
mittance of the lens. This is taken into account through the numerical aperture:
NA = nsina with n the real part of the refractive index. In this case we use no
immersion liquid and thus n is very close to 1 since the atmosphere in the cryostat is
helium at a pressure of 200 — 300 mBar. Hence,

dmin = M/msin(a) =A/NA (4.35)

gives the smallest object, d,,;, which can be resolved by a lens of given NA, with
the inverse relationship between size and NA meaning that higher values give better
resolutions. However, the effect of the refractive index of the sample is to decrease
the solid angle detected at the lens. Figure[d.5] shows this clearly. Calculation of the
area over which we detect light gives us a geometrical collection efficiency of 7.5%.
This does not take into account any reflection at the sample surface and so our actual
collection efficiency will be somewhat lower.

The sample is mounted in a helium bath cryostat which allows detection of the
FWM at temperatures down to 4K. It is placed on a specially designed holder which
allows movement of the sample perpendicular to the optical axis while still in the
cryostat and at low-temperatures. Furthermore, the microscope objective lens that
is described above is mounted on an x-y-z piezo stage that also fits in the cryostat.
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Microscope Objective

Figure 4.5: The effect of the
refractive index of the sample
on the numerical aperture of the
imaging lens. « is the angular
Sample admittance of the lens, o is the
; effective angular admittance of
the light emitted from the QD
in the barrier of n = 3.5.

This stage was designed and built here in Dortmund[M&l00]. By using a full x-y-z
stage we are able to both ensure an optimum focusing of the imaging and to have fine
control over the position of the sample. The latter was not only useful as it allowed
the optimisation of the signal observed for single transitions, but it also opens up the
possibility of mapping the FWM signal in real-space on the sample.

4.2.4 Imaging and spectral interferometry at the AOM

As can be seen in Figure[d.4] the requirements for the implementation of spectral
interferometry with the reference and the imaging into the spectrometer lead to a
non-trivial solution for the imaging optics. We first image onto a set of pinholes.
This is important for two reasons; if gives a fixed excitation position on the sample
so that when the photoluminescence is measured we can change between excitation
sources with confidence that we are viewing the same region and hence making valid
comparisons between PL. and FWM signals. Additionally, since we are not performing
a directionally-resolved FWM measurement, the pinholes also cut down on the light
from non-signal-producing regions and so increase our signal to noise ratio.

Geometrical ray optics were used to calculate the required scheme for the optics.
In this methodology matrices represent the optical components involved:

1 d /(10

with D; being distances (through air) over which the light should propagate and F;
being a lens of focal length f. A light ray from the object being imaged is described
by a vector r = (r, &) with r being the radial distance from the optical axis and « the



4.2 Experimental setup 55

angle between the optical axis and the direction of propagation of the ray. Only two
dimensions are required since we assume cylindrical symmetry for the lens system, thus
lifting the requirement for an azimuthal component. At any given point the resulting
vector ' = (', ') is given by the matrix-multiplication of the matrix representations of
the components up to that point. That is, for a system of ¢ lenses of focal length f; and
separated by distances d; we would have, when using the matrices from Equation

=D QF,®D;®---F ® Dy)r

where ® indicates matrix multiplication and D, is the distance from the object to the
first lens.

Two special cases for 1’ present themselves. The first, known as the near field, is:
e = F'(a,r) (4.37)

where F'(r[a]) denote functions purely depending on r[a]. In this case, the spatial
information of the object being imaged is preserved in the spatial co-ordinate of 7.
We use near field imaging at the pinholes and at the entrance slit to the spectrometer.
Note that in reference literature the near field is sometimes referred to as the object
plane. Finally, unlike the case in scanning near-field optical microscopy (or SNOM),
the near field here does not contain information on the evanescent field of the object
being imaged.

The second case is far field or k-space imaging;:
v = F'(r,a) (4.38)

The far field is the image of an object at an infinite distance from the lens (or, alterna-
tively, the image at the focal plane of an object an infinite distance from the lens). The
far-field image contains information about the directional intensity of the light emitted
by an object. Note that the near- and far-field images are related to each other through
a Fourier transform. A property of the far-field that holds importance for our purposes
is that the directional component « of light rays in the far-field contains spatial in-
formation about the object being imaged. In particular, we can transform a spatial
separation of signal and reference beams at the sample into an angular dependence
that satisfies our requirements for in-coupling to the AOM at the Bragg angle. Since
the angular emission of both beams at the sample is essentially isotropic, imaging in
the far field will also ensure the spatial overlap of the two beams at the sample.

The FWM is recovered by Fourier-transform spectral interferometry [LCJ95, [DBLJ00]
performed on the signal. In this technique we use the interference of the signal with
a known reference pulse to recover the field, E,, in both amplitude and phase. Since
the Fourier transform of E,, is E; we are thus able to recover the full, time-dependent
electric field with this technique. This opens many possibilities when analysing the
data for interesting physical phenomena.

Consider the case of a reference pulse E,.r(w,7) with a fixed delay, 7, relative to
the signal interfering with the signal Ey;,(w). The interference signal, S(w, 7) is given
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Figure 4.6: Choice of fixed pump or probe. We are most interested in signals at positive
delay (vertical axis). Causality places our signal from interference with the reference at

positive times (horizontal axis), shown by the single hatched regions. Cross-hatched regions
show times for which we recover signal for a variable pump delay (left) and probe delay

(right).

by
S(w77_) - |ET8f<w7T) +E8ig(w)‘2
= |Erep(w, T)? + [ Esig(W)]* + 2R B, ; (0, T) Egig(w)

where the final term will be proportional to cos(¢sig(w) — ¢ref(w)), the phase differ-
ence between the two beams. The terms |E,.f(w,7)|* and |Esy(w)[* can simply be
subtracted as they are the intensities of the reference and signal beams respectively.
Removing these terms from Equation and writing the reference with delay ex-
plicitly as E,.f(w)e™™7 we find

(4.39)

S(w, ) = 2R f(w)e™™; f(w) = Epp(w)Esig(w) (4.40)
Fourier transformation of this spectrum leads to
F'Sw)=f(t—7)+ f(~t—71) (4.41)

Because S(w, 7) is real, the inverse Fourier transform is the sum of two, time reversed
components. From the principle of causality it is evident that no signal should be
present at times less than 7; there is no emission before excitation of the sample.
Overlap of these two components can therefore be prevented by ensuring that 7 is
greater than any rise time of the signal (for example, due to the finite duration of the
excitation pulses). Given this condition, we can recover the positive-time component
f(t — 7) by multiplying the time-domain signal by the Heaviside function, ©O(t).

The effective time range over which we detect signal is shown schematically in
Figure[f.6] For reasons of stability and increased simplicity in alignment and hardware
requirements it was decided to fix the position of the reference pulse in time and to use
only a single delay-stage. The maximum range over which we can still detect signal
will be given by the spectral resolution of our detection scheme and, from the causality
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condition discussed above, the maximum time at which we can still see signal is thus
independent of pump-probe delay since the signal will only be present after the probe
pulse arrives. The left side of Figureld.6|shows the effect this has when it is the pump
that is moved with changing delay. For positive delays we recover all the signal out
to our maximum time while with increasing negative delay we recover progressively
less of the signal. The converse is true for a fixed pump and moveable probe - it is
the positive delays which are affected by the maximum time at which we can measure.
Since we were most interested in signals at positive delay, we fixed the probe position
in time. Note that there are cases in which signals at negative delays may be more
interesting to observe; two-photon coherences being one example.

At this point we are still working with f(t — 7), the correlation product between
the signal and the reference. It is now necessary to extract the electric field due to the
reference from this product. As we do not have a fully characterised reference pulse
we will use the flat-phase approximation for the reference

Erop(w) = \/Lese® (4.42)

where I,..; is the measured intensity of the reference and 6 is a frequency-independent
phase factor. The signal’s field can then generated from

FO(t)F_1S(w)]e ™7
Epep(w)

Eig(w) = (4.43)

In practice it is also possible to divide through by the reference electric field before
the inverse-Fourier transform and we have found it convenient to do so when pre-
processing the data.

Figureld.7 shows the manner in which the AOM is used to mix the signal and
reference and thus perform the interferometry. The reference is coupled into the AOM
at the Bragg angle corresponding to an up-shift of the optical centre frequency of the
pulse, wy by the (radio-frequency) AOM driving frequency, waons. Similarly, the signal,
at optical centre frequency wg enters the AOM in such a way that it is down-shifted
by the AOM. The options for the AOM driving frequency are:
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The option of recovering pump or probe interference is useful when calibrating the
probe-reference delay and subsequently the zero delay position of the pump translation
stage - a beating will be observed with a period in energy of Ep..; = h/T where T is
the delay between the reference and the beam being interfered. Note that the sign of 7
is not implicit in the above relation; it can be easily recovered by placing a small piece
of glass in one of the beam paths in order to increase the optical path-length and thus
change the observed value of 7.

In order to drive the mixing AOM we use a frequency-mixing unit that was designed
and built here in Dortmund. The requirements for this unit are as follows:

e It should supply a stable frequency at wgrpi, Wrra Or wWorpo_gr1 in order to
generate interference with the pump, probe and heterodyne signals respectively.
It should also be clean, i.e. contain no components at other frequencies.

e The output should be stable in phase in order to avoid loss of fringe contrast
through mixing of signals between the two output paths at the AOM.

e We require computerised control over the phase of the output signal in order to
effect a m-phase flip between individual integrations on the CCD.

e Control over the amplitude of the signal is also required to optimise the mixing
of the signal since the reference and signal lines are of different intensity.

These requirements were met by using the reference outputs of the beam preparation
AOM-drivers as inputs to the mixer in order to ensure that we are using the actual
values for wrp; and wrpre. The actual frequency mixing is done by a pre-amplifier that
allows control of the amplitude and phase of the mixed signal. Both may be controlled
directly at the device or externally by means of inputs that accept either analogue or
digital input. To further improve the quality of our driving-signal we use a Stanford
Research Systems model SR844 lock-in amplifier as a narrow pass filter: the reference-
in on the lock-in amplifier accepts a reference signal from our mixer. The internal
reference oscillator in the lock-in amplifier then generates a signal at our required
frequency with a low phase noise and no sidebands. The signal from the internal
oscillator is then passed back to our frequency mixer where it is used to generate an
output signal of the required amplitude. Finally, a separate power-amplifier of fixed
gain is used to amplify this signal to the power level required to run the AOM.

As a result of the mixing in the AOM we have two beams, E, e, and Ejgye,. Due
to the frequency shift induced by the AOM, these aren’t both at the same optical
frequency but differ by waon. Taking wapyr = 80 M Hz we get an equivalent energy
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shift of 330neV . As the spectral resolution of the spectrometer at the wavelengths
used for detection of the signal is 8 ueV and the effective linewidth of the transitions
is about 50 pieV we can ignore the shift due to the AOM and treat Eype, and Ejgyper
as being at the same energy.

Finally, due to the fact that there is a m-phase change between successive orders
of diffraction from a grating (in this case the acoustic waves in the AOM), the signal
recovered from FEyp,e, and Fjgyer Will also differ from each other by a factor of e’™. This
means that the full signal can be recovered through a simple subtraction of E,pe, from
Ejwer. This presents a favourable contrast with other geometries for spectral interfer-
ometry where either one branch of the interfered signal is discarded or extra optics are
required to image the two branches into a single spectrometer. Our method and the
fact that the angle between both branches is small (~ 0.015 rad) allows direct imaging
of both components onto different positions of the input slit of the spectrometer. Since
we use a two-dimensional CCD-array in the spectrometer we have single shot recovery
of the full interferogram and no signal is lost.

4.2.5 Signal detection

As has been already mentioned above, we detect the signal using a home-built high-
resolution spectrometer, described in Section[3.1.1] What is important to note is that
the spectral dispersion must be calibrated with an accuracy in the second order in
wavelength. Small errors in the frequency domain would otherwise lead to a walkoff
from the correct calibration when the signal is transformed into the time domain. Since
the heterodyne technique uses spectral interferometry to recover the FWM signal we
will have the reference superimposed on the signal. As discussed in Section|4.1.4] it is
essential to increase the power of the reference relative to the pump and probe in order
that we are limited by the shot noise of the laser pulses. This adds to the following
requirements for detection by the CCD:

e As a balanced technique, we are required to subtract one integration from an-

other. Hence, it is essential that we are operating in the linear-response regime
of the CCD.

e Furthermore, as we are detecting signal from two regions on the CCD, any dif-
ference in the response of both regions will need to be compensated.

e We are working with comparatively intense signals (hundreds of nanowatts) at
the CCD and so will need short integration times. This means that we will
have to choose the CCD readout mode in order to minimise downtime between
integrations.

e Conversely, in order to be limited by shot noise, the integration time should be
sufficently long that any readout or amplifier noise is dominated by the shot noise.
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e While the overall signal intensity is high, the component consisting of the FWM
signal is only 5 — 10% of total intensity at best. Hence, multiple single shots will
be required in order to acquire gopod FWM signal.

As an initial control against non-uniform response of the CCD, a form of doubly
balanced detection is used. Rather than directly subtract the two measured signals
from one another, sequences of integrations are made in which alternate spectra within
a single CCD area differ in phase by . This is done by changing the driving phase
of the AOM in which the spectral interferometry is performed. Hence, we record a
sequence of n pairs of interferograms which can then be binned into the final data set.
Note that direct binning is often not desirable due to phase-stability considerations.
Section[4.2.7 discusses this in further detail.

Labelling the areas on the CCD with indices A, B, the detection scheme can then
be given by

N x { I’Z_F’B
Iy p

where I~ indicates the phase angle at which the mixing AOM is driven. Note also
that the field generating the detected signal I 4 is out of phase with that generating Iz
by a factor of w. Figure[d.8 shows the result of such a measurement. It shows the pump-
reference interference from multiple 300 ms integrations. The left hand side of the figure
shows a subgroup of the phase-flipped pairs collected during the acquired sequence. It
clearly shows the effect of changing the AOM phase and the overall = phase difference
between the two signals which are detected at the spectrometer. The right hand side
shows the spectrum of one of the single shots. Note that the interference (shown in
the upper-right plot) does not have full contrast; this is a result of the excess power in
the reference beam which allows the measurement to be shot-noise limited. It is also
worth noting that the light will not be affected by the change of phase of the acoustic
wave in the AOM until the wavefront with the new phase has had time to propagate
to the volume in which the interaction occurs. Given an acoustic speed of 4.26 mm/us
in this material and the fact that the aperture is 33 mm from the transducer we get a
value of 7.75 us which, compared to the 50 ms+ integration time, can be considered to
be essentially instantaneous.

4.2.6 Data pre-processing

Having acquired the interferograms, it is now necessary to do some initial processing of
the data before we are able to analyse them. We first generate a function that corrects
for any fluctuation in intensity that occurs on a timescale greater than the acquisition
time for a single phase-flipped pair:

Camn = [l
Cpon s

(W) + Iy, (w)]dw =2 [ Da(w) dw

(W) + I5, ()] dw — 2 [ Dp(w) dw (4.44)

,n
,n
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where Dy p(w) is the dark-response of the CCD for the two areas on which we detect
the signal and n is the index of the pair within the acquisition. We use these coefficients
when doing the subtraction on the individual pairs from each area.

APua(w) = 22 (1, w) — [1,W)

£ (4.45)
APpa(w) = J 92 (1) - I5,(@))
We are now ready to perform the final subtraction on the two areas.
A[n(w) = APA,n(w) - APB,n(w) (446)

The result of this process is seen in Figure[d.9 The signal is now fully modulated
without any residual background from either the dark-response of the CCD or intensity
from the reference beam. As expected, when comparing Figure[d.8 with Figure[d.9] the
magnitude of the fringes after the process is four times that of the individual integration.

As was described in the Section[f.2.4] the Fourier transform is an essential mathe-
matical technique in this experiment. Since we are doing digital processing of the data,
the Fast Fourier Transform (FFT)[PTVEF92] is the preferred method of performing the
transform. However, constraints on the algorithm lead to several points which must be
addressed to avoid artefacts in the processing[Koc03]. One limitation on the FFT is
the requirement of 2°, i € N, equally spaced data points. Since the data as measured
from the CCD will meet neither of these requirements an interpolation and oversam-
pling is required. We use a linear interpolation and, to avoid any artefacts from the
interpolation process which, when transforming from S(w) to S(t), will show up as an
additional systematic response function at high ¢, oversample such that we choose a
value for 7 which is one greater than the first power of two which is greater than the
number of points in our data-set. This provides an additional bonus in that we move
any artefacts from aliasing processes past the end of the region containing the signal.
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Figure 4.9: Result of the pair- and area-subtraction. At this point the signal is fully
modulated and contains all of the signal from both beams leaving the mixing-AOM. Left: A
region about the maximum signal intensity. Right: The signal over the full spectral pulse-
width.

The actual process by which we transform the data is as follows. The area sub-
tracted data AT (w), where the prime indicates that it has been oversampled to a linear
scaling, is corrected for the reference and Fourier transformed:

S,(t) = F (Mn—(”)) (4.47)

Lnref(w)

As has been described in Section[4.2.4] the resulting data set contains signal at both pos-
itive and negative times. Rather than using the Heaviside function, O(t) as described
above, we use an effective Heaviside function ©'(¢) which, rather than transitioning
abruptly from zero to one uses the error function to generate a smooth transition.
This avoids any ringing when transforming the data back into the frequency domain.
Finally, we down-sample the signal by removing both all data points at negative times
and those due to the extra power of two introduced in the oversampling. We now have
a data set corresponding to the complex electric field which is of a size which allows
fast-Fourier transformation between time- and frequency- domains. However, as indi-
cated by the index n in Equation , we have not yet fully binned the data. Before
doing so we need to correct for any changes in phase between individual spectra. This
process, along with a discussion of phase-stability, is described in the next section.

4.2.7 Phase-correction

It is important to minimise drift in the phase of the three beams for the following
reason:



4.2 Experimental setup 63

Figure 4.10:  Pump-reference
interference showing the effect of
phase-drift. The single-shot in-
tegration time was 100ms, giv-
ing a total time interval for the
y-axis of 15s. At this stage in the
data-processing both the phase-
flipped pairs and the two areas

2.280 2.282 2.284 2.286 2.288 2.290 on the CCD have been corrected

Photon Energy (ev) for dark background and sub-
tracted from one another.

Pair Number

e While it is ok to have a fized relative phase difference between the three beams,
a varying relative phase will reduce the contrast of the signal observed after the
interference in the down-mixing AOM.

e An evolution of the absolute phase of the signal over a time-scale that is both
longer than our single shot time and comparable to (or shorten than) the time
over which we acquire multiple shots will lead to a decrease in contrast when
binning the shots.

The first point may be addressed by both enclosing the optical table to avoid the
effect of air currents and density changes on the beams and by ensuring that the
beams are separated over as short a path length as possible. This will also help with
the problems due to the second point. However, we have observed that this is not
sufficient to remove all sources of this absolute phase evolution. Figure[d.10] shows the
effect of this phase drift on the interference of the pump and reference beams over
15s. Note that this rate of phase drift was only observed when the optical table was
completely uncovered. However, over the longer total-integration times required when
performing actual measurements, we observed similar drifts in the phase of the signal
from single transitions. An advantage of our method is that, since we recover the
complex field, we can correct the phase of individual shots to an (arbitrary) constant
value.

While the correction can be applied in either Fourier domain, we typically correct
in the time-domain. The pair-subtracted and dark-corrected data is corrected for the
reference, Fourier transformed, resampled and filtered as described above. Since the
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value of the absolute phase ¢:

Ae = /E(t) dt

is arbitrary, we use the value of ¢ for the first set of binned data as a reference value -
we measure the corresponding ¢, between the 1% and n** binned sets:

e = / E' W) (E™)*(t) dt (4.48)

Where E™ is the signal from the n'* binned set after a filtering process to remove
points that are noise:

E (t) = E(t)O(t), ©(t) € [0,1] (4.49)

The filtering is necessary because we expect the signal to have a constant phase shift
between binned sets whereas the noise will contribute a random phase. Thus, such a
filtering will enhance the sensitivity by suppressing times where signal is not present.
It was found that a relatively simple filter sufficed wherein we calculated a mean, pu,
for the amplitude of the complex data set, discarded the points greater than p and
then twice repeated this process using the new set of data. The final values of y and
the standard deviation, o, are then used as an indicator of the noise and its error - the
filter function ©(t) is then generated by:

o) = 1VIEW{)|>pu+30
O(t) = 0 Otherwise

Figure[d.11]shows the results of the phase correction. Here we are viewing the signal
from Figure[d.10]in the time-domain. Only the real part of the signal is shown, hence
the greyscale covers both positive and negative values. The upper plot clearly shows
the effect of the varying phase: any naive binning would lose signal as the phase-shifted
pairs cancel each other out. In contrast, the lower plot shows the signal after the phase-
correction routine has been applied. The data need only be binned before data analysis
can begin.
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Figure 4.11: Real part of
the time-domain field from Fig-
ure[4.10, Black points are neg-
ative values of the polarisation,
white positive.  Top: Before
phase-correction. Bottom: Fol-
lowing phase-correction.
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Chapter 5

Heterodyne Four-Wave Mixing:
Experimental Results

Having looked at the theory behind our four-wave mixing technique and its implementa-
tion, I will now turn to the results we obtained through this method. Unlike Chapter [3]
the semiconductor being investigated is not in the II-VI class of compounds. Instead,
we performed all the experiments on excitons confined in monolayer fluctuations in
GaAs/AlAs, a III-V material, quantum wells (see Section [2.3.2)). A brief description
of the sample follows.

5.1 The sample under investigation

All measurements presented in this section of the thesis were performed on a sample
containing three AlAs/GaAs/AlAs quantum wells of nominal GaAs thickness 10, 7, and
5nm in the growth direction. The use of binary barrier and well material is important
— it reduces the alloy disorder and so ensures that the disorder potential is dominated
by the formation of islands that differ in thickness from the surrounding regions by only
a single monolayer. We measured FWM in both the 5 and 7nm thickness wells. The
growth and characterisation of such samples is given in detail in Ref. [LJLHO0], I will
present here only the most notable features of this type of sample. In order to vary the
thickness of the well in a uniform manner across the sample, rotation of the sample was
stopped during the growth stage of the wells. This resulted in a change of thickness of
approximately 20% across the full 2” wafer. Furthermore, at both the upper and lower
interface of each well a growth interruption of 120 s was applied in order to tune the
correlation length of the monolayer-scale interface fluctuations. Reference [LJLHOO]
gives a value of 15 — 20nm for this correlation length by analysing the PL emission
from the wells.

The gradient in well thickness results in a useful behaviour whereby changes in the
observed PL spectrum allow the determination of regions of interest on the sample.
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Figure 5.1: Left: 10-K uPLspectra from a nominally 7 nm thick quantum well, growth-
interrupted at both interfaces, at an excitation power of 0.3 uW. The spectra were recorded
at 1 mm intervals along the sample surface and are displaced vertically for clarity. The total
scan distance corresponds to a thickness change of one monolayer. Right: Optical density of
states for the same positions on the sample, determined from 50-K PL spectra and corrected
for the temperature dependence of the bandgap. (From Ref. [LJLHO0])

Consider observing PL from a region of uniform thickness and in a confocal geometry
(so that distinction between the region of excitation and detection need not be made).
A quasi-continuum of states will contribute to the PL, observable as an inhomoge-
neously broadened peak of approximately 1 meV FWHM. Moving the imaged region
along the thickness gradient will result in the appearance of narrow lines at energies
below(above) the existing peak when moving in the direction of thickening(thinning).
Moving further in this direction will see the narrow lines spread over a wider range of
energies and then converge to a single spectral region at a lower(higher) energy cor-
responding to a monolayer splitting energy. Meanwhile, the initial peak decreases in
intensity until disappearing as the new peak reaches its maximum energy. Figure[5.]|
shows this effect in a series of PL spectra taken at 1 mm intervals along the thickness
gradient. The estimated thickness of the well is given, along with the calculated optical
density of states at 50 K, corrected for the temperature dependence of the bandgap.
The physical basis for this positional dependence is entirely due to the thickness gradi-
ent; the gradient manifests itself as regions of uniform thickness of n monlayers which,
as the position on the sample is moved to thicker well regions, change to a thickness of
n+1 monolayers in a region containing an increasing density of islands of this increased
thickness.

In order to maximise the signal that was detected at the spectrometer, an anti-reflex
coating was applied to the upper surface. This simultaneously increases the amount
of light reaching the quantum well and cuts down on the amount of the reference
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beam which is reflected from the sample. The anti-reflex coating consisted of a A/4
coating of Hafnium Oxide (HfO,), where the reference wavelength was chosen to be
750 nm (1.65 V'), the measured coefficient of reflection was 5x10~* at 732 nm (1.69 eV)
and 5 x 1073 at 760 nm (1.63eV).

5.2 Initial characterisation of the FWM signal

Before examining the four-wave mixing signal results in detail, it is important to do
some initial characterisation of the signal recovered by the heterodyne technique. The
question of whether the sharp lines observable in the spectrally resolved FWM signal
are the same states observed in PL measurements is relevant, as is the question of
whether the measurements are performed in the third-order regime.

[ will begin by comparing the FWM signal to PL experiments on the same sample.
Figure[5.2) shows the results of such a comparison. The upper part of the figure is the
FWM signal, spectrally resolved from a region of approximately 500 nm in diameter.
The pump-probe delay was 7 = 1ps. Also shown is the excitation spectrum. The
lower part of the figure shows the PL spectrum from the same region of the sample.
Excitation was with an Arlon laser at 496 nm and a power of 260 nWW at the sample.
This region on the sample was chosen so that we were measuring in a transition region,
as described above, which is dominated by the thinner well thickness but with an
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appreciable number of islands of greater thickness. It is these thicker islands that
produce the lines at low energies which are of interest to us. Note, however that there
is still an effective quasi-continuum of states in the thinner well, observable as the
inhomogeneously broadened peak at 1.639 eV in the photoluminescence spectrum. We
chose the excitation spectrum so as not to have a FWM signal which is dominated by
these well states.

It can be seen that, apart from the peak at 1.633 eV, there is no correlation between
the peaks on the FWM spectrum and those in the PL spectrum. The FWM signal
strength is determined by the oscillator strength of any given transition, whereas the
PL signal will be governed by the trapping and phonon-assisted relaxation of charge
carriers into the dots. Hence, we are actually measuring different aspects of the states
within the dots with these two techniques; the FWM will show states that couple
strongly to the light-field, while the PL is a measure of which states have appreciable
populations of excitons in them - an exciton trapped in these states at low temperatures
can only relax radiatively and so we will see a PL signal from the state.

As a third-order process, FWM requires high excitation intensities at the sample
in order to generate sufficient signal for efficient detection. However, using too high
an excitation power can lead to additional complication in the form of a contribution
to the signal from fifth-order processes. In order to estimate the non-linear regime in
which we are generating the signal, it is necessary to take a series of FWM spectra at
varying excitation powers. Figure[5.3|shows the FWM signal at a delay of 0.7 ps for five
different intensities. With increasing intensity it is clear that additional FWM lines
are present at the highest intensities (e.g. a line appears at 1.6952 eV at the highest
excitation intensity). However, these may be indicative of higher-order correlations
(e.g. biexciton or triexciton contributions) within the sample and not necessarily of
higher-order polarisation processes. We must also look for saturation of individual
lines. The transition at 1.6916 eV, which provides the strongest signal at the lowest
intensity shown here, provides an example of such a response which deviates from the



5.2 Initial characterisation of the FWM signal 71

5 Wik
2 . \l’ WY’Q =g, \#
0 VeNy i Wl
c 0.1 .‘ A
[} E
c inm
= A 1.69073eV Figure 5.4: The sam-
=501 4 —e—1.69227eV : ¢ decay times f
0 V.01 3 1.69379eV ple range of decay times for
{ —v—1.69402eV F WM trans'ients observed
] 1.69611eV in this experiment. All data
have been normalised. Up-
1E-3 (') ' 1'0 ' 2'0 ' 3'0 ' 4'0 ' | per and lower bounds of
20 ps and 160 ps are given as
Delay (ps) ps an ps are given as

a guide.

expected oc I? behaviour. While it is not completely clear whether the line is indeed
undergoing saturation at the highest intensities, there is some sub-linear response which
may indicate the onset of saturation and, hence, a contribution to the FWM signal from
x®) processes. To avoid this, we chose to excite the sample at 4 4, an intensity free of
such complications. With the exception of the Rabi-oscillation experiments described
in Section[5.4] where the frequency of oscillations is proportional to the excitation
intensity, thus requiring a high intensity to resolve the maximal number of oscillations,
we observe the FWM in all the subsequent sections at an excitation intensity equivalent
to the 3.98 eV of the current example.

Figure[5.4] shows the intensity of the spectrally-resolved FWM signal for a number
of single transitions as a function of delay. This was obtained by taking the spectrally-
integrated intensity of the individual transitions, this intensity was then normalised
to the maximum intensity for all delays. As can be seen from Equations (4.21)), for
homogeneously distributed transitions the initial pulse (the pump for positive delays)
creates a polarisation that decays as exp(—271/T,). The FWM signal is observed after
the arrival of the probe (for positive delay times), and decays in real time with a decay
constant Tgecqay = 2/T5, that is, it decays independently of the delay time and with a
maximum intensity that depends on the residual polarisation at the time of arrival of
the second pulse. Hence, the delay-dependence of the property measured in Figure[5.4
is also o exp(—27/T,). As a guide, monoexponential decays with times of 20 and
160 ps are also given. It can also be seen that there is a greater weight of transitions
with decays closer to the 160 ps upper bound. This range of decay constants is in

agreement with previous experiments on such interface-fluctuation dots which showed
typical linewidths in the range of 20 — 100 peV [BCGT98, ISLST02]
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Figure 5.5: Formation of a photon echo at t = 7 = 20ps. The rephasing of the FWM
signal (solid line) at t = 14 results in the well-known phenomenon of the photon echo. The
pump and probe time-resolved signals(dotted line), normalised to the echo intensity, show
the delay, ;5 of 20 ps. Inset: The corresponding spectrally-resolved FWM signal showing the
multiple states that give rise to the echo.

5.3 Time-resolved FWM: Polarisation decay and
photon echo

As was discussed briefly in Sectiond. 1.1 measurements on an ensemble of transitions
with a distribution of transition energies greater than the individual linewidth will
result in the well-known phenomenon of the photon-echo. A good treatment of the
theory behind this process is given in Reference [AES87|. Consider an ensemble of N
individual two-level systems; they will all be in phase immediately after the initial
excitation. However, their differences in oscillation frequency will lead to a dephasing
of the whole ensemble due to the different rate of phase evolution of each component.
Any two of these states with a frequency difference of dw will return to a phase coherence
after a time 0t = 27 /0w. However, for the overall ensemble, such a rephasing becomes
increasingly unlikely with increasing ensemble size; 0t — oo. There is thus a rapid
dephasing of the system even though there has been no actual energy loss. The electric-
field emitted by the system, Eg, is a sum of the fields emitted by the individual two-level
systems, Fj, and in the random case will be

E{™ =Y " E, < VNE, (5.1)
k

Compare this to the field resulting from an in-phase ensemble of oscillators

E§" =Y " Ej « NE, (5.2)
k
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That is, there is a factor of /N in the E-field (N in the intensity) between the two cases.
For large ensembles the impact of such a dephasing is thus particularly important. The
question then becomes one of whether there is a way of reversing the phase evolution of
the individual oscillators in order to effect a rephasing of the overall ensemble. In the
four-wave mixing experiment the second pulse flips the polarisation of the ensemble
into a phase-conjugate state. The evolution of the individual states is thus reversed -
it evolves back towards the initial coherence. If the first pulse arrives at a time t = 0
then it is clear that this rephasing will occur at twice the delay time, t = 27.

Figure[5.5] shows the photon echo for a delay of 20 ps. Note that for all experimental
results presented here we take t = 0 at the arrival time of the probe. Also shown in
this figure are the pump and probe pulses normalised to the echo intensity. The inset
shows the narrow spectral lineshape of the individual transitions contributing to the
FWM, implying that their individual dephasing occurs on timescales much longer than
that shown by the ensemble. As expected, the photon-echo appears at the delay time
of 20 ps.

The delay-dependence of the photon-echo is shown more explicitly in Figure[.6|
As can be seen clearly, the photon echo moves with delay time. Also of interest in
this figure is the fact that the signal range as shown schematically in Figure(page
is readily apparent. At negative delay, there is no signal until the arrival of the
pump, while for positive delay there is signal as soon as the probe arrives, i.e. at
t = 0 as defined here. This plot also shows that there is still some residual pump-
frequency in the driving-signal provided to the mixing-AOM which is manifest in the
time-domain plot shown here as a narrow-peak at the pump time. Furthermore, the
pump-signal appears to re-enter the plot at 8.5 ps. This is an artefact from the spectral
interferometry. Since the spectra-interferometry recovers both the signal and its time-
mirror and we then filter this total signal to remove the negative-time component,
it is clear that signals that are present at a sufficiently negative time will have their
time-mirrored component appearing in the positive time domain. The intersection of
this ‘mirror’-pump with the actual pump signal will occur at the time of arrival of the
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reference and can be used as an independent confirmation of our reference-delay.

Also visible in this figure are two types of beating structures. The first move with
the delay, that is, they have a fixed relationship to the position of the photon-echo.
Furthermore, these additional peaks are symmetric in time about the photon-echo.
This can be understood by recalling the phase-conjugation requirement for the photon-
echo - the evolution of the relative phase of the individual components of the ensemble
can be considered to be time-reversed about the position of the photon-echo. Hence
the mirrored distribution of peaks. Note that the intensity of the peaks will not be
equal about the photon-echo due to the dissipative processes also contributing to the
overall dephasing of the ensemble.

The second type of structures visible are independent of delay. These are attributed
to transitions that correspond to the same first-order polarisations - for example,
exciton-biexciton beats. I will not discuss these beats in further detail -here but will
cover them more thoroughly in Section[5.5

The high spectral resolution of the heterodyne technique offers the possibility of
looking at the build-up of the photon-echo with ensemble size; since the time-resolved
data can be Fourier transformed to recover the spectrum of the states contributing to
the signal we can directly compare the ensemble size with the intensity of the photon-
echo compared to the in-phase emission. Figure[5.7]shows both the time- and spectrally-
resolved FWM signal from a series of ensembles of increasing size and at a delay of
20 ps. Note that, due to the filter applied to the time-resolved data to remove the time-
mirrored contribution, the noise at negative times is not apparent here. Included on the
time-resolved plot is the ratio of the echo-intensity to the non-coherent emission at that
delay. From the discussion above, this ratio is equal to the number of emitters in the
ensemble when they can be assumed to be identical. Naturally, this is not necessarily
the case for the excitonic transitions we are investigating here, however, a good general
agreement between the magnitude of the echo and the number of transitions is evident.

Since we recover the full amplitude and phase of the FWM signal it is possible to
look explicitly at the phase evolution of individual transitions within an ensemble and
thus observe directly the phase recoherence at the echo time. Figurels.8/shows just such
a rephasing for an ensemble of three transitions at a pump-probe delay of 18 ps. The
spectrally-resolved signal showing the three major peaks contributing to the overall
signal is given on the top right of this figure. There may be some contribution to the
signal from the large number of states in the quantum well, visible as a slight increase
in the baseline signal at 1.636 — 1.637 ¢V. However, the intensity of the echo supports
the notion that any contribution from these states is indeed negligible. To show that
the individual transitions do not show an echo behaviour, a Gaussian filter of FWHM
246 peV was applied to the centre position of each transition in the spectral domain
and the resulting filtered data was transformed back to the temporal domain to give the
free-polarisation decay of the individual peaks. The lower-right plot shows these decays.
The phase evolution of the three transitions is given in the upper left. Note that this
assumes a phase angle —m < ¢ < . With this assumption, the transitions marked by
triangles and circles evolve with increasing phase versus time before wrapping around
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Buildup of the photon echo with ensemble size.
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Figure 5.8: Rephasing as a source of polarisation transients. Upper-left: The phase of
the time-resolved FWM signal of the three major peaks contributing to the detected signal.
Lower-left: The time-resolved signal of the full ensemble. The photon echo at 7 = 18 ps can
be seen to be due to rephasing of the ensemble. Other peaks are also shown to be due to
rephasing at other times. Upper-right: Spectrally-resolved signal for this ensemble. Lower-
right: Time-resolved decay of the individual transitions. Note that they have a finite intensity
when ensemble emission is suppressed.
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Figure 5.9: Spectral wandering as a source of ensemble behaviour. Shown here is the
delay-dependent, time-resolved signal from a single transition. Spectral wandering creates
an apparent stretching of the decay with increasing delay. Logarithmic greyscale over five
orders of magnitude.

to ¢ = —m at ¢ = 7. The transition marked with the squares has a phase that decreases
with time. Thus, we are looking for an intersection of the phase evolution of all three
transitions at the echo time of 18 ps. This is readily apparent and a dotted line links
this intersection with the echo in the time-resolved signal of the ensemble given in the
lower-left plot. What is also interesting is that secondary rephasings are also observable
as additional transient peaks in the time-resolved signal. These secondary peaks have
been linked by dotted lines to the relevant rephasings.

So far I have assumed that the individual transitions are purely homogeneously
broadened. However, as discussed in Section[3.3] trapping of carriers near to the quan-
tum dots will induce a Stark shift in the energy of the transitions. Since this can be
considered to be a random process, it will add a Gaussian broadening to the lineshape.
In the time-domain we would see this as a deviation from a mono-exponential decay
for individual transitions. Figure[5.4] shows that any such deviation is not readily dis-
cernible - the magnitude of any spectral wandering is thus close to, or smaller than,
the natural linewidth of the single transitions. However, looking at the time-evolution
of a single exciton as a time-ensemble equivalent to the spectral-ensemble of multiple
excitonic states leads to an intuitive way to look for the presence of spectral wandering.
The narrow spectral range of the wandering will transform into a wide-distribution in
time and so will only be apparent when we look at the delay-dependency (for positive
delays) of the single transition decay. For a transition unaffected by spectral wan-
dering the dynamics of the decay will be unaffected by change of delay, whereas one
affected by spectral wandering will have a dynamics that is the convolution of the ho-
mogeneously broadened dynamics with a Gaussian distribution corresponding to the
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spectral wandering;:

Twana e_(Tiz)_(Tvtv_aTnd)2 (53)

with the delay 7 and the characteristic spectral wandering time Ty .,q Which, from
the discussion on the lineshape broadening above, will be comparable to T5. For small
delays this will give a polarisation decay that deviates from the monoexponential case
because of the Gaussian contribution. At larger delays the shift in the centre position of
the Gaussian, given by 7, will have the transition appear to live longer; the Gaussian
being sufficiently wide that, unlike with the spectral ensemble case, no discernible
drop in emission followed by a rise due to the photon-echo will occur. It is only
when 7 > Tywang that such a dip will become apparent. However, since Ty ang iS
approximately equal to T, even this contrast between the photon-echo and the initial
decay will be washed out due to the overall polarisation decay occurring on these
timescales.

Figure[5.9| shows a plot of the time-resolved signal from a single transition versus
delay. In order to isolate the single transition the excitation was narrowed spectrally to
1meV . This gives an effective time-resolution of 4 ps and explains the rise of the signal
at negative times: ¢t = 0 was taken to be at the centre of the probe pulse. The plot
clearly shows the ‘extension’ of the signal in time with increasing delay, as described
above. What is also interesting is the appearance of a dip in the signal at 7 ~ 25 ps.
Since the dip first appears at ¢t = 0 for this delay but the intensity subsequently recovers
somewhat (i.e. a cut along the delay axis at t = 0 will show a beating effect), the dip
in the time-axis for delays > 50 ps should be attributed to a beating between states
with a time constant of ~ 50 ps, i.e. an energy splitting of some 80 peV'. Section[5.5
discusses such beatings in more detail.

5.4 Rabi-oscillations of single excitonic states

For this section it is worth recalling the vector model of the optical Block equations
described in Sectiond.1.2]

R = Qp xR — (u/T,v/Ty, (w+1)/T1)
Relaxatit); Terms 5.4
QB = (_QR70777) ( )
R = (U, v, U)) = (plgz + pabQ’ l(pgla - pgzb)a Pob — paa)

where 7 is the laser detuning, Qr = e(ry, - €)Ey/h the Rabi frequency and, for the
purposes of the following section, referring to the component of the Bloch vector R in
the (u,v) plane as the induced polarisation p and the w-component as the population
inversion n. Applying an external electric field will thus see the Bloch vector precess
about the vector Q5. When the field is switched off the vector then relaxes back to
the ground state of the system according the relaxation terms given above. Consider
an incident field in resonance with the transition (n = 0 in this case), the Bloch vector



5.4 Rabi-oscillations of single excitonic states 79

_ 1 .O | I T T T T I L] L] T T I 1 L] L] L] I 1 1 1 T I_
© - i
% 0.8 1 -
i n
N 0.6 /13
N AP
§ 0.4 + \+4 Figure 5.10: The evolution
L o2 _- ] of the Bloch vector with in-
o ] creasing pulse area. Also
0.0 7Ty shown is the FWM signal,
0.0 0.5 1.0 1.5 20 @&iven by the first order po-
Pulse Area (PI) larisation of the system in-

duced by the pump.

will precess about the u axis by an angle given by the pulse-area
t
Ot) = e(ry, - €)/h / B(t)dt (5.5)
with this equation it is readily apparent why the quantity 2z is termed the Rabi
frequency; increasing this term will increase the angle through which the Bloch vector
precesses in a given time. It can also be seen that to increase the Rabi frequency it is
necessary to either increase the amplitude of the driving field or, should such a thing be
possible for a given set of experiments, choose a system with a higher dipole moment,
[t = erp,. A point that is worth noting here is that when working with light pulses it
is almost invariably the intensity, I, that lends itself to measurement. Thus, the pulse
area is o< V1.

Figure[5.10| shows both the evolution of the Bloch vector with increasing pulse area
and the corresponding FWM signal, proportional to the first order polarisation induced
by the pump and thus o sin?(0), assuming a choice of probe area that is small enough
to correspond to a negligible additional precession of the Bloch vector. This is not
necessarily always the most interesting case, however it serves to introduce the key
phenomena of FWM Rabi oscillations within the two-level model. The system begins
in the ground state with ® = 0 and, upon application of the external field precesses to
© = 7/2 where the Bloch vector lies in the polarisation-plane and the FWM signal is
maximised. By © = 7 the system is fully inverted, however the projection of the Bloch
vector onto the equatorial plane is zero - there is no FWM signal. At © = 37/2 the
signal is once more maximised and drops to zero again as the system is driven back to
its initial state by © = 27. It is worth noting that experiments that also examine Rabi
oscillations but that measure the population inversion[SLST01] will measure a signal

o sin?(©/2).

In order to measure Rabi oscillations within the system under investigation here it
was necessary to excite a single transtion resonantly. Figure[5.11]shows both the FWM
from such a system under broadband excitation and the narrower excitation spectrum
used to drive the transition. The choice of a reduction in the spectral width of the
excitation to 1meV allows us to ensure that only a single excitonic state is being
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excited. However, this comes at a price, as in the time-domain the excitation is of
correspondingly longer duration and so decreases the time-resolution of the measure-
ment. The measurements shown here were thus taken at a delay 7 = 5ps, close to
the earliest delay where there is no longer overlap between pump and probe pulses, so
avoiding zero-delay phenomena such as two-photon absorption which will complicate
the signal. Since the dephasing of the state occurs on much longer timescales than this
delay we can consider this greater delay requirement to be of no further import. The
modulation of the intensity of the beam whose area we are scanning is done by varying
the driving-power of the relevant AOM at the beam preparation stage. Thus, I will
refer to the increase in power at the sample due the modulation of intensity imposed
by the AOM as an increase in pulse area, whereas the total power impinging on the
AOM will be referred to the input intensity. The latter cannot be changed dynamically
during a pulse-area scan and so it is worth distinguishing between the two cases.

Figure[5.12| shows the Rabi oscillations resulting from a scan of the pump area.
The power was 19.5 W in the probe at a pulse area of m. Each data point is the
spectrally-integrated FWM intensity for the transition. The solid line is a sinusoidal
curve to guide the eye. The response of the system shows well-behaved Rabi oscilla-
tions up to a pulse area of approximately 37 /2. At this point there is a decay in the
amplitude of the oscillations from the ideal case. We also noticed that increasing the
input intensity so as to increase the Rabi frequency was only effective up to the input
intensities corresponding to this set of data. Higher input intensities merely caused
a greater divergence from expected behaviour of the ideal two-level system. Earlier
work exploring Rabi oscillations in the population inversion of excitons in a similar
system to the one here|SLST01] also observed a decay in the amplitude of the Rabi
oscillations at high pulse areas. This was attributed to an excitation induced Coulomb
scattering (also called excitation induced dephasing, EID); an interaction with delo-
calised excitonic states whose population density is proportional to the laser intensity.
This interaction serves to decrease the coherence time of the confined excitonic state
being probed and thus leads to the observed decay of the oscillation amplitude. Since
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Figure 5.12: Rabi-oscillations as a function of pump pulse area. Circles: Experiment. Solid
line: Sin?(©). Also shown is the FWHM of the transitions versus pulse area. Excitation
induced dephasing would present as an increase in FWHM with increasing pulse area.

we recover the spectrally-resolved FWM signal, it is possible to directly recover the
dephasing dynamics at each pulse-area and so look for signs of such EID. The method
chosen here to represent the dephasing is to look at the linewidth of the transition.
The right hand side of Figure[p.12|shows the full-width half-maximum of the transition
as a function of pulse area. In the case of EID we would expect to see an increase in
the linewidth with increasing pulse area. This is not the case, so the observed damp-
ing of the oscillation magnitude remains to be explained. The derivation of the Rabi
oscillation from the optical Bloch equations assumes a two level system or a system
in which the upper level is well-isolated from other levels. However, in this system we
have a set of states in the thinner monolayer some 6 — 8 meV from the transition be-
ing investigated. Furthermore, the weak localisation within the interface fluctuations
means that there could be excited states of the dot separated from the state under
investigation that are at energies lower than this range. Thus, the assumption of a
two-level system is no longer necessarily a good one. At population inversion it is
reasonable to assume that these states become accessible to the carriers excited by the
pump and an interaction occurs between the upper state and these additional states.
At higher pulse areas the system has sufficient time for an appreciable interaction of
these states with the state being probed and thus a reduction occurs in the oscillation
amplitude as there is a population transfer to the additional states. It is to the presence
of these multi-level states that we attribute the deviation of the Rabi oscillations from
the expected behaviour.

In the discussion above, we assumed that the probe-pulse area was low and thus
the precession of the Bloch vector was governed by the pump pulse. We have also
performed experiments where the probe area was scanned. One particularly interesting
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case is shown in Figure, where the pump pulse area is set to Opymp, = m/2 and
the probe pulse area is scanned. The pump pulse places the system in a state in the
(u,v) plane. The pulse-area dependence will not be the same as in the case where
the probe pulse provides only a small perturbation to the Bloch vector. Since we are
both integrating over the signal generated by multiple pump-probe pairs and there is a
frequency difference between the two pulses (it is a heterodyne technique), the vectors
Qp pump and Qg prope Will not have a fixed relationship in the Bloch sphere but will have
a range of angles between them over the course the signal acquisition. Hence, there
will be no single angle through which the Bloch vector precesses after the application
of both pulses but rather a range of positions at which it will end up. However, when
the probe area is 7, all Qp ;-0 Will place the polarisation back in the (u,v) plane - the
FWM signal will thus be a maximum at this point. This is indeed the case in Figure[5.13
and is particularly interesting because the implementation of quantum computational
devices will require the ability to place a qubit in a given configuration, allow it to
evolve (with the possible application of additional pulses further affect the qubit state)
and then readout the results of the evolution. While this 7/2 — 7 rotation is admittedly
a special case, it nevertheless gives an initial demonstration of such coherent control of
excitonic states.

Until now I have been looking at the case where the excitation is resonant with the
transition under investigation. If the excitation is off resonance, the vector 2 acquires
a component in the w-axis of the Bloch sphere. The precession of the Bloch-vector will
now no longer result in a full population inversion, but will reach a maximum value
that will still have a polarisation component. The FWM signal that results will thus
not fall to zero at a pulse area of 7, but will have a residual signal at this point.
To examine this off-resonance behaviour we detuned the peak of the reference from
the transition energy, using both positive and negative detunings. Figurelb.14| shows
the results of such measurements. The peak of reference was detuned in steps of half
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Figure 5.14: Rabi-oscillations with an excitation offset from the transition frequency. The
dashed vertical line on the inset shows the centre-frequency of the transition.

a half-width-half-maximum (HWHM) from a red-shifted position of one FWHM to a
blue-shift of one HWHM about the transition energy. The inset of Figure[5.14]shows the
corresponding excitation spectra along with a dashed line showing the spectral position
of the state being probed. The pulse-area dependence of the resonant excitation shows
the decrease of the FWM signal to zero at © = 7 while, for the two cases off-resonance
by half a HWHM the signal does not reach zero at © = w. Note also the slight shift
in the position of the maximum for the latter two cases. The signal from the exciton
when excited by a pulse detuned by one FWHM shows more complex behaviour - there
is no longer a clear maximum of signal at © = /2 and the behaviour at higher pulse
is also not clear, it would appear that a greater range of pulse area is required in order
to determine whether there is an even lower contrast between the maximum signal and
the maximum population inversion or whether it is simply the case that a combination
of the high pulse area and the fact that the detuning changes the vector (g means
that the simple picture of precession of the Bloch-vector is no longer applicable. If the
latter is the case then only a numerical calculation of the third-order polarisation that
includes such factors as the explicit time-dependence of the pump and probe pulses
will give better insight into the dynamics of the system under such excitation. Note
that the initial rise of the of the signal in the two detunings of one HWHM differs from
the resonance case. This is another phenomenon that would be clarified with such
calculation.
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Figure 5.15: Spectrally resolved FWM as a function of delay. Beats in the amplitude of
individual transitions are visible. Plot is logarithmic greyscale over 4 orders of magnitude
intensity:.

5.5 Coherent coupling between excitonic states

Examining the response of the system in the spectral domain to changes in delay, 7
can reveal coherent couplings between excitonic states. This section explores the way
in which the heterodyne technique allows us to recover information on such couplings.
Figure[5.15 shows the spectrally resolved FWM versus delay over four orders of magni-
tude intensity with a logarithmic greyscale. The peak at 1.6915eV and the two peaks
just above 1.693 eV all show clear signs of beating with increasing delay. Such beatings
are characteristic of both polarisation beating and of coherent coupling between states
and can occur when the spectral width of the excitation is greater than the energetic
separation between the two states. Polarisation beating, a delay-time equivalent to the
photon-echo, can occur between two states that experience no interaction but that are
energetically close. Their emission can thus interfere, something that appears in both
the time-resolved and the delay-dependent spectra as a beating in the emission inten-
sity. The method proposed here isolates beating occurring due to coherent coupling
and allows easy identification of the states involved in the interaction. Furthermore,
for a two states coupled in such a way but otherwise isolated from any other states,
the period of the beat gives the energy separation of the two correlated states.

Consider two isolated, two-level systems with transition frequencies wq, ws and cor-
responding transition dipole strengths iy, 2. An interaction between the two states
can couple them. This interaction may be Coulombic, intraband exchange interaction
or through the near field of the optical polarisation. Whichever the source, the result-
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Figure 5.16: Coherent interactions can couple two independent two-level systems(left). The
result can be considered a single, four-level system. An energy renormalisation, §g,, for the
coherently coupled state is also shown.

ing coupled system can be considered as a single, four-level system. Figure[5.17| shows
such a transformation. In general, the dipole strengths of the first- and third-order res-
onances are not necessarily identical and any given third order state may be driven by
more than one first-order state (i.e. it is possible to have multiply coupled states). To
extract the coupling we take advantage of the fact that our measurements return both
the amplitude and phase of the third-order signal. Thus, the signal versus delay time
is another valid coordinate in which to perform a Fourier transform. Since the beating
frequency gives the energy separation, a Fourier transform of the delay-behaviour of the
FWM of a single transition will recover all such beating frequencies and hence reveal all
states coupled to the one whose delay-dependence we have transformed. One problem
with such an approach to recovering information on the coupling is that, unlike the
case when transforming the time-resolved FWM data into the frequency domain and
vice-versa, there is no fixed phase relationship between subsequent delay times in our
data. Instead, we impose a phase relationship onto the data by taking a single peak
in the spectral domain and setting the phase at this position to zero for all delays. By
applying this phase shift to the full spectrum and not merely to cuts around the peak
of interest, we offset all other first-order frequencies versus delay time of all resonances
by this first-order frequency. Using the notation w®(w®) to refer to the transition
frequency of first(third)-order, the third order polarisation can be written as

POt > 0,w) Z ea:p(iwi(l)T) Z A,-jemp(iw](-g)T) (5.6)
i ij
where A;; describes the coupling between the first- and third-order states 7, j. Fourier
transforming 7 — €2 gives the polarisation as

PO(Qw) oc D02 —w) Y Aydw — wi?) (5.7)
A i

that is, we recover two-dimensional data set in which uncoupled two-level systems
create a line of peaks along w = () while coupled states create off-diagonal peaks.
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Figure 5.17:  Phase correcting the spectrally-resolved, delay-dependent data and then
Fourier transforming along the delay axis recovers coupling between excitonic systems. The
relationship between the position of peaks on the resulting 2D-plot and the type of coupling
involved is shown here.

Figurel5.18| shows a schematic of what such a grid would look like with uncoupled
excitons appearing along the marked diagonal. The additional peaks along the vertical
lines F; and E, appear when there is coupling between the states |1) and |2) involving
only a single exciton. The third set of peaks correspond to coupling through the
state |3) in Figure[p.16] Note that the renormalisation dp, will also appear in the
positional information. The actual spectral width of the peaks will be given by their
dephasing dynamics, that is, they will not consist of the true delta-functions given in
Equation . Furthermore, while the state contributing to the coupling are clearly
identified and while it may be possible after future theoretical work to extract the
coupling strength through the intensity of these peaks, the technique appears to give
no direct information on the mechanism behind the coupling and so we cannot state
whether these are excitonic states within the same dot or whether they are excitons in
different dots (so-called quantum dot molecules). Shown in Figure[5.1§ are the results
of applying this technique to the delay-time plot of Figure[5.15 The peak chosen for
the reference phase is that at 1.6916 eV and all energies are calculated as an offset-
value from this position. To aid the eye, a line along w = () is given, as is a box whose
vertices link the reference peak with one of the states to which it is coupled. Note
that this reference is also coupled to the state immediately below the one linked by the
box. Also of interest is a state at (w = 3.6,§2 = 0.5) which does not correspond to any
first-order polarisation and so is a purely third-order state.
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Figure 5.18: Coherent coupling in a small ensemble of excitonic states. Box links states
that are correlated, the diagonal line shows the expected relationship for uncoupled peaks.
Also visible are peaks with no corresponding first-order polarisation.



Part IV

Conclusions



Chapter 6

Summary

Quantum-confined excitonic systems provide a rich source of interesting physics and,
due to some of their properties, are also of interest at a more practical level for devices
such as lasers, optical amplifiers and, on a longer time-scale, components in quantum in-
formation processing. A key area of investigation is the dephasing and depopulation of
optically excited carriers. Techniques from both incoherent and coherent spectroscopy
were applied to II-VI and ITI-V samples containing zero-dimensional structures which
trapped excitons.

The non-coherent spectroscopy, in which a non-resonant excitation creates a popu-
lation of carriers which are trapped in the quantum dots and subsequently recombine,
was performed with both time- and spectrally-resolved methods on a CdSe/ZnSe quan-
tum dot system. A method for rapidly identifying transitions belonging to a single dot
in the presence of emission from multiple dots was developed. This allowed for a
rapid characterisation of the sample. The emission was also examined in terms of the
excitation-intensity dependence and the linear polarisation of the emitted light in order
to identify the nature of the excitonic states contributing to the spectra. Furthermore,
the nature of the fine-structure splitting, related to the degree of anisotropy in the
shape of the dots, could also be investigated through the linearly-polarised emission
from the dots.

Along with general information on the lifetime of excitonic states, the time-resolved
photoluminescence measurements gave two very interesting results. Firstly, the obser-
vation of the Pauli blocking of the relaxation of the trion to the ground state and hence
the lifetime of the spin-flip process as being a rate-limiting step in the overall capture
and relaxation to dot ground state was unexpected, if somewhat obvious in hindsight.
Secondly, the temperature-dependence of the time-resolved PL for the exciton allowed
a measurement of the dark-bright state splitting in this system. While other measure-
ments, such as measuring the PL in a magnetic field, allow optical access to the dark
states, it was gratifying to be able to extract this information directly from the refilling
from the dark state of the bright exciton state.
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In transient FWM experiments, performed here in Dortmund by Borri et al.[BLST01]
on III-V materials, a non-Lorentzian lineshape has been reported. Consisting of a spec-
trally sharp zero-phonon line and a broader background from acoustic-phonon assisted
recombination, it led to much theoretical work on the origins of such lineshapes[KAK02|
ZR02, FWDKO03|, ZM04, MZ04]. The use of a high-resolution spectrometer meant that
this lineshape was also observed in the CdSe/ZnSe sample under investigation here. By
using a model and software developed by Prof. Roland Zimmermann we were able to
fit the lineshape to good approximation using the material parameters for bulk ZnSe.
Furthermore, an estimation of the ratio of the size of the dot in the growth direction
to the perpendicular radial dimension was also possible.

The development of a transient four-wave mixing technique which allowed mea-
surement on single dots was the major undertaking of the second half of my PhD. The
stability of the resulting system is exemplary; with the inclusion of the phase-correction
technique described in Section|4.2.7| we achieved phase stability of the measured signal
to within the observed shot noise limit over acquisition times of greater than an hour.
It is widely assumed that such stability is only possible in an actively stabilised system.

From the point of view of the physics observed through these measurements, the
new technique has also been successful. While the observation of the photon echo
can in some sense be thought of as the canonical experiment in FWM, there was an
inability to observe the buildup of the echo as a function of ensemble size. The results
presented here are thus, to the best of my knowledge, unprecedented.

The ability to control the state of a quantum mechanical system is crucial to the
realisation of practical quantum information processing devices. The demonstration
of Rabi-oscillations, in particular the /2 — 7 rotation experiment, is a step along the
path to incorporating excitons as the qubits in such a device. The behaviour of the
oscillations when the excitation is off resonance is interesting on a more fundamental
level in that it gives an indication of the limitations of approximating the system as
being two-level.

Likewise, any useful quantum processor will require more than one qubit, along with
a way to link the qubits so that there is an interaction between their wavefunctions.
Extracting information on the coherent coupling between different excitonic states is
thus a useful prerequisite to control of the coupling itself.
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Chapter 7

Outlook

Perhaps the most important result to come out of this work is the fact that it is possible
to do transient FWM on a single quantum dot with a good signal to noise ratio. This
opens up a host of possibilities for future studies. Measurements on II-VI materials
should allow for a better determination of the effect of spectral wandering on the signal.
As was shown in Section[3.3] these materials typically exhibit greater sensitivity to the
quantum-confined Stark effect. Since there is also a greater oscillator strength of the
material, we are optimistic that experiments on such systems will also be successful.

Of much interest in recent times is the possibility of using the spins of the charge
carriers to form devices with novel properties. Dubbed ‘spintronics’, this field is par-
ticularly interesting from an optics point of view, since the optical selection rules for
semiconductors with a zinc-blende structure allow direct selection of the spin of the
exciton through appropriate choice of the circular polarisation of the excitation laser.

With regard to the technique, an extension to a non-degenerate method whereby the
pump and probe beams are no longer the same wavelength (ignoring the AOM offset)
will allow exploration of the effect on states non-resonant to the pump. Additionally,
a third beam may be added, changing the configuration from the P®) o« E,E,E1*
described here to P® « E3F,E1*. A good discussion of the consequences of such a
change may be found in Reference [Sha96].

Finally, as has been often mentioned in this work, the attempt to develop a quantum
computer is exercising the minds of many researchers throughout the globe. While the
payout, should the device be achieved, will be enormous, what is also often overlooked
is the fact that en route many useful techniques will need to be developed and deployed
that will doubtless find many other applications. The fact that the HFWM described
here provided both physical insights into the processes at work in the material systems
and may also be thought of as providing coherent control over a rudimentary qubit is
but one example of such a dichotomy. These are interesting times to be an experimental
physicist.



Appendix

Published Papers and Conference Submissions
Note: In the case of conferences, the author in boldface presented the work.

1. Trion, biexciton and exciton dynamics in single self-assembled CdSe quantum
dots B. Patton, W. Langbein, U. Woggon Phys. Rev. B 68, 12 5316 (2003)

2. Heterodyne Four-Wave Mizing on Single Excitonic States B. Patton, W. Lang-
bein, and U. Woggon, EQUONT-3, Cambridge, UK, 2004

3. Transient four-wave mixing of single exciton states: Fxciton-exciton interac-
tion and Rabi oscillations B. Patton, W. Langbein, and U. Woggon, ICPS-27,
Flagstaff, USA, 2004

4. Trion and exciton dynamics in epitazially grown CdSe/ZnSe quantum dots B.
Patton, W. Langbein, and U. Woggon, MRS Fall Meeting, Boston, USA, 2003

5. Fxcitonic complexes in II-VI quantum dots: Population dynamics and homo-
geneous line broadening B. Patton, W. Langbein, and U. Woggon, NOEKS,
Karlsruhe, Germany, 2003

6. Non-Lorentzian lineshapes in the emission spectra of single self-assembled CdSe/
ZnSe quantum dots B. Patton, W. Langbein, and U. Woggon, DPG Spring
Meeting, Dresden, Germany, 2003

7. Dynamics of excitons, multiexcitons and trion states in II-VI quantum dots B.
Patton, W. Langbein, and U. Woggon, ICPS-26 Proceedings 2002

8. Time-resolved spectroscopy on single CdSe/ZnSe self-assembled quantum dots B.
Patton, W. Langbein, and U. Woggon, DPG Spring Meeting, Regensburg, Ger-
many, 2002

9. Participant: 275 WE-Heraeus Seminar Hardware Concepts for Quantum Com-
puting Bad Honnef, Germany, 2002



94

Appendix




Bibliography

[AEST]

[BCG+98]

[BF73]

[BF02]

[BGL99)|

[Bha97]

[BKMOO]

[BKMMO1]

[BKMMO2]

[BLST01]

[BOS+02]

Leslie C. Allen and Joseph H. Eberly, Optical resonance and two-level
atoms, Dover Publications, 1987.

N. H. Bonadeo, Gang Chen, D. Gammon, D. S. Katzer, D. Park, and
D. G. Steel, Nonlinear nano-optics: Probing one exciton at a time, Phys.
Rev. Lett. 81 (1998), 2759.

P. J. Brown and J. B. Forsyth, The crystal structure of solids, Edward
Arnold, 1973.

M. Bayer and A. Forchel, Temperature dependence of the exciton homo-
geneous linewidth in InggoGagaAs/GaAs self-assembled quantum dots,
Phys. Rev. B 65 (2002), 041308(R).

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum dot het-
erostructures, John Wiley and Sons, Chichester, 1999.

Rameshwar Bhargave (ed.), Properties of wide-bandgap II-VI semiconduc-
tors, INSPEC, 1997.

L. Besombes, K. Kheng, and D. Martrou, Fzciton and biexciton fine struc-
ture in single elongated islands grown on a vicinal surface, Phys. Rev. Lett.
85 (2000), 425-428.

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, Acoustic phonon
broadening mechanism in single quantum dot emission, Phys. Rev. B 63
(2001), 155307.

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, Few-particle effects
in single CdTe quantum dots, Phys. Rev. B 65 (2002), 121314(R).

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang,
and D. Bimberg, Ultralong dephasing time in InGaAs quantum dots, Phys.
Rev. Lett. 87 (2001), 157401.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A.A. Gorbunov, A. Forchel,
P. Hawrylak, S. Fafard, K. Hinzer, T.L. Reinecke, S.N. Walck, J.P. Rei-
thmaier, F. Klopf, and F. Schéafer, Fine structure of neutral and charged



96

BIBLIOGRAPHY

[BWS*99]

[CCT6]

[CGL*96]

[DBLJOO]

[Ein05]

[ENG96]

[FCF+03]

[Fey82]

[FPO3]

[FVH57]

[FWDKO03]

[FWFZ93)

excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots, Phys. Rev.
B 65 (2002), 195315.

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius,
A. Forchel, K. Leonardi, and D. Hommel, Biezciton versus exciton lifetime
in a single semiconductor quantum dot, Phys. Rev. Lett. 83 (1999), 4417—
4420.

J.R. Chelikowsky and M.L. Cohen, Nonlocal pseudopotential calculations
for the electronic structure of eleven diamond and zinc-blende semicon-
ductors, Phys. Rev. B 14 (1976), 556-582.

M. Chamarro, C. Gourdon, P. Lavallard, O. Lublinskaya, and A.I. Eki-
mov, Enhancement of electron-hole interaction in CdSe nanocrystals: A
quantum confinement effect, Phys. Rev. B 53 (1996), 1336-1342.

C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, Spectral resolution
and sampling issues in fourier-transform spectral interferometry, J. Opt.
Soc. Am. B 17 (2000), 1795-1802.

Albert Einstein, On a heuristic point of view concerning the production
and transformation of light, Annalen der Physik 17 (1905), no. 132.

S. A. Empedocles, D. J. Norris, and Bawendi M. G., Photoluminescence
spectroscopy of single CdSe nanocrystallite quantum dots, Phys. Rev. Lett.
77 (1996), no. 18, 3873-3876.

I. Favero, G. Cassabois, R. Ferreira, D. Darson, C. Voisin, J. Tignon,
C. Delalande, G. Bastard, Ph. Roussignol, and J. M. Gérard, Acoustic
phonon sidebands in the emission line of single InAs/GaAs quantum dots,
Phys. Rev. B 68 (2003), 233301.

Richard P. Feynman, Simulating physics with computers, Int. J. Th. Phys.
21 (1982), no. 6/7.

A. Franceschetti and S. T. Pantelides, Ezcited-state relaxations and
Franck-Condon shift in Si quantum dots, Phys. Rev. B 68 (2003), 33313.

R. P. Feynman, F. L. Vernon, and R. W. Hellwarth, Geometrical repre-
sentation of the Schrodinger equation for solving maser problems, J. App.
Phys. 28 (1957), no. 1, 49-52.

J. Forstner, C. Weber, J. Danckwerts, and A. Knorr, Phonon-assisted
damping of Rabi oscillations in semiconductor quantum dots, Phys. Rev.
Lett. 91 (2003), 127401.

A. Franceschetti, L. W. Wang, H. Fu, and A. Zunger, Short-range versus
long-range electron-hole exchange interactions in semiconductor quantum
dots, Phys. Rev. B 58 (1998), R13 367-370.



BIBLIOGRAPHY 97

[FZ00]

[GHLW99]

[GMW+98]

[GP02]

[GR]

[GSS+96]

[GVGH+7]

[GWL*+99]

[HLIR92]

[IBKT95]

[IMO6]

[Jon03]

[KAKO02]

A. Franceschetti and A. Zunger, Pseudopotential calculations of electron
and hole addition spectra of InAs, InP, and Si quantum dots, Phys. Rev.
B 62 (2000), 2614-2623.

F. Gindele, K. Hild, W. Langbein, and U. Woggon, Phonon interaction
of single excitons and biexcitons, Phys. Rev. B 60 (1999), R2157-R2160.

F. Gindele, C. Markle, U. Woggon, W. Langbein, J. M. Hvam,
K. Leonardi, K. Ohkawa, and D. Hommel, Fxciton localisation in CdSe is-
lands buried in a quantum well of Zn,_, Cd,Se, Journal of Crystal Growth
(1998), no. 184/185, 306-310.

D. T. Gies and Ting-Chung P., Measurements of acoustic radiation pattern
in an acousto-optic modulator, IEEE Conference, 2002.

N. C. Greenham and D. R. Richards, Lecture notes on optoelectronics,
Part IIT Physics, Cambridge University.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park,
Fine structure splitting in the optical spectra of single GaAs quantum dots,
Phys. Rev. Lett. 76 (1996), 3005-3008.

R. Grousson, V. Voliotis, N. Grandjean, J. Massies, M. Leroux, and C. De-
paris, Microroughness and exciton localization in (Al,Ga)As/GaAs quan-
tum wells, Phys. Rev. B 55 (1997), 5253-5258.

F. Gindele, U. Woggon, W. Langbein, J. M. Hvam, K. Leonardi,
D. Hommel, and H. Selke, Ezcitons, biexcitons, and phonons in ultrathin
CdSe/ZnSe quantum structures, Phys. Rev. B 60 (1999), 8773-8782.

K. L. Hall, G. Lenz, E. P. Ippen, and G. Raybon, Heterodyne pump-probe
technique for time domain studies of optical nonlinearities in wavequides,
Opt. Lett. 17 (1992), 874-876.

M. Illing, G. Bacher, T. Kiimmell, A. Forchel, T. G. Andersson, D. Hom-
mel, B. Jobst, and G. Landwehr, Lateral quantization effects in lithograph-

ically defined CdZnSe/ZnSe quantum dots and quantum wires, App. Phys.
Lett. 67 (1995), 124-126.

M. Ikezawa and Y. Masumoto, Stochastic treatment of the dynamics of

excitons and excitonic molecules in CuCl nanocrystals, Phys. Rev. B 53
(1996), 13694.

Fredrik Jonsson, Lecture notes on monlinear optics, Royal Institute of
Technology, Stockholm, Sweden, 2003.

B. Krummbheuer, V. M. Axt, and T. Kuhn, Theory of pure dephasing and

the resulting absorption line shape in semiconductor quantum dots, Phys.
Rev. B 65 (2002), 195313.



98

BIBLIOGRAPHY

[KBW+99]

[KKRT94]

[Koc03]

[KSH*93]

[KSHBOI]

[LCJ95)]

[LGX99]

[LHO*97]

[LJLHO00]

[LS91]

[Man00]

[MBT+02]

V. D. Kulakovskii, G. Bacher, R. Weigand, T. Kiimmel, A. Forchel,
E. Borovitskaya, K. Leonardi, and D. Hommel, Fine structure of biex-

citon emission in symmetric and asymmetric CdSe/ZnSe single quantum
dots, Phys. Rev. Lett. 82 (1999), 1780-1783.

Y. D. Kim, M. V. Klein, S. F. Ren, Y. C. Chang, H. Luo, N. Samarth,
and J. K. Furdyna, Optical properties of zinc-blende CdSe and Zn, Cdy_,Se
films grown on GaAs, Phys. Rev. B 49 (1994), 7262-7270.

G. Kocherscheidt, Speckle analysis and spectral interferometry on gallium
arsenide single quantum wells, Ph.D. thesis, Universitat Dortmund, 2003.

R. F. Kopf, E. F. Schubert, T. D. Harris, R. S. Becker, and G. H.
Gilmer, Modification of GaAs/AlGaAs growth-interrupted interfaces

through changes in ambient conditions during growth., J. Appl. Phys. 74
(1993), 6139-6145.

R. F. Kopf, E. F. Schubert, T. D. Harris, and R. S. Becker, Photolumi-
nescence of GaAs quantum wells grown by molecular beam epitaxy with
growth interruptions, Appl. Phys. Lett. 58 (1991), 631-633.

L. Lepetit, G. Chériaux, and M. Joffre, Linear techniques of phase mea-
surement by femtosecond spectral interferometry for applications in spec-
troscopy, J. Opt. Soc. Am. B 12 (1995), 2467-2474.

Yong-qing Li, Dorel Guzun, and Min Xiao, Sub-shot-noise-limited optical
heterodyne detection using an amplitude-squeezed local oscillator, Phys.
Rev. Lett. 82 (1999), 5225-5228.

K. Leonardi, H. Heinke, K. Ohkawa, D. Hommel, H. Selke, F. Gindele, and
U. Woggon, CdSe/ZnSe quantum structures grown by migration enhanced
epitaxy: Structural and optical investigations, Appl. Phys. Lett. 71 (1997),
1510.

K. Leosson, J. R. Jensen, W. Langbein, and J. M. Hvam, Fzxciton localiza-
tion and interface roughness in growth-interrupted GaAs/AlAs quantum
wells, Phys. Rev. B 61 (2000), 10322.

H. J. Lozykowski and V. K. Shastri, Ezcitonic and Raman properties
of ZnSe/Zny_x CdxSe strained-layer quantum wells, J. App. Phys. 69
(1991), 3235-3242.

C. Mann, Vierwellen-mischen an II- VI halbleiter-nanostrukturen, Diplom-
Arbeit, Universitdt Dortmund, Experimentelle Physik IIb, September
2000.

L. Marsal, L. Besombes, F. Tinjod, K. Kheng, A. Wasiela, B. Gilles, J.-
L. Rouviere, and H. Mariette, Zero-dimensional excitons in CdTe/ZnTe
nanostrutures, J. App. Phys. 91 (2002), 4936 — 4943.



BIBLIOGRAPHY 99

[Med82]

[MMH96]

[M&100]

[MZ04]

[NNK*95]

[PKM93]

[PRWH99]

[PSE96]

[PTVF92]

[PWG*04]

[RRA*SS]

[Sch00]

[Sha96]

O. Medelung (ed.), Landolt-Béornstein, vol. 17b, Physics of II-VI and I-VII
Compunds, Semimagnetic Semiconductors, Springer-Verlag, 1982.

A. Mecozzi, J. Mgrk, and M. Hofmann, Transient four-wave mizing with
colinear pump and probe, Opt. Lett. 21 (1996), 1017-1019.

Bjorn Moller, Konstruktion einer mikro-positionereinheit und eines
probenverschiebetisches zum einbau in einen kryostaten, Hauptpraktikum,
Universitat Dortmund, Experimentelle Physik 1Ib, 2000.

E. A. Muljarov and R. Zimmermann, Dephasing in quantum dots:
Quadratic coupling to acoustic phonons, Phys. Rev. Lett. Submitted
(2004).

M. Nirmal, D.J. Norris, M. Kuno, M.G. Bawendi, AlLL. Efros, and
M. Rosen, Observation of the “Dark exciton” in CdSe quantum dots, Phys.
Rev. Lett 75 (1995), 3728-3731.

Nasser Peyghambarian, Stephan W. Koch, and Andre Mysyrowicz, Intro-
duction to semiconductor optics, Prentice Hall, New Jersey, 1993.

J. Puls, M. Rabe, H. J-. Wiinsche, and F. Henneberger, Magneto-optical
study of the exciton fine structure in self-assembled CdSe quantum dots,

Phys. Rev. B 60 (1999), R16303-306.

G. Massimo Palma, Kalle-Antti Suominen, and Artur K. Ekert, Quantum
computers and dissipation, Proc. R. Soc. Lond. A 452 (1996), 567-584.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical recipes in c: The art of scientific computing, second ed., Cam-
bridge University Press, 1992.

P. Palinginis, H. Wang, S. V. Goupalov, D. S. Citrin, M. Dobrowolska,
and J. K. Furdyna, Fzxciton dephasing in self-assembled CdSe quantum
dots, Phys. Rev. B 70 (2004), 73302.

M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore,
and A. E. Wetsel, Observation of discrete electronic states in a zero-
dimensional semiconductor nanostructure, Phys. Rev. Lett. 60 (1988),

539.

S. Schneider, Aufbau eines hochauflosenden abbildenden spektrometers,
Hauptpraktikum, Universitat Dortmund, Experimentelle Physik IIb,
2000.

J. Shah, Ultrafast spectroscopy of semiconductors and semiconductor
nanostructures, Springer, Berlin, 1996.



100

BIBLIOGRAPHY

[SLS*01]

[SLS*02]

[SSPY02]

[Sug99|

[SWB*+00]

[SWEF+02]

[TFHL*01]

[TRH*01]

[TRS*00]

[UMK*04]

[WGWK96]

[Wog97]

T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park,
C. Piermarocchi, and L. Sham, Rabi oscillations of excitons in single quan-
tum dots, Phys. Rev. Lett. 87 (2001), 133603.

T. H. Stievater, Xiaoqin Li, D. G. Steel, D. Gammon, D. S. Katzer, and
D. Park, Transient nonlinear spectroscopy of excitons and biexcitons in
single quantum dots, Phys. Rev. B 65 (2002), 205319.

C. Santori, G. S. Solomon, M. Pelton, and Y. Yamamoto, Time-resolved

spectroscopy of multiexcitonic decay in an InAs quantum dot, Phys. Rev.
B 65 (2002), 73310.

Mitsuru Sugawara (ed.), Self-assembled InGaAs/GaAs quantum dots,
Academic Press, 1999.

J. Seufert, R. Weigand, G Bacher, T. Kiimmell, A. Forchel, K. Leonardi,
and D. Hommel, Spectral diffusion of the exciton transition in a single
self-organized quantum dot, App. Phys. Lett. 76 (2000), 1872 — 1874.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi,
Surface-enhanced emission from single semiconductor nanocrystals, Phys.
Rev. Lett. 89 (2002), 117401.

T. T. Flissikowski, A. Hundt, M. Lowisch, M. Rabe, and F. Henneberger,
Photon beats from a single semiconductor quantum dot, Phys. Rev. Lett.
86 (2001), 3172-3175.

V. Tirck, S. Rodt, R. Heitz, O. Stier, M. Strassburg, U. W. Pohl, and
D. Bimberg, Charged excitons and biexcitons in self-organised cdse quan-
tum dots, Phys. Stat. Sol. 224 (2001), 217-221.

V. Tiirck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bim-
berg, and R. Steingriiber, Effect of random field fluctuations on excitonic
transitions of individual CdSe quantum dots, Phys. Rev. B 61 (2000),
9944-9947.

B. Urbaszek, E. J. McGhee, M. Kriiger, R. J. Warburton, K. Karrai,
T. Amand, B. D. Gerardot, P. M. Petroff, and J. M. Garcia, Temperature-
dependent linewidth of charged excitons in semiconductor quantum dots:

Strongly broadened ground state transitions due to acoustic phonon scat-
tering, Phys. Rev. B 69 (2004), 35304.

U. Woggon, F. Gindele, O. Wind, and C. Klingshirn, Ezchange interaction
and phonon confinement in CdSe quantum dots, Phys. Rev. B 54 (1996),
1506-15009.

Ulrike Woggon, Optical properties of semiconductor quantum dots,
Springer Verlag, 1997.



BIBLIOGRAPHY 101

[Yof01] A. D. Yoffe, Semiconductor quantum dots and related systems: electronic,

optical, luminescence and related properties of low dimensional systems,
Advances in Physics 50 (2001), 1-208.

[ZMO04] Roland Zimmermann and Egor Muljarov, Dephasing of optical transitions
i quantum dots - where exact solutions meet sophisticated experiments,
12th Int. Symp. “Nanostructures: Physics and Technology” St Petersburg,
Russia, June 21-25 2004.

[ZR02] R. Zimmermann and E. Runge, Dephasing in quantum dots via electron-
phonon interaction, Proceedings of the 26th International Conference on
the Physics of Semiconductors (UK) (J. H. Davies and A. R. Long, eds.),
Institute of Physics Publishing, 2002, p. to appear.



102 Symbols and abbreviations




Symbols and abbreviations

meaning

exciton Bohr radius

creation, annihilation operator for phonon with wavevector q
acousto-optic modulator

creation, annihilation operator for exciton

speed of light in vacuum (299 792 458 m s~ !)
correlation coefficient between states ¢ and j
charge coupled device

continuous wave (excitation)

Dirac delta function

bright-dark state splitting energy

bright-state anisotropy splitting energy

escape energy

split-off energy

components of interaction Hamiltonian

distance

deformation potential of conduction,valence bands
density of states, n-dimensional case

electric field

unit charge (1.602176 -10~ C)
relative dielectric constant
static dielectric constant
detuning

binding energy

excitonic energy level

gap energy

transition energy of 7" state
excitation-induced dephasing
electron volt (1.602176 1072 J)
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f focal length of lens

F local electric field

FPD free-polarisation decay

FWHM full width at half maximum

FWM four-wave mixing

fs femtosecond

v (monoexponential) decay rate

Yo spin-relaxation rate

Ye escape rate

Vr radiative recombination rate

r phenomenological decay rate

Iy, homogeneously broadened linewidth

H Hamilton operator

H, Hamilton operator for isolated system

Hi: interaction Hamiltonian

Hp relaxation Hamiltonian

h h/27= 1.054571- 1073* J s= 6.582118- 10716 eV s
HFWM heterodyne four-wave mixing

HWHM half width at half maximum

1 intensity

Iy reference (excitation) intensity

1 integer index 1 =0,1,2...

J total angular momentum

7» z-component of the total angular momentum
k momentum vector

kll in-plane momentum

ks, ky X, (y) component of the in-plane momentum £,
K imaginary part of the refractive index (extinction coefficient)
K; reciprocal lattice vector

A wavelength

L orbital angular momentum

L, characteristic dimension along x

1 effective reduced mass of exciton

p— (prefix) micro (x107°)

uPL micro-photoluminescence

mo electron mass (9.109381 - 107! kg)

Me effective electron mass

mph effective heavy-hole mass
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mp

MY
MBE
ML
MOCVD

b,d
Np

q

NA
nm
ns

Wo

WRF

Pi

Pij
P(t)

¢(r)
PC
PL

ps

QCSE

T

effective light-hole mass

effective mass

phonon mediated coupling matrix
molecular beam epitaxy

monolayer

metal-organic chemical vapour deposition

complex refractive index

real part of the refractive index, population of ensemble
population of the (bright,dark) state

volume density of dots

Bose distribution of phonons

numerical aperture

nanometre

nanosecond

centre-frequency (of transition,laser excitation)
Rabi frequency
radio-frequency at which AOM is driven

polarisation of ensemble

permanent dipole moment of i** state

polarisibility tensor of i** state, fraction of system in state ¢
dipole moment of states i, j

polarisation

radial component of wavefunction

personal computer

photoluminescence

picosecond

phonon wavevector
quantum-confined Stark effect
quantum dot

quantum well

density matrix operator

charge density of electrons,holes
mass density

Bloch vector

spin angular momentum
Huang-Rhys factor

temperature
population lifetime
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Ty dephasing time

T pure dephasing time

T delay time

S} Heaviside step function, pulse area
Op Bragg angle

vp phase velocity

Vg group velocity

o standard deviation

ofe! Gaussion width

S velocity of sound

T trion (singly charged exciton)
X exciton

XX biexciton

ZPL zero-phonon line
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