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) is (only) a function of plough 
depth (Scenario 1 vs. Scenario 2) and degree of soil fragmentation 
(Scenario 3 vs. Scenario 4). 
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Figure 3-23 Trigonometry used to calculate maximum soil height, yd

 

, as a function 
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Figure 3-27 Contour plots of soil surface just after ploughing at different depths (18 
and 24 cm) in Kirton and Wellesbourne. The ‘hotter’ the colour, the 
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Sampling in Kirton and Wellesbourne occurred on a 5x5 and a 10x10 
cm grid respectively. Abbreviations: Well. = Wellesbourne; R1, R2 
represent replicate 1 and 2 respectively. 
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Figure 3-28 Box plots of soil height before (pooled data of 4 replicates) and just after 
ploughing for two plough depths and two locations (pooled data of 2 
replicates, Well. = Wellesbourne). Outliers are represented by red 
asterixes and are defined as those datapoints within the range 1.5-3.0 
times the interquartile range, below or above the 1st or 3rd quartile 
respectively. 
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Figure 3-29 Comparison between observed and predicted distributions of soil height 

just after ploughing at two different plough depths. Predicted 
distributions are based on the trigonometric relations that underlie 
the Colbach and Roger-Estrade models (see Figure 3-23). Observed 
values of soil height were pooled over location. Outliers are represented 
by red asterixes and are defined as in Figure 3-11. 
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Figure 3-30 Change of median soil height over a three month period after ploughing; 
data from replicates ploughed at 24 cm in Wellesbourne was not pooled 
because date of ploughing was different. Standard error is calculated as 

N/253.1medianSE σ=  
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Figure 3-31 Frequency distribution of changes in soil height at Kirton, compared for 
consecutive time intervals after ploughing (DAP = days after 
ploughing). Data from two replicates and both plough depths were 
pooled (N=484) since no differences were detected between their 
individual frequency distributions. 
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Figure 3-32 Comparison between observed and predicted distributions of soil height, 
81 (Kirton) or 87 days (Wellesbourne) after ploughing, for soils 
ploughed at 18 and 24 cm. Outliers are represented by red asterixes and 
are defined as in Figure 3-28. 
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Figure 3-33 Seedbed preparation of a carrot field. Top: Ridging with a bedformer / 
ridger. Middle: Destoning the ridges with a stone-and-clod separator 
(Reekie Reliance 500); soil is taken up by a series of rotating devices 
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that sieve the soil and deposit stones and clods in the tramlines. Bottom: 
Rototilled beds with Jones Engineering Triple Bedformer, now ready for 
carrot drilling. Images taken at Elveden Estate (Norfolk, UK) and with 
courtesy of Andrew Francis. 
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Figure 3-34 ‘Raw’ transition matrix used to model weed seed redistribution in the 
soil during seedbed preparation for winter wheat. 
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Figure 3-35 
 

Hypothetical transition matrix for soil and seed movement during carrot 
harvest using top-lifters. Colours are added to illustrate (lack of) 
movement, the ‘hotter’ the colour the higher the probability of moving 
from a soil layer before harvest to another after harvest. 
 

140 
 

Figure 4-1 S. media seedlings between 1st and 2nd

 
 true leaf stage in seed tray. 147 

 
Figure 4-2 Effective day-degrees (left) and day-degrees (right) accumulated over 

three growth intervals: the bottom (blocked), middle (open) and top 
(shaded) stacks represent the ‘time’ required to grow from emergence to 
the 1st true leaf-stage, from the 1st to the 2nd and from the 2nd to the 4th 
true leaf stage respectively. In June T. inodorum plants were only 
assessed until 2nd

 

 true leaf stage. Species-specific parameters to 
determine DD and EDD were taken from Storkey (2004). 150 

 
Figure 4-3 Left: Relative growth rate for T. inodorum seedlings growing in seedling 

trays (April). Datapoints represent average biomass at the cotyledon, 1st, 
2nd and 4th true leaf stage respectively, bars represent SD. Right: 
Residuals of linear regression line indicating limitation of growth rate 
between 2nd and 4th

 
 true leaf stage. 151 

 
Figure 4-4 From the top down: the Richards function as defined in Equation 4-3 

(with m=2) and the first, second and third derivatives. 
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Figure 4-5 Experimental design of the experiment initially aimed at obtaining 
parameters for the ‘Conductance’ model (Benjamin and Park, 2007). 
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Figure 4-6 Resulting BW images after manipulation of the original RGB image of a 
T. inodorum plant at Harvest 2 (top left) in MatLab using the Image 
Analysis Toolbox. The ‘Leaf area’ picture (bottom right) is produced by 
subtracting the ‘Flower area’ (top right) from the ‘Ground cover’ image 
(bottom left). 
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Figure 4-7 From the top down: Beta distributions and their 1st and 2nd derivatives. 
Dotted, solid and dashed lines represent Beta distributions (see Equation 
4-4) with Tm=0.25*Te, Tm=0.50*Te and Tm=0.75*Te respectively. 
Points P1 and P2

 

 represent maximum growth acceleration and maximum 
growth rate respectively. 
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Figure 4-8 Biomass (solid line and semi-filled diamonds, plotted on left Y-axis) and 
‘Flower area’ (dashed line and filled circles, plotted on right Y-axis) of 
T. inodorum after transplanting to the field on the 28th of June. Fitted 
lines are Beta distributions.  The black arrow indicates the estimated 
time with 50% of plants flowering.  The orange filled diamonds indicate 
the timing of acceleration (P1) and the green circles indicate maximum 
growth (P2
 

). Error bars represent SEM. 
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Figure 4-9 Plot size of carrot-weed competition experiment and transplanting 
pattern of carrot and weed plants within plots. In multi-cohort plots the 
position of different-aged weeds was randomly allocated. 
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Figure 4-10 The earliest stage of a seed head of T. inodorum to be counted as 
‘mature seed head’. 
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Figure 4-11 Decision rules used to determine which regression model fitted best to 
each of the 4 biomass – seed production datasets. 
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Figure 4-12 Plot with carrot and Stellaria media; image taken on the 10th

 
 of August.   171 

 
Figure 4-13 Plant biomass – seed production relationship for T. inodorum plants at 

crop harvest; on average (‘Early’) and (‘Late’) weeds were 7 days older 
and younger than carrots respectively.  Weed and crop plants were all 
transplanted and harvested on the same day. 
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Figure 4-14 Relationship between realized reproductive effort for ‘Early’ and ‘Late’ 
cohorts of T. inodorum and plant biomass at harvest. 
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Figure 4-15 Conceptual representation of how the biomass-seed production 
relationship can be made dynamic. The slope of the line is a function of 
accumulated thermal time, with the amount of thermal time required 
being a function of plant size at the initation of flowering. The blue point 
represents the ‘hinge’ point, that is, the minimum plant size that can 
support 1 flower. After producing the flower the plant does not produce 
any more biomass and therefore remains in the same position. 
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Figure 4-16 Temporal changes of the number of S. media capsules per g dry weight 
(DW). ▲---▲= high density (average density = 600 plants m-2), ■---■ = 
low density (average density = 50 plants m-2

 

). Cross hairs represent SED 
(figure and data after van Acker et al., 1997). Note: the drop in the ‘high 
density’ data after 198 Julian days respresents the loss of capsules 
through abscission. 176 

 
Figure 4-17 Position and planting distance in a plot of weed seedlings transplanted in 

May. Carrot positions within an individual row were less regular than 
indicated due to irregular sowing and failed emergence. Not on scale. 
Letter codes indicate from left to right the various ‘Within-row’ (W) and 
‘Between-row’ (B) sections of the bed in which the weed seedlings were 
transplanted (see Table 4-8 and 4-9). 
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Figure 4-18 Size-dependency of the probability of flowering for T. inodorum 
seedlings transplanted in a carrot crop in June. Line is fitted logistic 
function (Verhulst). 
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Figure 4-19 Distribution of first flowering date for T. inodorum plants transplanted 
in a crop in May and June. In June fewer plants were transplanted in the 
carrot crop but the proportion of plants flowering was lower as well. 
 

 
 

185 
 

Figure 4-20 Relationship between plant biomass at harvest (8 September) and the 
date of first flowering for T. inodorum seedlings transplanted in a carrot 
crop in either May or June. Note that X-axis is on log scale. 
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Figure 4-21 Correlation of plant biomass at harvest, when all plants had stopped 
flowering, and duration of flowering for T. inodorum seedlings 
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transplanted in a carrot crop around May and harvested in September. 
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Figure 4-22 Flowering curves, fitted with the Beta distribution, for 6 individuals of 
T. inodorum. Note that X-axis is on the same scale but Y-axis is not. 
Although flowering duration generally increases with plant size, large 
plant phenotypic variability exists in plant growth rates and 
consequently flower duration. 
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Figure 4-23 Box-plots of number of days (left) and day-degrees (right) from first 
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Preface 
 
Instead of nose diving straight into the research, I would like to share with the reader 

my reflections on what I’ve learned from this Phd. After all, this thesis is the 

culmination of 4 years of research and will turn me into a ‘Doctor of Philosophy’, an 

honorary title indeed.  

Over the course of these four years I have increased my understanding in plant 

ecology, agronomy and modelling biological systems. One of the most important 

things that I have learned is that successfully carrying out a research project requires 

determination, patience and time-management. The latter can only be successful if 

one knows fully well the direction in which to go, (which is an alien concept to most 

fresh Phd students), the time it takes to fulfill the tasks ahead and the willingness to 

choose those options that correspond with the time that is available.  

Without previous experience in modelling I taught myself how to program in Matlab, 

something of which I am proud. What was more important however, was the ‘How 

much’ question. What level of detail, how much complexity should be incorporated to 

derive answers? Crucial to and representative of this insight are two quotes that 

together should be the guiding principles in any modelling project: 

 

“Essentially, all models are wrong, but some are useful.”  (George E.P. Box) 

“Everything should be made as simple as possible, but not simpler

 

.” (A. Einstein) 

The first quote does not qualify when or which types of models are useful, merely that 

some models, despite being wrong, can still produce valuable results. Adding 

Einstein’s interpretation of the value of complexity to it suggests, by way of inverting 

the argument, that only up to a certain point is it useful to add complexity. Modelers 

are thus urged to make parsimonious models that capture enough detail to answer the 

question(s) at hand, but do not overburden a model with details that do not 

fundamentally change the behaviour of the system. The latter aspect immediately 

highlights a challenge, a priori it is often unknown which aspects are most important 

in regulating a particular biological system. Nevertheless, I would like to believe that, 

when reading the description of the model components, the reader of this thesis will 

recognise the compass effect of these rules. 



 XIX 

Acknowledgements 

 

There are many people that I would like to thank for their contribution to the work 

that is presented in this thesis. In the first place my advisors Andrea Grundy and 

Andrew Mead who were always available for advice and our discussions significantly 

contributed to my enthusiasm for the research. Paul Neve, a research fellow that was 

appointed on the project at the same time as I started my Phd, has been an inspiration 

in his organised approach and realistic time-management. 

Many other people at Warwick HRI have facilitated or helped me at some point 

during the experiments. Sally Mann, Julian Brandreth and Colin Jones of the 

Horticultural Staff in Wellesbourne have always been friendly and very helpful in 

accommodating my protocols for field experiments. Andy Bradshaw did a 

tremendous job in manufacturing the framework with which the soil samples were 

excavated (see Chapter 3). Judith Shields and Tracey Overs have been invaluable in 

retrieving the plastic beads from my soil samples. From the staff over at HRI Kirton I 

would like to specifically mention Geoff Clark who carried out the fort-nightly 

parallel measurements on ‘soil slumping’ after ploughing as well as helping me with 

the field preparation. A warm thank you to Peter Brooks who, apart from being an 

excellent librarian, could easily be a member of the mental support staff for Phd 

students that are writing up.  

Both Dirk Kurstjens (previously Wageningen University) and Nathalie Colbach 

(INRA) have given useful advice in the pre-stages of the experimental work on 

cultivation. Preben Klarskov Hansen (Researchcentre Flakkebjerg, Denmark) wrote 

and provided me with the original file for the image analysis in MatLab which I then 

adapted. Tanja Koch, a student from Germany, helped me with the image analysis of 

the many acquired photos in MatLab. I want to express my gratitude to the 

consultants Cathy Knott, Carl Sharp and Tom Will and the carrot growers, Andrew 

Francis from Elveden Estate in particular, who kindly provided me with practical 

information that gave me a better understanding of ‘the real world out there’.  

Thanks also to my parents, brothers and sisters and their lovely postcards from the 

Netherlands. Last but certainly not least, I can not imagine how I would have fared if 

not for the financial, mental and even physical support during some experiments of 

my wife, Marianne. You made life so much easier, in particular during the 4th year. 

Not even half a year of washing up would make up for this! 



 XX 

Declaration 
 
 

 

I declare that this thesis and the research that is being contained therein is the sole 

work of the author, that it does not contain any material that was published 

previously, and that none of this work has been presented for another degree. If the 

author collaborated with colleagues, used or adapted methodologies originally 

established by fellow academics, this is fully acknowledged in the relevant part of the 

text. 

 

 

 

SIGNED      DATE: 



 XXI 

Abstract 
 
Over the last three decades, concern about food safety and the management of natural 

resources has increased. Instigated by the previous EU pesticide review, (EU 91/414) 

carrot growers in particular have been hit by the revocation of several post-emergence 

herbicides. There is real concern among growers that this may impair profits. To 

identify alternative weed control strategies, a modelling framework capable of 

simulating the impact of alternative weed management strategies on long-term weed 

population dynamics, was proposed. Scentless mayweed (Tripleurospermum 

inodorum) was chosen as model weed species. The system represented in 

ECOSEDYN (Effects of Cultural control and climate On SEedbank DYN

For each component model in ECOSEDYN the literature was reviewed to identify the 

best mathematical representation and then the model was parameterised. To improve 

accuracy of model projections and address gaps in knowledge, field experiments were 

conducted in two areas: soil cultivation, and plant growth and reproduction. The 

results of the cultivation experiments revealed that key assumptions in models for 

weed seed re-distribution are incorrect. The experiments focusing on plant growth and 

reproduction resulted in a novel approach to the modeling of biomass increase, 

flowering and seed shedding where the different processes were quantitatively and 

temporally linked using Beta functions.  

amics), 

comprises a six-year crop rotation: one year of carrot and five years winter wheat and 

repeated four times. The weed management strategies consist of combinations of 

cultural control measures (sowing time and crop maturity time). In addition, the 

interaction of climate with the cultural control measures was assessed by 

implementing two future climate scenarios, (‘No change’ vs ‘Heating up’) based on 

weather data over the last 18 years.  

The results of the ECOSEDYN simulations showed that, regardless of the prevailing 

climate, choosing a fast maturing carrot cultivar is by far the most important factor in 

maintaining the weed seedbank low. In addition, the risk for higher seedbank levels in 

the long-term under ‘Heating up’ climate is largest if carrot is continuously sown late. 
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1.1 Motivation for study 
Out of all the harmful organisms (pathogens, viruses, animal pests and weeds) that 

impair crop performance, weeds have the biggest potential to reduce crop yield 

(Oerke, 2006). The good news is that, compared to the other pests, there is a wider 

range of measures available to counteract weeds, and therefore the actual crop yield 

loss is reduced to a much larger extent (see Figure 1-1, after Oerke, 2006). 

 
 

Since the discovery of phenoxy-acetic herbicides from 1942-1944, herbicides have 

been used worldwide in controlling weeds (Timmons, 2005), mainly because they 

were both inexpensive to produce and effective for weed control (Buhler, 1999; 

Naylor, 2002; Håkansson, 2003). Squire et al. (2003) showed that seedbank 

populations in research and commercial fields measured before the rise in chemical 

herbicide use were substantially larger than thereafter (see Figure 1-2.). Because other 

farm management practices intensified as well over this period, the effect of 

herbicides on the weed seedbank is confounded but it is generally assumed that 

herbicides greatly contributed to the decline in weeds (e.g. Gianessi and Reigner, 

2007).  

However, since the 1980s, the public has become more aware of and concerned about 

the effects of pesticides on food safety and the environment (Curry, 2002; Kudsk and 

Streibig, 2003; 't Mannetje et al., 2005). Agricultural policy at EU, national and 

regional scale now pays far more attention to producing food in a sustainable manner. 

The change in agricultural policy resulted in a shift from a policy emphasising 

 

Figure 1-1 Average efficacy of pest control practices worldwide in reducing loss potential 
of pathogens, viruses, animal pests and weeds, respectively. Reduction rates calculated from 
estimates of monetary production losses in barley, cottonseed, maize, oilseed rape, potatoes, rice, 
soybean, cotton, sugar beet, tomatoes and wheat in 2001-03. Data and figure after Oerke (2006). 
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production towards a policy advocating the sustainable management of natural 

resources and the landscape.  

 
In the late eighties and early nineties weed management started being viewed as a 

problem to which ecological principles should be applied (Navas, 1991; Hess, 1994; 

Cousens and Mortimer, 1995) and this has steadily continued (Buhler, 1999; 

Mortensen et al., 2000; Blackshaw et al., 2006). Recent weed science textbooks 

(Liebman et al., 2001; Booth et al., 2003; Håkansson, 2003) and peer reviewed papers 

in ‘Weed Research’ testify that research has indeed moved in this direction (Kropff 

and Walter, 2000). Despite consumer preference for a reduction in the amount of 

applied pesticides, to avoid financial losses any reduction must be achieved without 

consequent reductions in crop quality. In terms of weight of product applied, 

herbicides form the biggest contributor of pesticides in outdoor vegetables overall 

(see Figure 1-3) and in each vegetable crop except onions and leeks that receive more 

fungicides (Garthwaite et al., 2004). The situation is similar for all arable crops except 

oats and potatoes that received more growth regulators and desiccants respectively 

(Garthwaite et al., 2006). 

 

Figure 1-2 Frequency histogram of seedbank density, expressed as the logarithm of the 
number of seeds per square metre of field, for fields in Great Britain sampled in the periods before 
(1915-1950) and after (1966-1990) rapid intensification of field management (e.g. herbicide use). 
The x-axis labels refer to the upper limit of bin width. 1915–1950 (mean of 101 fields, open bars) - 
1966–1990 (mean of 87 fields, closed bars). Data originate from various published seedbank 
records and were amalgamated by Squire et al.  (2003; see their Table 1c).  
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Through various environmental policies, the British Government has stepped up the 

pressure to reduce pesticide use. One of the explicit aims of the 1990 Government 

White Paper ‘This Common Inheritance’ was to "limit the amount of pesticide use to 

the minimum necessary for the effective control of pests compatible with the 

protection of human health and the environment" (Department of the Environment, 

1990). Since then it has been extended into various other policies, for example as a 

key sustainability indicator in ‘Towards Sustainable Agriculture – a Pilot Set of 

Indicators’ (2000) and through the implementation of the ‘National Pesticides 

Strategy’ (Pesticides Safety Directorate et al., 2006). In 2001, the Voluntary Initiative 

was introduced by the Crop Protection Association in response to a Government plan 

to introduce eco tax on pesticides. Collaborating with other farming, countryside and 

crop protection organisations, a 5-year programme of voluntary measures to minimise 

the environmental impacts of pesticides was initiated (Goldsworthy, 2007). 

With regards to weed management, one of the ways in which reducing pesticides is 

realized is by adopting reduced herbicide doses. The number of treatments a crop 

requires is positively correlated with the length of the critical weed-free period, i.e. 

the period a crop has to be kept free of weeds to avoid yield loss. Longer critical 

weed-free periods are typical for slow growing, low competitive crops such as carrot 

and onion (van Heemst, 1985). The number of herbicide treatments to carrots and 

parsnips has increased remarkably – see Figure 1-4, left, as derived from data from 

the website from Central Science Laboratory (2008) over the last 15 years. Despite 

 

Figure 1-3 Herbicides as a proportion of the total weight of pesticides applied to vegetable 
crops in Great Britain in 2003. Data from Pesticide Usage Survey Report (Garthwaite et al., 2004).  
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this, a reduction in the amount of herbicide applied per unit area, confirming that 

reduced dose-rates are indeed being used (see Figure 1-4, right).  

 
 

For weeds that are highly outcrossing, continuous application of reduced herbicide 

doses may result in the gradual accumulation of resistance through multiple genes, 

also called ‘creeping resistance’ (Gressel, 1995; Neve and Powles, 2005; Beckie and 

Gill, 2006). Although there is no consensus among weed scientists whether or not 

continuous reduced herbicide rates are indeed responsible for herbicide resistance as 

observed in the field (Neve, 2007), weed scientists seem to agree that where 

continuous reduced rates are applied in field situations this should be part of an 

integrated weed management strategy (Beckie and Gill, 2006; Blackshaw et al., 

2006). 

Growers are not only under pressure to reduce pesticide usage, they are also facing a 

decrease in available herbicide products. After the last EU pesticide review (Directive 

91/414/EEC) a number of important herbicides for horticultural crops were 

blacklisted to be phased out. For vegetable growers, new herbicides are unlikely to 

come to the market soon as agrochemical companies concentrate their search mainly 

on compounds which will be effective for the major crops due to increased 

development costs and stricter approval conditions (Copping, 2002; Grundy et al., 

2003). If no approval can be negotiated for alternative herbicides, serious gaps in 

weed control for growers of more specialist crops will be the result (Grundy et al., 

2003; Pesticides Safety Directorate, 2004).  

Carrots are perceived to be the crop hardest hit. At the 2004 Annual Conference of the 

British Carrot Growers’ Association, Julian Davies (Stockbridge Technology Centre) 

said “The old ADAS booklet on weed control in brassicas and root vegetables ran to 

 

Figure 1-4 Data from Central Science Laboratory on pesticide usage in carrots and 
parsnips over the period 1991-2003, showing that despite an increased number of herbicide 
applications per season, the overall amount of  herbicides per unit area (ha) has decreased.  
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62 pages of information on herbicides. By 2007 you might be able to write about all 

the available herbicides for carrots on the back of a fag packet.” (Knott, 2004a). 

Indeed, after 31 December 2007 carrot growers for example, can no longer use 

herbicides based on the active ingredients metoxuron, prometryn, pentanochlor. In 

addition, a reduced maximum rate has been announced for linuron and is expected for 

new labels of pendimethalin after 2008 (Hamilton, 2007). Up until 31 December 

2007, weeds were not regarded as a problem by most conventional carrot growers 

(personal communication, Cathy Knott) but especially the loss of Dosaflo 

(metoxuron) and Gesagard (prometryn) are regarded as creating a real gap in the 

herbicide armoury (Knott, 2004b; Martin, 2005).  

In onions, herbicides based on the active ingredients cyanazine, prometryn and 

sodium mono-chloracetate have been revoked (Assured Produce, 2006; ADAS, 2007). 

The R&D Committee of the British Onion Producers Association (BOPA) gave a high 

priority to the search for new active ingredients and new weed management systems 

as a consequence of the loss of these herbicides after 2007 (BOPA, 2006).   

With fewer herbicides available to vegetable growers there is a risk for certain weed 

species to escape the control operations and cause serious yield reduction. For 

example, in carrots and onions, Dosaflo (metoxuron) was used in combination with 

linuron to specifically target mayweeds and volunteer potatoes whereas Gesagard 

(prometryn) was used to control Fumaria spp. (ADAS, 2003). The Horticultural 

Development Council has funded trials (e.g. Knott, 2004b; Knott, 2006) to find new 

(programmes of) herbicides that can cover the gap, but this is a lengthy process and 

not without hurdles. Even when an alternative herbicide is proving successful in trials 

(e.g. aclonifen), it still has to acquire approval status in the UK. A new herbicide may 

not cover the range of weeds controlled by its revoked predecessors, e.g. off-label 

approval (SOLA) for Defy (prosulfocarb) is expected for 2008 which would 

guarantee control of Fumaria spp. but not Matricaria spp. / Tripleurospermum 

inodorum and Senecio vulgaris (Pesticides Safety Directorate, 2004).  

The revocation of herbicides is not limited to a few crops but covers both arable and 

vegetable crops. Given that outdoor vegetables such as carrots and brassicas are often 

grown on land rented from arable farmers (Sly, 1978; ADAS, 2007), this leads to the 

reliance on an overall narrowing range of products and active ingredients. For 

example, herbicides based on the active ingredients isoproturon and trifluralin are 

used to tackle grass weeds and especially blackgrass (Alopecurus myosuroides) in 

cereal crops. Trifluralin has on-label approval in vegetable brassicas and carrots as 
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well and no resistance to trifluralin has been encountered so far (WRAG, 2007). In 

2007 the PSD announced that these herbicides were to be banned after failing to 

receive Annex I approval in the latest EC Review (Farmers Weekly Interactive, 

2007), due to their perceived risk to aquatic life. The Weed Resistance Action Group 

(2007) said in a statement that “fewer herbicides mean there is greater pressure, both 

for resistance and on risk of those being used reaching water (as a direct effect of the 

area sprayed).” 

In 2006 a new pre-emergent herbicide Defy (prosulfocarb) was approved for use in 

winter cereals (and potatoes) that could fill the gap left by isoproturon. Over a year 

later, specific off-label approval (SOLA) has been granted for use in a range of arable 

crops (spring barley, rye and triticale, winter field beans), outdoor grown vegetable 

(leeks, bulb and salad onions, carrots and parsnips, celery, celeriac) and a number of 

herbs (Pesticides Safety Directorate, 2008). Because of the lack of herbicides 

available to growers of minor crops, these SOLA’s are vital. In a recent study it was 

considered that “without them some crops could either not be grown, or it would be 

uneconomic to do so” (Grundy et al., 2003). However, since many outdoor vegetables 

are effectively grown in a crop rotation with arable crops, granting SOLA’s for a 

particular herbicide to a wide range of crops inevitably leads to an increased 

frequency of application of that herbicide to the weed population. It is well recognized 

that the frequency of herbicide use is one of the factors contributing to the selection 

pressure for herbicide resistance (Maxwell and Mortimer, 1994) and several studies, 

though not all, reveal a positive correlation between frequency of use and herbicide 

resistance (Beckie and Jana, 2000; Légère et al., 2000; Moss and Perryman, 2007).  

At a conference focusing on the future of cereal weed control, experts warned against 

relying on a single product (Atlantis) too much after the loss of IPU and trifluralin and 

urged growers to use herbicides only as one component of an integrated weed 

management strategy (Farmers Guardian, 2007). Unfortunately, farmers tend to adopt 

integrated measures only after detection of herbicide resistance rather than as a 

preventative strategy (Clarke et al., 1997; Beckie and Gill, 2006). One of the reasons 

for this is that the costs to prevent or delay herbicide resistance are perceived to be 

equal to the cost for managing a population where herbicide resistance is actually 

diagnosed. This suggestion has been corroborated in some scenarios (e.g. Powles et 

al., 2001) and introducing cultural control measures as part of a strategy to prevent 

resistance will undoubtedly increase financial costs initially. However, Orson (1999) 
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showed that preventative management can cost significantly less than the measures 

necessary once herbicide resistance is a reality (see Figure 1-5).  

 
This has led to an official endorsement to integrate herbicides with alternative 

measures by research and industrial partners alike. In 2003, the Weed Resistance 

Action Group (WRAG) produced a set of guidelines called ‘Managing and preventing 

herbicide resistance in weeds’; in it they emphasized “the need for cultural control to 

reduce the need for herbicides and the risk of resistance developing”.  

Cultural control measures constitute:  

manipulating crop-related aspects, for example, increasing sowing rate (Beckie and 

Kirkland, 2003) or breeding more competitive crop varieties so that reliance on 

herbicides is reduced (O'Donovan et al., 2007)  

manipulating the timing and nature of crop management practices, for example, 

through reduced fertilizer input or alternative cultivation regimes (Moonen and 

Barberi, 2004).  

Measures recommended by the WRAG include set aside, a diverse cropping rotation 

and ploughing instead of minimal cultivation. Importantly, this message is supported 

by big companies such as Bayer, the manufacturers of herbicides who advocate the 

use of more integrated control strategies to protect and optimise the existing chemical 

options (WeedFocus, 2008). 

Unlike arable crops where herbicide resistance in a few grass weeds is now 

considered a serious problem, no serious resistance problems currently exist in 

broadleaf weeds in outdoor vegetables in the UK (Moss, 2003). Herbicide sequences, 

herbicide mixtures and sometimes additional mechanical weeding are practiced in 

 

Figure 1-5 The cost of a system aimed at preventing herbicide resistance vs. the cost of a 
system facing the consequences of herbicide resistance in blackgrass (Alopecurus myosuroides) – 
data after Orson (1999) and figure obtained from Clarke (1998). 
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outdoor vegetables such as carrots and onions and it is possible that these strategies 

together are sufficient to prevent the development of resistance. However it would be 

unwise to take this for granted for the future especially given the recent revocation of 

a number of key herbicides. In addition, selection for resistance occurs long before 

herbicides visibly fail in the field (Moss, 2006) and it is suggested that resistance 

problems are “most unlikely” to be detected before 30% of the population consists of 

resistant biotypes (Gressel and Segel, 1978).  
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1.2 Study objectives 
In the previous section it was concluded that there is both an increasing pressure on 

growers to deliver agricultural products that are produced in a sustainable way and at 

the same time a risk that a decreasing portfolio of herbicides or continuous use of 

reduced herbicide rates might jeopardise weed management and economic profits in 

the future. There is now a broad recognition that weed management strategies have to 

be diversified to meet these challenges and cultural control is increasingly seen as a 

vital part of integrated weed management. 

The general objective of this study therefore was to evaluate the relative merit of 

weed management strategies based on cultural control on the long term development 

of weed populations.  

Within the DEFRA project ‘Understanding the relative establishment times of crops 

and weeds within the changing seedbed’ - HH3406SX, of which this Phd research 

was part, carrot and onion had been chosen as target crops. The former because it is 

the vegetable crop hardest hit by herbicide loss and the latter since it is particularly 

vulnerable to yield loss if weeds are insufficiently controlled. The value of home 

produced carrots represents by far the highest value for all field vegetables (£167 

million in 2005), whereas onions are less important in terms of value but constitute a 

relatively high proportion of the vegetable planted area (DEFRA, 2006). Two 

problematic weed species, Stellaria media (L.) Vill. and Tripleurospermum inodorum 

(L.) Schultz Bip. (see Figure 1-6) were initially chosen as model species.  

Scentless mayweed is often referred to as Matricaria perforata but this thesis will 

follow Stace (1997) and use Tripleurospermum inodorum. The weed species have 

been chosen as both are quite prevalent in field vegetables (see Table 1.2 in Grundy et 

     

Figure 1-6 Two weed species frequent in many crops and chosen as ‘model’ 
species; on the left Stellaria media and on the right Tripleurospermum inodorum. 
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al., 2003), because for both weeds considerable amounts of biological data is 

available from other studies and because they possess contrasting life history 

characteristics (see Table 1-1).  

 

Table 1-1 Key contrasting life history characteristics of the two model species  

 Stellaria media Tripleurospermum  inodorum 

Depth-mediated 
germination 

practically no germination 
if seeds are located > 5 
cm. 

practically no germination if 
seeds are located > 2 cm. 

Plant morphology prostrate upright 

Flowering induction not sensitive to daylength sensitive to daylength 

 

Due to the buffering effect of the weed seedbank, the evaluation of weed management 

strategies typically requires long-term field studies (Norris and Légère, 2004; Thomas 

et al., 2004), especially if it involves crops grown in rotation. Such long-term trials 

are often not economically feasible. Population dynamic models on the other hand, 

are an efficient tool to compare the effect of weed management strategies on the long-

term population dynamics (Kropff et al., 1999) and carry a number of advantages. In 

a multi-component system a model brings together the knowledge of the parts and 

provides a coherent view of the behaviour of the complete system. Once a model is in 

place, more targeted, instead of ad hoc, experimentation can be planned (France and 

Thornley, 1984) and using sensitivity analysis ‘Achilles heels’ can be identified in a 

weed’s lifecycle that can then be specifically targeted (Davis et al., 2003). 

Climate change provides both threats and opportunities to agriculture (Anonymous, 

2005) and when proposing alternative weed management strategies it is important to 

understand how changing climate conditions might affect and interact with these 

strategies. It has been suggested that weeds may respond stronger than crops to 

resource changes (light, water, nutrients or carbon dioxide) due to their larger genetic 

diversity (Ziska, 2004).  

Specifically then, the objective of this study was to develop a modelling framework, 

capable of simulating the impacts of (weed management strategies based on) cultural 

control and climate on the long-term population dynamics of weeds in field vegetable 

systems. The intended aim of the model is as a management aid. The modelling 

framework will be further referred to in the thesis as ECOSEDYN which stands for: 

Effects of Cultural control and climate On SEedbank DYNamics.  
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1.3 Study approach and outline of the thesis 
At the start, literature reviews were carried out to select promising cultural control 

components for the weed management scenarios and to make sure that the weed 

biology was represented as accurately as possible in ECOSEDYN (see further 

Chapter 2). The approach followed to meet the objectives is graphically presented in 

Figure 1-7.  

 

 

       

Study 
objective

Implemented 
model

Time

System to be 
modelled

Literature 
research

Problem

Weed 
management

guidelines

C

Model   output

Additional 
experiments

Knowledge

Modelling as a 
research tool

C

Weed man. 
scenarios

Conceptual 
model

Knowledge gaps

Interviews / 
QuestionnairesC

 

              
                

  

 



 13 

In addition a questionnaire (see Appendix 1) was sent out to 10 carrot growers and to 

an agronomist at the Allium & Brassica Centre (Carl Sharp) to find out about current 

common practices of commercial carrot and onion growers in the UK. The questions 

related to cropping system characteristics and the nature and timing of farming 

practices (weed management and cultivation). A further visit to three large 

commercial carrot growers (Elveden Estate, Isleham Fresh Produce and Watton 

Produce), going through the same questions, yielded additional information.  

It is important to emphasize that the development of a model is not a one-way process 

but an iterative process of revisiting previous stages when flaws are identified and 

new insights gained (Balci, 1994; Jackson et al., 2000). This aspect is represented 

graphically by the dashed arrows (feedback loops) in Figure 1-7. This feature also 

made it inevitable that in the thesis forward and backward references to sections of 

other chapters are given on several occasions. The study approach is narrated over the 

next paragraphs through outlining the content of the different chapters.  

 

Chapter 2 documents the conceptual modelling phase. The literature was thoroughly 

reviewed to get a comprehensive understanding of the system, to evaluate the 

different ways in which system components have been and can be modeled and to 

select the cultural control options that would form the components for the weed 

management scenarios. Together this resulted in the conceptual model (Robinson, 

2006), a description of the simulation model addressing the biological aspects of the 

system. The assumptions, mathematical representation and parameterisation of those 

model components that operated independently of the weed management scenarios 

are presented in this chapter. Evaluation of available model components and 

parameters resulted in the identification of key areas for additional research which led 

to several field experiments being conducted that are discussed in the next chapters.  

With the project progressing, the understanding of the system increased and this 

inevitably led to new areas for potential research. However due to time constraints 

these gaps could not be addressed through experiments and therefore had to be 

bridged by additional assumptions in the model.  

 

In Chapter 3 and 4, experiments are described that were aimed at evaluating existing 

and formulating new model components. To continue the flow of the text, model 

implementation is presented at the end of each chapter. If the representation depends 
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on the specifics of other model components or the weed management scenarios this 

will be referred to in the text. 

 

Chapter 3 explores the validity and robustness of the present ways in which seed 

movement by cultivation is modelled. The validity of the algebraic approach 

(multiplication of transition matrices) of modelling seed movement when multiple 

implements are involved and the assumptions in the more mechanistic models for 

ploughing as proposed by Colbach et al. (2000) and Roger-Estrade et al. (2001) were 

empirically evaluated. To compliment the experimental work that led to the transition 

matrices of the four implements by Mead et al. (1998), a transition matrix for the 

plough was generated. This chapter provides the theoretical justification, but not the 

exact implementation, for modelling vertical seed distribution. The model 

implementation of vertical seed distribution due to cultivation and harvest is given at 

the end of the chapter. 

 

Chapter 4 deals with the theme ‘Plant growth and reproduction’. Experiments 

identify:  

• the environmental variable that best explains biomass increase of weeds 

during early growth  

• the onset and increase of flowers relative to biomass increase 

• the biomass – seed relationship for plants of different ages  

• the relationship between timing and duration of flowering and plant biomass 

Together the results lead to the formulation of a set of model components for biomass 

increase, flower production and seed production over time. The mathematical 

representation and parameterisation of the component models for Biomass increase, 

Flowering and Seed production are presented in the last section of the chapter.  

 

Chapter 5 represents the second part of the modelling process. First the specifics and 

hypotheses regarding the weed management and climate change scenarios are given. 

Then the modelling methodology, e.g. the model structure and the analysis of model 

output, is explained. Lastly the results of the model simulations in ECOSEDYN are 

presented and discussed.  
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In Chapter 6 a summary of the experimental research achievements is given first. I 

then reflect on model development, provide explicit weed management guidelines 

based on model output and discuss where future work on ECOSEDYN should be 

focused and how this fits in with the future of weed research in general.  

 

The key content of the chapters and the way the chapters relate to each other is 

graphically represented in Figure 1-8. 
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Figure 1-8 Thesis-structure and key contents of the six chapters  



 16 

 

 

 

 

 

 

 

 

 

2 Modelling – Part 1: Conceptualisation 
 

 

 

 

 

 



 17 

2.1 Introduction 
 

In Chapter 1 the ‘Why’ question, the rationale for a modelling approach, has been 

addressed. In order to choose the right modelling approach, the “What” and “How” 

questions are addressed in this chapter. This indispensable process is often described 

as the conceptual modelling phase (Jackson et al., 2000).  

This chapter consists of four sections and the way they relate to each other is shown in 

Figure 2-1. In section 2.2 a blue-print of the system is given. In Section 2.3 the 

implementation of the cultural control options that were chosen as the components in 

the weed management scenarios and the climate scenarios are presented. Having 

defined the weed management scenarios, Section 2.4 addresses model formulation; 

most importantly, the degree of complexity (abstraction, space, time, random events) 

at which the system should be represented. Section 2.5 contains the mathematical 

representation of the component models: the relevant processes, the in- and outputs of 

the component models and the chosen parameters. These parameters were collected 

through literature searches (weed biology) and interviews (agronomists and growers).  

 
 

The last section, 2.6, highlights the areas that were identified as knowledge gaps. It 

functions as the connection to Chapters 3 and 4 in which the experimental work on 

weed seed redistribution in the soil (Chapter 3), and plant growth and reproduction 

(Chapter 4), is presented first, followed by the particular model components that were 

developed as a result of the work. 

 

             

2.2  System analysis

2.6  Knowledge gaps

2.4  Model formulation 2.5  Model component 
Implementation (Part I)

2.3  Weed management 
scenarios

 

Figure 2-1 Structure of Chapter 2 and relationships between the 5 remaining sections.  
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2.2 System analysis 
 

A precursor to modelling is an understanding of the system to be modelled. The 

system comprises the object of study and its regulating factors. Here, the object of 

study is an annual weed population occurring as seeds and plants in an agricultural 

field. The development of the population over time is regulated by interactions 

amongst individuals and by factors intrinsic and  extrinsic to the population (Cousens 

and Mortimer, 1995). 

 

2.2.1 Life history of an annual weed 
Weed science has long focused on targeting only the above ground individuals of a 

weed population, which is understandable from a crop yield loss point of view. 

However, considering that most species spend more time as seeds in the soil than as 

plants, from a weed management point of view it makes sense to explore the 

possibilities to target the weed seedbank (Gallandt, 2006).  Processes that affect seeds 

are very different from those that affect plants. Equally, the impact of agronomic 

practices (e.g. efficiency of weed control) can not be considered independent of plant 

lifestage (see Section 2.2.3.9). Hence, from a modelling point of view there is ample 

reason to break the lifecycle of an annual plant down into lifestages (see Figure 2-2).  
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Figure 2-2 Lifecycle and life stages of an annual weed in a crop habitat. The processes A-
G are referred to and elaborated on in the main text. 
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The depth of a seed in the soil is of paramount importance since it determines whether 

or not the specific conditions necessary to start germination can be met. Several 

studies have shown the depth-dependent relationship between proportion emergence 

and vertical position in the soil (Benvenuti et al., 2001a; Grundy et al., 2003a; 

Mennan and Zandstra, 2006). In general, the proportion emergence decreases with 

increasing soil depth, but the rate with which this happens is species specific. Not all 

seeds emerge successfully though; in the ‘white thread’ stage the seedlings are 

vulnerable to pathogens, desiccation or simply a failure of the hypocotyls to reach the 

soil surface. The probability of fatal germination increases over the depth range over 

which the relevant weed species can germinate and emerge (Grundy et al., 2003b) but 

decreases beyond this depth due to depth-mediated induction of dormancy (Benvenuti 

et al., 2001a) 

The depth distribution of the seedbank

Seeds in the seedbank can be dormant, i.e. in a physiological state that prevents the 

seed from germinating, for a certain time in the year. The 

 is mainly determined by the cultivations 

(Process A in Figure 2-2) the seeds have experienced (Grundy et al., 1996). For 

example, ploughing buries seeds that were initially on the surface whilst bringing 

buried seed up towards the surface.  

release of dormancy is a 

continuous process which enables the seed to germinate over an increasing range of 

conditions (Vleeshouwers and Bouwmeester, 2001). When non-dormant seeds do not 

germinate, they may go ‘back’ into the dormant state again. The seasonal dormancy 

cycles, i.e. release and induction of dormancy, are regulated largely by temperature 

(Vleeshouwers et al., 1995; Bradford, 2002). If conditions for germination are 

conducive, the seeds in the seedbank that are non-dormant will germinate and emerge 

(Process B in Figure 2-2), thus forming the above-ground part of the population. Soil 

disturbance through cultivations is 

an important trigger for seeds to 

germinate (Roberts and Potter, 

1980). This is used in the stale 

seedbed technique where a series of 

cultivations is performed to deplete 

the germinable fraction of the 

seedbank, which can alleviate weed 

problems in the crop that is subsequently sown or transplanted. Cultivation in the dark 

may reduce or delay the number of weed seeds that germinate, but this depends on a 

 

Figure 2-3 Two contrasting patterns of 
emergence over the season. Adapted from Naylor 
(2002).  
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number of factors, notably soil moisture (Botto et al., 2000) and required light 

sensitivity (Juroszek and Gerhards, 2004).  

The periodicity of emergence of a given weed species can give an indication of 

whether seeds are inhibited from germination primarily by dormancy or by 

unfavourable climatic circumstances. In the former case, peaks of emergence may be 

observed in spring but not in autumn despite the weather conditions being very 

similar. This is the case for so-called summer annuals (e.g. Polygonum aviculare

Studies have shown that emergence can be reduced under a developing crop canopy 

for some but not all species (Rees and Brown, 1991; Leblanc et al., 2002; 

Norsworthy, 2004). In a developing canopy, both thermal amplitude (Benech Arnold 

et al., 1989) and the ratio of R:FR light (Holmes and Smith, 1977) decrease, the 

chlorophyll in the leaves acting as a filter to the light and the canopy layer as a buffer 

against temperature fluctuations.  

, see 

Figure 2-3) that require low temperatures to release dormancy but where high 

temperatures induce dormancy. Other species exhibit a pattern where emergence 

peaks are both seen in spring and autumn, mainly regulated by temperature and, to a 

lesser extent, soil moisture (Grundy and Mead, 2000). 

The extent to which the crop canopy can affect the release of dormancy, will depend 

on the density of the crop canopy before and during the ‘periodicity of emergence’ 

(Kruk et al., 2006). Whether dormancy release is impeded is also species specific; 

R:FR ratios between 0.5-0.8 had to be imposed to inhibit seed germination of Lolium 

multiflorum (Deregibus et al., 1994) whereas only slight reductions in R:FR ratio 

from natural light were sufficient to influence the emergence pattern of Brassica 

campestris and Silene gallica (Batlla et al., 2000). The effects of thermal amplitude 

and decline in R:FR ratio sharply decrease in magnitude with seed burial depth. Kruk 

et al.

The time of emergence of a weed seedling relative to the sowing or transplanting date 

of the crop is important in determining the 

 (2006) found that when seeds of six weed species had been buried in the soil 

there was no effect of the incipient canopy on the number of emerged seedlings for 

any of the weed species. However, for some weed species, emergence was reduced if 

the seeds were placed on the surface.  

growth rate and probability of survival 

(Process C in Figure 2-2). It is important to realise that, relative to the uniform 

emergence of a sown or transplanted crop, the emergence of weeds is spread over a 

long period. As with other life history characteristics, variability is one of the survival 

strategies of a weed population as a whole, in an insecure habitat. Without weed 



 21 

management, earlier emerging weeds would have had ideal establishment conditions 

giving them a head start over the crop. However, these weeds would be most 

detrimental to crop yield and therefore, the majority of weed management in any crop 

is concentrated around the establishment phase of the crop, with the seeds 

germinating in that period more likely to be killed. Weed seedlings emerging after the 

main weed management window may have a higher chance of survival, but, on the 

other hand, the quality of the habitat is lower as competition for resources will start 

earlier. Competition for resources

After a period of 

 (Process D in Figure 2-2) implies that either one or 

both of the plant species cannot utilise as much resources as when grown in isolation. 

A reduction in the available resources is reflected in a decrease in the accumulated 

biomass of the plant. For a grower this simply means that the more weeds, the higher 

is the crop yield loss. Thus, the size of a plant is largely regulated by the number of 

plants (crop + weeds) per unit area. The density and relative timing of establishment 

of neighbours can affect the allocation of biomass to stems vs. leaves (Rohrig and 

Stutzel, 2001; Steinmaus and Norris, 2002) and the vertical distribution of leaves in 

the canopy  (Baumann et al., 2001), in other words, the efficiency of resource uptake. 

In addition, for some weed species it has been observed that competition for light 

tends to reduce the allocation of biomass to reproductive structures in favour of 

vegetative structures (Baumann et al., 2001; Knezevic et al., 2001).  

vegetative growth (Process E in Figure 2-2) an annual plant starts 

allocating biomass to reproductive structures

After seeds have accumulated enough thermal time they are mature and may be 

 (Process F in Figure 2-2). The timing of 

this switch is not so much affected by the size of the plant but rather by accumulated 

thermal time (Swanton et al., 1999) or a combination of day length and accumulated 

thermal time in short- and long-day plants. The size of the plant is important in that it 

determines the reproductive output. In other words, bigger plants produce more seeds.  

shed 

on the soil surface or dispersed by the wind

 

 (Process G in Figure 2-2). Once on the 

soil surface they may be predated. Maternal environment during maturation, age of 

the mother plant during maturation and position of the seed on the plant (Kegode and 

Pearce, 1998) are aspects known to affect the dormancy status of a seed (Andersson 

and Milberg, 1998).   
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2.2.2 Regulating factors 
The primary concern of this study is to create a model where the regulating effect of 

weed management strategies on population dynamics can be simulated. It is clear that 

cropping systems and specific farming practices can strongly influence the 

composition of the weed community, the abundance of individual species within this 

community and the development of the population of a certain weed species. For 

example,  Albrecht (2005) reported that 6 years after conversion from conventional to 

organic farming, 31 out of 44 species had increased and 3 species had decreased 

relative to two years prior to the conversion.  

On the other hand, changes in plant population size can occur regardless of 

management practices. An example is the increase, especially over the last two 

decades, in thermophilic plant species in the Netherlands that has been attributed to 

climate change (Tamis et al., 2005).  

Similarly, other extrinsic factors (i.e. weather and other organisms) interact with weed 

management. For example, a number of arable weed species in the UK, once 

common, are now considered rare. In the case of Agrostemma githago (Firbank, 1988) 

it was improved seed cleaning that brought about the decline (Bond and Turner, 

2004). Looking at the distribution maps of rare arable weeds in the UK reveals that 

their presence is gravitating towards the south of the UK, where calcareous soils 

prevail (Wilson and King, 2008). The UK represents the northern boundary of the 

geographical distribution of A. githago and it is still quite common in the more central 

area of its distribution, such as Spain. This shows that edaphic, climate and 

management factor are 

interacting forces in shaping the 

dynamics of weed populations. In 

conclusion, at any one time, 

population dynamics are subject 

to change due to extrinsic factors, 

to causes intrinsic to the 

population (e.g. density 

dependent regulation), to the 

interaction between both types of 

factors and to interactions 

Intrinsic

Management Other 
organisms

Weather

 

Figure 2-4 Diagrammatic representation of the 
interaction between intrinsic population processes and 
extrinsic factors (after Cousens and Mortimer, 1995). 
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amongst individuals in the population (Cousens and Mortimer, 1995) (see Figure 2-4). 

Understanding the key factors regulating weed population dynamics requires 

integrating the perspectives of two fields, agronomy and plant ecology.  

 

2.2.2.1 Density dependence 
Density-dependent factors regulate population growth in such a way that the impact of 

these factors per individual changes with population size. One of the best examples of 

density-dependent processes in plant ecology is competition for limited resources 

(Firbank and Watkinson, 1986). By increasing plant density, total yield will increase 

towards an asymptote whereas the average weight of an individual plant decreases 

according to a negative hyperbole (see Figure 2-5).  

 
 

Density-dependent effects often tend to work as ‘inhibitory checks’ on the population, 

but positive density-dependence (also called Allee effects or facilitation) has been 

observed as well (Cappuccino, 2004; Davis et al., 2004a).   

In contrast, the impact of density independent factors (such as weather) remains 

constant per individual, regardless of population density. Without density-dependent 

regulation a population would either exponentially increase forever or go extinct. 

Hence, ignoring density-dependence in population dynamic models may lead to over-

estimation of the population size. 

Most population dynamic models that include density-dependence have singled out 

weed seed production as the life-stage through which it is assumed to operate (Holst 

et al., 2007). For many plant populations this may be true, but studies have shown that 

density-dependence operates on other areas, for example recruitment and mortality as 

 

Figure 2-5 Production-density curves (left graph showing total biomass and right graph 
individual plant biomass) describing a hypothetical single-species stand. Curves are based on 
Håkansson (2003). Left curve is of the form Y = X/(a + bX) with a = 0.05 and b = 0.001. Random 
noise was added to the resulting Y values to mimic real data. 
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well (Crawley, 1990; Silvertown and Charlesworth, 2001). Lintell Smith et al. (1999) 

found that density-dependent recruitment stabilised populations to such an extent that 

hardly any density-dependent fecundity could be observed. Several authors have 

shown that density-dependence at different ‘locations’ in the life-cycle can produce 

different dynamics (Watkinson et al., 1989; Gillman et al., 1993; Buckley et al., 

2001). Westerman et al. (2007) compared three scenarios where density-dependence 

was included at different stages in the lifecycle (seedling emergence, seedling survival 

or  seed production) of a population of the parasitic weed Striga hermonthica

Goldberg 

. The 

mean seed production per individual plant below which the population would go 

extinct was three times higher if (only) seed production was density-dependent as 

compared to if (only) seedling emergence was density-dependent. Hence, arbitrarily 

choosing density-dependence might result in spurious projections of population size 

and dynamics. 

et al.

Weeds that survive weed control will be competing for light and possibly also for 

water and nutrients with crop plants and this in itself is a density-dependent process. 

Numerous studies have shown that by increasing crop density and decreasing row 

distances the total and/or mean individual weed biomass could be reduced (Wilson et 

al., 1988; Wilson et al., 1995; Murphy et al., 1996; Weiner et al., 2001; Mertens and 

Jansen, 2002).  

 (2001) argued that density mediated population regulation is not a 

within-species matter but rather a mechanism that operates on the level of the entire 

community. They provided evidence that support this hypothesis from desert annual 

plants in Israel. At all three life history stages studied (emergence, survival, and final 

size) strong evidence of community-level density dependence was detected. As the 

crop either possesses most biomass or is the most abundant species in the ‘crop-weed 

community’, it makes sense to evaluate the density-mediated effects of the crop on 

life stages of weeds. 

Density-dependence due to intra- or interspecific weed competition only occurs above 

a certain weed population threshold size. Unless fields are extremely weedy and/or 

weed control operations around crop sowing are somehow unsuccessful, the weed 

population is heavily reduced and may be well below this threshold. For example, 

Medd (1996) reported that no clear density dependence could be detected for 

fecundity below a density of 40 individuals of wild oat / m2. Even in a wheat crop 

sown at a high density of 150 plants / m2 to boost competitiveness, yield losses of 

around 15-20% would be incurred from densities of up to 40 wild oat plants / m2 
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(Martin et al., 1987). This is well above the economic threshold (ET) range of 9 – 13 

plants m-2

 

 (Jones and Medd, 2000). Therefore, if weed control is successful, the 

importance of intra- and inter-specific weed competition may be minor. Indeed, 

Debaeke (1988) showed that a density independent model predicted weed population 

development well in a three-crop rotation system. The way density dependence is 

actually represented in most population dynamic model depends on how competition 

for light between crop and weeds and weed seed production are modelled. If biomass 

is accounted for, then in fact plant biomass is density-dependent. Alternatively, seed 

production can be modelled as a function of density.  

 

2.2.2.2 Agronomical aspects: cultural control 
Organic as well as conventional farmers in the UK are advised to grow carrots and 

onions in a 5-7 year rotation (Assured Produce, 2008). This is mainly to avoid the 

build-up of soil-borne diseases such as white rot in the case of onion (Soil 

Association, 1999b), and cavity spot and violet root rot for carrots (Soil Association, 

1999a; Assured Produce, 2007). The questionnaires and further interviews with carrot 

growers (see Appendix 1) and crop consultants (Carl Sharp and Tom Will) 

highlighted that growers often rent a field from arable farmers once every five to eight 

years. In the other years, a range of arable crops are grown by the arable farmers. 

Different crops in the rotation may vary in three key aspects; timing (e.g. sowing 

time) and type of farming practices (e.g. cultivation), crop competitiveness and weed 

management strategy. These aspects will affect the performance of the weed species 

in the seedbank. Different cultivation regimes prior to crop sowing may generate 

different vertical distribution patterns of weed seeds in the soil, thereby regulating the 

recruitment of weeds (Froud-Williams et al., 1983; Feldman et al., 1998; Vanhala and 

Pitkanen, 1998). Various studies have shown that weeds produce more biomass and 

seeds in one crop or crop cultivar than another because of differences in relative 

emergence, relative crop competitiveness and/or harvest time (van Acker et al., 1997; 

Lutman, 2002; Sester et al., 2004; Weaver et al., 2006). Weeds belonging to the same 

botanical genus or family as the crop can have an advantage over other weeds since 

they can not be targeted by selective herbicides as that would damage the crop as 

well.  

Not surprisingly, therefore, weed demographic rates are crop / cultivar -specific which 

may lead to different population densities; for example Convolvulus arvensis density 
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was higher in wheat years than in sunflower years (Jurado Exposito et al., 2004).  

Moreover, when considering crop rotations, demographic rates in one crop may be 

affected by the previous crop. For example, fewer weed seedlings were observed in 

corn when alfalfa was the preceding crop as compared to continuous corn in a low-

input system without herbicides (Clay and Aguilar, 1998). Long-term field 

experiments have shown that the development of the weed flora composition, and 

with it the abundance of individual weed species, can depend on the type of crops in a 

crop rotation (Ball, 1992; Liebman and Dyck, 1993; Sosnoskie et al., 2006). Even for 

crop rotations of the same length and consisting of the same crops, different annual 

mean weed population growth rates may result depending on crop order (Mertens et 

al., 2002) or timing of cultivation (Davis et al., 2004b).  

The timing of emergence of the weed relative to that of crop plants is paramount as it 

determines growth and yield of both crop and weed. Early weed cohorts cause higher 

crop yield loss than later cohorts (Knezevic et al., 1997; O'Donovan and McClay, 

2002; Hock et al., 2006). Moreover, early-emerged weed cohorts produce more 

biomass and seeds than late-emerged weed cohorts (Brainard and Bellinder, 2004; 

Willenborg et al., 2005; Walsh and Minkey, 2006). This can even fundamentally 

change the population growth rate; Selman (1970) as cited in Cousens and Mortimer 

(1995), showed that the ratio of population size between two years of Avena fatua

Scursoni et al. (1999) showed that twice as many 

 was 

higher (λ = 2.74) when sowing of spring barley was early than when sowing was 

delayed (λ = 0.40). 

Avena fatua seeds entered the 

seedbank in a wheat crop compared to a barley crop due to the later harvest time of 

wheat. Bennett and Shaw (2000) showed that early maturing soybean cultivars 

resulted in lower seed production by Ipomoea lacunosa and reduced germination of 

Sesbania exaltata seeds due to harvesting prior to physiological maturity. Finally, 

Hansson et al.

 

 (2001) studied the influence of harvest time (and stubble height) on 

weed seedling recruitment in barley grown for silage. In the absence of weed control, 

the later barley was harvested, the higher the percentage of weed seeds that had shed 

at harvest time. Consequently, the number of weed seeds in the soil at the time of 

harvest (as well as the number of weed seedlings in the following year) increased with 

progressive harvest time (see Figure 2-6).  
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For the plots where barley was harvested early for 6 years the selection pressure was 

favourable to fast reproducing species; Stellaria media

Although substantial 

experimental work was 

conducted relating to 

cultivation (see Chapter 3), 

this was in order to evaluate 

the individual cultivation 

models available rather than 

as an effort to use 

cultivation as a separate 

component of cultural 

control.  

 increased considerably over 

the 6 year course in comparison with late reproducing weeds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6 Annual changes in the total number of 
weed seeds recovered from the soil after harvesting barley at 
three progressive stages of grain maturity and leaving 10 cm 
stubble (redrawn from Hansson et al. (2001). Harvest times: 
H1 was at grain-water content 50-60%, H2 was at grain-water 
content 35-45% and H3 was at grain-water content 18-32%. 
Number of days from H1 to H3 varies between 17 and 26. 
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2.3 Weed management scenario implementation 
 

In the previous section it was concluded that crop rotations are an essential feature of 

carrot and onion production and as such the crop rotation feature has to be 

implemented in ECOSEDYN. When it comes to crop rotations there is no such thing 

as standard practice. The questionnaires and interviews with carrot growers and crop 

consultants (Carl Sharp and Tom Will) highlighted that a range of different crops are 

grown by the landowners on the land that is rented out but cereals are often grown in 

several years of the rotation. It was impossible to collect parameters for the entire 

range of crops grown in commercial fields, and for simplicity winter wheat was 

chosen as the single arable crop in rotation with carrot. More than 90% of wheat in 

the UK is now sown in autumn rather in spring (Robinson and Sutherland, 2002). 

Therefore, a simplified crop rotation is proposed for ECOSEDYN, consisting of one 

year of vegetable (carrot / onion) and five years of autumn sown wheat. On the one 

hand, simplifying the “system” results in a concession to the practical value of the 

model predictions. On the other hand, a simplified system is more easily 

comprehended and by understanding the basic principles, guidelines can still be given 

for more complex systems. The aim was to compare the weed seedbank after a total 

length of 24 years, i.e. 4 complete crop rotations, had passed. 

The cultural control methods chosen as components for the weed management 

scenarios are:  

• Crop sowing time 

• Crop variety (maturity time) 

Crop sowing time was chosen as the first cultural control component because the 

Defra project of which this Phd studentship was part, had as a primary aim to gain a 

better understanding of the importance of relative crop and weed emergence timing. 

Crop variety (maturity time) was chosen as the second cultural crop component 

because the few studies that explicitly included different times from sowing to 

harvesting show substantial effects on weed seed production.  

If the availability and efficacy of weed management options for carrots is sufficient, 

then growers do not need to consider the weed management of the field in the years 

that the arable crop is grown. However, the diminishing range of post-emergence 

herbicides has contributed to an attitude where a more holistic or integrated view of 

weed management is being considered more positively (pers. communication Tom 

Will). Approximately 85% of the land that commercial vegetable growers use for 
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growing carrots is rented land (pers. communication Tom Will) and this shared 

ownership does not facilitate the integration of weed management. The selected 

components are therefore applied in both the vegetable as the arable phase of the crop 

rotation. The cultural control options are to be combined in a factorial to give a range 

of weed management scenarios assuming a ‘worst-case’ scenario for weed control 

(i.e. with herbicide efficacy values being 75% of normal efficacy values). Scenario 

components are referred to in this way: V_ST, V_MT, A_ST, A_MT where the prefix 

‘A’ or ‘V’ indicates whether the vegetable or arable crop is concerned and the postfix 

‘ST’ and ‘MT’ stands for sowing time and maturity time respectively. A particular 

weed management scenario might for example consist of V_ST=1, V_MT=3, 

A_ST=2, A_MT=3. 

In comparing the weed management scenarios two main questions were posed: 

1. Which cultural control practice, sowing time or crop variety, and applied in 

which crop, has most potential in alleviating long term weed seedbank levels? 

2. Can cultural control practices applied in one crop (carrot or winter wheat) 

maintain sufficient low weed seedbank levels or is the application in both 

crops required? 

A more thorough explanation of the weed management scenarios and specific 

hypotheses are given in Chapter 5. 

 

 

 

2.3.1 Implementation of crop sowing time 
Five different sowing dates for carrot and onion and three for winter wheat were 

included in the weed management scenarios. Crop sowing and consequently seedbed 

preparation times vary markedly, both to provide carrots throughout the year and 

according to the type of market outlet (processing or fresh). Early carrots are sown 

from October to February and are grown under polythene. ‘Maincrop’ carrots are 

sown from April to mid June at densities of 600 to 800 thousand seeds / acre, 

approximately twice the density at which early carrots are sown (Elsoms, 2007c). In 

ECOSEDYN, early carrots (grown under polythene) will not be considered as no 

information is available about the effects of polythene on weed biology. 

Sowing dates follow general practice in the UK and were obtained through the 

catalogues of breeding companies (Elsoms, 2007b (carrots); Elsoms, 2007a (onions)) 
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from literature (Spink et al., 2000 (winter wheat)) and from trials from the Home-

Grown Cereals Authority (HGCA, 2002 (winter wheat)), and are given in Table 2-1. 

 

Table 2-1 Sowing dates and symbols used in ECOSEDYN to identify scenarios for the 
different crops in the crop rotation 

 

 

 

2.3.2 Implementation of crop variety (maturity time) 
Three different crop varieties (maturity times) were selected. For carrot, the online 

product catalogue of Elsoms (2007b) was used to choose realistic values for the time 

from sowing to maturity: in the Nantes group, early (e.g. Norwich F1), intermediate 

(e.g. Nairobi F1) and late (e.g. Nerac F1) maturing varieties take between 98 and 130 

days from sowing to maturity. Data on onion varieties is available from studies at 

Wageningen University (van den Broek, 2002). The variation in harvest time ranges 

between 115 and 129 days from sowing to 50% foliage senescence for an early and 

late maturing variety respectively. The time from sowing to harvest varied between 

winter wheat varieties by about 14 days (Gleadell, 2007; HGCA, 2007). Sowing and 

harvest dates varied depending on the location in the UK and resulted in a range of 

301 to 349 days from sowing to harvest with an average of 320 days (HGCA, 2002). 

The maturity times are given in Table 2-2.  

 

Table 2-2 Maturity times (days after sowing, DAS) and symbols used in ECOSEDYN to 
identify scenarios for the different crops in the crop rotation 

Symbol Carrot (DAS) Onion (DAS) Symbol Winter wheat (DAS) 

V_MT = 1   98  115  A_MT = 1 313  

V_MT = 2 112  122  A_MT = 2 320  

V_MT = 3 130  129  A_MT = 3 327 

 

Symbol Carrot / Onion Symbol Winter wheat 

 Date Day  Date Day 

V_ST = 1    1 March 152 A_ST = 1  1 October 1 

V_ST = 2 15 March 166 A_ST = 2 19 October 19 

V_ST = 3 29 March 180 A_ST = 3 8 November 37 

V_ST = 4 12 April 194    

V_ST = 5 26 April 208    
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It was assumed that the difference in time to maturity would be constant at each 

sowing time. It has to be emphasized that the values do not represent particular 

varieties since this assumption is unlikely to hold for specific crop varieties, i.e. 

variety A may mature 14 days earlier than variety B at ST = 1 but only 7 days earlier 

at ST = 3. The particular way in which the crop harvest date is determined in 

ECOSEDYN is explained in Section 4.7.1.2, after the novel modelling approach for 

‘Biomass Increase’ has been explained. 

 

In conclusion, given the various levels of sowing time and maturity time, a full 

factorial of combinations of cultural control could be created resulting in 135 weed 

management scenarios: V_ST (5) x V_MT (3) x A_ST (3) x A_MT (3). 

 

2.3.3 Climate scenarios 
As indicated in Section 2.1.2, plant populations are regulated by several factors that 

interact and changing climatic conditions are likely to interact with the effect of weed 

management scenarios. Weather projections for the UK estimate the annual 

temperature to rise between 2 ̊C and 3.5 ˚C by 2080, winters to become wetter and 

summers likely to become drier (Hulme et al., 2002). 

Weather data collected at Warwick HRI were examined and 17 weather years 

(October-September) since 1989 selected (weather year 2001-2002 was omitted due 

to missing values for solar radiation). Over this interval no change in monthly or 

yearly rainfall could be detected although, contrary to the projections by Hulme et al. 

(2002) there was a trend for the summer months May – August to be wetter (see 

Figure 2-7, left). There was a significant rise in temperature over the last 18 years  

 

  

 

Figure 2-7 Cumulative rainfall (left) and cumulative day-degrees (right) measured at 
Warwick HRI over the year (October – September) split over the periods 1989-1998 (black line) 
and 1998-2007 (green line). Bars represent standard error. 
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(paired T-test, two-tailed: P=0.0051) with the largest differences for the months April-

June and September-October (see Figure 2-7, right). The last six years belonged to the 

nine years with the highest monthly accumulated day-degrees. Two climate scenarios 

were therefore created based on the total accumulated day-degrees per year: 

 

1. Scenario 1 - ‘No change’: Given that the total length of the simulation in 

ECOSEDYN was 24 years and only 17 weather years were available, 7 

weather years were randomly drawn from the 17 and added to the pool of 17 

weather years. The 24 weather years were then permutated and this sequence 

was applied to each weed management scenario.  

2. Scenario 2 - ‘Heating up’: The eight years with the highest accumulated day-

degrees above 0 ̊ C from 1 April to the end of September were selected. The 

eight years selected were: 1994/95, 1996/97, 1998/99, 2002/03, 2003/04, 

2004/05, 2005/06, 2006/07. Seven of the eight years would have been selected 

too if the cumulative day-degrees would have been based on the period from 

October to the end of September. Each of the eight years was then selected 

three times and a randomised sequence of 24 weather years was generated 

from this pool. The aim of including these two climate scenarios is to examine 

whether under the ‘Heating up’ scenario different combinations of cultural 

control should be applied compared to the default ‘No change’ scenario. 

Since the weed management scenarios were run under both climate scenarios, the 

question was whether the questions as posed for the weed management scenarios (see 

pg. 29) would be any different under the two climate scenarios. 
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2.4 The modelling process – Model formulation 
 

The (complete) modelling process can be divided in several phases: Formulation, 

Implementation, Verification, Calibration, Analysis and Evaluation  (Haefner, 2005). 

This section deals with the most fundamental tenet of model formulation, i.e. to what 

kind of detail the system should be represented in ECOSEDYN in order to provide a 

reasonable tool by which the effect of various weed management scenarios on the 

long-term weed seedbank can be compared.   

 

 

2.4.1 Traditional modelling approaches 
The first efforts to project weed population development over time were made by 

Sagar and Mortimer (1976) in the form of demographic models. The basic structure of 

the model consists of the lifecycle of an annual plant, usually divided into four states 

or stages; seeds in the soil (seed bank), seedlings, mature plants, seeds on parent plant. 

Demographic processes (germination, reproduction, survival, death) are expressed as 

transition and mortality rates (usually % per year). Cousens and Mortimer (1995) 

classify these models as multi-stage single cohort models and since 1976, many 

studies have followed this approach (Vidotto et al., 2001; Gonzalez Andujar and 

Fernandez Quintanilla, 2004; Puricelli et al., 2007). The values for transition rates 

(e.g. germination) and mortality rates in these models are obtained through 

conducting field experiments.  

Similarly, projection matrices (van Groenendael et al., 1988; Caswell, 2001) have 

been used in identifying points in the life cycle that are of particular interest for 

designing intervention strategies (Parker, 2000; Davis et al., 2003; Westerman et al., 

2007). Alternatively, these matrix models were used to forecast the development of 

(mostly perennial) weed populations over time given different cropping systems (Pino 

et al., 1998; Davis et al., 2004b) or weed management options. The transition rates 

between the distinguished life stages consist of the multiplication of so-called lower-

level parameters. 

It is essential to appreciate that in the case of difference equations and projection 

matrix models, the ‘rates’ constitute the combined effect of all agronomic and 

biological factors with their interactions. Large inter-annual differences of 

demographic rates have been reported (Reader, 1985; Bierzychudek, 1999; Fernandez 

Quintanilla et al., 2000; Davis et al., 2004b) often linked to contrasting weather 
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patterns. The current increase in extreme weather events only increases that 

probability. Another factor that compromises the use of ‘rate-based’ models is that 

certain ‘vital rates’ are not independent from each other (van Tienderen, 1995; 

Ramula and Lehtila, 2005). Hence, correlated rates ought to be assessed 

simultaneously and over a number of years.  

By replacing the ‘rates’ with components that represent the mechanisms, including the 

effect of the weather if relevant, these two disadvantages can be avoided (Colbach and 

Debaeke, 1998). The construction of population dynamic models by integrating a 

range of component models, each representing the best available empirical or 

mechanistic models is a recent trend (Rasmussen and Holst, 2003; Colbach et al., 

2006) that looks very promising, both from a research as well as an agronomic point 

of view. 

 

 

2.4.2 Defining appropriate level of complexity 
Models never attain the complexity of the ‘real’ system and one of the most important 

choices to be made regards the way and the detail in which various aspects of the 

system are mathematically represented in ECOSEDYN. For example, should 

processes be represented by empirical or mechanistic models, should ECOSEDYN 

include spatial aspects and if so in which processes (component models) should it be 

incorporated and at what level of detail? These characteristics affect the way the 

component models operate and interact with each other.  

To answer these questions, the objectives of a study, the understanding of the system 

and the data availability have to be considered. To come to a sound decision regarding 

the complexity warranted in ECOSEDYN, the relevant literature was thoroughly 

scrutinised and is summarised in the following sections. 

 

2.4.2.1 Process abstraction 
The hierarchical level at which the processes of the ‘system’ are represented 

mathematically is one of the key factors to distinguish between models. On the one 

hand a group of models exist that include little or none of the mechanisms responsible 

for a particular behaviour but merely consist of statistical models fitted to 

experimentally derived data. These are usually referred to as descriptive (Penning de 

Vries et al., 1989), empirical or phenomenological models (France and Thornley, 

1984; Haefner, 2005). In the second group of models – referred to as explanatory, 
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mechanistic or process-oriented models - phenomena are separated into individual 

processes that are then represented quantitatively. Similarly to empirical models, the 

parameters of the equations are derived from experiments. For the sake of clarity, this 

thesis will use the terminology of empirical vs. mechanistic models. In practice a 

large group of models are somewhere in between these two ends (Russell, 1996). 

Azam-Ali (1994) referred to this group as semi-empirical or ‘index’ models. In these 

models, an index value with a clear biological meaning is defined whose value is 

related to parameters that will mechanistically influence the output. The index value is 

then experimentally derived for a number of different situations. For example, some 

crop growth models use an index parameter called the harvest index (seed biomass as 

a proportion of total crop biomass), to simulate crop seed growth over time (e.g. Bindi 

et al., 1999).  

The value of an empirical model is determined by the quality of the data input. 

Despite data quality, an empirical model may provide a poor description in conditions 

other than it was developed for. Substituting an empirical model for a mechanistic 

model generally implies disentangling the various processes that are then each 

represented by mechanistic or empirical models themselves (France and Thornley, 

1984). The net result is a model with increased process representation and usually 

more parameters. Mechanistic models that represent processes that are insufficiently 

understood or for which no data was available to test and calibrate have to include 

assumptions to cover this void. Hence, a mechanistic model is not just constrained by 

the quality of the data but 

also by the inherent 

assumptions present in the 

model (see Figure 2-8).  

Recent reviews of both 

weed population dynamics 

and individual component 

models have argued against 

‘black box’ approaches and 

for the distinction between 

different processes 

(Forcella et al., 2000; 

Colbach et al., 2005). To an extent this is being realized as, for example, considerable 

progress has been made over the last decade on the ‘dormancy – germination - pre-

 

Figure 2-8 Model features along the ‘empiricism – 
mechanism’ axis (redrawn from 2005) 
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emergence growth’ pathway (Vleeshouwers and Kropff, 2000). On the other hand, 

Colbach et al.

 

 (2005) argued for realism in deciding upon the level of complexity in 

models: 

“Biological aspects and environmental effects should only be specified if they 

interact with cropping systems” 

 

“Model structures should not be overburdened with processes and complexities 

that have no immediate bearing on their use”  

 

In general, a narrow-focussed research project on modelling seed dormancy justifies 

the construction of a more mechanistic model than a project seeking to evaluate the 

effect of weed management strategies on long-term weed population dynamics.  

The three guiding principles in choosing the structure of the overall framework and 

the mathematical representation of components were therefore: the objective of 

ECOSEDYN (weed management scenarios), the system to be modelled and the data, 

knowledge and time available. For example, given that crop sowing time was one of 

the components of the weed management scenarios to be tested, a model structure was 

needed that could deal with flexible sowing times.  

 

 

2.4.2.2 Time 
Models without an explicit representation of future states are usually referred to as 

static models whereas their counterparts are called dynamic models (Haefner, 2005). 

Given that the objective of this study is to build a model that is able to project the 

population development given certain management strategies, the factor time has to 

be included. Static models have to be replaced by dynamic ones, for example, the 

relationship between plant biomass and seed production is normally determined at 

crop harvest and is commonly modelled by a linear regression of plant biomass 

against seed weight. To incorporate time in this model requires experiments that 

assess the relationship between seed production and plant biomass at several times in 

the lifecycle of a plant (see Chapter 4). 

The real question is: At what time-scale does ECOSEDYN need to simulate 

population dynamics? This depends on the objectives (weed management scenarios) 

and the time-scale over which the related regulating factors operate. Processes can be 
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represented at different time resolutions in ECOSEDYN only if they are unrelated. 

Otherwise the time-scale at the finest resolution that is required for one process will 

dictate the time-scale of the related processes as well. The weed management 

scenarios proposed focus on crop sowing time and crop cultivar (maturity time). Each 

of the cultural control factors has the potential to affect weed population dynamics. 

Studies exploring the relative time of emergence of crop and weed show that 

emerging a few days earlier can tip the balance in favour of either crop or weeds. It is 

unsure if the advantage of harvesting the crop a few days earlier can have the same 

effect as the crop emerging a few days earlier than the weeds. It is possible that when 

weed emergence is expressed on a weekly basis that the resolution of relative 

differences in time are being lost. The (smallest) time-scale at which ECOSEDYN 

operates is therefore on a daily time step. 

 

 

2.4.2.3 Space 
Spatially homogeneous models do not include an explicit representation of space 

whereas heterogeneous or spatially explicit models do, either in a discrete way such as 

cellular automata models (Wang et al., 2003) or in a continuous way as in diffusion 

equations (Haefner, 2005).  

Weed and seedbank populations tend to have a patchy distribution at the field scale. 

This spatial heterogeneity is the result of uneven effects of biotic (humped dispersal 

curve), abiotic (soil properties) and management factors (cultivation, weed control) 

and their interactions (Blanco Moreno et al., 2004). Brain and Cousens (1990) 

showed mathematically that if weeds in a field had a patchy distribution, crop yield 

would be underestimated by assuming a random distribution, especially under high 

weed densities. In more aggregated weed distributions, on average each weed 

individual exerts more competition on surrounding weed plants and less on 

surrounding crop plants. However, unless weed density exceeded the economic 

threshold this was unlikely to have a major effect on crop yield, regardless of spatial 

distribution. On the other hand, Garrett and Dixon (1998) showed that for less 

competitive weeds, with aggregation at small scale, weed spatial pattern is important 

and large shifts of the weed threshold density may occur as a consequence. 

Most population dynamic models have ignored the spatial distribution of weeds and 

their dispersal curves (Holst et al., 2007), but see (Gonzalez Andujar et al., 1999; 

Richter et al., 2002; Dicke et al., 2007). Alternatively, heterogeneity in weed 
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distribution can be simulated by dividing the field into a number of smaller areas 

where the density of weeds is allowed to vary according to a negative binomial 

distribution (Buckley et al., 2003). 

Leaving spatial aspects out of a weed population-dynamics model can be justified 

under two assumptions. The first assumption is that ignoring the spatial distribution 

within

The 

 the study area (more or less aggregated) is not fundamentally jeopardising the 

objective of the study. Fields where carrots are grown are subject to one of the most 

rigorous cultivation regimes present: among other operations the field is ridged and 

soil passes through a stone-and-clod separator (see Chapter 5). The net effect is that 

seeds are very unlikely to have a patchy distribution and therefore the need to account 

for increased intraspecific competition is reduced. 

second assumption is that immigration to and emigration from the study area is 

negligible. The scale at which ECOSEDYN operates is the field level or lower. If 

substantial dispersal occurs between fields, or from the field margin to the field, 

possibly enhanced by different intensities of weed control, then ignoring such source-

sink effects could lead to spurious predictions of population size (Perry and Gonzalez 

Andujar, 1993). For Bromus sterilis this assumption was invalidated (Theaker et al., 

1995), as the field edges functioned as an important source of replenishment. 

However, Marshall (1989) found that only 30% of the common species in arable field 

boundaries also occurred in the crop, mostly within 2.5 meters from the edge. More 

specifically, field boundaries were a highly unfavourable habitat for T. inodorum 

whilst S. media

There can be substantial seed dispersal between fields for wind-dispersed species 

(Dauer et al., 2007) and for such weeds dispersal ought to be taken into consideration 

in terms of the structure of the population dynamics model. Without cleaning the 

combine harvester before proceeding with the harvest of cereals in the next field, for 

some grass weeds, seed dispersal between fields is a realistic possibility (Ballaré et 

al., 1987; McCanny and Cavers, 1988). Apart from these two categories, inter-field 

dispersal of weeds has been shown to be trivial (Jones and Naylor, 1992; Theaker et 

 was found to some extent in the edges of the field but their prostrate 

growth and lack of wind-dispersal predict a short-tailed seed dispersal curve. Other 

studies have also concluded that the dispersal of seeds from plants in the field margins 

to the field is minor (Fogelfors, 1985; Blumenthal and Jordan, 2001). One of the 

suggested reasons for this is that the combine harvester usually harvests the crop-strip 

most prone to weed infestation along the field boundary in a parallel rather than a 

perpendicular way (Rew et al., 1996). 
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al., 1995; Bischoff, 2005). Neither S. media nor T. inodorum

 

 are wind-dispersed. Both 

have very small seeds (ca. 0.8-1.3 mm.) and therefore are unlikely to be moved great 

distances by a combine harvester.  

In conclusion: spatial aspects only need to be included in a model to account for 

inter-field dispersal of wind-dispersed species and a few other weeds that are known 

to be able to spread from the field margins. Many of the problematic weeds in field 

vegetable crops, including the two model weed species, do not belong to these 

categories. Therefore, spatial aspects on the horizontal plane were not included in 

ECOSEDYN. 

 

 

2.4.2.4 Random events 
Three forms of stochasticity can affect data on (weed) population dynamics (Lande et 

al., 2003): demographic stochasticity, extrinsic stochasticity and measurement error. 

Demographic stochasticity consists of random events related to births and death. It is 

cancelled out as being a relevant source of variation in this study because in general 

only small populations are sensitive to demographic stochasticity. Temperature and 

rainfall are extremely important in regulating the emergence patterns of weeds but are 

accounted for as driving variables.  

Stochastic models are more complex than their deterministic counterparts and from a 

parsimony principle “there is little point in complicating a model just for the sake of 

it” (Cousens and Mortimer, 1995). The value of using a stochastic model over a 

deterministic model depends on how much information is available, on the shape of 

the probability distribution function of the parameter(s) in question (Cousens and 

Mortimer, 1995). In deciding on whether to make parameters stochastic a number of 

aspects need to be taken into consideration:  

Objectives of the project; the use of a stochastic model is warranted over a 

deterministic model if the project objectives require an estimate of the variability of 

the system (Grant et al., 2000) or the time to extinction or eradication under a given 

management regime (Lande et al., 2003). Ignoring stochasticity may lead to an under 

estimation of the time to extinction of the population of the organism under study 

Understanding of the system and / or the mathematical representation of a model; an 

empirical model is better suited to describe the data than a mechanistic model if the 

processes that regulate a system are not sufficiently well understood. The more 
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mechanistic a model, the lower the role of stochasticity. If collected data is subject to 

considerable variation without any knowledge to which process this variation can be 

attributed to, then a stochastic model may be more appropriate.  

 

In conclusion: the aim of this model is not to estimate the time to eradication or 

extinction, as referred to as one of the conditions for stochasticity. Whether enough 

knowledge is available about certain biological processes (e.g. dormancy, seed 

predation) is species-specific. The default position was not to include stochasticity in 

ECOSEDYN unless no general principles could be derived from the literature. 
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2.5 Model implementation: mathematical 
representation and parameterisation of 
component models 

 

After providing the agronomic context against which the weed population is 

developing, the proceeding sections relate to the biological processes within the 

lifecycle of an annual weed. Each section contains a brief overview of the key factors 

that need to be modelled, the mathematical representation of the processes and is 

completed with the parameterisation. Component input sources are either set by the 

weed management scenarios (e.g. crop rotation length is 4 years), by species-specific 

parameters or parameter files embedded in the component or by other components.  

 

2.5.1 Nomenclature 
ECOSEDYN distinguishes state, rate and driving variables (Rabbinge and de Wit, 

1989). The state variables represent a quantitative measure at any given time of the 

population characteristic that is modelled, in this case numbers of seeds (S), pre-

emerged seedlings (G), plants (P) and the weight of plants (W). Subscripts are used to 

identify the status and position of seeds (S) in the soil and the size-cohorts of plants 

(P); e.g. the total amount of seeds in the surface layer is indicated by Stot-1, and the 

number of emerged seedlings until the 2nd true leaf stage is represented by P1

Driving variables are environmental variables that regulate important processes; e.g. 

plant growth is regulated by solar radiation and temperature, seed germination by 

temperature and soil moisture. They will be indicated with capital letters (e.g. 

effective day-degrees, EDD).  

. To 

acknowledge that weed seedlings are separated into different weed cohorts and that 

within a crop different habitats are characterised, the notation for plants and seeds will 

be followed by the characteristic ‘c’ and/or ‘h’ between brackets whenever required.  

A year in ECOSEDYN runs for 365 simulation days (no leap years) from the 1st of 

October to the end of September to accommodate the farming activities associated 

with growing winter wheat, which is sown in October and harvested in August the 

next year. A random simulation day is represented by dsim whereas specific days such 

as for example sowing day are indicated as dsowing

 

. 
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2.5.2 Dormancy evolution 
 

2.5.2.1 Background 
Only recently have researchers started to include dormancy in models of population 

dynamics. One of the reasons is that the factors influencing the dormancy status of 

seeds pre- and post dispersal are not fully understood for most species. The dormancy 

status is not simply a binary condition but rather is measured on a continuous scale; 

the temperature range over which germination can occur increases during dormancy 

release and reduces during dormancy induction (Vleeshouwers et al., 1995; Baskin 

and Baskin, 2006). An essential feature of dormancy is that it prevents a viable seed 

from germinating even if the actual environmental conditions (temperature, soil 

moisture) would allow successful germination. For some species, germination may be 

restricted more by environmental conditions rather than internal conditions. Although 

this model aimed to have a generic purpose, without the detailed data it was 

impossible to create a generic component for dormancy. Instead species-specific 

accounts of the biology were created and implemented into simple mathematical 

equations. 

In representing dormancy in ECOSEDYN, the intent was not to represent the relevant 

processes at the mechanistic level, e.g. factors that control phytochrome changes in 

seeds which cause the seeds to be more or less sensitive to light (Hartmann et al., 

2005). However, key aspects that impact on the probability of germination were 

implemented to reflect their importance. Neither S. media nor T. inodorum displays an 

annual dormancy cycle but rather a decrease in dormancy over time. 

A recent review on the outcome of day-time as compared to night-time cultivations 

showed that, although the results are very variable, S. media and T. inodorum belong 

to a small subset of species where germination is more often than not reduced by 

night-time cultivations (Juroszek and Gerhards, 2004). Seeds of both species display 

temporally variable levels of light requirement, a manifestation of dormancy. Whereas 

the ability to germinate in light relates to seeds located in the top surface layer, a flash 

of light as received during cultivation can trigger germination at any depth. The 

ability to germinate after so-called short duration light exposure (SDLE) is included 

as well to account for germination after cultivation. 

In the species account of S. media below the parts of the review that address the 

implementation of the principles, based on findings of the literature as discussed in 

the preceding part of the text, are indented for clarity. 
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2.5.2.2 Species specific parameterisation: S. media 
The germinability of seeds from S. media is determined by two processes and both act 

upon young seeds only: an afterripening requirement to germinate and cold 

stratification that can either reduce or enhance germination in dark or light.  

 

Many studies have shown that fresh seeds of Stellaria media are primary dormant 

(Roberts and Lockett, 1975; Baskin and Baskin, 1976; van der Vegte, 1978; Froud 

Williams et al., 1984; Grundy, 1997). When tested over a range of temperatures, fresh 

seeds collected in May, June or October did not germinate in dark and a maximum of 

5% germinated in light (Roberts and Lockett, 1975). Grundy (1997) found that after 6 

weeks of dry storage at laboratory temperatures only 40% of seeds germinated. After 

5 weeks of storage at room temperature followed by 8 months of cold storage (over 

which the percentage germination did not change) 95% of fresh seeds germinated 

both in light and dark (Noronha et al., 1997).   

Afterripening 

Wesson and Wareing (1969) noticed some inhibition of germination in 1 month old 

seeds germinated in light (≈25%) as compared to dark (≈40%) and the same 

response can be observed in seeds from two of the three populations in the study by 

Milberg and Andersson (1998); percentage germination in dark / light was 51 / 38, 29 

/ 18, and 98 / 97 respectively after 7 weeks of dry storage. Population variability and 

seasonal differences are likely to play a role in the germinability (capacity to 

germinate) of fresh seeds. Perhaps populations differ in the rate with which they 

afterripen and growing plants from different populations in a common environment 

could shed light on this issue. Interestingly, in both populations where germination 

was high (afterripening completed) (Noronha et al., 1997; Milberg and Andersson, 

1998) there was no appreciable difference between germination in light and dark. It is 

assumed therefore that the inhibition to germinate in light is alleviated once 

afterripening is completed.  

Roberts and Lockett (1975) showed that afterripening was complete after 14 weeks 

for seeds shed and buried in May and June but not for those in October. Baskin and 

Baskin (1976; 1986)  showed that there is a clear relationship between temperature 

and afterripening; high temperatures increase the rate and extent of afterripening but 

below 10 ˚C afterripening was inhibited.  

It is postulated therefore that prior to the winter season (cold stratification), 

afterripening progresses based on the accumulation of day-degrees. Complete 
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afterripening requires a certain ‘heat sum’, the accumulated day degrees above a base 

temperature of 10.0 ̊ C. It was further assumed that dormancy loss is a linear function 

of accumulated day degrees. 

Roberts and Lockett (1975) tested germinability of seeds after 4 and 14 weeks of 

burial; after 4 weeks, only about 50% seeds germinated but after 14 weeks all seeds 

germinated over a broad range of temperatures. Quite possibly afterripening was 

already completed earlier.  

It was assumed that the minimum period in which the heatsum could be reached was 

after 9 weeks. The interval that spans the period with highest temperatures in England 

roughly starts the 1st

To account for the initial inhibition of germination in light, separate equations for the 

proportion of the population that can germinate in dark and light were generated, 

approximately reflecting the results as observed by Milberg and Andersson (1998) 

and Wesson and Wareing (1969); 20% and 5% of freshly shed seeds can germinate in 

dark and light respectively and this increases to a maximum of 95%, the rate a 

function of accumulated DD.  

 of July. The number of accumulated day-degrees above 10.0 ̊ C 

over the 9 weeks was determined for each of the 17 weather years used for the climate 

scenarios (see Chapter 5, Section 5.3). The average value (471 DD) was then 

calculated and this taken as the reference heatsum to complete afterripening. 

Van der Vegte (1978) showed that fresh seeds from plants grown at 7 ˚C had higher 

dormancy than seeds grown at 20 ̊ C which suggests that the temperature  whilst seeds 

are still on the motherplant contributes to the heatsum as well.  

Therefore the heatsum should be initiated two weeks before seed shedding (i.e. the 

heatsum is initiated on the day of seed shedding as the accumulated heatsum over the 

previous two weeks). The linear functions of the germinability of seeds in dark and 

light against accumulated degrees then become: 

Equation 2-1:  ( ) ( ) 20.0dDD*001592.0d simaccaftsimdarkg += −−s  

Equation 2-2:  ( ) ( ) 05.0dDD*001911.0d simaccaftsimlightg += −−s  

where sg-dark and sg-light are the proportions of seeds that can germinate in dark and 

light respectively, and DDaft-acc

 

 is the accumulated thermal time from two weeks prior 

to seed shedding on a certain simulation day.  
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Stratification 

Milberg and Andersson (1998) showed that seeds of two populations that germinated 

only to a low extent ( ≈18-38 %) in light prior to cold stratification, germinated very 

well after cold stratification (≈79-92 %). However, a third population for which the 

seeds germinated to a high extent in light prior to stratification (97%), retained a high 

germinability afterwards (95%). On the other hand, Noronha et al. (1997) found that 

germinability decreased from 95% prior to stratification to between 40-60% 

afterwards. Similar results were presented by Froud Williams et al. (1984).  

Not all studies included before-and-after comparisons of germinability, which makes 

it more difficult to understand the processes. Studies have reported both low and high 

germination in light after stratification; 46% (Milberg et al., 1996) and 80-95% 

(Andersson et al., 1997). Froud-Williams et al. (1984) found that after soil 

stratification the proportion of seeds germinating in light varied over the season but 

no other studies were found in the literature that could corroborate the observed 

seasonal pattern.  

When germination in dark, light and under SDLE (short duration light exposure) 

following cold stratification was compared, the proportion of seeds that germinated 

was highest under SDLE (Milberg et al., 1996; Andersson et al., 1997).  

After cold stratification over the winter period, the proportion of seeds that can 

germinate in the dark is low: 1-36% (Milberg et al., 1996), 30-35% (Andersson et al., 

1997) and decreases compared to before cold stratification:  approximately from 70 to 

20 % (Froud Williams et al., 1984) decreasing further in the summer and autumn of 

the following season. Noronha et al. (1997) showed that under laboratory conditions 

(constant low temperature of 3.2 C) the proportion of seeds that can germinate in 

darkness decreased from 95% to 10% in only 42 days.  

 

In conclusion: it appears that if seeds had low dormancy before cold stratification, 

then dormancy actually increases with the reverse taking place if there was high 

dormancy. Perhaps these are features of summer and winter populations. 

The period of cold stratification was set from the 1st

 

 of December until the end of 

February; over this interval 95% of the days, when averaged over the 17 weather 

years, did not contribute to the afterripening heatsum which had a base temperature of 

10 ˚C. 
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Proposed decision rules for dormancy regulation of S. media: 

1. For seeds produced between the 1st

• Dormancy behaviour between the 1

 of March and the end of November:  
st

• Dormancy behaviour between the 1

 of March and the end of 

November: seeds germinate better in dark than in light, but this 

difference eventually disappears according to the degree that 

afterripening progresses, as calculated in Equations 2-1 and 2-2.  
st of December and the end of 

February:  (day 62-151): the proportion of seeds that can germinate in 

light increases or decreases (according to the extent that primary 

dormancy was lost prior to the 1st

 

 of December) linearly to 60% and 

remains constant from start of March. The proportion of seeds that can 

germinate in dark decreases linearly to 20% and remains constant 

afterwards. 

2. For seeds produced between the 1st

• Dormancy behaviour between the 1

 of December and the end of February:  
st

• Dormancy behaviour between the 1

 of December and the end of 

February: since temperatures are low the progress of afterripening is 

slow and the difference between light and dark germination remains 

present until the end of the interval.  
st

 

 of March and the end of 

November: similar to seeds produced between March and November 

with afterripening progressing from the level that was accumulated in 

the previous interval. 
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2.5.2.3 Species specific parameterisation: T. inodorum 
The germinability of seeds from T. inodorum is determined by two processes and both 

act upon the young seeds (<2 years) only: a light requirement to germinate and cold 

stratification that can either reduce or enhance germination in dark or light. 

Afterripening is not a requirement in T. inodorum. 

 

Buried seeds exhibit no annual dormancy cycle and, provided conditions with ample 

light and optimum temperature are fulfilled, germination can start immediately after 

maturation (Lonchamp et al., 1984; Thomas et al., 1994; Bowes et al., 1995). In dark, 

however, ‘fresh’ seeds can only germinate to a very limited extent (<5%). 

Light requirement 

Various studies have shown that after burial in soil, seeds gradually lose this light 

requirement (Lonchamp et al., 1984; Kessler, 1989; Bowes et al., 1995; Milberg and 

Andersson, 1997). However, the period after which seeds start to lose the light 

requirement and the rate with which this occurred, varied (see Table 2-1).  

 

Table 2-3 Available studies / parameters on the loss of light requirement in T. inodorum 

Study  Loss of light requirement 

 Burial Start (months after 

burial) 

Duration (months) 

Lonchamp et al. (1984) October December (2) 8 

Kessler (1989) November July (8) 12 

Bowes et al. (1995) November August (9) 15≥  

Milberg & Andersson (1997) November November (12) 6  

 

In the two studies from Canada (Kessler, 1989; Bowes et al., 1995) seeds started to 

lose their light requirement in summer with a gradual loss over the next 12-15 

months. In the two studies in Europe loss of light requirement happened in winter but 

in Sweden (Milberg and Andersson, 1997) the population started to lose light 

requirement a complete season later than in France (Lonchamp et al., 1984). If these 

two studies represent true geographic differences then one would expect night-time 

tillage in Sweden to be more effective than in France. Although results of light vs. 

nighttime cultivations are variable (Hartmann et al., 1997), T. inodorum is one of the 

weed species for which the largest reductions in germination have been reported after 

cultivation in dark compared to cultivations in light (Juroszek et al., 2002). This 

suggests that a considerable proportion of the seedbank still has a light requirement at 
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least after the first winter. In the study by Lonchamp et al. (1984) only 50% of the 

previous years seed had a light requirement at the start of spring and this was 

completely lost at the end of summer whereas in the study by Milberg and Andersson 

(1997) the proportion with a light requirement remained >90% over the entire 

growing season.  

 

Cold stratification in the soil does not alter the proportion of seeds that can germinate 

in light but for fresh seeds the first cold stratification event slightly reduced the 

proportion that can germinate in dark (Milberg and Andersson, 1997; Milberg and 

Andersson, 1998). Once seeds have lost their light requirement, no annual changes in 

the germination rate in light or dark has been observed.  

Stratification 

The response to short duration light exposure (SDLE) after cold stratification varies: 

after 18 weeks at 3 ºC in the laboratory only 0.5-10.8% germinated (Milberg et al., 

1996) but when stratified for the same period outside in soil, 47-99% of seeds 

germinated (Andersson et al., 1997). In another experiment, around 80-90% of seeds 

germinated after burial over winter but germinability then decreased over the spring 

and summer period only to increase to previous levels in the next winter (Milberg and 

Andersson, 1997).  

 

 

Since the phenomenon of light requirement was better documented than that of 

stratification, only the former was implemented in the model. Without studies 

confirming the length of the light requirement of T. inodorum seeds in the soil in the 

UK, the study by Milberg and Andersson (1997) was taken as a reference in 

ECOSEDYN. The data from Milberg et al. (1997) were applied in the following way: 

in ECOSEDYN the seedbank consists of seeds in two germinable states: seeds either 

germinate only after having received a sufficient light response, 

Implemented decision rules for dormancy regulation of T. inodorum in 

ECOSEDYN: 

lightgs − or both in dark 

and light darkgs − . Since the proportion of seeds in each of these two states varies with 

the age of seeds, this is implemented by representing the seedbank as a matrix with 

four arrays. Each array consists of 16 rows and 3 columns where the rows represent 

the soil layers and the columns the ‘total number of seeds’ and the seeds in both 
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germinable states respectively. The soil layers distinguished in the seedbank are: 

‘Surface’, 0-5, 5-10, 10-15, 15-20, 20-25, 25-30 mm, then every 3 cm down to 30 cm. 

The reason that the first 3 cm layer is split up in six 5 mm layers is that the 

germination response by T. inodorum seeds is extremely sensitive to depth. 

Array 1 contains the seeds that are produced from June to 30 September in simulation 

year X (which runs from 1 October to 30 September).  Freshly produced seeds are 

transferred to array 2 at the end of simulation year X.  Whilst seeds are in array 1 or 2, 

95% of the ‘fresh’ seedbank is able to germinate in light, but only 5% of the ‘fresh’ 

seedbank is able to germinate in both light and dark. Hence, 90% of the seeds 

germinate only after receiving a light trigger, 9.0s lightg =− , but only 5% is able to 

germinate in dark. The seeds in array 2 are transferred to array 3 at the end of 

simulation year X+1. In simulation year X+2 the seeds in array 3 start to lose the light 

requirement over the interval 1 November – 30 April (181 days) in a linear way so 

that on the last day of April, 95% of the seeds can germinate in both dark and light. At 

the time of seed shedding, 5% of the seeds are discarded as unviable. This removes 

the need to keep taking account of seeds that can not germinate and ensures that: 

darkg−s + lightg−s =1. 

The maximum proportion of the T. inodorum seedbank that can germinate both in 

dark and light, sg-dark (dsim), is a function of the simulation day number (dsim = 1 on 

the 1st

Equation 2-3: 

 of October) and is represented thus: 
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As a consequence, the proportion of the T. inodorum seedbank that can only 

germinate in light, sg-light (dsim

Equation 2-4: 

), can be simply expressed as: 

darkglightg s1s −− −=  

At the end of simulation year X+2, seeds are transferred to array 4 which experiences 

no temporal changes in light requirement, i.e. all seeds can germinate in both light and 

dark: sg-dark=1.00 
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2.5.3 Germination and emergence 
 

2.5.3.1 Background 
As part of the objectives for DEFRA, extensive work was conducted by Paul Neve to 

characterise weed seed populations of different origins of S. media and T. inodorum in 

terms of base-water potential and base temperature. In addition, studies were 

conducted in which the parameters for pre-emergence growth were derived. The 

derived information was implemented and added to an existing model for carrot 

germination so that the effect of relative crop and weed emergence could be studied in 

detail.  

It was impossible from a time point of view to implement that data in ECOSEDYN as 

developed within this Phd. There were two alternatives: either implement a much 

simpler germination model component or use the more accurate model to produce 

output that could be used in some way as input data in ECOSEDYN as developed 

within this Phd. 

In terms of answering the research questions, the germination model component that 

delivers the most accurate data should be preferred but considering the construction of 

a modelling framework of different components the inclusion of an autonomous 

germination component is preferable. Since designing and implementing a simpler 

conceptual component model for germination and pre-emergence was deemed to be 

more time-consuming than using the output produced by the more complex 

germination and pre-emergence model as developed by Finch-Savage et al. (1998) 

and Rowse and Finch-Savage (2003) at the Seed Science Group at Warwick HRI the 

latter option was chosen.  

The germination and emergence model as produced by the Seed Science Group at 

Warwick HRI (2008) predicts the daily number of germinated seeds based on 

hydrothermal time (HTT) (Gummerson, 1986) or on the principles as implemented in 

the ‘Virtual Osmotic Potential’ model (Rowse et al., 1999) and the number of 

emerged seedlings based on post-germination seedling growth (Whalley et al., 1999). 

For the crop and weed seed germination scenarios only the HTT option was used. The 

model runs on the assumption that weed seed germination occurs predominantly as a 

consequence of seedbed preparation. The day of seedbed preparation therefore is set 

as the ‘trigger’ from which hydrothermal time is accumulated.  
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2.5.3.2 Parameterisation and implementation 
 

For each of the 85 weather year - sowing time combinations the number of emerged 

carrot seedlings / day was recorded and saved in tables. Each simulation comprised 

500 carrot seeds sown at a dept of 12 mm. ± 2.0 (standard deviation). The simulation 

lasted from the day of sowing (seedbed preparation) until 60 days later. Regarding the 

other settings in the model: the parameterized carrot germination data originated from 

Paul Neve, ‘Option 1’ was checked and was fitted using the HTT method as 

implemented by ‘Carole’. In fact, after all the simulations had been completed it 

became clear that the final percentage carrot germination did not vary much and the 

only characteristic that was assumed to impact on weed population dynamics was the 

day at which 50% of the carrot crop had emerged, d

Carrot 

Cs

 

. This was calculated from the 

data in the tables using MatLab. 

The model has not been parameterized for winter wheat and therefore a simplified set 

of decision rules was implemented. In principal the timing of 50% emergence was 

timed to take place after 150 day degrees (above a base temperature, Tb, of 0) had 

been accumulated (Hodges and Ritchie, 1991). If within the interval of one week prior 

to crop sowing to one week after crop sowing the cumulative amount of rainfall was 

less than 10 mm or more than 50 mm, a delay of 7 days was imposed.  

Winter wheat 

 

Although parameterized hydrothermal time models were available for T. inodorum 

the soil depth structure (single point, e.g. 1.5 cm deep) of the germination and 

emergence model did not match with the soil depth structure (layer, e.g. 0.5-1.0 cm 

deep) in ECOSEDYN. The germination model requires specifying a depth and 

‘spread’ and then allocates a seed distribution according to a normal distribution. The 

maximum depth from which T. inodorum can germinate is roughly 15 mm (Grundy et 

al., 2003a). By overlapping normal distributions with the same standard deviation but 

different means, a uniform distribution can be generated over most of the relevant 

interval. Using an Excel spreadsheet, seed depth distributions were generated with 

different combinations of mean (seed depth) and standard deviation (‘spread’) and 

initial depth to explore the ideal combination. In the model any seeds allocated above 

Weed 



 52 

the soil surface are in fact allocated to the surface. An unrealistic number of seeds at 

the surface is likely to affect the germination and emergence results. Therefore the 

‘shallowest’ normal distribution should contain a ‘mean’ and ‘standard deviation’ 

such that results in as low a number of seeds at the surface as possible. The best 

compromise between the uniformity of the distribution and the number of seeds at the 

surface was found when the first normal distribution had a mean of 1 mm and a 

standard deviation of 0.4, the mean soil depth of the remaining normal distributions 

was every 1 mm down to 15 mm. For each soil depth there were 136 simulations (17 

weather years, 8 sowing times (carrot + winter wheat). In total there were 2040 

simulations with 500 seeds each of the non-dormant T. inodorum population as 

characterized and implemented in the model by Paul Neve. 

The number of germinated and emerged seedlings / day was initially converted to a 

proportion / day relative to the total number of germinated seeds / emerged seedlings 

at the end of the 60 days. This is however re-calculated in MatLab to a daily 

proportion relative to the size of yesterday’s seedbank. The daily germination and 

emergence proportions for the 1 to 5 mm, 6 to 10 mm and 11 to 15 mm depths were 

then averaged to get an estimate for the 0-5, 6-10 and 11-15 mm soil layers in 

ECOSEDYN.  

In raised bed systems the seeds experience severe soil compaction in the tramlines but 

no soil compaction within the beds. Weed species emergence due to soil compaction 

is variable with both positive (Jurik and Zhang, 1999; Boyd and van Acker, 2004) as 

negative effects (San Roman and Fernandez, 1991) reported. Compared to other 

weeds, T. inodorum seeds have one of the narrowest depth ranges over which they can 

emerge. This implies that the seedling does not have enough vigour to be able to 

emerge from other depths. It is therefore likely that soil compaction also reduces the 

number of seeds that can emerge. Two seedbanks are distinguished, the between-bed 

area (BB) and the within-bed area (WB). From the BB area fewer seeds are likely to 

germinate due to severe compaction. On the other hand, compaction would bring 

some seeds at a distance from where they could emerge whereas they could not 

before. Without data to indicate which effect would be more important, no reduction 

of germination in the BB area was applied. No distinction was made either between 

the within-row and between-row areas in the WB area. 

In ECOSEDYN decision rules were introduced to reduce the predicted proportion of 

germination. Firstly, it was imperative to apply a depth-dependent germination 

reduction scaler. If the temperature and soil moisture are sufficient, the model 
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estimates that if T. inodorum seeds are placed at 3 cm depth or deeper, around 80% of 

the seeds will still germinate, which would result in 100% fatal germination and thus 

a massive depletion of the seedbank. Seedbanks of T. inodorum are relatively 

persistent (Thompson et al., 1997) which suggests that the seeds possess a depth-

mediated germination response.  

A germination reduction factor (GRF) based on seed depth was calculated based on a 

Beta distribution function:  

Equation 2-5 ( )
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where the maximum reduction of germination (GRFmax) was 0.9 and was reached at 

16 mm depth (depthe). The starting depth at which germination was assumed to 

become reduced (depths) was at 6 mm. and the point at which germination reduction 

increases fastest (depthm

Fatal germination levels vary between 5 and 40% of the total proportion germination, 

depending on weed species, soil depth and presence of pathogens (Benvenuti et al., 

2001b; Benvenuti et al., 2001a; Davis and Renner, 2007). In ECOSEDYN the value 

for fatal germination of T. inodorum below the layers for which germination and 

emergence was calculated by the germination and emergence simulation model (Seed 

Science Group, 2008) was set at 15% and 5%, in carrot and winter wheat respectively, 

over the 60 day interval over which germination and emergence was simulated to 

occur.  

) was assumed to be at 12 mm.  

Secondly, the degree of crop development determines to what extent weed 

germination is suppressed. A germination suppression factor increased linearly from 

0.0 to 1.0 over the interval of critical period of crop competition (0.20 – 0.52 of 

growing period). The shorter the time from sowing to harvest, the earlier the critical 

period of weed competition is initiated. Hence, when comparing equal sowing times 

for varieties with different times of sowing to maturity, the shorter the time from 

sowing to maturity, the more germination is suppressed and therefore the lower the 

weed density in the crop. 

The germination and emergence model gives one value for the proportion germination 

whereas in ECOSEDYN two seed states, lightgs −  and darkgs − , and four seed ages are 

considered. Since seeds of the first age have not been produced yet at the time of seed 

germination there are in fact six separate seed categories that all contribute to the 
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overall daily germination. To ensure that each of the six seed categories is reduced by 

the appropriate proportion of germination the following calculation is carried out per 

soil layer: 

1. The number of available seeds is calculated for each of the six groups (three 

seed ages, two seed states, lightgs − and darkgs − ). Due to the more intensive 

seedbed preparation for a carrot crop as compared to a winter wheat crop, it 

was assumed that 75% of the seeds that can germinate only after receiving a 

light trigger, lightgs − , are ‘excited’, i.e. available, during carrot seedbed 

preparation but only 25% are excited during the winterwheat seedbed 

preparation. In contrast, all seeds in the darkgs − state are available.  

2. For each of the two seed states the number of seeds per seed age is expressed 

as a proportion of the total number of seeds of that seed state. For example, 

65% of ‘ lightgs − ’ seeds are 1 year old and 35% are 2 years old (since all seeds 

lose the light requirement at the end of the 2nd

lightgs −

 year (see Section 2.5.1.3 in 

thesis), there are no ‘ ’ seeds that are 3 years old). 

3. The daily proportion germination as calculated by the ‘Germination and 

Emergence’ model is multiplied with the proportion that each seed age of a 

particular seed state represents of the total number of seeds of that seed state 

(as calculated in 2) to obtain the total number of seeds that germinated. 

4. This number is subtracted from the relevant category (seed age, seed state) of 

the seedbank. 

The number of emerged seedlings per soil layer was calculated by multiplying the 

predicted number of emerged seedlings per soil layer by the ‘Germination and 

Emergence’ model with one minus the proportion pre-emergence mortality due to 

linuron application (see Section 2.5.4). This was repeated for the other two soil layers 

and the number of emerged seedlings was then summed. According to the 

‘Germination and Emergence’ model the maximum period over which germination 

was predicted to continue after seedbed preparation was 60 days. Rather than account 

for the emerged seedlings on each day individually, a maximum of 12 weed cohorts 

were created by grouping the weeds of each 5-day period together. The median date 

of each interval was then assigned to be the day of emergence, dWs

 

. 
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2.5.4 Seedbank mortality  
 

2.5.4.1 Background and mathematical representation 
Seed banks decline due to dispersal, post-dispersal seed predation, fatal germination, 

successful emergence, pathogen attack and embryo death due to ageing (Gallandt et 

al., 1999; Forcella, 2003). The persistence of weed seed banks ranges from transient 

(<1 yr), through short-term persistent (between 1 and 5 years) to long-term persistent 

(>5 years) (Thompson et al., 1993). By mixing a known quantity of seeds with a 

volume of soil, retrieving the viable seeds in the soil over time whilst preventing 

emerged weeds from reproducing, decline rates have been established for many weed 

species, see for example Wilson and Lawson (1992). A negative exponential function 

is by far the most used model to estimate the numbers of viable seed numbers over 

time (Roberts and Feast, 1973; Roberts and Boddrell, 1983; Lawson et al., 1993; 

Sanchez del Arco et al., 1995) though occasionally other declining negative functions 

have been fitted as well (Donald, 1993). Discontinuous or linear declines have been 

reported, however, for within-year observations (Puricelli et al., 2005; Sester et al., 

2006).  

Seedbank decline has been assessed through various ways but it is important to 

appreciate that the nature of the assessment can affect the decline rate through 

eliminating, or not distinguishing between some of the factors responsible for 

seedbank decline. Seed predators predominantly target seeds on the soil surface 

(Scopel et al., 1988; Orrock and Damschen, 2007). Hence, persistence studies that 

mix seeds through the soil do not account for losses of fresh seeds due to seed 

predation. Some persistence studies do not record emerged seedlings and therefore 

establish an ‘all-in’ decline rate, not a ‘mortality-only’ rate (e.g. 2002; Westerman et 

al., 2003a).  

Seed predation, emergence and fatal germination are accounted for in ECOSEDYN 

by other model components. Hence, for ECOSEDYN seedbank decline-rates that 

include all factors responsible for seedbank decline are not useful. Instead, the decline 

of the seedbank due to seed embryo death caused by ageing and seed death from 

pathogen attack is the parameter required. In practice it is often impossible to 

distinguish seed mortality due to fatal germination from seed mortality due to decay. 

Although it could be argued that fatal germination is already being accounted for by 

the ‘Germination and Emergence’ model (see Section 2.5.2), the fact is that in reality 

plenty of T. inodorum seeds germinate outside the window in which germination and 
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emergence is assumed to happen in ECOSEDYN. Even if these seeds successfully 

emerge, then the seedlings are likely to die or be killed prior to setting seeds and 

therefore represent a substantial extra mortality factor. Seedbank mortality studies in 

which emergence was explicitly recorded and seeds were not scattered freely on the 

surface were considered the most relevant. 

Empirical studies evaluating the fate of weed seeds over the soil volume found no 

(consistent) relationship between seed mortality and depth in the soil (Lapham and 

Drennan, 1990; Mohler, 1993) except for seeds close to the soil surface that either die 

faster (Carmona and Boas, 2001; Gulden et al., 2004; Puricelli et al., 2005; Peachey 

and Mallory-Smith, 2007) or slower (Taylor et al., 2005). Due to the inconsistency in 

results, it was assumed that seed mortality is independent of depth in the soil. Three 

more assumptions were made in the ‘seedbank mortality’ component of ECOSEDYN: 

• the proportion mortality in each year is the same regardless of the age 

distribution or the proportional dormancy of the seed bank.  

• seedbank mortality is independent of crop type.  

• seeds in Array 1, i.e. freshly produced seeds that are on the surface, are only 

dying because of seed predation and not from decay. 

If the value for annual seedbank mortality is extrapolated to daily seed mortality then 

the net annual seedbank mortality is lower, since seeds that disappear from the 

seedbank due to seed predation, fatal germination or successful emergence can not die 

from ‘seedbank mortality’. To minimise this effect, yet at the same time acknowledge 

that seeds die throughout the season, seedbank mortality is calculated on a weekly 

basis. The proportion weekly mortality is calculated from the annual seedbank 

persistence:  

Equation 2-6: ( ) ( )53
SdSd a11w −− −−= mm  

and the proportion weekly survival multiplied with the seedbank resulting in an 

exponential decline. 

Equation 2-7: ( ) ( )( ) ( )tS*w11tS totSdtot −−=+ m  = ( ) ( ) ( )tS*a11tS tot
53

Sdtot −−=+ m  
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2.5.4.2 Parameterisation and implementation 
Seedbanks decline due to mortality and successful emergence. When considering 

studies for parameterisation it is important to discern to which degree these two 

processes have been distinguished. 

 

Measurements on persistence in the soil have been conducted in various ways: buried 

in mesh envelopes at certain depths (Method 1), mixed with soil and buried in pots 

(Method 2), spread over soil surface followed by cultivation (Method 3). Interestingly 

the various methods gave rather different results for annual decline rates. When seeds 

are stored in nylon mesh envelopes (Method 1), the annual decline values are much 

lower than for the other methodologies (see Table 2.4). Van Mourik 

T. inodorum 

et al

The highest ‘all-in’ decline rates are reported from studies where seeds were 

broadcast in the field and the field then cultivated (Method 3). Barralis 

. (2005) 

warned that high seed densities in mesh envelopes could overestimate decline rates, 

but from the review here it seems that mesh envelopes may exclude certain mortality 

factors and therefore lead to an underestimation of the depletion rate.  

et al.

Intermediate values are reported from Harold Roberts’ experiments where he mixed 

seeds with soil in pots that were buried in the field (Method 2) (Roberts, 1964; 

Roberts and Feast, 1972; Roberts and Feast, 1973). In these experiments there was 

evidence for an exponential decrease of viable seeds and therefore annual decline 

values were calculated as follows: if ‘t’ is the length of the experimental period in 

years then over the course of the experimental period a proportion of the seeds 

emerge, e

 (1988) 

reported a staggering 88% decline for T. inodorum in the first year and Roller and 

Albrecht (2006) found values in the same range, with, on average the seedbank 

declining 75% after 25 months under various cultivation regimes.  

S(t), a proportion dies, md-S(t), and a proportion survives, sS

 

(t).  
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Table 2-4 Experimental results from literature, where annual decline rates of T. inodorum 
were measured. C/U stands for cultivated vs uncultivated soil. Shading implies the use of these values 
for the parameter in ECOSEDYN. 

1

 

 Based on experimental results obtained via literature it was assumed that the annual emergence rate 
was 10% 

 

The aim is to calculate the annual proportion of the seedbank that dies to causes other 

than emergence and seed predation, most likely decay, md-S

Equation 2-8: 

(a), which can be 

calculated as: 

( ) ( ) ( )aa1a SSSd esm −−=−  

     Annual decline rate (%) 

Study Method Years Depth (cm) C/U ‘All-in’ ‘Mortality-only’ 

Lewis (1973) 
1 

 

1 

13 U 13.0 -- 

26  18.0 -- 

39  18.0 -- 

4 

13 U   7.9 -- 

26  14.7 -- 

39  13.9 -- 

Lonchamp et al. (1984) 1 2 10 + 25 C 17.0 -- 

Roberts (1964) 

1952 

2 

3 

0-7.5 C 

55.9 30.4 

1953 5 50.7 22.9 

1954 5 52.7 32.5 

1955 5 48.3 17.9 

Roberts and Feast (1972) 2 5 

0-2.5 
 

C 

43.0 19.2 

0-7.5 41.2 25.2 

0-15.0 35.7 22.9 

0-2.5 
 

U 

39.7 25.0 

0-7.5 27.5 20.6 

0-15.0 23.0 20.5 

Roberts and Feast (1973) 2 6 0-15 
C 31.9 20.6 

U 21.7 18.6 

Barralis et al. (1988) 3 

1 

0 -± 30 C 

88.0 -- 

2 70.9 -- 

3 55.9 -- 

5 64.0 →  54.0

Roller and Albrecht 

(2006) 

 1 

3 
1 Variable 

C 
81.4 -- 

2 variable 75.4 →  69.4 1 
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The annual survival rate, sS

Equation 2-9: 

(a), can be calculated from the total proportion surviving 

and the length of the experimental period, t, as follows: 

( ) ( ) ( )t
SS

t
SS tat ssss =⇒=  

The annual emergence rate, eS(a), can be calculated by expressing the aggregate 

proportion of all emerged seedlings at the end of the experiment, eS

Equation 2-10: 

(t):  

( ) ( ) ( ) ( ) ( )

( )∑
∑ −

− =⇒= 1t

0

t
S

S
S

t

1

1t
SSS

a

taa*at
s

eesee  

The discrepancy in the ‘all-in’ decline rates of the studies using Method 2 and 3 is 

striking. In field studies the annual percentage of the total weed seedbank that 

emerges is usually lower than 10% (Zhang et al., 1998) whereas in Harold Roberts’ 

studies this is considerably higher (21% for ‘cultivated’ plots), on the one hand 

because of the more frequent disturbances of the soil and on the other hand because 

the seeds are distributed over a shallower depth. It could be argued that Harold 

Roberts’ studies underestimate field-mortality as more seeds are encouraged to 

germinate and emerge than would have done so in the field and this precocious 

emergence will keep the proportion of the seedbank that dies due to pathogen attack 

or other hazards much lower. If it was assumed that 10% of the seedbank emerged in 

the studies using Method 3, then the ‘mortality-only’ rates are still double that of 

Harold Roberts’ studies. It is not impossible that methodological issues have 

contributed to the high figure for seedbank mortality in the studies using Method 3 but 

it would be unreasonable to dismiss the results out of hand. 

The parameter to be used in ECOSEDYN was calculated as follows: values derived 

using Method 1 were left out as they are felt to be an unrealistic assessment of 

seedbank mortality in annually cultivated soils. For the same reason, results of 

undisturbed soil in the Roberts studies (Method 2) were left out, as well as the results 

of mortality if seeds were mixed with soil depth between 0-2.5 cm. The average 

‘mortality-only’ rate was then calculated for Method 2 (24.6) and Method 3 (59.70) 

and the mean of these two values (42.2) chosen as the annual seedbank decline 

parameter, md-S(a), for T. inodorum

 

.  
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S. media 

The trend observed for the T. inodorum data was not seen in the data for S. media; the 

‘all-in’ decline rates found in Roberts studies (Method 2) are larger than most of the 

fieldstudies that employed Method 3 (see Table 2-5). Lawson et al. (1993) mention 

that in two experiments only 1.1% and 3.6% of the S. media 

 

seedbank produced 

seedlings. Similar figures were given elsewhere (Lutman, 2006). It appears that plenty 

more seeds emerged in the studies using Method 2 than in the studies using  

Table 2-5 Experimental results from literature where annual decline rates of S. media were 
measured. C/U stands for cultivated vs uncultivated soil. Shading implies the use of these values for the 
parameter in ECOSEDYN. 

1

 

 Based on experimental results obtained via literature it was assumed that the annual emergence rate 
was 5% 

     Annual decline rate (%) 

Study Method Years Depth (cm) C/U ‘All-in’ ‘Mortality-only’ 

Roberts (1964) 

1952 

2 

3 

0-7.5 C 

63.1 16.2 

1953 5 61.9 21.2 

1954 5 61.9 23.2 

1955 5 53.4 17.5 

Roberts and Feast (1972) 2 5 

0-2.5 

C 

66.0 22.9 

0-7.5 54.3 16.1 

0-15.0 54.3 24.9 

0-2.5 

U 

60.2 21.3 

0-7.5 43.0 29.3 

0-15.0 31.6 24.5 

Roberts and Feast (1973) 2 6 0-15.0 
C 41.5 19.9 

U 22.3 18.0 

Roberts (1962) 3 4 0-15 C 49.0 →  44.0 

Roberts and Dawkins 

(1967) 

1 

3  0-23 
C 56.0 →  51.0 

U 

1 

30 -- 

Lawson et al. (1993) 3 
4 

3 
0 -± 20 C 

41.9 →  36.9 

27.1 

1 

→  22.1 

Lutman et al. (2002) 

1 

3 
6 variable 

variable 
C 

33.1 →  28.1 

3 

1 

36.3 →  31.3 

Lutman et al. (2003) 

1 

3 4 
variable 

C 
30.0 →  25.0 

variable 

1 

45.0 →  40.0 

Roller and Albrecht 

(2006) 

1 

3 
1 

2 

variable 
C 

87.1 -- 

variable 79.4 →  74.4 1 
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Method 3. It was decided to subtract 5% of each of the ‘all-in’ values of the studies 

for which no ‘mortality-only’ value was available. The average ‘mortality-only’ rate 

was then calculated for Method 2 (19.63) and Method 3 (39.20) and the mean of these 

two values (29.41) chosen as the annual seedbank decline parameter, md-S(a), for S. 

media

 

. 

2.5.5 Plant mortality due to weed control 
 

2.5.5.1 Background and mathematical representation 
 

For a conventional carrot grower, pre-emergence treatment on mineral soils consists 

of the application of a residual herbicide mixture (pendimethalin, linuron, clomazone) 

two-three days after crop sowing (personal comment Cathy Knott).  

Pre-emergence weed control 

Persistent herbicides have a knock-on effect in killing pre-emerged seedlings (G) that 

germinate after application. The efficacy and persistence of the herbicide is product 

specific and most studies have shown an exponential decay of the herbicide efficacy 

(Rao, 2000). The proportion mortality of seedlings germinating on any day, mG-h

Equation 2-11:  

(d), 

after applying pre-emergent herbicides then becomes: 

( ) ( )hasim dd*h
prwcGhG e*0mm −

−− =  

with mG-h decreasing as a function of the number of days after the day of herbicide 

application dha, the initial efficacy-rate, mG-h(0), and the parameter, h that determines 

how fast the half-life is reached.

Although pre-emergence linuron rates have been restricted, growers indicated that 

they expected the pre-emergence program to remain more or less what it was and 

therefore no reduced rates for linuron need to be applied. It was assumed that the 

percentage of pre-emerged seedlings that survives the linuron treatment on the day of 

germination are not affected afterwards. 
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Post-emergence weed control 

The efficacy of post-emergent mechanical weed control (Andersson, 1994; Fogelberg 

and Gustavsson, 1999) as well as herbicides (Boatman and Freeman, 1988; Buchanan 

et al., 1990) is inversely related to growth stage. Herbicide efficacy is further 

dependent on dosage, nozzle type, weather conditions, soil type, adjuvants and crop 

competitiveness (Kudsk, 2002). To include all the factors involved is beyond the 

scope of this model and since plant (seedling) size is the single most important factor 

(personal communication Tom Will) this was the only factor that was included. An 

objective measure of plant size during early growth is true-leaf stage and weed control 

efficacy values are often based on this measure of plant size. Hence, there is a need to 

obtain realistic control efficacy values per true-leaf stage for the model weeds and to 

distinguish weed cohorts in ECOSEDYN according to true-leaf stage. 

The timing of the post-emergence herbicide applications should take into 

consideration the size of crop plants since crop-weed competition is most severe 

during the early stages of crop growth. The timing of the post-emergence weed 

control operations was obtained from the interviews with the crop consultants.  

 

 

2.5.5.2 Parameterisation and implementation 
 

Using the germination and pre-emergence growth model as developed by the Seed 

Science Group (2008), the timing of 50% crop emergence can be predicted.  

Pre-emergence weed control 

The half-life value of linuron as retrieved from the MAUK website (Anonymous, 

2003), was 13-82 days reflecting the variability in weather and soil conditions that 

impact upon herbicide degradation in the soil. The average value for half-life, 47 

days, was assumed to be representative. Substituting this in Equation 2-11 gives:  

1) ( ) ( )47*h
prwcGprwcG e*0mm*5.0 −− =  

2) ln (0.5) = 47*h ⇒  h = -0.01475 

No species-specific information could be found for mG-prwc

Equation 2-12: 

(0), the proportion 

mortality immediately after applying linuron. It was therefore assumed that the initial 

efficacy of linuron was 80% for both weed species. Hence the implemented model for 

pre-emergence weed control mortality was 

( )hasim dd*0148.0-
prwcG e*8.0m −

− =  
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In ECOSEDYN dha

 

 was set at three days after sowing and on that day 80% of all pre-

emerged seedlings died whereas for the following days only newly germinated 

seedlings died according to the reduced mortality rate valid for that specific day. 

A simple decision rule was implemented so that in carrot the first and second post-

emergence applications were applied 28 and 56 days after the date with 50% crop 

emergence respectively.  

Post-emergence weed control 

For winter wheat the critical weed-free period, the interval over which the crop has to 

be weed-free to avoid yield loss, was kept as a guide line since that is more likely to 

give an accurate description than fixed dates given variable winter wheater. When 

assuming a 5% yield loss as acceptable, the critical weed free period in winter wheat 

was from 506 DD until 1023 DD (Welsh et al., 1999). The timing of the first and 

second post-emergence herbicide applications were set at the start of the critical 

period and after 75% of the critical period has passed respectively. 

Through the Danish site ‘Pl@nteInfo - Crop protection online’ (Faculty of 

Agricultural Sciences (Aarhus University Denmark), 2001), information about the 

weed control efficacy of herbicides on different growth stages is available. The 

information comes in the form of dose-response curves and is available for four 

growth stages: up to 2nd true-leave stage, 2nd to 4th true-leave stage, 4th to 6th true-

leave stage and from the 6th true leave stage onwards (see also Section 4.7.1.2). 

Efficacy values are available for both weed species, S. media and T. inodorum

Post-emergence herbicide control in carrots and onions consists of several low-dose 

treatments (Knott, 2002; Garthwaite et al., 2004) whereas in winter wheat one full 

dose in autumn and a reduced dose in spring is recommended (HGCA, 1997; Clarke, 

2002).  

, and 

for a number of herbicides. The calculated efficacies refer to the reduction of weed 

biomass (freshweight) 4-6 weeks after herbicide application. It is assumed that the 

efficacy values are a good reflection of proportion mortality in the field; i.e. 50% 

biomass reduction is 50% mortality. In reality, different (mixtures of) herbicide 

products are likely to be used in the carrot, onion and winter wheat crops but in 

ECOSEDYN the efficacy values of one product (Express ST) were chosen. Express 

ST was chosen because it gives an all-round good control of weed seedlings (see 

Table 2-6) which is representative of the situation before the revocation of the 

herbicides (personal communication Cathy Knott and Tom Will).  
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It was shown in Chapter 1 (see Figure 1-4) that the number of treatments has 

increased but the total product applied has gone down. Therefore, for vegetable crops 

the efficacy values of ¼ dose and for winter wheat the efficacy values of a full dose in 

autumn / winter and a ½ dose in spring were applied. The efficacy values for reduced 

weed control as a consequence of fewer herbicide availability was assumed to 

approach only 75% of the efficacy values of those listed in Table 2-6. Reduced weed 

control was applied in the vegetable crop only. 

 

Table 2-6 Weed control efficacy values (%) per growth stage and herbicide dose (Express 
ST) for each of the weed species under standard weed control.  

 Dose 0-2 leaves (P1 3-4 leaves (P) 2 4-6 leaves (P) 3 + 6 leaves (P) 4

Stellaria media 

) 

N 97 96 95 94 

½ N 95 94 92 90 

¼ N 92 89 86 84 

T. inodorum 

N 94 92 90 89 

½ N 90 87 84 81 

¼ N 83 79 74 70 

 

Plants in the tramlines suffer from additional mortality due to the wheels from the 

tractor with mounted sprayer. Assuming the boom width of the sprayer is 24 m it 

would extend over 13 beds / application. This implies that about 15% of weeds in the 

bb section (tramlines) are all being killed by the wheels and the remaining plants in 

the bb section (85%) die according to the efficacy of spray application. Following a 

herbicide application a proportion of seedlings will survive and it is assumed there is 

no additional negative effect on growth for those seedlings.  
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2.5.6 Seed predation 
 

2.5.6.1 Background and mathematical representation 
Losses due to seed predation can occur both prior to and after dispersal but the 

relative importance of each process is very species-specific; pre-dispersal seed 

predation has  been reported for T. inodorum (e.g. Fenner et al., 2002) but not for S. 

media

Ripe seeds can be retained on the plant but ripe seeds of most plants are shed from the 

motherplant. Upon shedding a proportion of the seeds become incorporated in the soil 

immediately and Westerman and co-authors (2006) estimated this could vary between 

22% and 37% for a small-seeded weed (

. 

Setaria faberi

Data on seed predation are notoriously variable and are more often available for 

arable crops (Westerman et al., 2003b; Mauchline et al., 2005; Lutman, 2006) rather 

than for vegetable crops. It seems that the most constructive way of modelling seed 

predation is to look for principles that extend beyond empirical data collected in 

certain crops. Heggenstaller 

) in crops with different 

vegetation structure. The rest of the seeds end up on the soil surface from where they 

face mortality through seed predation, may germinate or become incorporated in the 

soil. It is assumed that as soon as seeds are incorporated in the soil they are exempt 

from seed predation, which seems a reasonable assumption for small seeds (Hulme, 

1994; Crawley, 1997). This means that the number of seeds that are predated is 

dependent on the combined burial and germination rate.  

et al.

It appears from seed predation studies carried out over the length of the spring-

summer season in winter wheat that temporal variation in proportion seed predation is 

not symmetric over time; high early in the season and then gradually decreasing 

towards harvest time (see Figure 2-8). 

 (2006) found a positive correlation between canopy 

light interception (vegetative cover) and seed predation, which suggests temporal 

variation in seed predation is linked to crop development. These results are consistent 

with other studies (Reader, 1991; Povey et al., 1993). Jones (1976) found that carabid 

abundance in the crop was dependent on development stage of the crop, the crop 

functioning as shelter against high temperatures and desiccation.  
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The timing of crop sowing is a key factor regulating the timing that weed seeds start 

to shed their seeds and therefore the proportion of seeds that is predated. Seed 

predation increased after sowing autumn sown cereals in late September and remained 

considerable over the winter months (Lutman, 2006). It is likely that seed predation 

over that period is due to rodents or organisms other than carabids since most carabids 

are active between late April and the end of September (Jones, 1976). 

Seed predation is a function of the availability of seeds of the target species, of the 

presence and abundance of seed predators, of alternative food sources of the seed 

predators and of the quality of the habitat for the seed predators. A detailed model of 

seed predation should model seed predation as a function of the dynamics of each of 

these factors and their interactions. Such complexity is not warranted here. In this 

model it was assumed that the factors that affect the proportion seed predation are 

crop type and timing of sowing and harvest. Carrots and onions are grown on beds 

with a number of rows per bed so some of the field area is left uncropped. Added to 

that is a general slow crop development, certainly for onion, and together this is likely 

to disfavour the presence of seed predators and therefore decrease seed predation 

compared to a winter wheat crop where some vegetation has already established 

around April-May. The temporal variation of the proportion seed predation can be 

represented by the following form of the Beta distribution (Ben Amar et al., 2005) 

 

Figure 2-9 Temporal variability in seed predation and how this affects species 
with different timing of seed shedding; the proportion of seed that is predated is high for 
early shed seeds and generally decreases over time, regardless of species (data after 
Mauchline et al. 2005).   
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which is suitable for (a)symmetric patterns as observed in empirical studies. The 

function representing total daily seed predation can be written as: 

Equation 2-13: 

( )

( ) ( ) ( )

( )









=>

−−
=≤≤

=<

−

−

−
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ddddif

0dddif
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n

m
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where mp-S(dsim) is the daily proportion (mortality due to) seed predation, d is the day 

number, dssp and desp

βα,

 are the start and end dates of seed predation respectively, 

are shape parameters and the additional parameter n is required to normalise the 

Beta distribution.  

 

2.5.6.2 Parameterisation and model implementation 
Stellaria media belongs in the top-category of plants visited by seed-eating birds 

(Marshall et al., 2003). Several studies have shown that shed seeds are also heavily 

predated by rodents and carabids (Tooley et al., 1999; Watson et al., 2003; 

Westerman et al., 2003c). Intensity of seed predation was variable in place and time 

but appears to be highest early in the summer (Westerman et al., 2003b; Mauchline et 

al., 2005). Since S. media

Between 19 and 72% of 

 is insensitive to photoperiod and has a very wide periodicity 

of emergence, seed production can span the period from April to November (van den 

Brand, 1987; Grundy et al., 2003c). However, due to low temperature and solar 

radiation, the amount of biomass and flowers may well be negligible as compared to 

the spring – autumn period. 

T. inodorum seeds were predated over a 3-week period, when 

dishes containing seeds were placed in different crops at 8 sites in Sweden 

(Andersson, 1998). A recent non-published study (Lutman, 2006) assessed the mean 

percentage seed predation pre- and post harvest in winter wheat and spring barley 

over a number of 14 day periods between May and February (see Table 2.2) which 

suggested T. inodorum lost more seeds pre-harvest than S. media

 

.  

Table 2-7 Pre- and post harvest percentage seed predation in cereals (data Lutman, 2006) 
 Timing Winter wheat Spring barley 

S. media  Pre-harvest 42 42 

Post-harvest 45 47 

T. inodorum Pre-harvest 60 85 

Post-harvest 42 50 
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A recent study showed that when ground beetles (Harpalus affinis and Harpalus 

distinguendus) were offered seeds of 28 different species, T. inodorum seeds were 

preferred over 25 other seeds among which were S. media

For 

 seeds (Honek et al., 2006).  

T. inodorum

 

 it can be assumed that total weed seed production is restricted to the 

interval from the beginning of May until the end of September. The reason is that at 

the end of September all flowering plants will be killed by ploughing / glyphosate 

spraying and any plants emerged after the end of July only flower in the next year 

(Roberts and Feast, 1974). 

Interval 

The interval over which seed predation is implemented to occur is based on 

experimental studies of seed predation in crops (Westerman et al., 2003b; Mauchline 

et al., 2005) and an extensive study monitoring carabid activity throughout the season 

(Jones, 1976).  Following the patterns observed in the seed predation studies (see 

Figure 2-9), it was assumed that the shape of the seed-predation-over-time curve is 

independent of weed species. The timing of seed shedding and the preference of seed 

predators for seeds is what regulates the total proportion of seeds that is predated. 

Assuming a constant seed proportion per day, the daily proportion seed predation    

mp-S

Equation 2-14: 

(d) can be calculated from the fortnightly seed predation figures:  

( ) ( )14 SpSp d1411d −− −−= mm  

Since Westerman et al. 

(2003b) and Mauchline et al. 

(2005) did not record seed 

predation early in the season, 

no accurate parameter values 

could be estimated whilst 

fitting the Beta distribution in 

Equation 2-13. Arbitrary 

parameters were therefore 

chosen for dssp, desp βα ,,  

and n (see Table 2-8) that 

resulted in a pattern that 

roughly reflected the seed 

 

Figure 2-10 Data points represent daily proportion 
seed predation of S. media from Westerman et al. (2003c) 
and Mauchline et al. (2005). Fitted line is the Beta 
distribution (see Eq. 2-13) and parameters are given in 
Table 2-8. 
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predation patterns for S. media as observed by these studies (see Figure 2-10). Even 

though this is a crude approach, it represents a more ecological approach to modelling 

seed predation than applying a constant daily proportion seed predation.  

Data on the temporal variability of the proportion seed predation was available only 

for S. media. Since the data in the literature suggested that T. inodorum would be 

preferred over S. media, the fitted value of the parameter n in Equation 2-13 for S. 

media was multiplied by 4/5 to give the parameter n for T. inodorum. 

 

Table 2-8 Parameters for the Beta distribution function representing seed predation (Equation 
2-13) 

 S. media T. inodorum 

d 127 ssp 127 

253 desp 253 

α  2.0 2.0 

β  5.0 5.0 

n 5.0e+013 4.0e+013 
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2.5.7 Natural seed incorporation into the soil 
 

2.5.7.1 Background and mathematical representation 
Seguer Millàs (2002) assessed seed burial rate of a number of species with varying 

seed sizes. He found that burial rate is influenced mainly by the amount of rain in the 

preceding 24 hours and that small seeds disappear at a faster rate than larger seeds. 

Benvenuti (2007) did not correlate seed disappearance from the surface with daily 

rainfall but corroborated the relationship between seed burial rate and seed size. The 

effect of natural seed redistribution in the top soil during seed shedding due to rain is 

most probably trivial compared to the seed redistribution due to cultivation. In 

addition, germination and emergence of weed seeds in ECOSEDYN is assumed to 

happen only during the 60 days after seedbed cultivation, so the exact distribution of 

seeds during seed shedding is irrelevant. 

 

2.5.7.2 Parameterisation and model implementation 
The only aspect that was considered relevant in ECOSEDYN was the proportion of 

seeds that becomes incorporated in the soil immediately at seed shedding vs. the 

proportion that remains on the surface, and is therefore subject to seed predation. No 

information in the literature could be found that suggested that the proportion of seed 

remaining on the soil surface was different in a carrot crop as compared to a winter 

wheat crop. Shed seeds were distributed over the soil layers in the following way: 

57% on the soil surface, 29% in the 0-5 mm and 14% in the 5-10 mm soil layer. 
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2.6 Knowledge gaps 
 

The model components presented in this Chapter (see Figure 2-11) were ‘mentally 

assembled’ and there was no time available to conduct experiments to validate the  
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Model components (states and processes) that were addressed in Chapter 2 are highlighted in colour / 
white. Model components in grey are addressed in Chapter 3 and 4. 

 

 

 

 



 72 

chosen parameter values. On the other hand, two areas of the system were identified 

early on, either because key assumptions of the available models had not been 

validated (vertical redistribution of seeds by cultivation) or otherwise because 

knowledge about the biology of the system was clearly lacking (growth and 

reproduction of the weed species).  

 

 

2.6.1 Vertical re-distribution of seeds by cultivation 
A mechanistic model for plough, both with and without skim-coulter, was developed 

by researchers at INRA (Colbach et al., 2000; Roger-Estrade et al., 2001). However, 

this model is considerably more complex and not straight forward to incorporate in 

the overall modelling framework. Although both models had been validated as part of 

the model construction by the authors, observations in the field raised some questions 

about the validity of the proposed movement of soil during ploughing.  

Seedbed preparation often comprises two or more cultivation implements. In theory, 

multiplying the transition matrices of two different cultivation implements with each 

other and subsequently multiplying the resulting overall transition matrix with the 

vertical distribution prior to cultivation results in the vertical distribution post 

cultivation for that particular cultivation sequence. This is based on the assumption 

that there are essentially no changes in soil bulk density during cultivation, which has 

not been validated. If this assumption is true than it can save a lot of time since each 

implement only has to be parameterised on its own.  However, if it is not, then the 

consequences are that each subsequent model component in the chain (germination 

and pre-emergence growth -> plant competition -> seed production) is receiving and 

therefore returning incorrect information as well. Therefore the assumptions 

underlying the transition matrix approach were tested through field experiments.  

Another gap is that, though models were developed for several cultivation implements 

at Warwick HRI, no compatible model was available for the mouldboard plough 

which was a cultivation implement used in the crop rotation. The experiments that 

were conducted to verify the assumptions and to derive the model for the mouldboard 

plough are described in Chapter 3. 
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2.6.2 Plant growth and reproduction 
No comprehensive model could be identified that combined the timing and qualitative 

relationship of dynamic processes such as plant growth, flowering and seed shedding 

and therefore experiments were set up to explore the relationship between these 

processes so that they could be represented in a simple but sound way. Since the 

model is to be a dynamic one, i.e. simulate processes on a fine time scale, there is a 

need to move beyond the current static biomass – seed relationship models (e.g. 

Lutman, 2002) and create models that simultaneously account for biomass increase 

and seed production. To create such models, an increased understanding of the 

phenology of both weed species was imperative. Several research questions were 

proposed and consequently addressed in field experiments. 

Another piece of information that was missing was the phyllochron (days or thermal 

time to reach each true leaf pair). This is relevant as post-emergence weed control 

efficacy is normally expressed as a function of the the true-leave stage rather than the 

biomass of a plant. The research questions, the results of the experiments and the 

mathematical representation of the model components for biomass increase, flowering 

and seed shedding is given in Chapter 4. 
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3 Vertical re-distribution of weed seeds: 
experimental work and model 
implementation  
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3.1 Introduction 
The depth of seeds in the soil is a key regulator of weed emergence responses 

(Benvenuti et al., 2001a; Grundy et al., 2003a). Given the right weather conditions, 

the vertical distribution of seeds in the soil determines the proportion of the 

population that is in a position from where emergence is possible. However, the 

vertical distribution not only determines the number of emerged seedlings, it also 

affects the timing since mean time to germination increases with burial depth 

(Benvenuti, 2003). Not surprisingly then, reviews on emergence models have argued 

for the inclusion of components that predict vertical seed distribution (Forcella et al., 

2000; Grundy, 2003; Colbach et al., 2005). 

Rainfall and earthworms contribute to the incorporation of seeds into the soil 

seedbank (Chambers and MacMahon, 1994) and further re-distribution by earthworms 

has been documented as well (van der Reest and Rogaar, 1988; Smith et al., 2005). 

However, as seed distribution patterns are often observed that are characteristic of the 

tillage regime practiced (e.g. Yenish et al., 1992; Swanton et al., 2000; Bàrberi and 

Cascio, 2001; Vasileiadis et al., 2007), factors other than cultivation are generally 

assumed to be secondary. In fact, a key premise of including cultivation as a 

component of a weed management strategy is its effect on the vertical distribution of 

seeds. A good example is the development of the so-called ‘spot-plow’ which enables 

the complete inversion of furrows and thus maximises the percentage deep burial of 

seed (Shoji, 2007).  

The realization that cultivation could play a key role in weed management led to the 

initiation of studies to explore the effect of cultivation on seed burial of fresh seeds. 

The first studies simulated the movement of seeds using beads or equivalent tracers 

that were spread out over the soil surface (Rottele and Koch, 1981; Moss, 1988; 

Staricka et al., 1990; Dessaint et al., 1996). Useful, mostly qualitative information can 

also be inferred from studies evaluating the depth and pattern of incorporation of 

fungicides (Kelpsas and Campbell, 1994; Juzwik et al., 2002), herbicides (Walker et 

al., 1976), nematicides (Woods et al., 1999) and fungal spores (Ngugi et al., 2002) 

from the soil surface by a range of different cultivation implements. However, seeds 

of the majority of weed species survive for a number of years in the soil seed bank so 

cultivations will not only distribute fresh seeds from the surface but also the surviving 

seeds in the soil. Hence, prediction should encompass both the movement of seeds 
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freshly shed on the soil surface and the seeds produced and incorporated in the 

seedbank in previous seasons, located at any position over the cultivation depth. 

The first study to tackle the problem of predicting the position of seeds after 

cultivation from both the soil surface and intermediate soil depths and translating this 

into a model was conducted by Cousens and Moss (1990). The experimental method 

comprised incorporation of plastic beads of different colours at known depths in the 

soil. The soil was then cultivated according to two different cultivation regimes; a 

mouldboard plough and two passes of a rigid tine. A shallow pass with a spring-tine 

cultivator + crumbler was used to level the soil for both cultivation regimes. 

Subsequently, soil cores were taken to establish the proportional distribution of 

recovered beads over the four 5 cm. sampling layers (0-5, 5-10, 10-15 and 15-20 cm). 

In this way a transition matrix was created consisting of the probabilities of a bead 

(seed) moving from its respective position before cultivation to each of four soil 

layers after cultivation. Multiplying a vector with the numbers of seeds in each 

different layer by the transition matrix gives the density of seeds after cultivation. 

Algebraically this is expressed as: 

Equation 3-1 
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where aij is the probability of moving from layer i to layer j, Stot-1(b) is the number of 

seeds in layer 1 before cultivation and Stot-1(a) the number of seeds in layer 1 after 

cultivation. This approach was adopted later by Mead et al.

 Equation 3-2 

 (1998) to establish 

transition matrices for four different implements; spring tine, power harrow, rotovator 

and spader. Given a starting density and the availability of transition matrices for 

multiple cultivation implements, the vertical position of seeds in the soil can be 

calculated. For a sequence of two different cultivation implements this can be 

calculated as in Equation 3-2. 
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where aij are the probabilities of moving from layer i to layer j associated with the 

first cultivation implement and bij

Arguing for simplicity, one might ask why multiple thin soil layers need to be 

distinguished deep in the profile from where no germination is occurring. The reason 

is that without this feature, the transition matrices would be reduced to stand-alone 

models for each cultivation implement, but without the ability to correctly multiply 

the transition matrices of several cultivation implements. For example, a transition 

matrix for a plough set up to plough at 24 cm could distinguish three layers 0-3, 3-6 

and 6-24 cm. However, if the subsequent power harrow cultivation reached 15 cm 

deep, then this would result in a transition matrix with a 0-3, 3-6 and 6-15 cm layer 

and therefore these transition matrices would not be compatible. 

 the probabilities for the second cultivation 

implement.  

The work on seed movement described in this chapter served two functions.  

• Firstly, ploughing is still a common practice on land used for growing arable 

(winter wheat) and outdoor vegetable crops (carrot). The previous 

experimental work conducted at Warwick HRI (Mead et al., 1998; Grundy et 

al., 1999) focused on four cultivation implements, but not the mouldboard 

plough. A first aim of this study was therefore to obtain a model for the plough 

compatible with the previous models developed at Warwick HRI. The results 

of this work are presented in Section 3.2. 

• Secondly, this study aimed to critically evaluate two published approaches to 

modelling seed movement: 

o transition matrices as pioneered by Cousens and Moss (1990) and 

applicable to any cultivation implement. More specifically, the 

‘multiplicativity hypothesis’ will be addressed, i.e. the intuitive 

assumption that multiplying transition matrices of individual 

cultivation implements reflects an accurate way of predicting to where 

a seed moves when the relevant implements are used in sequence. The 

results of this study are presented in Section 3.3 

o mechanistic soil movement models of the effect of ploughing without 

and with skim-coulter as developed by Colbach et al. (2000) and 

Roger-Estrade et al. (2001) respectively. The results of this study are 

presented in Section 3.4 

The conclusions that are drawn from the work presented in this chapter are given in 

Section 3.5. The implementation of vertical redistribution of weed seeds in 



 78 

ECOSEDYN is then presented in Section 3.6. Hence, the work presented in this 

chapter is both providing the theoretical justification for how to represent vertical seed 

distribution in ECOSEDYN, as well as real data to ECOSEDYN. 

3.2 Vertical seed re-distribution due to 
ploughing at two locations / soil types 

 

3.2.1 Introduction 
Of all the cultivation implements commonly used on agricultural land, the plough has 

the highest burying potential for freshly shed weed seeds (e.g. Rahman et al., 2000; 

Mohler et al., 2006) and this has been realised since its inception (Guul-Simonsen et 

al., 2002). Given that placing seeds at depths from where they can not germinate 

helps to alleviate weed emergence in future seasons, ploughing is a useful part of an 

integral weed management strategy. 

Several studies have been conducted with the aim of quantitatively describing seed 

movement during ploughing. The earliest studies only considered the effects on 

surface applied beads or seeds (Moss, 1988; Staricka et al., 1990; Dessaint et al., 

1996) but since Cousens and Moss’s (1990) pioneering work, most studies have 

included movement from any position in the soil. The following studies were 

considered; the transition matrix models from Cousens and Moss (1990) and van 

Melick (1996) and the mechanistic models developed by Colbach (2000) and Roger-

Estrade (2001). For reasons related to the methodology and/or soil type, the models / 

data were not considered suitable to be implemented as component in the overall 

modelling framework as explained below.  

• Cousens and Moss (1990): Most importantly, 5 cm layers were used which is 

incompatible with the 3 cm layers used by Mead et al. (1998). Secondly, a 

spring-tine cultivator with crumbler attached was used to level the soil surface 

after ploughing, so in fact the transition matrix represents the probabilities of 

seed movement for [mouldboard plough + spring-tine cultivator + crumbler] 

rather than for [mouldboard plough]. If ploughing is followed by any other 

cultivation implement than the spring-tine cultivator + crumbler, the use of 

this transition matrix to represent the plough per se will be questionable. 

Lastly, the 1.5 x 1.5 m holes that were dug and over which the beads were 

scattered may have changed the soil structure relative to the surrounding soil.  
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• Van Melick (1996) conducted an experiment to compare the burial properties 

of an eco-plough designed for shallow ploughing 10-18 cm deep and two 

conventional ploughs. However, unlike Mead et al. (1998) they did not insert 

beads in the soil at fixed depths but as layers by mixing the beads with a 

volume of soil and then introducing them in the plough layer with an auger 

just before ploughing. Although this is a more straightforward way of creating 

a transition matrix that can be multiplied with a transition matrix of another 

cultivation implement over the same depth it is incompatible with the 

precision acquired from beads in layers for every 3 cm in the soil. In addition, 

only one replicate per plough treatment was realised. 

• Colbach et al. (2000) and Roger-Estrade et al. (2001) modelled the effect of 

the plough in a mechanistic way and their model allows the creation of 

transition matrices that would be compatible with the transition matrices for 

other cultivation implements. However, the predictions of their models were 

not evaluated for sandy soil types as found at Warwick HRI. Secondly, 

compared to the straightforward use of transition matrices, the 

implementation of the processes is more complex, especially for the Roger-

Estrade model which is most relevant due to the addition of a skim-coulter. 

Thirdly, the accuracy with which the model can predict the vertical coordinate 

after ploughing is sensitive to the number of slivers, especially if the number 

of slivers is low. This would require an additional soil model to estimate the 

number of slivers. Lastly, and the subject of study in section 3.4, the validity 

of the model is contentious as it seems to underestimate the soil height after 

ploughing. 

 

In the agronomical context of the system to be modeled, three scenarios exist that 

include plough cultivation;  

1 prior to secondary cultivation and sowing winter wheat, all in autumn 

2 in autumn and leaving the field over winter to benefit soil structure, followed 

by secondary cultivation and carrot / onion drilling in spring 

3 in early spring followed shortly afterwards by secondary cultivation and carrot 

/ onion drilling 

Although Scenario 1 and 3 are different in terms of timing it was assumed that 

ploughing in spring does not systematically differ from plouging in autumn and can 

be represented by the same transition matrix, ‘[Plough]’. Scenario 2 is different from 
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1 and 3 since leaving the soil over winter results in a redistribution of soil and a 

decrease in soil height. Therefore, at the time of secondary cultivation, the vertical 

distribution of seeds has changed relative to that immediately after ploughing and is 

represented by the transition matrix ‘[Plough + Soil settling]’. For species without 

winter emergence the ‘[Plough + Soil settling]’ transition matrix can simply be used. 

However, for weed species such as S. media and T. inodorum a (small) proportion of 

seeds emerges over winter and these seedlings will be lost from the population due to 

secondary cultivation or glyphosate spraying in spring. The proportion that emerges 

over winter depends on the number of seeds in the top soil layer immediately after 

ploughing, which can be estimated from the [Plough] transition matrix. 

Since the vertical distribution of beads is only measured at the start and end of the 

period of soil settling, the number of seeds (including germinated) in the zone from 

where emergence is possible at any point in time over this period will be assumed 

constant. The value for this constant is taken from the prediction for vertical seed 

distribution by the ‘[Plough]’ transition matrix. Assuming that the ‘multiplicativity’ 

assumption is correct, the [Plough] transition matrix then has to be pre-multiplied 

with the ‘[Soil settling after ploughing]’ transition matrix. Just prior to this 

multiplication, the cumulative number of germinated seedlings at the end of the 

period of soil settling should be deducted from the vertical distribution. The transition 

matrix ‘[Soil settling after ploughing]’ can not be determined directly but instead has 

to be extracted from the ‘[Plough]’ and ‘[Plough + Soil settling]’ transition matrices 

using matrix algebra.  

Therefore, the aim was to conduct an experiment from which the three transition 

matrices could be derived. A second goal was to assess how much an additional 

secondary cultivation, power harrowing, would change the vertical distribution of 

seeds after ploughing. The experiment was to be conducted at two locations (soil 

types) and at two plough depths to be able to compare the relative impact of these 

factors on the redistribution of seeds. 

 

3.2.2 Preliminary experiment 
Various approaches have been taken to introduce beads before cultivation and sample 

the soil after cultivation. To ensure compatibility it was anticipated to use the same 

methodology as used by Grundy et al. (1999); introducing beads in narrow layers 

every 3 cm down to the desired depth and sampling the soil after cultivation by taking 
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soil cores with an auger (9 cm diameter). To decide over which area the soil cores 

should be taken, a preliminary experiment was conducted comparing different 

sampling designs.  

 

The aims were:  

• to determine the recovery rate for different sampling designs,  

• to assess the distance and angle over which beads were displaced  

• to assess whether this was different for beads at different depths prior to 

ploughing 

 

3.2.2.1 Methodology 
Studies on soil erosion and weed seed movement have shown that soil and seed are 

diagonally displaced over an average distance of less than 50 cm (Marshall and Brain, 

1999; Montgomery et al., 1999; Kosmas et al., 2001). The available soil corer had a 

diameter of 9 cm and some trials in freshly ploughed soil showed that the minimum 

possible distance between two soil cores without disturbing the soil was about 18 cm.  

In one sampling design the horizontal and vertical distances were minimised 

(diagonal square or DS design) and in the other the diagonal distance was minimised 

(diagonal lattice or DL design), see Figure 3-1. Since the angle over which the soil 

was displaced was not known, a third sampling design included for each of the three 

plough bottoms a transect of 5 soil cores at different angles from the position of the 

beads in the soil (angle design or A design). The DL and DS designs were tested at 

one plough depth (24 cm) and the A sampling design was tested at two plough depths 

(16 cm and 24 cm). Since this was experiment only set out to evaluate the 

methodology it was considered satisfactory to assess just one replicate per treatment.  

The experiment was conducted in November 2005 in Wellesbourne. To ensure proper 

rotation of the furrows in the experimental plot, a strip of land immediately adjacent 

to the experimental plot was ploughed first. Steel plates (150 cm. long, 2 mm. wide) 

were hammered in the soil at 10-12 cm distance from each other. Soil was then dug 

out over a length of ca. 110 cm and stored in a wheel barrow until the trench depth for 

the deepest layer of beads was reached. After the bottom of the trench was firmly 

pressed using a wooden plank and a light sledge hammer, 3000 beads of a specified 

colour were scattered evenly on the flattened surface. Fine soil was then taken out of 

the wheel barrow and carefully spread out on top of the beads. More soil was added 
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until the next assigned depth was reached. Soil was carefully pressed and beads 

applied. This was repeated until the trench was filled to the soil surface.  

For the experimental plots assigned to the DL and DS designs and one experimental 

plot assigned to the A sampling design (A-24), beads of different colours were applied 

at the surface, and depths of 4.5 cm, 10.5 cm 16.5 cm and 22.5 cm. 

 
 

In the other experimental plot with the A design (A-16), beads of different colours 

were applied at the surface and depths of 1.5 cm, 7.5 cm and 13.5 cm. The surface 

bead layer was applied just before the actual tillage operation. The beads were 

inserted in the soil in line with the path of the inner three plough bottoms (36 cm 

each) of a 5 bottom plough (Dowdeswell DP 8B Hydrawidth).  

To mark the original position of the beads, sticks were put in the soil outside the 

ploughed strip in line with the beads. After ploughing the plots according to the 

assigned depth, soil samples were taken with the 9 cm. auger according to the 

sampling designs as illustrated in Figure 3-1. The soil samples were bagged and 
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Figure 3-1 ‘Diagonal square’ (top left), ‘Diagonal lattice’ (top right) and ‘Angle’ (bottom) 
sampling design and the position of soil cores within them after ploughing with a five-bottom 
plough (each 36 cm wide). Beads were positioned in the soil so that it matched the straight 
trajectory of the central three plough bottoms (the black area) with the outer plough bottoms 
representing the grey area.  
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labelled in the field. Since the depth distribution per se was not of interest, entire soil 

cores were dispersed in water by manually mixing and stirring. Since the beads were 

made of low-density polythene and the soil was low in clay content, soil did not stick 

to the beads making them float to the surface from where they could be sieved off. 

For each soil core, beads were counted per colour. The following characteristics were 

determined: % recovery per starting depth, average % recovery, the number of 

recovered beads / soil sample at each position across the X-axis and Y-axis. 

 

3.2.2.2 Results 
The most important observation from the preliminary experiment was that taking soil 

cores was not an appropriate way of sampling ploughed soil. Despite a relatively wide 

diameter of the auger (9 cm), the soil within the auger was compressed relative to the 

soil outside, obscuring the distribution of beads over depth. A second observation was 

that some soil clods had broken along the plane where the beads had been placed, in 

other words too many beads were being used. Average percentage bead recovery 

varied between 5.1 and 7.6 % for the sampling designs (see Table 3-1) which is 

within the range found by Mead et al. (1998) for the other four cultivation 

implements.  

 

Table 3-1 Average bead recovery per sampling design and over depth. 

Plough depth 24 cm  16 cm 

Sampling design Lattice Square Angle  Angle 

Average 5.1 % 6.0 % 7.6 %  6.4 % 
  

Surface 9.4 % 3.9 % 5.0 % Surface  5.3 % 

4.5 cm 2.2 % 3.4 % 3.5 % 1.5 cm 3.8 % 

10.5 cm 2.0 % 5.9 % 10.0 % 7.5 cm 5.8 % 

16.5 cm 1.8 % 6.1 % 9.0 % 13.5 cm 10.8 % 

22.5 cm 10.2 % 10.9 % 10.5 %   
 

 

Proportionally more beads originally at 22.5 cm were recovered because the plough 

did not move all of these beads so that they were picked up by the soil samples 

targeting the original position of the beads. The cumulative percentage bead recovery 

for the transects in the ‘Angle’ sampling designs was much lower for the 55-degree 

transect than for the 45 and 35 degree transects (Figure 3-2 left). If data of all four 
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plots were combined, 99% of the beads were recovered between X-coordinates 85.5 

and 193.5, spanning exactly 108 cm (data not shown). With regard to forward 

movement (Y-axis), the peak of the bead distribution lies around 25 cm beyond the 

starting position and appeared not to be influenced by the vertical position of beads in 

the soil before ploughing (Figure 3-2 right). 

 

 

3.2.3 Main experiment 
 

The anticipated experimental design of the main experiment included three different 

plough treatments, [Plough], [Plough + Soil settling] and [Plough + Soil settling + 

Power harrow], each at two plough depths (16 and 24 cm) and replicated three times 

per treatment and at two locations (Kirton and Wellesbourne) (see Figure 3-4).  

The preliminary study was conducted to find out how, not if a sampling design of soil 

cores be used. In the preliminary study it was observed that freshly ploughed soil was 

compressed within the auger, which made it unsuitable as a sampling tool. Hence, a 

sampling technique based on excavation of layers had to be created. Because there 

was not enough time left for an excavation framework to be designed and constructed 

before the start of the experiment, the [Plough] treatment, where sampling was to 

occur immediately after ploughing, had to be abandoned. This meant that the 

comparison of vertical distribution before and after soil settling could not be realised. 

Rather than cancelling the experiment altogether, it was decided to address the 

evaluation of modelling seed movement through transition matrices, more 

specifically, the so-called ‘multiplicativity’ assumption. The assumption can be 

 

Figure 3-2 Left: The percentage recovered beads for the soil sample transects at different 
angles from the line of beads (see Figure 3-1) for the plots ploughed at 16 and 24 cm.  

Right: Distribution of bead displacement in the direction of ploughing (along Y-axis), distinguished 
by three depth groups before ploughing and pooled over the sampling designs DS, DL and A-24. 
Beads at 22.5 cm depth that had not been moved by the plough (i.e. Y-coordinate of soil sample is 
0) have not been included. 
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evaluated by assessing two separate cultivation implements, as well as the sequence, 

so that a series of observed and predicted transition matrices can be created (see 

Figure 3-3). 

 
 

Clearly, the ‘multiplicativity’ assumption can be tested using a wide range of 

combinations. The cultivation sequence chosen was Plough – Soil settling – Power 

harrow, giving the following three treatments: [Plough + Soil settling], [Power 

harrow] and [Plough + Soil settling + Power harrow]. This sequence was chosen 

because of the following additional benefits: 

• This experimental design consisted of the second and third treatments of the 

previous experimental design (see Figure 3-4), i.e. [Plough + Soil settling] 

and [Plough + Soil settling + Power harrow], for which preparations had 

already been taken  

• It allowed the parallel evaluation of the Colbach and Roger-Estrade models 

(see Section 3.4) to be carried out.  

• According to the expertise of farm staff at Warwick HRI (Julian Brandreth, 

Colin Jones), the Power Harrow was the cultivation implement most likely to 
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Figure 3-3 Schematic explanation of the evaluation of the ‘multiplicativity’ assumption. It 
assumes that the vertical distribution of seeds after a sequence of cultivations is identical to the 
product of the multiplication of the individual transition matrices, i.e the d-matrix is identical to the 
c-matrix. Matrix element subscripts: ‘m’ and ‘p’ represent the number of bead layers before 
cultivation A and the number of soil layers after cultivation B respectively. To allow matrix 
multiplication, the number of soil layers after cultivation A, ‘n’,  has to be equal to the number of 
bead layers before cultivation B. Similarly, for the d-matrix: x and y are the number of bead layers 
before and the number of sampled soil layers after cultivation respectively.  
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be used in spring on ploughed soil left over winter. Because of limited 

available time, a transition matrix already in existence for this implement 

(Mead et al., 1998) and the power harrows used in Wellesbourne and Kirton 

being of exactly the same specification, no treatment was included to derive 

the [Power harrow] transition matrix again. It was assumed that the transition 

matrix derived previously for the Power harrow would be valid for use in this 

assessment both in Kirton and Wellesbourne. 

 

3.2.3.1 Methodology 
 

Experimental design 

Throughout the rest of this chapter, [Plough + Soil settling] and the [Plough + Soil 

settling + Power harrow] will be referred to as Treatment 1 (T1) and Treatment 2 (T2) 

respectively, plough depth will be abbreviated to ‘pd’. 

 
 

To account for heterogeneous soil conditions, an incomplete Latin Square (3x4) was 

chosen as the experimental design to include three replicates of the four cultivation 

regimes (T1 and T2, each at two depths). Individual plots were 15 meters long and 

approximately 5 (Wellesbourne) or 5.5 meters (Kirton) wide (see Figure 3-5). Beads 

were available from previous work but to acquire the necessary number of colours, 

high density polyethylene (HDPE) granules with a density of 0.94-0.97 g/cm3
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Figure 3-4 Experimental design following initial study aim. The [Plough + Soil settling] and 
[Plough + Soil settling + Power harrow] were carried out. Locations were Warwick HRI research 
stations at Kirton and Wellesbourne and ploughs were set up at two depths: 16 and 24 cm.  
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approximately 2 mm long were obtained from Begg & Co Thermoplastics Ltd. Beads 

were inserted in the plots as in the pilot experiment, except for the following details:  

• Because beads varied slightly in weight and dimensions between colour, the 

colours were randomised between depths for each experimental plot. 

• 1500 beads were mixed with 500 gram of fine sieved soil before scattering at 

the assigned depth in the soil to avoid the creation of soil fractures. The 

mixture was scattered over an area approximately 108 cm long and 10 cm 

wide. 

Prior to ploughing, three soil samples were taken at different parts of the experimental 

area to measure the bulk density and gravimetric soil water content of the upper 15 

cm of soil. The bulk density of the soil where the experiment was conducted was 1.88 

± 0.03 g / cm3 and 1.69 ± 0.16 g / cm3

 

 in Wellesbourne and Kirton respectively. Soil 

water content was 16.7 ± 0.9 and 24.4 ± 0.2 % in Wellesbourne and Kirton 

respectively. Within 24-48 hrs after beads were inserted in the soil, plots were 

ploughed as shown schematically in Figure 3-5 and as explained below. 
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Figure 3-5 Distances between, and layout and dimensions of, experimental plots. Brown 
‘zone’ to the right of the beads was ploughed to ensure proper rotation of the furrows containing 
the beads. Brown zone to the left of the beads (only in Kirton) was ploughed to cover the outer left 
furrow which hit the left most section of the line of beads. 
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The ‘calibration zone’ is the area where the plough enters the soil and the tractor 

speed can be stabilised before the beads are hit by the plough at the start of the ‘active 

zone’ that continues for 3 m after which the plough was cleaned and visually 

inspected for any attached beads. The remaining section, the ‘inactive zone’, was 

ploughed to acquire even soil conditions for the treatments that were to receive a 

power harrow cultivation in opposite direction in spring. To facilitate furrow rotation, 

the soil strip immediately to the right of these zones was ploughed in advance. In 

Kirton the line of beads was hit by the three left most plough bottoms (of 4) instead of 

the three central plough bottoms (of 5) in Wellesbourne. To cover the outer left 

furrow, an additional stroke of soil to the left therefore was ploughed in Kirton (the 

brown zone to the left of the experimental area in Figure 3-5) but not in 

Wellesbourne. Actually the line of beads stretched out into the path of the left front 

and rear tyres so that the soil was compressed and surface beads possibly moved by 

the front and rear tyre before being moved by the plough. The shorter distance 

between the left and right tyre of the tractor used in Kirton meant that 34 cm of the 

line of beads was compressed whereas in Wellesbourne a 14 cm section was 

compressed. Because a reversible plough was used, one side was set up at 16 cm and 

the other at 24 cm deep. For T1 this resulted in diagonally opposite bead distribution 

patterns and sampling layouts (see Figure 3-7). 

Due to time constraints not all plots could be ploughed before Christmas in 

Wellesbourne. Two replicates of all treatments were ploughed on the 12th of 

December 2005 and the remaining four plots were ploughed on the 6th of January 

2006 using a 5 bottom mouldboard plough (Dowdeswell DP 8) with skim-coulter set 

at about 5 cm deep. In Kirton all plots were ploughed the 12th

Power harrowing was carried out with a 1.83 m. wide Maschio Erpice DL 1500 in the 

second and third week of April 2006 in Kirton and Wellesbourne respectively. To 

prevent beads from being spread out of the sampling area, power harrowing was 

conducted:  

 of January 2006 with a 

reversible 4 bottom mouldboard plough (Dowdeswell DP 8B Hydrawidth) with skim-

coulter set at the same depth as in Wellesbourne. The area to be sampled and the 

adjacent area where soil settling was studied was sealed off with plastic meshed 

wirenetting to prevent hares, badgers and deer from disturbing the soil.   

• in one pass, encompassing the strip of soil that contained the beads  

• in the opposite direction to ploughing.  
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Sampling design 

A steel height-adjustable framework (1.5x1.5 m) was constructed based on a design 

by Dirk Kurstjens (see van Melick, 1996), capable of excavating the soil (see Figure 

3-6 left). It allows soil layers three cm deep to be excavated in 10x10 cm blocks using 

a scoop that slides over a steel groove. The groove was always positioned parallel to 

the original line of beads and can be divided into 10 cm sections (columns 1-15) using 

an insertable partitioner (see Figure 3-6 right). The groove rests on the excavation 

quadrat and can be moved forward and backward (along the direction of cultivation) 

and fixed at fifteen positions (rows A-O, beads in row O would have experienced 

maximum measurable forward movement). 

 
 

The framework was positioned in line with the direction of ploughing and such that 

the steel groove was in line with the original position of the beads. The framework 

was then hammered in the soil until the excavation quadrat was level with the soil and 

the first layer could be excavated.  

Due to logistic and methodological problems no plots of T1 could be sampled in 

Kirton and only one plot at each plough depth in Wellesbourne. In Kirton sampling 

was initiated on the T2 plots first. It became clear that the soil strip cultivated by the 

power harrow only partly overlapped with the area where the beads were. The extra 

pass of the plough (see Figure 3-5), the soil settlement over time and sticks that had 

accidentally been removed, meant that the position of the beads could not be 

accurately recovered. Since T2 could be regarded as a complete seedbed preparation 

regime, for pragmatic reasons it was decided to focus on this treatment and ignore T1. 

 

Figure 3-6 Left: excavation framework (1.5x1.5m) used to determine vertical distribution of 
beads after cultivations. The excavation quadrat is dropped 3 cm. each time soil in a horizontal 
plane has been excavated. Right: 10x10x3 cm soil blocks can be collected separately using a scoop 
and an insertable partitioner. Alternatively, soil blocks can be bulked for each forward position 
(row). The white sticks (bottom left) were inserted in line with and at known distances from the 
outer widths of the line of beads to mark the position before cultivation.  
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This meant that in Kirton the plots of T1, where sampling had not yet started, were 

power harrowed to replace the failed power harrowing of T2 plots.  

For the single ‘T1, pd=16’ plot sampled in Wellesbourne, each 10x10 cm soil block in 

a diagonal sampling pattern was collected separately and surrounding soil samples 

were bulked according to distance to surface (see Figure 3-6 left). Contrary to the 

results in the pilot experiment, substantial numbers of beads were observed during 

sampling beyond 70 cm from the original position of beads in this plot. To assess 

what proportion of beads had moved beyond this distance and if certain depths were 

over-represented, soil from all depths was bulked over the furthest three rows 

(‘Bulked’ in Figure 3-7 left).  

For the single ‘T1, pd=24’ plot sampled in Wellesbourne, each 10x10 cm position in 

the excavation quadrat where the scoop contained at least some soil was marked on a 

grid-map with a ‘1’ and when the excavation quadrat was lowered these positions 

were marked ‘2’ to highlight the increased distance to the soil surface. Soil samples 

from positions with the same mark were bulked. 

 
 

After sampling the two plots it was realised that this particular way of soil sampling 

was much more time consuming than estimated. Since the T1 plots in Kirton had been 

lost anyway the priority was shifted towards sampling the T2 plots. After sampling 

the plots of T2, insufficient time was left to sample the remaining plots of T1 in 

Wellesbourne.  
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Figure 3-7 Position of excavation framework and layout of sampled area relative to the 
original position of the beads before ploughing; left: T1, plough depth = 16 cm; right: T1, plough 
depth = 24 cm. The ‘original position of beads’ overlaps exactly with the trajectory of the three 
central (of five) plough bottoms. Diagonally opposite sampling areas are a reflection of the use of a 
reversible plough with one side set up for plough depth 16 cm and the other for plough depth 24 cm. 
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Because the power harrow is equipped with a crumbling roll at the back, it leaves a 

flat soil surface which considerably simplified soil sampling for the T2 plots 

compared to the T1 plots. Sampling occurred within 48 hrs. after power harrowing. 

The soil outside the framework was excavated to allow the framework to be lowered. 

This meant the outer rows (A and O) and columns (1 and 15) sometimes collapsed 

and were not sampled. The decision on how many rows to sample was made on an ad 

hoc basis (based on observation of beads in soil) for individual replicates due to the 

variable response in forward movement of beads. The deepest layers often required 

fewer rows. This procedure was repeated until a depth in the soil was reached where 

no more beads were observed. Sampling characteristics for the T2 plots are 

summarised in Table 3-2. 

 

Table 3-2 Sampling characteristics for ‘T2’ plots.  

Location Plough 
depth 

Replicate Row of 
impact 

Sampling date 
(1) 

Rows sampled Layers 
sampled 

(2) 

K
ir

to
n 

16 cm 1 D 10-14 April 2006 (C)D-H(I-M) 7 

2 D E-L 7 

3 D E-L 8 

24 cm 1 D E-K(L) 10 

2 D E-L 10 

3 D E-K 10 

W
el

le
sb

ou
rn

e 

16 cm 1 D 17-21 April 2006 D-K 7 

2 D E-K 7 

3 D E-L 7 

24 cm 1 D (D)E-K 9 

2 B B-M 9 

3 D (CD)E-L 9 
 

(1) The row that overlaps with the position of the beads prior to cultivation 

(2) Letters in brackets indicate the rows that have been sampled for some but not all layers 

 

Bead counting 

A power drill with a plaster mixer type device attached was used to disperse soil 

samples in water after which the beads were skimmed off the surface and counted per 

colour. For the two T1 plots, the surface was uneven and so the soil collected in Layer 

1 and 2 actually did not consist of enough soil to make up the 3 cm layers, required 

for the transition matrices. The 10x10 cm soil samples were weighed and the average 

weight per sample was calculated for each soil layer. Beyond soil layer three, weight 
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increased linearly only because of higher soil moisture. The average weight for 

Layers 2 and 1 had they been fully sampled was extrapolated from a linear regression 

of the average weight of a soil sample against (depth of) soil layers three to eight (see 

Figure 3-8). The depth of Layer 1 and 2 was obtained by multiplying the ratio of 

observed to predicted (extrapolated) weight with the default depth of sampled soil 

layers, i.e. 3 cm. The original transition matrix was then modified to correct for the 

reduced depths of Layers 1 and 2 in the following way. To create 3 cm soil layers and 

assuming beads are distributed homogenously within a soil layer, new probabilities 

were established by virtually transferring the required amount of soil from Layer 2 to 

Layer 1, then from Layer 3 to Layer 2,  then from Layer 4 to Layer 3 etc. For 

example, if Layer 1 and 2 are 1.8 cm and 2.5 cm deep respectively and all deeper 

layers are 3.0 cm, then the modified probability of moving from a depth X to Layer 1 

is the original probability plus 3 minus 1.8 divided by the depth of the second soil 

layer, i.e. 1.2/2.5, times the probability of moving to Layer 2. The modified 

probability for Layer 2 would be the remaining soil depth after subtraction of soil to 

Layer 1, divided by the original soil depth of Layer 2, i.e. 1.3/2.5, multiplied by the 

original probability of moving to Layer 2, plus the required soil depth from Layer 3 to 

make up a 3.0 cm soil layer, i.e. 

1.7/3.0 multiplied by the 

probability of moving to Layer 3, 

etc.  

For each plot the following 

characteristics were determined: % 

recovery per starting depth and 

colour, average % recovery per 

treatment. The probability of 

moving from depth X to soil layer 

Y was calculated by dividing the 

number of recovered beads of colour (depth) X in layer Y, by the total number of 

recovered beads of colour X. To analyse if bead recovery was affected by plough 

depth, location, depth before cultivation and bead colour, arcsine transformed 

percentage recovery data were analysed using ANOVA. Depth before cultivation was 

nested within plough depth for each plough depth separately. Effect of bead colour 

was assessed in a separate ANOVA. 

 

Figure 3-8 Average weight of an individual 
sample over sampled soil layers (1 = 0-3 cm, 2 = 3-6 
cm, etc) from T1, pd=16. Linear regression excludes 
Soil layer 1 and 2 for which the average ‘theoretical’ 
sample weight was extrapolated. 
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3.2.3.2 Results 
The percentage recovery of beads in T1 using the excavation framework was 60-70% 

(see Table 3-3), which is ten times higher than the percentage recovery achieved by 

the auger in the preliminary treatment.  

 

Table 3-3 Percentage recovery of beads buried at different depths prior to cultivation (T1). 

Location Plough 
depth 

Average 
recovery 

Depth of beads prior to ploughing (cm) 

Treatment 1:  0 1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.5 25.5 

W’bourne 16 cm    61 62 62 58 71 64 65 46 Individual  
samples

5 

1 

8 12 6 4 1 1 2 Bulked over 
depth 

12 8 2 7 14 21 13 17 Bulked  

78 77 76 71 89 85 78 65 

24 cm    

Total 

72 83 88 74 72 69 80 76 70 72 39 
 

1

 

 See Figure 3-6 for overview of sampling lay-out. Beads from ‘Individual samples’ and ‘Bulked over 
depth’ were used to obtain transition matrix in Figure 3-10. 

The single ‘T1, pd=24’ replicate in Wellesbourne revealed that, unlike in the pilot 

experiment, if deep beads are ploughed up, they are moved forward further than beads 

initially closer to the surface (see Figure 3-9).  

Similarly, for the shallow ploughed plot, the number of beads recovered in the 

furthest section, ‘Bulked’ (see Figure 3-7 left), is higher for the beads buried at 10.5, 

13.5 and 16.5 cm than for the beads buried at the Surface, 1.5 and 4.5 cm (see Table 

3-3).  

The visualized transition 

matrices from the two T1 

plots clearly show the soil 

inversion plough-effect 

(see Figure 3-10), but a 

bimodal distribution over 

depth for the deepest 

beads can be observed as 

well indicating the plough 

only lifted these beads up 

partly. It is remarkable that whilst surface and 1.5 cm beads were deposited in the 18-

 

Figure 3-9 Forward movement of beads due to ploughing 
as a function of depth in the soil before ploughing (T1, pd=24, 
Wellesbourne). Results only show two shallow and deep starting 
depths for contrast.  
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21 cm soil layer, the plough did not bring the 16.5 cm beads up to the surface in the 

plot ploughed at 16 cm. It suggests the 13.5 and 16.5 cm beads were pushed forward 

rather then lifted upwards. This would also explain the greater distance over which 

beads were moved forward compared to the preliminary experiment. 

 
 

Percentage recovery of beads in T2 was similar to the two T1 plots but beads that 

were buried deeper tended to have a lower recovery than beads closer to the surface, 

especially in Wellesbourne (see Table 3-4). It is unlikely that not sampling the 

original position was the sole factor responsible for this, since recovery was poor 

whether the original position was included in the sampling area (Wellesbourne) or not 

(Kirton) (data not shown). The most likely reason is that, since (a proportion of) the 

deeply buried beads end up in the 0-3 and 3-6 cm layers after ploughing, these beads 

were more prone to dispersal out of the sampling area during subsequent power 

harrowing.  

 

Table 3-4 Percentage recovery of beads buried at different depths prior to cultivation (T2). 

Location Plough 
depth 

Average 
recovery Depth of beads prior to ploughing (cm) 

Treatment 2:  0 1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.5 25.5 

Kirton 16 cm 64 62 69 66 63 71 62 56 n/a 

24 cm 65 70 76 78 76 71 68 71 64 62 9 

W’bourne 16 cm 64 78 67 70 60 60 60 54 n/a 

24 cm 61 78 75 76 64 61 63 54 58 48 32 
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Figure 3-10 Transition matrices for T1; target plough depth was 24 cm for left transition 
matrix and 16 cm for transition matrix on the right. Colours are added to illustrate movement 
pattern, the ‘hotter’ the colour, the higher the probability of moving from a given depth before, to a 
given soil layer after ploughing. 
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Colour of beads, plough depth and location did not significantly affect recovery (see 

Table 3-5), but if only those bead layers that were present in both plots (Surface to 

16.5 cm) were compared, bead recovery tended to be higher in plots ploughed at 24 

cm.  

 

Table 3-5 Analysis of variance on arcsine transformed percentage recovery of beads (T2). 

Source of variation df s.s. m.s. v.r. F probability 

 

Location 1 117.45 117.45 3.47 0.067 

Plough depth 1 107.66 107.66 3.18 0.079 

Location * Plough depth 1 97.06 97.06 2.87 0.095 

Plough depth * Starting depth_1 6 376.92 62.82 1.86 0.102 

Plough depth * Starting depth_2 8 1064.94 133.12 3.94 <.001 

Location * Plough depth * Starting depth_1 6 251.98 42.00 1.24 0.297 

Location * Plough depth * Starting depth_2 8 278.11 34.76 1.03 0.425 

Residual 64 2164.56 33.82   

Total 95 4458.69    

      

Location 1 117.45 117.45 2.63 0.109 

Colour 9 766.24 85.14 1.91 0.063 

Location * Colour 9 183.58 20.40 0.46 0.899 

Residual 64 3391.42 44.62   

Total 95 4458.69    
 

Location = Kirton / Wellesbourne, Plough depth = 16 / 24 cm, Starting depth_1 and Starting depth_2 
are the bead starting depths associated with Plough depth =16 and Plough depth = 24 cm respectively. 
df = degrees of freedom; s.s. =  sum of squares; m.s. = mean square; v.r. = variance ratio 

 

 

The negative trend in percentage recovery for beads buried at increasing depths was 

significant for soil ploughed at 24 cm (P<0.001) but not at 16 cm (P=0.102) despite a 

similar negative trend in Wellesbourne. Average recovery per bead colour varied 

since some colours happened to be allocated more to shallow than deep depths but it 

was not significant (P=0.063). 

Comparing the resulting transition matrices of Kirton and Wellesbourne graphically 

(Figure 3-11) shows that ploughing at a depth of 16 cm resulted in fairly similar 

distribution profiles except for the beads scattered at the ‘Surface’ and buried at 1.5 

cm deep. Here the profiles reveal that ploughing was slightly deeper in Kirton than in 

Wellesbourne. Plough depth was quite variable between replicates (large error bars) 
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and also within plots (data not shown). In each plot ploughed at 16 cm, beads buried 

at 16.5 cm were recovered over the entire forward range, both in Kirton and 

Wellesbourne (see Figure 3-11). The deepest soil layer in which beads were recovered 

was 18-21 cm, indicating that plough depth was likely somewhat deeper than 16 cm.  
 

 
The deepest soil layer from which beads were recovered of the plots ploughed at 24 

cm was 24-27 cm and 27-30 cm deep in Wellesbourne and Kirton respectively, 

suggesting that ploughing in Kirton occurred roughly three cm deeper. The visualised 

probabilities of movement for beads initially at 22.5 and 25.5 cm deep confirm this 

(see Figure 3-12). Beads originally at the ‘Surface’, 1.5 and 4.5 cm deep in Kirton 

were all buried 3 to 6 cm deeper in the soil than the beads buried at equivalent depths 

in Wellesbourne. It is more likely that this is due to the deeper plough setting in 

Kirton compared to Wellesbourne, rather than due to soil type differences. The 

distribution profiles also show that ploughing in Kirton resulted in a more complete 

inversion of the soil than in Wellesbourne; whereas the majority of beads originally at 

19.5, 22.5 and 25.5 cm deep were recovered from the top 9 cm in Kirton, the majority 

of beads remained in the bottom 9 cm in Wellesbourne.  

 

Figure 3-11 Distribution of recovered beads over soil depth (average of three replicates) after 
T2: [Plough (16 cm) – Soil settling – Power harrow], for beads buried at different depths (surface, 
1.5 cm, etc.) prior to ploughing in Kirton and Wellesbourne. Horizontal error bars represent plus 
and minus standard error of recovered beads for each sampled soil layer.  
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3.2.4 Discussion and implementation 
The problem with soil compaction in the augers in the preliminary experiment was 

unexpected since this phenomenon was not noticed during sampling of the previous 

cultivation experiments conducted at Warwick HRI (Mead et al., 1998). The 

cultivation implements used during this experiment may not increase the volume of 

the soil as much as the plough does.  

The original aim of the experiment, deriving the [Plough], [Soil settling after 

ploughing] and [Plough + Soil settling] transition matrices could not be realised. The 

direct implication is that there is not enough data for Treatment 1 to be implemented 

in the modelling framework. Fortunately only the early carrots under polythene might 

have required this treatment whereas for main crop carrots the plough cultivation will 

occur in spring.  

The reformulated aim of the experiment, testing the ‘multiplicativity assumption’, 

could not be assessed either, but this is compensated for in Section 3.3. What is left is 

still worthwhile if only because of the increased understanding of soil and seed 

movement processes and the gained experience in carrying out the soil sampling.  

Plough depth was not explicitly measured in the field but from the results it became 

clear that the realised plough depth at both locations was not equivalent. Both ploughs 

 

Figure 3-12 Distribution of recovered beads over soil depth (average of three replicates) after 
T2: [Plough (24 cm) – Soil settling – Power harrow], for beads buried at different depths (surface, 
1.5 cm, etc.) prior to ploughing. Note that scale of x-axis in graph of ’25.5 cm deep beads’ is 
different from other graphs. Horizontal error bars represent plus and minus standard error of 
recovered beads for each sampled soil layer.  



 98 

were set up at the required depths as accurately as possible by experienced staff of 

Horticultural Services. It is impossible to conclude whether the different distribution 

patterns can be attributed purely to the different ploughs (depth set-up, wear and tear) 

or to a different plough-soil interaction, although the former seems more probable. 

What is clear however, is that the cultivation regimes in Kirton and Wellesbourne 

differ substantially in their soil inversion properties. The soil inversion action of the 

plough dominated the distribution patterns in Kirton, even after power harrowing, 

with the maximum proportion recovery for beads initially close to the surface in 

deeper layers and vice versa. In Wellesbourne the deeper bead layers (16.5, 19.5 and 

22.5 cm) were not brought up as much as would be expected. In Kirton 36% of the 

beads initially at the Surface and 1.5 cm deep was buried in the two deepest layers 

(24-30 cm) whereas in Wellesbourne only 6% of beads were recovered in the two 

deepest layers (21-27 cm). In Kirton, 86% of the beads in the 0-6 cm layer (from 

where emergence is possible) originate from the beads initially at 16.5 to 25.5 cm 

whereas in Wellesbourne the percentage is only 41%.  

From a weed population point of view, a cultivation regime as in Kirton is best suited 

after a season with high seed production because it buries the weed seeds deeper. If 

the weed pressure in the following season is lower, deploying the cultivation regime 

from Wellesbourne is a better choice since it doesn’t bring as many seeds up to the 

surface. Unless a more rigorous approach is adopted where plough and soil type are 

separate factors under assessment, it will be difficult to answer questions of causality. 

On the other hand, the results in this study show that whatever the cause, the inherent 

variability requires different transition matrices for what farmers would perceive as an 

identical cultivation. 
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3.3 Evaluation of the transition matrix approach 
to modelling the effect of cultivation on soil / 
seed movement 

 

3.3.1 Introduction 
In the previous section the ‘multiplicativity’ assumption was introduced and explained 

but due to experimental difficulties it could not be addressed properly. With the 

experience gained in the previous experiments, a new study was planned that set out 

to test the assumption. The cultivation sequence that was addressed was Plough - 

Power harrow – Spring tine. A transition matrix already exists for the Power harrow 

(Mead et al., 1998), the preceding cultivation for which was unknown but was not the 

plough (personal comment Andrea Grundy).  

The added condition of pre-cultivation allowed the comparison of the {Plough - 

[Power harrow]} transition matrix as derived in this experiment with the {unknown 

pre-cultivation – [Power harrow]} transition matrix from Mead et al. (1998)  

 

3.3.2 Methodology 
An experiment was set up in March 2006 at Wellesbourne containing five cultivation 

treatments, resulting in two sets of experimental data to test the assumption.  

Treatment 1: { [Plough] } 

Treatment 2: { [Plough + Power harrow] } 

Treatment 3: { Plough + [Power harrow] } 

Treatment 4: { Plough + Power harrow + [Spring tine] } 

Treatment 5: { Plough + [Power harrow + Spring tine] } 

Compared to the previous study design a pre-cultivation treatment was added before 

introducing the beads in the soil to provide similar soil conditions for the treatment in 

which implements would be assessed in conjunction (see Figure 3-13). This was done 

so that the treatments could truly assess implement effects rather than being 

confounded by dissimilar pre-cultivation soil conditions. 

Each treatment was replicated three times and the plots were arranged in a row-

column design. Plot length and the distances between plots were identical to the 

previous experiment. Pre-cultivation occurred in the third week of April 2006 and 

consisted of two parallel passes of the plough (± 24 cm deep) per plot for Treatments 
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3-5 and an additional pass over the centre of the ploughed strip for Treatment 4 using 

a 3 m. wide power harrow (Maschio Erpice DC 3000). Following cultivations were 

performed in opposite direction to limit bead dispersal out of the sampling area. 

Treatments of Set 1 were initiated before moving on to Set 2. Due to setbacks in the 

sampling process, there was not enough time to actually carry out Treatment 4 and 5 

so Set 2 was lost from the analysis. 

 
 

Beads were introduced at 7 depths (Surface, 1.5, 4.5, 7.5, 10.5, 13.5 and 16.5 cm) in 

the same way as the previous 

experiment with the exception of 

Treatment 3 where the soil was 

ploughed before the beads were 

inserted in the soil. To avoid 

compaction of the soil, a crawling 

board supported by pallets outside 

the plot area was used to dig the 

trench and insert the beads in the 

soil (see Figure 3-14). Due to the 

uneven soil surface after ploughing, 

the soil surface level was 

Spring tine

Ph

Ph

St

Ph

Ph

St

Pre-cultivation Target cultivation
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Figure 3-13 Cultivation treatments chosen to test ‘multiplicativity’ assumption. Due to 
logistic and time constraints only Set 1 (Treatments 1-3) was carried out.  

 

Figure 3-14 The Surface layer of beads in one 
of the ‘Power harrow’ plots in previously ploughed 
soil.  
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determined to be somewhere in between the peaks and troughs. Bulk density and 

gravimetric soil water content were determined prior to target cultivation. Bulk 

density was 1.5 ± 0.1 g/cm3 and 1.3 ± 0.1 g/cm3

 

 prior to ploughing and power 

harrowing respectively. Water content was lower prior to power harrowing, 11 ± 1%, 

than prior to ploughing, 16 ± 1%. The target depth of the plough and power harrow 

when used as ‘target cultivation’ was 15 and 7.5 cm respectively. Because the 1.83 m 

wide power harrow was out of use at the time the area was power harrowed using the 

3.0 m wide one. Time necessary to traverse a known distance through the plots was 

measured to obtain an estimate of implement speed. After target cultivation the soil 

was left for around 3-4 weeks to allow the soil to stabilise after which sampling was 

conducted using the excavation framework as described previously. Since the power 

harrow left a more or less flat soil surface, plots of Treatment 2 and 3 were bulked per 

row and excavation quadrat depth. Because a 3 m. rather than a 1.83 m. wide Power 

harrow was used, the beads in the top layers had spread out over a larger area. 

Therefore, power harrowed plots were sampled over a wider area to maximise the 

percentage recovery for beads in the top layer. Experimental details are summarised 

in Table 3-6. 

Table 3-6 Cultivation and sampling characteristics for experimental plots (R1 is Replicate 1) 

 T1-[Plough] T2 -[Power harrow] T3-[Plough+Power harrow] 

R1 R2 R3 R1 R2 R3 R1 R2 R3 

Date of 
cultivation (1) 

26/05 23/06 26/05 12/05/06 18/05/06 

Date of 
cultivation (2) 

n/a n/a 15/06/06 

Tractor speed 
(1) - (km/hr) 

3.7 4.1 4.5 2.0 2.0 1.9 3.4 n/m 3.3 

Tractor speed 
(2) - (km/hr) 

n/a n/a 3.4 n/m 3.4 

Sampling 
period 

22-28 
June 

12-14 
July 

13-15 
June 

2-9 June 3-8 July 

Layers sampled 8 8 8 4 4 6 7 7 7 

Rows sampled E-I E-L D-H Variable (A-E) F-O 

Line of impact E E E C/D D B unknown H I 
 

 

Plots of Treatment 1 were sampled as described in Section 3.2.3.1 (Sampling design). 

Soil samples of different soil layers were mixed up during sampling in one ‘Plough’ 

replicate and a separate plot was set-up to replace this replicate. Beads were retrieved 

from soil samples as explained for the previous experiment. Percentage recovery of 
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beads over depth and colour was calculated. To analyse if beads had been discovered 

independent of depth and colour, an ANOVA was conducted on the arcsine 

transformed percentage recovery data.  

Prior to matrix multiplication the original transition matrices for [Power harrow] and 

[Plough] had the following dimensions respectively:  

      

..............2421

..............2118

..............1815

..............1512

..............129

..............96

..............63

..............30
5.165.135.105.75.45.10

..

..

..

..
5.16

............129

............96

............63

............30
5.135.105.75.45.10

−
−
−
−
−
−
−
−

−
−
−
−

 

For a correct comparison of the observed and predicted [Plough + Power harrow] 

matrices, three conditions have to be met with regard to the matrix multiplication: 

1. Each starting depth in [Power harrow] can only be multiplied with it’s 

corresponding soil layer [Plough], i.e. 1.5 cm and {0-3 cm}. Since the 

‘Surface’ was not sampled separately in the [Plough] transition matrix, it was 

omitted as a starting depth from the [Power harrow] transition matrices. Note 

that it does not have to be omitted as a starting depth for the [Plough] 

transition matrices. 

2. The number of columns in the [Power harrow] transition matrices has to 

match the number of rows in the [Plough] transition matrices. Hence, two 

columns were added to the [Power harrow] transition matrices (for the virtual 

19.5 and 22.5 cm starting depths) 

3. The dimensions of the observed and predicted [Plough + Power harrow] have 

to be identical, i.e. 7 rows (soil layers) and 7 columns (starting depths). Given 

that the number of rows and columns of the predicted [Plough + Power 

harrow] transition matrix is equal to the number of rows and columns of the 

[Power harrow] and [Plough] transition matrices respectively, the number of 

rows of the [Power harrow] matrix ought to be 7 so that an extra row (18-21 

cm) is added. No change of the [Plough] transition matrix is required. 

Hence, the transition matrix of the [Power harrow] prior to matrix multiplication was 

represented by: 
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................2118

................1815

................1512

................129

................96

................63

................30
5.225.195.165.135.105.75.45.1

−
−
−
−
−
−
−

 

From the results it could be deduced that, had there been beads introduced in the 

[Power harrow] plots deeper than 16.5 cm, they would not have moved in any of the 

plots. Given that beads from these plots were only recovered from the first four or five 

layers, it would appear a 4-layered [Power harrow] transition matrix should be 

represented as:  

            

00.000.000.000.000.000.000.000.02118
00.100.000.000.000.000.000.000.01815
00.000.100.000.000.000.000.000.01512
00.000.0..................129
00.000.0..................96
00.000.0..................63
00.000.0..................30

5.225.195.165.135.105.75.45.1

−
−
−
−
−
−
−

 

with the experimentally derived probabilities taking the place of the dots. For the 5-

layered [Power harrow] transition matrix, the beads initially at 19.5 and 22.5 cm were 

assumed to be staying in the 15-18 cm and 18-21 cm layer respectively. 

The result of this matrix multiplication clearly showed an incorrect upward shift of 

the distribution over depth (see red curves in Figure 3-18). Therefore, a second 

approach was tested based on the fact that power harrowing effectively compressed 

the six soil layers containing the bead layers into four (R1 and R2) or five soil layers 

(R3). For the matrix multiplication what is relevant is not the number of soil layers 

after but before cultivation. For each starting depth the probabilities of the four or five 

soil layers were therefore ‘diluted’ over six layers using the following assumptions 

(stated prior to the analysis): 

• All six layers have been compressed during power harrowing into either 

exactly 4 (R1 and R2) or 5 layers (R3).  

• The rate of compression is unequal for each of the six layers; from having no 

compression at all in the 7th layer and a little in the 6th layer, it increases 

linearly over the six layers with most compression of the top soil layer. This 

can be intuitively comprehended for a power harrow with crumbling roll 

attached cultivating previously ploughed soil. 
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Using a spreadsheet model it can be inferred that the only solution that results in a 

linear rate of compression over the first six layers and a total compression into 4 or 5 

layers, is a compression ratio where the denominator is (a multiple of) 21.  For R1 and 

R2 the numerator increases per soil layer in steps of 2 and for R3 the numerator 

increases in steps of 1 (see Table 3-7).  

For example if the denominator is set at 20 (D=20), then given that Layer 7 is 

uncompressed, Layer 7 can be represented by 20/20. Assuming a linear increase of 

compression from Layer 6 to Layer 1 with the numerator decreasing at 1 unit for each 

layer ( 1layerN −∆ = -1) would result in: Layer 6: 19/20, Layer 5: 18/20, Layer 4: 

17/20, Layer 3: 16/20, Layer 2: 15/20, Layer 1: 14/20. Adding the ratios would give a 

total of 4.95 soil layers exceeding the required number of 4 soil layers. 

 

Table 3-7  Resulting number of 3.0 cm layers for different compression rates 

 D = 20 D = 21 D = 22 
1layerN −∆ = -1 4.95 5.00 5.05 

1layerN −∆ = -2 3.90 4.00 4.09 

1layerN −∆ = -3 2.85 3.00 3.14 

 

Using this information the observed probabilities of the 4 soil layers are expanded 

over 6 soil layers (see Table 3-8). 

 

Table 3-8 Modification of probabilities to reflect the expanded soil before [Power harrow] 
cultivation. Soil was expanded from 4 to 6 soil layers for Replicate 1 & 2 and from 5 to 6 soil layers in 
Replicate 3. 

 [Power harrow] Replicate 1 & 2 [Power harrow] Replicate 3 

p p1,new = 1,old p * 9/21    1,old

p

 * 15/21    

p2,new = 1,old p * 11/21 1,old * 6/21 + p2,old

p

 * 10/21 

p3,new = 1,old * 1/21 + p2,old p * 12/21 2,old * 11/21 + p3,old

p

 * 6/21 

p4,new = 2,old * 9/21 + p3,old p * 6/21 3,old * 15/21 + p4,old

p

 * 3/21 

p5,new = 3,old * 15/21 + p4,old p * 2/21 4,old * 18/21 + p5,old

p

 * 1/21 

p6,new = 4,old p * 19/21 5,old

 

 * 20/21  

 

It was further assumed that all the beads initially at 19.5 and 22.5 cm would have 

remained at the 15-18 and 18-21 cm soil layers respectively (p = 1). Each [Power 
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harrow] plot was treated this way and then an average matrix created. This average 

matrix was then used to premultiply the average transition matrix from the three 

[Plough] replicates. This resulted in a predicted [Plough + Power harrow] transition 

matrix. 

Predicted values for the distribution of beads over depth for [plough + power harrow] 

based on the multiplication of the transition matrices for [plough] and [power harrow] 

were compared to observed values in the field (see Figure 3-3) using the Pearson 

correlation coefficient (r).  

 

 

3.3.3 Results 
 

The average percentage recovery was generally high for all treatments and plots (see 

Table 3-9). Recovery of beads was affected by burial depth before cultivation only for  

  

Table 3-9 Percentage recovery of beads per burial depth for the three treatments. 

 Depth of beads prior to cultivation (cm) 

 Repl. Average 0 1.5 4.5 7.5 10.5 13.5 16.5 

T1 - [Plough] R1 76 66 66 65 75 90 93 77 

R2 76 86 69 69 74 83 73 76 

R3 84 82 68 89 87 82 92 91 

T2 - [Power 

harrow] 

R1 82 50 72 81 92 87 94 95 

R2 82 47 76 75 92 93 93 99 

R3 72 52 61 67 69 76 86 92 

T3 - [Plough 
+ 
Power harrow] 

R1 85 86 95 87 84 88 83 73 

R2 87 89 79 87 88 89 86 88 

R3 77 82 84 70 81 74 76 73 
 

 

the [Power harrow] treatment where significantly more beads were recovered from 

beads that were initially at deeper depths (P<0.001). The use of the 3 m wide power 

harrow undoubtedly contributed to the dispersal of shallow beads out of the sampling 

area. There were not enough replicates for each bead colour to be introduced at each 

depth, but in the current experiment design, bead colour did not appear to affect 

recovery probability (P = 0.323).  
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By graphically visualising the columns of the transition matrix the importance of 

subtle differences in plough depth become apparent. The distribution of beads over 

depth in the [Plough] plots shows very similar patterns for the first and second 

replicates (see Figure 3-15). Plough depth in the third replicate was less deep than in 

the other replicates as most beads buried at 16.5 cm did not move upwards. 

Consequently, the beads initially at 13.5 cm deep in R3 show a similar distribution to 

the beads initially at 16.5  cm deep for R1 and R2. 

 
 

The action of the power harrow to soil and bead distribution is very different to the 

plough (see Figure 3-16).  Beads in Replicate 1 and 2 of the [Power harrow] plots 

show almost identical patterns of bead distribution over depth, whereas Replicate 3 

shows a different pattern, with the 13.5 cm and 16.5 cm beads remaining in deeper 

soil layers. At the time of power harrowing Replicate 3, the front and rear tyres of one 

side of the tractor compressed the outer section of the line of beads which can be seen 

from the graphs for the 16.5 cm beads that had not been moved by the power harrow; 

91% of beads were recovered from the 12-15 cm layer but 8% were compressed into 

the 15-18 cm layer.  

 

 

Figure 3-15 Distribution of recovered beads over soil depth after [Plough] cultivation for 
beads at different depths (surface, 1.5 cm, etc.) prior to cultivation. Target depth for plough and 
skim coulter were 16 and 5 cm respectively.  
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Comparing the obtained transition matrix for {Plough - [Power harrow]} with the 

transition matrix for {unknown pre-cultivation - [Power harrow]} as derived by 

(Mead et al., 1998), shows clear differences for deeper beads. Whereas in this 

experiment the plough preceded the power harrow cultivation this was not the case in 

the previous experiment. This indicates that the transition matrix of a certain 

cultivation implement is not only a function of the depth of the implement, but also of 

the pre-cultivation or lack thereof that the soil has received prior to the target 

cultivation.  

The distribution of beads over depth in the [Plough + Power harrow] plots is similar 

to the [Plough] plots except for the fact that the soil has been compressed by power 

harrowing and counts seven instead of eight layers. The second replicate (R2) reveals 

that even after power harrowing, the soil is still more expanded than before ploughing 

(see Figure 3-17); the majority of the beads at 16.5 cm were not moved by the plough, 

yet they were recovered from the 18-21 cm layer. 

 

 

Figure 3-16 Distribution of recovered beads over soil depth after Power harrow cultivation 
for beads at different depths (surface, 1.5 cm, etc.) prior to cultivation. Target depth for power 
harrow was 15 cm. Note that scale of X-axis varies among graphs. 
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For all three treatments, the distribution pattern over depth for beads initially at 16.5 

cm deep showed the greatest variation over the three replicates compared with beads 

at other starting depths (data not shown). This is caused by variable working depth 

and emphasizes that small changes in working depth of a cultivation implement can 

have the largest effects on deeply buried seeds.  

Without expanding the soil layers, the predicted probabilities compare very poorly 

with the observed results (see Figure 3-18) and the correlation coefficient was close to 

zero (r = 0.03). After extrapolating the probabilities over the working depth, the 

predicted transition matrices generally corresponded well with the observed patterns 

in the field except for beads initially at 16.5 cm in the deepest layers.  The correlation 

coefficient (r) between predicted and observed probability values increased to 0.73 for 

the mean response and 0.68, 0.52 and 0.69 for Replicates 1, 2 and 3 respectively.  

The mean correlation coefficient for the three pair-wise comparisons of the [Plough + 

Power harrow] replicates was 0.60, indicating that there is as much or more variability 

within the observed transition matrices as between the observed and predicted 

transition matrices.  

 

Figure 3-17 Distribution of recovered beads over soil depth after [Plough + Power harrow] 
cultivation for beads at different depths (surface, 1.5 cm, etc.) prior to cultivation. Note that scale 
of X-axis varies. 
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3.3.4 Implementation and discussion  
 

The work done in this study verified the use of transition matrices for predicting seed 

movement. A new element was introduced, the effect of soil expansion and 

compression, which is essential to be considered. The ‘raw’ transition matrix, 

resulting from sampling the soil after an implement that compresses the soil, can not 

be used to pre-multiply the transition matrix of the preceding cultivation implement. 

Instead the probabilities have to be expanded over the depth over which the 

implement compressed the soil. 

By carefully examining the individual replicates it is clear that apparently random 

changes in working depth whilst the implement is pulled through the soil can result in 

quite different transition matrices. When the working depth of an implement is set, the 

realised working depth will follow a probability density function (e.g. normal 

distribution) around the anticipated working depth with transition matrices varying 

accordingly.  

In addition, it was found that transition matrices are not only implement-specific but 

also dependent on the preceding cultivation. This does not necessarily mean that a 

myriad of transition matrices have to be created for each implement, as most 

 

Figure 3-18 Probabilities of movement for a bead or seed at a certain depth prior [Plough + 
Power harrow] cultivation to a certain soil layer after [Plough + Power harrow] cultivation. 
Measured values are compared with two predicted models (with and without expanding the 
probabilities). Horizontal bars on the ‘Measured’ blue line represent standard error over three 
replicates.  
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implements will have a fixed place in the cultivation sequence anyway. For those 

implements that can be used at various positions in the cultivation sequence it may be 

worth considering whether the bulk density of the soil varies between times of 

cultivation. If it does, this may well result in a different transition matrix as evidenced 

for the Power harrow in this and the previous study (Mead et al., 1998). 

Notwithstanding these relative successes, by scrutinizing the processes of soil and 

seed movement it was realised that there appears to be a fundamental inconsistency 

for most of the empirically derived transition matrices beyond the assumption of 

multiplicativity. Due to the lack of time this could not be addressed experimentally. A 

theoretic example will illustrate the idea: imagine a soil profile, 20 cm deep, and with 

a perfectly uniform seed distribution of 2500 seeds in each 5 cm layer. The soil is 

ploughed as in Cousens and Moss (1990) and can thus be modelled using the 

transition matrix they derived experimentally: 

 

Equation 3-3: 



















=





































3325
2525
1925
2225

2500
2500
2500
2500

*

48.018.021.046.0
12.019.030.040.0
11.026.028.012.0
29.037.021.002.0

 

 

The remarkable result is that the plough, apart from moving the soil is also filtering 

the beads out of some soil layers and depositing them in other layers. For this effect 

not to be an experimental anomaly it has to be accepted that seeds embedded in soil 

can move independent from soil, which seems unrealistic. Algebraically this 

behaviour is caused by the fact that the row sums of the transition matrix do not add 

up to 1. 

 

33.1
01.1
76.0
89.0

48.018.021.046.0
12.019.030.040.0
11.026.028.012.0
29.037.021.002.0

>−−



















 

 

If this additional constraint is added to the transition matrix (see a modified transition 

matrix where this condition is satisfied in Equation 3-4) then the numbers of seeds 

over depth would not have changed which is what intuitively can be comprehended. 
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Equation 3-4: 


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
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
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*

39.007.011.043.0
12.019.030.039.0
11.037.037.015.0
38.037.022.003.0

  

The stable depth distribution is the vertical distribution of seeds in the soil after x 

cultivations and after which an additional cultivation would no longer change the 

distribution of seeds in the respective soil layers. The stable depth distributions of the 

transition matrices with and without these additional constraints are  
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 and 
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














36.0
23.0
18.0
23.0

 respectively. 

 

Hence, the second transition matrix is suggesting that seeds are behaving unlike other 

soil particles as otherwise the bottom layer would have increased in volume, violating 

the notion that the layers are each 5 cm. If it is accepted that seeds behave just like 

soil particles the only logical conclusion is a ‘complete mixing’ as predicted by the 

stable depth distribution of a transition matrix where the row sums add up to one. 

So what causes this anomaly? Most of the transition matrices are the result of 

experimental work using some form of artificial seeds. Studies that have compared 

the vertical redistribution of artificial beads and seeds over soil depth during 

cultivation found no difference (Moss, 1988; Staricka et al., 1990) so it is not likely 

that beads behave fundamentally different from seeds.  

It could be related to the way in which beads have been introduced in the soil. 

Researchers have either applied beads in a narrow layer in the centre of the target soil 

layer or mixed with soil and then introduced as a layer at the required depth. With 

regards to the latter, it is vital to ensure a homogenous distribution of beads over the 

complete soil layer, and if realised this approach delivers a ‘rough-and-ready’ matrix.  

The former is less laborious but relies on the assumption that the probability of 

movement for beads applied in the centre of a soil layer is representative of the 

average probability for the entire layer. If row sums are consistently higher (compared 

over replicates) than 1 after elimination of the ‘Surface’ layer probabilities, then the 

conclusion has to be that this assumption is incorrect. As observed in the pilot 

experiment, applying a high number of beads in a narrow layer instead of mixing 
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them with soil before cultivation could lead to lower aggregation into soil clods. 

Perhaps the enrichment of the fourth soil layer in the Cousens and Moss model is 

caused by beads not incorporated in soil clods and trickling down the pore spaces to 

the bottom layer. On the other hand, the transition matrices derived by van Melick 

(1996) also suffer from row sums being unequal to 1, despite introducing beads that 

had been completely mixed through a volume of soil in the field using an auger. 

Another explanation is that the assumption that the distribution of the recovered beads 

over depth is representative of all moved beads does not hold true. If the beads in the 

bottom soil layer are recovered to a higher extent than the beads in the top layer, this 

will be reflected by a higher row sum for the bottom layer. Interestingly, the studies 

where transition matrices for the plough are derived from soil rather than seed 

movement (i.e. the Colbach and Roger-Estrade models) suffer less from this problem 

although it is still somewhat present judging from the stable depth distribution in the 

Colbach model (1) but it is virtually absent in the Roger-Estrade model (2). 

 

(1) =
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
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Using an excavation framework results in recoveries six times higher than using soil 

cores but it can not sample as wide an area which may be required to get a 

representative area. The disadvantage of using soil cores is that the recovery per 

starting depth is low and can vary by a factor five (see Table 3-1) so that depth 

distribution patterns are likely to vary more between replicates. 

Transition matrices are derived by normalising over columns. The question is if the 

raw data (recovered bead numbers) can be somehow manipulated or interpreted to 

derive transition matrices that are normalised over both columns and rows. Unless this 

can be accomplished, the predictions of modelling seed movement using the current 

transition matrices are as biased as the sampling scheme that was used to create the 

models in the first place. In the Cousens and Moss transition matrix, the row sums of 

the upper two layers, from where weed emergence is possible, is less than one. Any 

transition matrix with an even number of rows and columns and where the row sums 

are less than one will result in an underestimation of emergence and an overestimation 

of seed mortality.  
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Despite this deficiency, seed movement transition matrix models for cultivation 

implements are still the best available way to predict vertical weed seed redistribution 

and should therefore not be dismissed. Rather, more effort should be taken, to extend 

the work in a correct fashion to specific cultivation implements used outside the 

arable sector. For example the cultivation applied to the soil where carrots are grown 

includes implements such as the ridger and stone and clod separator (see section 3.6.1 

and Figure 3-33) for which no transition matrices exist. Because of the enormous soil 

moving capacity of these implements this should not be addressed by introducing 

beads to the soil, a better option might be using steel tracers that can be recovered 

with a metal detector such as in the study by Montgomery et al. (1999). To save time 

and finances, cultivation implements that are (almost always) used in conjunction, 

such as the ridger and the stone and clod separator, can be addressed together rather 

than as separate implements.  
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3.4 Evaluation of the Colbach and Roger-
Estrade models for seed movement during 
ploughing 

 

3.4.1 Introduction 
The models developed by Colbach et al. (2000) and Roger-Estrade et al. (2001) will 

be referred to in this section as the Colbach model and the Roger-Estrade model 

respectively. Both are mechanistic models in that they postulate an explicit theory by 

which the soil is moved during ploughing and how this is dependent on plough 

characteristics (width and depth, skim coulter) and soil characteristics 

(fragmentation). Once the mouldboard shares hit the soil, the furrow is rotated until it 

is settled on the previously rotated furrow. The angle over which the furrow is rotated 

depends only on ploughing width and depth, i.e. the sine of the inclination angle of 

the rotated furrow with the plough pan equates to the ratio of tillage depth to width 

(see Figure 3-19A). During this movement the furrow breaks up and this phenomenon 

is modelled by separating the furrow into slivers which slide downwards until they 

reach the plough pan (see Figure 3-19B). The number of slivers depends on the 

condition of the soil: it is low in the case of poor fragmentation when the ploughed 

soil is dry or compacted; and it increases with the fragmentation of the soil, when 

ploughing occurs in good moisture conditions and/or when the soil to be ploughed  
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is uncompacted. This representation allows the calculation of the final vertical and 

lateral co-ordinates of any point of the furrow as a function of, its coordinates before 

ploughing, ploughing depth and width, and finally soil structure.  

The difference between the two models is that the Roger-Estrade model addresses the 

effect of a plough with a skim-coulter (see Figure 3-20) in contrast to the Colbach 

model where the plough contains no skim-coulter. 

 

Figure 3-19 Soil movement during ploughing explained as a succession of a rotation of the 
whole furrow (A), followed by a breakup into slides and their translation, with the number of slides 
decreasing with soil compaction (B) (after Colbach et al., 2000). 
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The skim-coulter is a device sometimes described as a mini-plough that scrapes off 

part of the surface, where straw and weed seeds have accumulated at the end of the 

season, and deposits this at the bottom of the previously rotated furrow just prior to 

the rest of the furrow so that it is effectively buried deeper than it would have been 

otherwise (see Figure 3-20). It is important to emphasise that the height of the soil 

 

Figure 3-20 Representation of the movement of the soil during ploughing with a skim-coulter. 
A1, A2, A3, A4 and B1, B2, B3, B4 are the successive positions of points A and B during the furrow 
slice movement: rotation (a), then translation of the slivers in case of a compacted (b) or an 
uncompacted soil (c) before ploughing. Sd and Sw are the depth and width of the skim-coulter, 
respectively. Pd and Pw are the depth and width of the plough, respectively.   part of the furrow 
slice cut by the skim-coulter;   part of the furrow slice replaced in the void created by the skim-
coulter (after Roger-Estrade et al., 2001). 
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profile and the number of slivers after ploughing are the same in the Colbach and 

Roger-Estrade model for a given set of soil and plough set-up characteristics.  

The benefit of these mechanistic models is that they can cope with different plough 

and soil characteristics. A critical examination of the evaluation of both models, 

however, reveals that the models predict soil movement reasonably well only for a 

limited range of conditions. Evaluation of the Colbach model by the authors showed 

that the modelling efficiency (Mayer and Butler, 1993) of the final vertical coordinate 

was high (r2 = 0.85) and that there was no systematic over- or underestimation. 

However, including ‘imperfectly’ rotated furrows (constituting more than half of all 

data points) in the analysis reduced the modelling efficiency (r2 = 0.63). From the 

point of evaluating a mechanistic model describing perfectly rotated furrows it makes 

sense to remove those data points. However, it questions the applicability of the 

model in ‘real life’ as no reason is given to assume that in reality most furrows will 

follow the ideal rotation pattern. Roger-Estrade et al. (2001) evaluated their proposed 

model and reported that in uncompacted soil the modelling efficiency reached 0.66 

and 0.73 for two different locations with no over- or underestimation being detected. 

However, if the soil was compacted by driving a heavy tractor over the clay soil in 

wet conditions, the modelling efficiency of the final vertical coordinate in the Roger-

Estrade model was considerably lower (r2

A close look at a mouldboard plough in action and drawing from personal observation 

and photos found through the Google Image search engine of ploughed fields in 

England, France and the Netherlands, highlighted two further weaknesses of the 

models. The first one relates to the number of slivers. For an excessively compacted 

soil the authors assigned either two (Colbach model) or three slivers (Roger-Estrade 

model). With two or more slivers, the pattern of individual furrows becomes 

undetectable. Yet, many observations of ploughed soil (see example in Figure 3-21) 

show a clear pattern of the rotated furrows, which would indicate only one sliver.  

 = 0.55). Given that the primary reason of 

ploughing is to undo the soil compaction imposed by tillage, spraying and harvesting 

equipment deployed in the previous season (Guul-Simonsen et al., 2002), the question 

is which scenario, compacted or uncompacted, is more representative of soil 

conditions at the time of ploughing.  
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The other criticism, which is acknowledged by the authors, relates to the lack of soil 

expansion during ploughing, resulting in the underestimation of the final vertical 

coordinate. Close observations of a sandy soil after ploughing showed that even when 

no clear furrows were visible (i.e. multiple slivers), the soil level was raised 

considerably, relative to adjacent non-ploughed land, which is in contrast to what the 

 

Figure 3-21 Ploughed land at Warwick HRI (top) a sandy loam soil and ploughed land in 
Groningen, the Netherlands a clay soil (bottom – courtesy of Jan Dijkstra). Individual rotated 
furrows can be distinguished, suggesting one ‘sliver’ as in the terminology of Colbach et al. 
(2000).  
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Colbach and Roger-Estrade models predict. Since the Colbach model is conceptually 

the simpler of the two, the geometric principles of this model can be used to predict 

soil height after ploughing for both the Colbach model and the Roger-Estrade model. 

The maximum soil height (yd) is determined by the depth of ploughing and the 

number of slivers but not through additional soil expansion, as is illustrated in Figure 

3-22a and b. In Scenario 1 and 2 it is shown that deep ploughing results in less 

complete rotation and therefore higher yd

 

 than in shallow ploughing.  

 

 

 

             
Figure 3-22 Schematical diagram of soil movement during ploughing based on the geometric 
principles of the Colbach model, aiming to show that maximum soil height after ploughing (yd) is 
(only) a function of plough depth (Scenario 1 vs. Scenario 2) and degree of soil fragmentation 
(Scenario 3 vs. Scenario 4). 
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From Scenario 3 and 4 it can be deduced that yd

( )
( )

5
y

y sliver1d
slivers5d =

 is inversely proportional to the 

number of slivers: . Using simple trigonometry (see Figure 3-

23)  

 
 

and a spreadsheet model in Excel, yd

 

, as predicted by the Colbach and Roger-Estrade 

models, can be plotted as a function of the number of slivers and the plough depth 

(see Figure 3-24).  

 

Neither model addresses the settling of the soil under influence of weather conditions 

like rain, freezing and thawing if no further cultivation takes place after ploughing and 

 

Figure 3-24 Maximum soil height (yd) as a function of plough depth and the number of slivers 
according to the models of  Colbach and Roger-Estrade. 

 

Figure 3-23 Trigonometry used to calculate maximum soil height, yd, as a function of plough 
depth (d) and number of slivers (z). 



 121 

Roger-Estrade et al. (2001) argued that this effect could possibly neutralize the lack of 

soil expansion in their model, especially for compacted soils. To come to a decision 

on how seed movement be modelled in the overall modelling framework a field 

experiment was conducted with two specific aims: 

• to examine if and how much the Colbach and Roger-Estrade models 

underestimate soil expansion just after ploughing  

• to examine how the profile of ploughed soil changes over time 

 

 

3.4.2 Methodology 

3.4.2.1 Experimental design 
This experiment was conducted alongside the main experiment and using the 

experimental plots as discussed in Section 3.2 and a more detailed description of the 

experimental design is given there. The experiment design was a factorial treatment 

set with location (soil type) and plough setting as factors in two replicates. The 

Warwick HRI research stations (Wellesbourne and Kirton) were chosen as they 

provide different soil types (a sandy loam at Wellesbourne and a silty loam in Kirton) 

and both stations had the facilities and land available for the cultivation experiments 

to be conducted. Since the mouldboard ploughs at both locations were of the same 

brand (Dowdeswell) and the shares had the same shape and width (36 cm) it was not 

thought necessary to use the same plough. Plough depth was set at 16 and 24 cm and 

the skim coulter was nominally set at about 5 cm.  

 

3.4.2.2 Measurements 
Due to weather and time constraints the experiments could not be initiated on the 

same date; in Kirton all experimental plots were ploughed on the 12th of January 

2006, in Wellesbourne both replicates with plough depth set at 16 cm plus one 

replicate with plough depth at 24 cm were ploughed the 12th of December 2005 the 

remaining replicate with plough depth 24 cm was ploughed on the 6th of January 

2006. As documented in Section 3.2, the depth of cultivation was found to be around 

18 cm for the treatment with plough depth set up at 16 cm. In the Results section the 

treatment will be referred to further as the ‘18 cm’ treatment. 
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Just before ploughing, a random location was chosen in the strip to be ploughed. Four 

wooden pegs were hammered into the soil in a square shape, 80 cm distance from 

each other and in line 

with the direction of 

cultivation. Just outside 

the strip of soil to be 

ploughed and parallel to 

the four pegs, two 

‘reference’ pegs were 

hammered in the soil. 

The top of the two 

reference pegs was 

made level with the four 

permanent pegs. A 

wooden board (90 x 90 

cm) with 121 holes in 

the central 50 x 50 cm 

(11 x 11 holes at 5 cm from each other) was then gently placed on top of the pegs. To 

obtain a measure of soil height, a stick with ruler was then slid through a wooden 

block with empty core - to ensure a vertical projection of the stick – and the wooden 

board until it reached the soil level (see Figure 3-25). ‘Stick length’ measurements, 

defined as the length from the top of the wooden block until the soil, were taken at 5 

mm precision. This was repeated so that each 10x10 cm position (36 points) of the 

50x50 cm grid was sampled. The four ‘permanent’ pegs were removed just before 

tillage and hammered in again immediately after tillage in the same height and 

position using the unmoved ‘reference pegs’ as a guide. Care was taken not to 

compact the soil within the four pegs. To assess expansion of soil volume 

immediately after ploughing and soil settling afterwards, measurements were taken 

just after ploughing and then repeated once every two weeks for three months (see 

Table 3-10). Daily volume of rainfall was recorded by weather stations at both 

locations. After ploughing, sampling was carried out at a 5x5 cm grid (121 points), 

except for the first two series of measurements at Wellesbourne that were taken on a 

10x10 cm grid.  

 

 
Figure 3-25 Wooden board, block and stick with ruler used to 
measure relief after ploughing and change in relief over time due to 
weather conditions. 
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Table 3-10 Soil height sampling dates after ploughing at two depths (18 & 24 cm) and the total 
rainfall (mm) over the previous sampling period. R1, R2 represent replicate 1 and 2 respectively. 

Location Timing Sampling dates Total rainfall  

K
ir

to
n 

Pre 12/01/2006  
Post (1) 12/01/2006  
Post (2) 23/01/2006   7.5 mm 
Post (3) 06/02/2006   1.2 mm 
Post (4) 20/02/2006 20.7 mm 
Post (5) 06/03/2006 13.0 mm 
Post (6) 20/03/2006 22.8 mm 
Post (7) 03/04/2006 18.4 mm 

 
  Sampling dates 

(18&24 cm R1)  
Total rainfall Sampling dates 

(24 cm R2) 
Total rainfall 

W
el

le
sb

ou
rn

e Pre 12/12/2005  06/01/2006  
Post (1) 14/12/2005  09/01/2006  
Post (2) 09/01/2006 23.3 mm 26/01/2006   8.5 mm 
Post (3) 26/01/2006   8.5 mm 09/02/2006   2.4 mm 
Post (4) 09/02/2006   2.4 mm 23/02/2006 16.7 mm  
Post (5) 23/02/2006 16.7 mm  09/03/2006 20.0 mm 
Post (6) 09/03/2006 20.0 mm 23/03/2006   2.3 mm 

 

 

 

3.4.2.3 Data analysis 
The variation in soil level before ploughing was determined by subtracting the median 

‘stick length’ from the stick length at each of the 36 points at the grid. The soil 

expansion and variation in soil height just after ploughing was calculated for each x,y-

position by subtracting the stick length after ploughing from the median stick length 

before ploughing.  

This allowed a comparison with the predictions by Colbach and Roger-Estrade 

models for two characteristics just after ploughing; soil surface roughness along the x 

and y-axis and soil expansion.  

 

Soil surface roughness 

During measurements in the field, the y-axis of the plots were kept parallel to the 

direction of ploughing to check for a regular pattern across the plot (along x-axis) as 

predicted by the Colbach and Roger-Estrade models. Since the width of the sampled 

area (50 cm) was wider than the plough width there was a potential caveat; if the soil 

would rotate as regular as predicted according to the Colbach and Roger-Estrade 

models and if the number of slivers is low, it would mean the distribution of soil 

heights in the sampling area gave a biased estimate of median soil height. If so, only 

the data from the 0-40, 5-45 or the 10-50 cm sections of the x-axis should be used. 
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Two-sample T-tests were conducted to check whether there were significant 

differences between ‘random roughness’ across (x-axis) and along the direction of 

ploughing (y-axis). Random roughness (Currence and Lovely, 1970) was calculated 

for each row and column:  

Equation 3-5 
( )

1k
ZZ

RR
k

1i

2
i

−

−
=
∑ =   

where Zi = soil height in a row or column at location i; k = number of height readings 

per row / column, i.e. either 11 (Kirton) or 6 (Wellesbourne). This decision process 

was graphically presented by contour plots of median soil height just after ploughing.  

 

 

Soil expansion 

With regard to soil expansion, a spreadsheet model was used to generate soil height 

profiles according to the soil rotation principles as in Figure 3-20, and implemented 

for the experimental plough characteristics and one, two or four slivers. Given that 

plough width was 36 cm and the width of the sampling stick was 0.5 mm, to obtain a 

distribution of predicted soil height, sampling 72 positions should give the complete 

distribution of ploughed soil heights, regardless of the number of slivers.  

 

 
 

Using simple trigonometry as illustrated in Figure 3-26, the sine functions of the 

angles α1, α2 and α3

 

 were expressed below in A, B and C respectively. 

α1

d
w

α1

α2yd

xd xw

α3
d

yi

 

Figure 3-26 Schematical illustration to Equations 3-6 to 3-10 that were used in a spreadsheet 
model in Microsoft Excel to calculate soil height. 
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Given that the three angles are all the same, Xd and Xw

By equating the right hand sides of A and C, X

 can be expressed as functions 

of plough depth (d), plough width (w) and the number of slivers (z) using substitution.  

d

Equation 3-6 

 can be expressed as a function of d, 

w and z as in Equation 3-6. 

z*w
dX

d
z*X

w
d 2

d
d =⇒=     

By equating the (denominator of the) right hand sides of A and C, Xd can be 

expressed as a function of x, w and Xw

Equation 3-7 

 as in Equation 3-7. 

( ) ( )
z

X*zwXXX*zw w
dwd

−
=⇒+=   

Now the right hand sides of Equations 3-6 and 3-7 can be equated to express Xw

Equation 3-8 

 as a 

function of d, w and z. 

( )
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dwX
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d 22
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w
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Given the width of the sampling stick is known (0.5 cm) and the length of Xd and Xw 

can be calculated, for each stick position (i.e. 0.25, 0.75, 1.25 etc.) it can be easily 

determined whether it falls into the Xd or Xw range (see Figure 3-26) and yi

Equation 3-9 

 can then 

be calculated according to Equation 3-3. 

( )


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−+α=
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=

positionstickXX*tany:Xinpositionstickif
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3
id  

Finally then, given a stick position, soil height (ysh) can be determined simply by 

deducting yi from yd

Equation 3-10 

 (see Figure 3-26). 

idsh yyy −=  
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Soil settling 

For each plough depth and location combination, data were pooled over the two 

replicates and a time-series of the median soil height over all x,y-coordinates was then 

created for consecutive sampling dates to compare soil settling. Rainfall data was 

summed over sampling periods and considered in relation to the changes in soil height 

at both locations. Unlike in Wellesbourne, the length of sampling period (11-14 days) 

and the sampling scale (5x5 cm) was consistent in Kirton, which allowed a more in 

depth look at the changes in soil height by comparing the frequency distributions of 

change in soil height over different time intervals 

The Colbach and Roger-Estrade models do not make exact predictions related to how 

the soil settles under influence of weather. In the AlomySys model (Colbach et al., 

2006) this feature was implemented in the model, presumably by increasing the soil 

fragmentation (i.e. number of slivers), and therefore decreasing soil height, over time. 

Even without additional fragmentation due to weather influences, the Colbach model 

assigns up to 12 slivers immediately after ploughing. For each plough depth and 

location the observed distribution of soil height at 81 (Kirton) or 87 days 

(Wellesbourne) after ploughing was therefore compared with model predictions using 

3, 6 and 12 slivers in the Microsoft Excel spreadsheet model.  

 

 

3.4.3 Results 

3.4.3.1 Soil surface roughness  
Contour plots of the soil surface in the experimental plots just after ploughing do not 

reveal a clear pattern of rotated furrows (i.e. one sliver) although in some plots linear 

elements of low and/or high soil can be observed (see Figure 3-27). The two-sample 

T-test of the Random Roughness (standard deviation) of soil heights along the x-axis 

and y-axis confirmed that for none of the plots except Kirton 18-R1 (P<0.048), was 

the standard deviation along the y-axis significantly lower than along the x-axis. It 

should be emphasized that the scale of the measurements (50 x 50 cm) is much 

smaller than the scale at which the eye perceives a ploughed landscape in general (see 

Figure 3-21). 
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Higher frequency of the colours ‘blue’ and  ‘green’ in the contour plots for soils 

ploughed at 18 cm shows that the soil height after ploughing was generally lower than 

the soil height after ploughing at 24 cm at both locations.  

 

 

 

Figure 3-27 Contour plots of soil surface just after ploughing at two depths (18 and 24 cm) in 
Kirton and Wellesbourne. The ‘hotter’ the colour, the more the soil has expanded relative to soil 
height just prior to ploughing. Sampling in Kirton and Wellesbourne occurred on a 5x5 and a 
10x10 cm grid respectively. Abbreviations: Well.=Wellesbourne; R1, R2 represent replicate 1 and 
2 respectively. 
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3.4.3.2 Soil expansion 
The variation in soil heights before ploughing was larger in Kirton than in 

Wellesbourne but that is unlikely to have affected soil height after ploughing. 

According to expectations, the maximum, the median and the variation in soil height 

(interquartile range) after ploughing were higher than before ploughing (see Figure 3-

28). Although the soil height distributions for the different plough depths overlap 

greatly, the distribution of soil ploughed at 24 cm is clearly higher than for soil 

ploughed at 18 cm. This effect was more pronounced in Kirton than in Wellesbourne.  

 
 

The median soil height after ploughing was higher in Kirton than in Wellesbourne for 

soil ploughed 24 cm but not for soil ploughed at 18 cm. From the boxplot it can be 

concluded that although there is considerable overlap in the distributions of soil height 

for soils ploughed at 18 and 24 cm, the effect of plough depth on soil expansion is 

more pronounced than the effect of location/soil type. This is confirmed by comparing 

the distribution of the pooled data over plough depth with the distribution of the 

pooled data over location / soil type (data not shown).  

 

 

Figure 3-28 Box plots of soil height before (pooled data of 4 replicates) and just after 
ploughing for two plough depths and two locations (pooled data of 2 replicates, Well. = 
Wellesbourne). Outliers are represented by red asterixes and are defined as those datapoints within 
the range 1.5-3.0 times the interquartile range, below or above the 1st or 3rd quartile respectively. 
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Comparison with model predictions 

Judging from the result of the T-tests and the contour plots (see Figure 3-27) it was 

felt that the distribution of peaks and troughs was irregular enough to use the full 

dataset rather than curtailing the X-data. The data from the two locations were then 

pooled for each plough depth to create two datasets for which the distributions could 

be compared with the distribution of predicted soil heights for models with various 

numbers of slivers. For soil ploughed at 18 cm deep the observed median was slightly 

lower than the predicted median for the 2 slivers model and the maximum soil height 

was between that for 1 and 2 slivers (see Figure 3-29). For soil ploughed 24 cm deep, 

both the median and the maximum soil height were between the respective values for 

models with between 1 and 2 slivers. The minimum soil height for all observed 

experimental plots was lower than the predicted values because the Colbach and 

Roger-Estrade models consider the slivers as ending up contiguous to each other, 

ignoring cracks in the ploughed soil. It is important to notice that the observed 

distributions of soil height for soils ploughed at 18 and 24 cm depth are more 

dissimilar from each other than the predicted distributions for these depths for each of 

the number of slivers. This suggests that the effect of plough depth could be more 

pronounced than is currently implemented in the Colbach and Roger-Estrade models. 

 

 

Figure 3-29 Comparison between observed and predicted distributions of soil height just after 
ploughing at two different plough depths. Predicted distributions are based on the trigonometric 
relations that underlie the Colbach and Roger-Estrade models (see Figure 3-23). Observed values 
of soil height were pooled over location. Outliers are represented by red asterixes and are defined 
as in Figure 3-11. 
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3.4.3.3 Soil settling 
The pattern of soil settling over time was distinct for the two locations (soil types); 

median soil height declined fast over the first 11 days and slowly thereafter in Kirton 

(see Figure 3-30). In Wellesbourne soil height declined in a more constant way and 

only half as much as in Kirton. Interestingly, the amount of rainfall over the first 27 

days in Wellesbourne was much higher than over the first 25 days in Kirton (see 

Table 3-8), suggesting the pattern of soil decline is more inherent to soil 

characteristics than amount of rainfall per se. In both locations, the pattern of decline 

appeared similar regardless of plough depth. In fact, the difference in median height 

between soils ploughed at 18 and 24 cm that existed just after ploughing remained 

intact until the end of the sampling period (i.e 81 and 99 days after ploughing (DAP) 

for Kirton and Wellesbourne respectively).  

 
 

From the frequency distributions of changes in soil height over different time intervals 

it is clear that the average decline in soil height at Kirton is not constant over time but 

most pronounced in the first 11 days, lower in the next 28 days and even less in the 

last 42 days (see Figure 3-31).  

 

Figure 3-30 Change of median soil height over a three month period after ploughing; data 
from replicates ploughed at 24 cm in Wellesbourne was not pooled because date of ploughing was 

different. Standard error is calculated as N/253.1medianSE σ=  
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Furthermore, the sample variance (s2

 

) of the data over the first 11 days was larger than 

the sample variance over the next two intervals, in other words, absolute changes in 

soil height are larger over the first 11 days than thereafter. 

 

Comparison with model predictions 

Due to different decline rates in median soil height at Kirton and Wellesbourne, it was 

not justified to pool the data of both locations for each plough depth at the end of the 

sampling period. Whereas immediately after ploughing the observed median soil 

height for ploughing at 18 cm seemed to agree most with the predicted median soil 

height given 2 slivers, this had increased to 6 slivers (Wellesbourne) or to more than 

12 slivers (Kirton) at the end of the sampling period (see Figure 3-32). For soils 

ploughed at 24 cm the median soil height immediately after ploughing was reflected 

best by a value in between that predicted by models with 1 and 2 slivers and median 

soil height at Wellesbourne was a little higher and at Kirton a little lower than the 

median soil height for 3 slivers at the end of the sampling period. Because at each 

location the absolute change in soil height was the same for both plough depths and 

the decrease in absolute soil height from one sliver to the next is much greater for a 

lower number of slivers (see Figure 3-24), more slivers were needed to explain 

median soil height after 81 / 87 DAP for 18 cm than for 24 cm. This highlights the 

 
Figure 3-31 Frequency distribution of changes in soil height at Kirton, compared for 
consecutive time intervals after ploughing (DAP = days after ploughing). Data from two replicates 
and both plough depths were pooled (N=484) since no differences were detected between their 
individual frequency distributions. 
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fact that the number of slivers in the model should not only be a function of the 

degree of soil compaction but also of plough depth.  

 
 

 

3.4.4 Discussion and model implementation 
Had soil height readings been taken over a larger area, it is possible that lower 

variation along compared to across the direction of ploughing would have been 

detected as was observed by Zhixiong et al. (2005). The relief aspect is less crucial 

however than the systematic underestimation of soil expansion after ploughing and 

the way soil settling over time is addressed. From this experiment it is clear that soil 

expansion occurs not only because of the voids created by the diagonal panning of the 

slivers but because soil volume itself expands, i.e. macro pores are created over the 

entire depth of the plough profile. Since germination probability is strongly influenced 

by a seed’s vertical position in the soil, in a model that underestimates the thickness of 

the soil layer, seeds will be incorrectly assigned to the zone from where emergence 

can be successful, thus overestimating the numbers of emerging seedlings. Obviously, 

this affects only the scenario in which soil is ploughed in autumn and left over winter. 

 

Figure 3-32 Comparison between observed and predicted distributions of soil height, 81 
(Kirton) or 87 days (Wellesbourne) after ploughing, for soils ploughed at 18 and 24 cm. Outliers 
are represented by red asterixes and are defined as in Figure 3-28. 
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In addition, this experiment showed that soil settling is more simply modelled as a 

natural compaction of the soil profile independent of plough depth, rather than as an 

increase in soil slivers over time which is dependent on plough depth. The Colbach 

and Roger-Estrade models require an estimate of the number of slivers, both for 

modelling seed movement and as soil settling over time. This would add a further 

component to ECOSEDYN and given the more straightforward use and interpretation 

of transition matrices and the problems identified with the Colbach and Roger-Estrade 

models in this study it was decided this added complexity was not warranted.  

The scenario of plough cultivation in autumn and then leaving the field over winter 

will not be implemented because of the failed experiment (Section 3.2). Although the 

information on slumping has contributed to deciding which model to choose, it bears 

no further use in the modelling framework. 
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3.5 Summary of research findings 
 

At the outset two major aims were formulated. The extent to which the aims have 

been met and some secondary results are summarised in this section.  

1. To obtain a model for the plough, compatible with the previous models 

developed at Warwick HRI.  

In Wellesbourne a transition matrix for [Plough + Soil settling] was derived for 

each plough depth based on 1 replicate. No [Plough] transition matrices could be 

derived in either Kirton or Wellesbourne but the additional work done to 

evaluate the ‘multiplicativity hypothesis’ in Section 3.3 delivered a transition 

matrix for [Plough] helping to fulfill this aim.  

 

2. To critically evaluate the generic and specific approach to modelling seed 

movement 

a. transition matrices; more specifically the ‘multiplicativity’ assumption  

Until now, modelling seed movement using transition matrices has been subject 

to an unnoticed flaw, the fact that seeds are assumed to move independent of 

soil. Unless transition matrices can be constructed to have column and row sums 

of one, seed movement is predicted incorrectly. For the assessed cultivation 

sequence the ‘multiplicativity’ assumption was found to be valid, albeit, only 

after a modification of the ‘raw’ [Power harrow] transition matrix to account for 

the soil compression that occurred during power harrowing of previously 

expanded soil due to ploughing. It was further found that: 

• Even for a given cultivation implement, the transition matrix may vary 

depending on the preceding cultivation 

• The actual working depth of an implement has a major impact on the re-

distribution of beads 

 

b. mechanistic models of ploughing with and without skim-coulter 

The expectation prior to carrying out the experiment that the models 

underestimate soil height immediately after ploughing was verified. This could 

overestimate seedling emergence in the case of a ploughed field left over winter. 

It was further found that: 
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• The pattern and extent of soil settling was independent of plough depth but 

dependent on soil type 

• Soil settling should be modelled as an absolute decrease of soil height 

rather than an increase in soil slivers over time. 

 

The verification of the ‘multiplicativity’ assumption justified the use of transition 

matrices in ECOSEDYN. Because the mechanistic soil movement models for the 

plough are less easy to implement than transition matrices they will not be 

implemented in ECOSEDYN. The exact implementation of the cultivation transition 

matrices in the context of the system modeled (crop rotation with carrot and winter 

wheat) is dealt with in Chapter 5. 
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3.6 Implementation in ECOSEDYN 
 

Weed seeds are vertically (and horizontally) redistributed in the soil during seedbed 

preparation and for root crops during the harvest operation as well. As the specialized 

cultivation and harvest implements used by growers are not available at Warwick HRI 

there was no opportunity to test vertical seed (bead) redistribution caused by these 

implements. As ECOSEDYN aimed to represent commercial practices as accurately 

as possible, transition matrices were proposed for the vertical seed redistribution 

during seedbed preparation and crop harvest. 

 

3.6.1 Seedbed preparation 
The feedback from the questionnaires (see Appendix 1) suggested that cultivation 

regimes varied depending on personal preferences of the growers and/or soil type. 

The aim was to identify the most common cultivation regime for each crop. On light 

mineral soils carrot growers don’t use a plough; instead the land will be disced and 

deep cultivated (sub-soiled) in autumn. Heavier soils may be ploughed. Both options 

will be followed by ridging, de-stoning, (Jones) bedforming and drilling in spring. 

Cultivation regimes from 6 conventional carrot growers are presented in Table 3-11. 

The use of a destoner (stone-and-clod separator) can be considered standard practice 

for moderate to large commercial growers. Destoners come in various designs (star vs 

webbed separators) and from various manufacturers (e.g. Reekie, Grimme, Standen). 

 

Table 3-11 Cultivation regimes applied by six conventional carrot growers 

 Carrot growers 

Cultivation [1] [2] [3] [4] [5] [6] 

Subsoiler (16”)  X X X  X X 

Plough (10-12”) X X  some   some  

Plough + furrowpress   X    

Discing (5”)    some  some 

Ridger/Bedformer (12”) X X  X X  

Destoner (10”) X X X X X X 

Jones Bedformer (10”) X X X X X X 

Drilling X X X X X X 
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Their purpose in (carrot) seedbed preparation is to rid the seedbed of stones and soil 

clods and deposit these in between the beds (see Figure 3.33, (Grimme, 2003) and  

 

 

Figure 3-33 Seedbed preparation of a carrot field. Top: Ridging with a bedformer / ridger. 
Middle: Destoning the ridges with a stone-and-clod separator (Reekie Reliance 500); soil is taken up 
by a series of rotating devices that sieve the soil and deposit stones and clods in the tramlines. 
Bottom: Rototilled beds with Jones Engineering Triple Bedformer, now ready for carrot drilling. 
Images taken at Elveden Estate (Norfolk, UK) and with courtesy of Andrew Francis. 
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video footage of a destoner in action (SUFFOLKRB, 2008)). Destoners have been 

used to incorporate granular nematicide prior to planting potatoes. A spiked rotavator 

(Dowdeswell Powavator) incorporated granules evenly to a depth of 20 cm (Woods et 

al., 1999) and if this treatment was followed by a destoner, the granules were 

distributed uniformly down to a depth of 35 cm. Incorporation using only the destoner 

resulted in a more or less even distribution over the first 15 cm only. For surface seeds 

the study by Woods et al. (1999) suggests total mixing but seeds already in the soil 

will be incorporated in smaller or larger soil clods (Reuss et al., 2001) which may 

affect their distribution chances when going through the stone-and-clod separator. So, 

it is unknown if seeds initially in the deepest layer are as likely to end up in the top 

layer as they are to stay in the deepest layer.  

From the questionnaires with the carrot growers it became clear that if a destoner is 

used it will be followed by a (Jones) Bedformer (see Table 3-11). When asked about 

the degree of mixing of the soil, growers and agronomists suggested that the 

combination of ridging, destoning and a Jones Bedformer (adapted rotavator) would 

cause total mixing of the soil over the depth profile (ca. 30 cm.). For the sake of 

simplicity it was assumed that the combination of these two implements leads to total 

mixing of the soil. For a four layer soil column this is expressed in matrix terms as: 

 

 

 

Equation 3-11: 

 

 

 

 

The benefit of this assumption is that it removes the need to design experiments to 

establish the transition matrices of the cultivation implements that precede these two 

implements. The working depth, the number of layers distinguished in the transition 

matrix and an estimate of the total number of seeds in the soil is the only information 

needed.  

Since the working depth is 30 cm and the transition matrices operate on a 3 cm soil 

layer basis a rough approach would be to divide the soil into 10 layers. However, the 

n1,t 

n2,t 

n3,t 

n4,t 

n1,t+1 

n2,t+1 

n3,t+1 

n4,t+1 

0.25   0.25   0.25    0.25 

0.25   0.25   0.25    0.25 

0.25   0.25   0.25    0.25 

0.25   0.25   0.25    0.25 

 
Destoner + 

Jones Bedformer 

* 
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probability to germinate and emerge is highly sensitive to depth within the first 3 cm. 

Therefore the two shallowest soil layers, 0-3 and 3-6 cm were further divided into six 

sub-layers of 5 mm each. The values of the original transition probabilities of the 3 

cm layer were divided into six to give individual probabilities for the 5 mm layers. 

For the crop rotation where carrot constitutes the vegetable crop, the transition matrix 

therefore contains the surface layer, twelve 5 mm layers (0-6 cm) and eight 3 cm 

layers (6-30). 

For onions, if the soil is considered too stony, then the seedbed preparation regime is 

similar to (though somewhat shallower than) that of carrots, otherwise it comprises 

ploughing to 20 cm. followed by power harrow cultivation (Questionnaire Carl 

Sharp). In the former case the seed movement is modelled exactly as for carrots but 

over a shallower working depth (24 cm), whereas in the latter case the transition 

matrices for [Plough + Power harrow] as obtained in Section 3.3 can be used. 

Winter wheat growers use various cultivation regimes from zero-tillage to a plough 

operation followed by a one-pass drill-powerharrow combination. Working depth 

during seedbed preparation is around 24 cm and therefore the ‘raw’ transition matrix 

for plough in winter (24 cm deep) followed by power harrow in spring in 

Wellesbourne, as obtained in Section 3.2 was used (see Figure 3-34). Note that for 

convenience, the 0-3 cm layer is indicated as ‘whole’ but in ECOSEDYN this soil 

layer is divided into six sublayers of 5 mm each and therefore the probability needs to 

be divided into 6 even portions. In ECOSEDYN, the raw transition matrix is therefore 

modified to account for that. 

 

 

 

Figure 3-34 ‘Raw’ transition matrix used to model weed seed 
redistribution in the soil during seedbed preparation for winter wheat 
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3.6.2 Harvest 
Winter wheat is harvested by a combine harvester around August time without an 

appreciable soil disturbance so no seed redistribution is modeled in ECOSEDYN. 

For carrot, two different harvesting systems are used depending on the timing of 

harvest. Top lifters that lift the carrots from the soil by their foliage are used until 

September when the foliage is still strong and the carrots prone to fractures (for video 

footage see: Univercoman, 2008a). From early October until next spring (April/May) 

carrots that are left in the ground are harvested using share harvesters, a method that 

causes more disturbance of the soil. In this model the latter harvesting protocol can be 

ignored as carrots are harvested before the end of the simulation year (September). A 

transition matrix was proposed that represents the actions during top-lifting of carrots 

(see Figure 3-35). The underlying assumption of the transition matrix is that close to 

the soil surface there is appreciable mixing of soil but this decreases over depth. Like 

with the transition matrix shown in Figure 3-34, the top 0-3 cm layer is divided into 

six sublayers of 5 mm each. The insights gained in Chapter 3 (row sums have to be 1) 

were applied in the matrix, i.e. 90% of the seeds initially on the surface were 

distributed over the 0-15 cm layer but otherwise no net loss occurred in any other 

layer. 

 

 
Onions are harvested around August – September time using so-called windrowers. 

During this procedure the bulbs are lifted from the bed and left to dry on the soil 

1.001.001.001.001.001.001.001.001.001.001.00Sum

1.000.710.160.080.040.010.000.000.000.000.000.0027-30

1.000.160.650.100.050.030.010.000.000.000.000.0024-27

1.000.080.100.600.120.060.030.010.000.000.000.0021-24

1.000.040.050.120.550.140.060.030.010.000.000.0018-21

0.7501.000.010.030.060.140.500.160.060.030.010.000.0015-18

0.6251.010.000.010.030.060.160.450.180.070.030.010.0112-15

0.5001.060.000.000.010.030.060.180.400.150.100.070.069-12

0.3751.140.000.000.000.010.030.070.200.340.200.150.146-9

0.2501.270.000.000.000.000.010.030.070.260.330.300.273-6

0.1251.420.000.000.000.000.000.010.050.140.330.470.420-3

0.0000.100.000.000.000.000.000.000.000.000.000.000.10Surface

Upper limitSum27-3024-2721-2418-2115-1812-159-126-93-60-3Surface

 

Figure 3-35 Hypothetical transition matrix for soil and seed movement during carrot harvest 
using top-lifters. Colours are added to illustrate (lack of) movement, the ‘hotter’ the colour the 
higher the probability of moving from a soil layer before harvest to another after harvest. 
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surface for a number of days before being finally picked up to be stored indoors. The 

procedure for onions can be assumed to cause complete mixture of seeds throughout 

the top 15 cm of soil (for video footage see: Univercoman, 2008b). The transition 

matrix would therefore follow the same principles as applied for the seedbed 

preparation transition matrix for carrot (see Equation 3-11), only over a narrower soil 

depth.   
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4 Plant growth and reproduction in a 
dynamic environment: experimental 
work and model implementation 
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4.1 Introduction 
 

It was concluded that there was a need to develop a comprehensive dynamic model 

capable of linking the dynamic processes of plant growth, flowering and seed 

shedding (see Section 2.6.2).  

Dynamic models are better suited to model the development of the target organism 

than static models provided that the mechanisms that cause the variability in onset and 

rate can be sufficiently captured. In that sense they become mechanistic models. Static 

models often have a limited validity. For example a linear regression model for seed 

production against weed biomass collected at crop harvest of a long-maturing crop 

may not be valid for a short-maturing crop. With ‘crop cultivar’ (time to maturity) set 

as one of the cultural control components of the weed management scenarios it is 

imperative that the number of viable weed seeds at the time of crop harvest can be 

predicted accurately. Even though events in the life of a weed need to be simplified in 

a model, the timing and relationship between dynamic processes such as plant growth, 

flowering and seed shedding are intricately linked both quantitatively and temporally. 

It would be unrealistic to model these events separately from each other as it would 

jeopardise the accuracy of the long-term predictions made by ECOSEDYN. 

The overall aim of the research described in this chapter was therefore to define a 

simplified yet sound way of dynamically modelling plant growth and reproduction. 

More specifically the following objectives were identified and addressed through 

experimental work: 

• To establish the appropriate environmental conditions that drive (early) 

growth and to quantify the amount of this environmental variable to reach 

defined growth stages (1st, 2nd, 4th and 6th

• To establish how the onset and development of flowering over time is related 

to biomass increase. This objective is dealt with in an innovative way 

combining successional destructive harvests with image analysis as described 

in Section 4.3.  

 true leaf stages). By including this in 

ECOSEDYN the effect of different timing of weed control could be assessed 

since seedling mortality is size-dependent and most weed control is focused at 

these early stages. The results of this work are presented in Section 4.2 and an 

explanation of the implementation in ECOSEDYN follows in Section 4.7 after 

the model component for ‘Biomass increase’ has been presented. 
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• To establish how plant age at crop harvest affects the static biomass – seed 

production relationship. Section 4.4 starts with a comprehensive overview on 

modelling seed production and then the experiment conducted to answer the 

above research question is presented. 

The experiment described in Section 4.4 raised a number of additional questions on 

flowering phenology that were explored in more depth in another experiment 

described in Section 4.5. The main objective of this experiment was:  

• To explore how much the timing and duration of flowering is regulated by 

plant biomass. 

The results of the experiments relating to growth and reproduction as described in 

Sections 4.3-4.5 are closely related and therefore the implementation in ECOSEDYN 

of these results is not dealt with separately but holistically in Section 4.7. Before 

proceeding with the construction of the model components a summary of the research 

findings from which the model components follow is given in Section 4.6  

Then in Section 4.7 the model components for ‘Biomass increase’, ‘Flowering’ and 

‘Seed shedding’ are presented and parameterized.  
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4.2 Effective day-degrees during early growth 
 

4.2.1 Introduction 
Most weed control applications are timed when both crop and weed are still small. At 

these early stages of weed growth, efficacy of both mechanical weed control (Ascard, 

1995) and herbicide applications (Schuster et al., 2007) are often dependent on the 

developmental stage of the seedling. Age or size-dependent mortality is thus 

important in regulating plant population dynamics (e.g. Roach and Gampe, 2004). 

Since seed production and therefore likely future population dynamics is dependent 

on the number and size of the weeds that survive weed control operations, information 

should be gathered on the relative growth rate during these early growth stages. 

An estimate of day degrees can be obtained from maximum and minimum 

temperature as well as an estimate of the base temperature, Tb

Equation 4-1 

:  

( ) ( ) ( )
b

minmax T
2

dTdT
dDD −

+
=  

The effective day-degrees  method was proposed by Scaife et al. (1987) and embraces 

the idea that growth can be limited by both light and temperature. The form of the 

effective day-degrees function includes day-degrees as well as solar radiation as 

reciprocals, in the same way conductors can be positioned in series in an electrical 

circuit. The Conductance model (Benjamin and Park, 2007) which is the plant 

competition model that was developed based on Scaife and Aikman’s ideas, derives 

its name from this principle. The f parameter was introduced to scale the relative 

importance of temperature and solar radiation (DD m2 MJ-1

Equation 4-2 

) . 

( ) ( ) ( )dPAR
1*

dDD
1

dEDD
1 f+=  

This introduces an extra variable that can perhaps be avoided if the effect of solar 

radiation is not large. Storkey (2004) showed that a model of growth against effective 

day-degrees (EDD) was superior in describing weed growth compared to a day-

degrees (DD) model especially for species that are limited by reduced radiation values 

in autumn. 

Based on the data collected in his study, Storkey (2004) quantified the f parameter as 

being 0.12 and 0.13 for S. media and T. inodorum respectively. This indicates a 
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moderate sensitivity to solar radiation as compared to crops that are insensitive 

(Brassica napus, f = 0.08; Triticum aestivum, f = 0.06) and compared to weeds that 

are relatively sensitive (e.g. Chenopodium album, f = 0.51). 

The aims of this experiment were firstly to confirm that effective day-degrees (EDD) 

rather than day-degrees (DD) should be used to model biomass increase during early 

growth for the two weed species and secondly to quantify the amount of EDD to 

reach defined growth stages (1st, 2nd, 4th and 6th

 

 true leaf stages) for which weed 

control efficacy (mortality) figures are available from the Danish site ‘Pl@nteInfo - 

Crop protection online’ (Faculty of Agricultural Sciences (Aarhus University 

Denmark), 2001). 

4.2.2 Methodology  
Seeds of S. media and T. inodorum were incubated at 20 ºC for 3 and 5 days 

respectively. For each species, four sets of one hundred and fifty seeds for which the 

radicle had emerged were then chosen and sown at a fixed depth of 1.0 cm on the 19th 

and 21st

Trays were placed outside in a coldframe with a wide-meshed plastic cover on top to 

prevent birds from entry and were watered carefully when required. A few seedlings 

that were infested by aphids/cutworm were removed from the tray. 

 of April 2007 respectively, in  150-hole seed trays filled with Levington F2S 

compost.  

The trays were inspected daily for emergence and the day of emergence noted for 

each tray-position. From this ‘baseline’ date the number of days required to reach the 

1st true leaf stage and subsequently the 2nd and 4th true leaf stage were determined. For 

S. media the proportion emergence was very high and seedling growth-rate turned out 

to be very regular. Therefore, seedlings in only one of the 4 trays were followed 

throughout whereas for T. inodorum proportion emergence was low and seedlings in 

all 4 trays were followed up to the 4th

The true-leaf stages were defined as the first day when the true leaves had properly 

extended and on which the initiation of the following true-leaf pair could be observed 

(see Figure 4-1). In each replicate, 20 positions were randomly allocated in which the 

seedling was to be harvested at the ‘cotyledon-’ or any of the three other stages (i.e. 5 

individuals per growth stage). Soil was carefully washed off the roots of seedlings and 

the seedlings were then dried in an oven for 24 hrs. at 70˚C and the dry weights noted. 

It was assumed that only the absolute time to reach a certain growth stage could differ 

 true-leaf stage.  
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over the season but not the average weight at each seedling growth stage. Therefore 

no further weight measurements were taken in the other sowings. However, some of 

the seedlings at the first sowing were accidentally taken out of the oven after only 12 

hrs and these data were removed and replaced by seedling weights of the appropriate 

growth stage at sowing 2.  

The harvested individuals meant that fewer observations could be made for the later 

stages but the large number of seedlings 

made up for that. It was observed that 

leaves of neighbours started overlapping 

and roots started protruding from the 

bottom of the tray around the 4th true leaf 

stage and it was suspected this could 

limit plant growth-rate. Therefore no 

measurements were made for the 6th true 

leaf stage. The experiment was repeated 

four times over the summer season (see 

Table 4-1), to check if thermal time to 

the defined growth stages was constant. For the later sowings, fewer seeds were sown 

and the cotyledon stage was included. Seedlings of T. inodorum were not followed 

through to the 4th true-leaf stage in Sowing 3 and only 7 seedlings were followed to 

the 4th

 

 true-leaf stage at Sowing 4 because the seedlings were required for 

transplanting in another experiment (see Section 4.5). 

Table 4-1 Sowing dates of seeds and number of tracked individual seedlings to determine 
thermal time to defined growth stages 

Sowing Stellaria 
media 

Seedlings followed  Tripleurospermum 
inodorum 

Seedlings followed  

1 19/04/2007 143 (until 4th 21/04/2007  true-leaf) 133 (until 4th

2 

 true-leaf ) 

18/05/2007 142 (until 4th 25/05/2007  true-leaf ) 125 (until 4th

3 

 true-leaf ) 

01/06/2007 143 (until 4th 31/05/2007  true-leaf ) 81 (until 2nd

4 

 true-leaf) 

04/07/2007 117 (until 4th 02/07/2007  true-leaf ) 7 (until 4th

 
 true-leaf) 

Maximum and minimum daily temperature and solar radiation were retrieved from 

the on-site weather station. Daily values of day-degrees and effective day-degrees 

were then calculated as in Equation 4-1 and 4-2 respectively. It was assumed the mesh 

would not significantly reduce daily solar radiation received. The values for f and 

 

Figure 4-1 S. media seedlings between 
1st and 2nd true leaf stage in seed tray. 
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Tbase for each of the two weed species were taken from Storkey (2004). The 

cumulative number of DD and EDD required to grow from growth-stage N to growth-

stage N+1 was summed over the interval from the first census day at which the 

seedling reached growth-stage N until the day prior to the census day at which the 

seedling reached growth-stage N+1. It was assumed that the environmental variable 

that accounts for most of the variability in plant growth would lead to the least 

amount of variability in the time from one growth stage to the next between the 

different sowings. For each species and inter-growth stage interval (e.g. from 1st to 2nd

To test whether plant growth was limited at or before the 4

 

true leaf stage) ANOVA tests were carried out to test whether cumulative DD and 

EDD required for growth from one plant growth stage to the next were significantly 

different for the four sowing times. The variance ratios (F) were used to determine 

which environmental variable (DD or EDD) explained plant growth best; high 

variance ratios indicate more variability between than within sowing times for the 

quantity of the environmental variable required for growth from one growth stage to 

the next. If EDD is a more accurate desciptor of biomass accumulation than DD, then 

the values of the variance ratios of EDD for the growth interval – species 

combinations should be consistently lower than those of DD. 
th true leaf stage a second 

experiment was initiated. Ten seedlings of each species were sown in individual P11 

pots (volume 1 liter) on the 31st of July, harvested when the 4th true leaf stage was 

reached, then dry weight determined in the way it was done for the other seedlings. 

One-tailed T-tests were performed to check whether the weight at the 4th

Relative growth rate from the cotyledon to the 4

 true leaf 

stage was larger for seedlings grown in pots than for seedlings grown in trays.  
th

The values for the chosen variable for environmental time (DD or EDD) to be used in 

the model were derived by pooling the results of the 4 sowing times and fitting 

Gaussian distribution functions to the data to determine the best fitted values for 

Mean and Standard deviation (SD). 

 true leaf stage was calculated as the 

slope of the linear regression of ln-transformed biomass values at each seedling 

growth stage against the chosen variable for environmental time (DD or EDD). In 

addition, residual plots of the linear regression line were produced to see if relative 

growth rate was constant (exponential growth) or if, and at which growth stage, 

growth was restricted for the seedlings growing in the seedling trays.  
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4.2.3 Results 
Average daily temperature increased over the experimental period (April-August 

2007) but average solar radiation was constant (see Table 4-2) due to more hours of 

sunshine than usual in April and fewer than usual over the following months. April 

and July were both exceptional in that they were (one of) the driest and wettest 

months respectively on record whereas May and June also received more rainfall than 

average.  

 

Table 4-2 Average daily solar radiation and temperature over the experimental period in 2007 

 April May June July August 

Total rainfall (mm) 6.5 91.6 111.8 161.5 26.2 

Solar radiation (MJ/m-2 16.7 ) 15.8 16.8 15.6 15.8 

Temperature (˚ C) 11.7 12.4 15.8 16.0 16.2 

 

Individual plant weight at the 4th

Because the experiment did not include measurements in autumn, the differences 

between DD and EDD were relatively small. On average S. media plants reached each 

of the growth stages earlier than T. inodorum plants (see Figure 4-2 and Table 4-4).  

 true leaf stage was significantly higher for both T. 

inodorum (one-tailed P<0.01) and S. media (one-tailed P<0.05) grown in pots in 

August as compared to plants that had been grown in a 150-hole seedling tray in 

April.  

Except from emergence to the 1st true leaf stage, there was a tendency to require more 

DD and EDD for growth from one growth stage to the next at later sowings for both 

species (see Figure 4-2). In April, which was exceptionally dry, the least amount of 

EDD was required from emergence to the 4th true leaf stage. It was observed that seed 

trays were waterlogged during some periods with much rainfall, especially in July, 

and perhaps this excessive moisture had an adverse effect on growth. The high values 

of the variance ratio for S. media over the 2nd – 4th

 

 true leaf growth interval (see Table 

4-3) appear to indicate that Stellaria media seedlings were particularly affected during 

this growth stage. 
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The variance ratio of DD required for growth from emergence to the 4th

 

 true leaf stage 

was higher than the variance ratio of EDD for both species (see Table 4-3, row 1). 

This was the case as well for each separate growth interval for both species. Hence, 

the variation in the ‘time’ required for growth from one growth stage to the next 

between sowings relative to the variation within each sowing was lower for EDD. 

This indicates that using effective day-degrees as environmental variable is more 

consistent and will give a more accurate estimate of biomass increase as a function of 

environmental conditions. 

Table 4-3 Variance ratio (F) values for ANOVA tests on the DD and EDD sums required for 
growth over various growth intervals 

 S. media T. inodorum 

 d.f.(b) d.f.(w) 1 DD EDD d.f.(b) d.f.(w) DD EDD 

Em – 4th 3  true leaf 449 1082.00 782.30 2 261  73.74   45.10 

 
Em – 1st 3  true leaf 478     38.49     8.16 3 738  77.38   64.95 

1st – 2nd 3  true leaf 466     98.04   61.75 3 672 122.80   97.93 

2nd – 4th 3  true leaf 449   611.60 467.60 2 261 182.20 142.70 
1

 
 d.f.(b) and d.f.(w) indicate the degrees of freedom between and within each sowing respectively 

The RGR of biomass during the month for the April sowing of T. inodorum was 0.023 

(see Figure 4-3 left), very similar to the value found by Storkey (2004) for the RGR of 

green area (0.024). Similarly, the RGR of biomass for the April sowing of S. media 

was 0.028 (data not shown), almost equal to the value found by Storkey (2004) for the 

 

Figure 4-2 Effective day-degrees (left) and day-degrees (right) accumulated over three 
growth intervals: the bottom (blocked), middle (open) and top (shaded) stacks represent the ‘time’ 
required to grow from emergence to the 1st true leaf-stage, from the 1st to the 2nd and from the 2nd to 
the 4th true leaf stage respectively. In June T. inodorum plants were only assessed until 2nd true leaf 
stage. Species-specific parameters to determine DD and EDD were taken from Storkey (2004). 
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RGR of green area (0.029). The close agreement between both RGRBiomass and 

RGRGreen

The residual plot of the linear regression line showed that the growth rate of biomass 

was reduced between the 2

 confirms that during early growth all plant biomass is invested in green 

area.  

nd and 4th

 

 true leaf stage for both   S. media (data not 

shown) and T. inodorum (see Figure 4-3, right). 

 
 

If the 4th

36.9x025.0yTi −=

 true leaf values were removed from the linear regression analysis then the 

RGR of biomass (slope value) for T. inodorum and S. media increased to 0.025 and 

0.030 respectively. In that case the regression lines for ‘ideal growth’ would be 

 and 30.8x030.0ySm −= . 

Assuming biomass at the 4th true leaf stage is constant and only the environmental day 

degrees required to reach the 4th true leaf stage varies, then, using the regression lines 

for ‘ideal growth’ (i.e. April data without 4th true leaf data) the 4th

 

 true leaf stages of 

S. media and T. inodorum could be reached after 173 EDD and 244 EDD respectively.  

4.2.4 Discussion  
From the results it was clear that solar radiation in the early stages of growth 

contributes to biomass accumulation in S. media and T. inodorum and that 

accumulated EDD is a better descriptor for growth of these two species than 

accumulated DD.  

 

Figure 4-3 Left: Relative growth rate for T. inodorum seedlings growing in seedling trays 
(April). Datapoints represent average biomass at the cotyledon, 1st, 2nd and 4th true leaf stage 
respectively, bars represent SD. Right: Residuals of linear regression line indicating limitation of 
growth rate between 2nd and 4th true leaf stage. 
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Baerveldt and Ascard (2002) mentioned that it took T. inodorum seedlings 13, 20 and 

27 days from seeding to 2nd , 4th and 6th true-leaf stage. This is faster than in this study 

where the 2nd and 4th true-leaf stage in the least constrained timing (April) took 16 and 

27 days. In that study, temperature appeared to be in the same range as those of the 

sowing in April of this experiment but possibly daily solar radiation was higher due to 

longer day lengths. Although seed trays were chosen with the largest seedling soil 

space, it did not prevent plants competing prior to the 6th true-leaf stage. In hindsight 

seedlings should have been grown in solitary P11 pots. It took 78% and 39% more 

effective day-degrees for S. media and T. inodorum respectively to grow from the 2nd 

to the 4th true leaf stage when averaging data of all sowings (see ‘Constr. growth’ in 

Table 4-4) and including the 4th true leaf stage data, compared to the data for April 

only with the 4th

 

 true leaf data removed (see ‘Ideal growth’ in Table 4-4). 

Table 4-4 Summary of parameters (biomass values are untransformed data) 

 S. media T. inodorum 
 ‘Ideal growth’ ‘Constr. growth’ ‘Ideal growth’ ‘Constr. growth’ 

EDD required Mean SD Mean SD Mean SD Mean SD 

Emerg. – 2nd 121.0  true leaf stage 4.13 131.0 9.1 163.0 14.5 162.7 14.6 

2nd - 4th 52.3  true leaf stage -- 93.1 36.9 84.4 21.4 117.6 29.8 

4th – 6th 52.3  true leaf stage  -- 2 
-- -- 84.4 --  1 -- -- 

  
Biomass (gr) Mean SD Mean SD 

Cotyledon 0.0014 0.0002 0.0004 0.00015 
2nd 0.0094  true leaf 0.0016 0.0055 0.00157 
4th 0.0440  true leaf 0.0054 0.0440 0.01478 
  

1 Extrapolated from Baerveldt and Ascard (2002) 
2 Assuming time from 4th to 6th true leaf stage is equal to time from 2nd to 4th

 
 true leaf stage 

In the study by Baerveldt and Ascard (2002) the time from the 2nd to 4th is equally 

long as the time from the 4th to 6th true-leaf stage. Using this information, the 

accumulated EDD required to grow from the 4th to the 6th true-leaf stage under ‘Ideal 

growth’ conditions is 84.4 (see Table 4-4). No information about the time from 4th to 

6th

 

 true leaf stage could be found for S. media so it was assumed this principle was 

valid for S. media too. 
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4.3 The phenology of flowering 
 

4.3.1 Introduction 
From empirical data it is possible to forecast the onset of flowering for photoperiodic 

plants such as Tripleurospermum inodorum (Roberts and Feast, 1974). Many studies 

have shown that the shift to the reproductive phase in annuals is timed so as to 

maximise reproductive yield (Cohen, 1976; Sugiyama and Hirose, 1991). 

Photosynthate produced by the vegetative parts is partitioned over the vegetative and 

reproductive parts according to a control function that determines the fraction of 

photosynthate that is allocated to reproductive structures. Rather than being 

instantaneous, the shift from the vegetative to the reproductive phase occurs according 

to a ‘graded pattern’ (King and Roughgarden, 1983). The number of produced flowers 

over time is thus closely associated with the increase of biomass over time and it 

would be unrealistic to model the onset and duration of flowering as a completely 

independent process from biomass accumulation over time.  

Several studies have noted that plant growth is (close to) exponential up until flower 

initiation (Heath, 1937; Gregorczyk, 1998; Shitaka and Hirose, 1998). Given that 

reproductive structures are invariably less efficient than leaves in their photosynthesis 

(Aschan and Pfanz, 2003), it is intuitive that biomass does not increase exponentially 

from the onset of flowering onwards. Gregorczyk (1998) analysed the biomass 

increase of buckwheat (Fagopyrum esculentum Moench) using the Richards function 

(Richards, 1959), which is one of a family of sigmoid growth curves.  

Equation 4-3 ( ) mt*k
max e*byy −−+= 1

1

1  

where y = plant biomass (dry weight), t = time, ymax

∞→

 is the maximum plant biomass 

and the asymptote to which the function increases when t , m, k and b are fixed 

parameters that determine the symmetry, steepness of the slope and horizontal shift on 

the t-axis respectively. 
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Gregorczyk (1998) characterised three ‘critical moments’ during plant growth: P1, P2, 

P

• P

3 

1

• P

 represents the point where ‘acceleration’ of growth is maximal 

2

• P

 represents the point where growth rate is maximal 

3

Between P

 represents the point where the ‘deceleration’ of growth is maximal 

1 and P3, growth is near linear. P2 is 

the maximum of the first derivative (growth rate 

curve) of the Richards function and P1 and P3 

are the maximum and minimum respectively of 

the second derivative of the Richards function. 

The X-coordinates of the points P1, P2 and P3

If it is assumed that biomass increases 

exponentially until the onset of flowering then 

the initiation of flowering occurs at or close to 

the point P

 

can be calculated by finding the intersections 

with the X-axis in the second and third 

derivatives (see Figure 4-4). 

1

An experiment was conducted with the aim to 

find parameters for the Conductance model 

(Benjamin and Park, 2007). With insight in 

modelling and understanding of the biology 

increasing it was, however, decided not to 

implement the Conductance model as part of the 

dynamic model. The reason for this was that the 

Conductance model only models biomass 

increase but not flower initiation and 

development. The Conductance model is 

parameterised based on destructive harvests of 

individual plants at several stages during the 

. If this is the case then the 

empirically determined dates of the onset of 

flowering can be used to scale the growth curves 

of plants established at any time of the year in 

ECOSEDYN.  

 

Figure 4-4 From the top down: 
the Richards function as defined in 
Equation 4-3 (with m=2) and the first, 
second and third derivatives. 
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development. The data collected therefore comprised:   

• Ground cover  

• Crown zone area; the area of the smallest circle to encompass all the leaves of 

a plant when viewed from above 

• Total plant leaf area 

• Plant dry weight 

Using image analysis software (Corel PSP and MatLab), the area of ground cover was 

determined from photos taken in the field just prior to each harvest. Even though this 

information was no longer needed for parameterising the Conductance model after 

rejecting that model, the data allowed assessing how the onset and development of 

flowering is timed relative to the points P1 and P2

 

; the area occupied by flowers and 

leaves over time could be expressed as a function of accumulated time.  

 

4.3.2 Methodology 
 

Field 

The methodology and results of this experiment will only include the aspects that 

relate to the image analysis of whole plants in the field, leading to a measure of 

ground cover.  

This experiment was carried out at Warwick HRI (Wellesbourne) in the summer of 

2005. 144 pre-germinated seeds of S. media and T. inodorum were sown in hassy 

trays on the 6th of June and 120 young plants were transplanted in the field on the 28th 

of June. Twenty individuals were dried for 48 hrs. at 80 ̊C weighed to determine dry 

weight at transplanting. The 120 remaining individuals were planted as a single line in 

the centre of a 1.83m bed. The beds were prepared six weeks before transplanting to 

encourage weed seed germination and emergence. Emerged weeds were controlled 

with a non-selective herbicide and fertiliser was added to the beds according to 

normal horticultural practice. Six harvests were anticipated and therefore 20 blocks of 

6 individuals were arranged as illustrated in Figure 4-5.  
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For each block an initial randomisation determined which of the centre plants (marked 

x in Figure 4-5) were harvested first and second. A second randomisation determined 

the order in which the remaining four plants were harvested. Due to the large size of 

the T. inodorum plants at harvest 4, the randomisation was ignored and plants were 

harvested that would have otherwise started competing. Since the processing of leaf 

area took progressively longer with later harvests, the time between two harvests was 

more than the anticipated 14 days (see Table 4-5). It was noticed that two to three 

weeks after the last harvest on 29 September some leaves had been shed and many 

were turning brown. For that reason the 6th

 

 harvest was not carried out. 

Table 4-5 Harvest dates, age of plants (days after sowing / transplantation) and number of 
processed plants. 

Harvest Harvest dates (2005) DAS / DAT  plants harvested and processed 

1 19 July 43 / 21 19 
2 1 August 57 / 35 20 
3 23 August 79 / 57 10 
4 12 September 99 / 77 10 
5 29 September 116 / 94 8 

 

Images from which groundcover and crown zone area were to be determined, were 

captured immediately before harvest using a Nikon Coolpix 995 camera held 

Block 1

Block 2

Block 20

Harvest 1

Harvest 2

Harvest 3

Harvest 4

Harvest 5

Harvest 6

2.25 m
1m gap between

blocks

0.75 mx

x

Two early harvests marked above as x, 
four later harvests as o.

Above is an example of a randomisation
for individual plants

 
Figure 4-5 Experimental design of the experiment initially aimed at 
obtaining parameters for the ‘Conductance’ model (Benjamin and Park, 2007). 
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vertically above the plants. A label of known size identifying the plant was included 

in the image. Prior to taking the image, branches of neighbouring plants were gently 

pushed aside and newly emerged weeds were removed. If necessary, overexposure of 

the label and strong shading due to sunlight was prevented by blocking the sunlight 

using a white cotton sheet.  

 

Image analysis 

In Corel PaintShop Pro the images were analysed and the following characteristics 

determined: image length and height (pixels), length of the label in pixels. Given that 

the actual length of the additional object in the image was known, the actual total area 

of the image could be simply deduced and was included in the name of the image. 

Crown zone area (in pixels) was calculated by determining the radius of the smallest 

possible circle that covered the plant in the image in Corel PSP. To determine plant 

ground cover, first the background was homogenised with the ‘Clone’ tool in Corel 

PSP. Then the image was split into its Red, Green and Blue channels and the Red 

Channel selected for further analysis. The Red rather than the Blue or Green channel 

is chosen since this allows the best segmentation of the whole flower, i.e. white rays 

and yellow centres against both the green leaves and the soil back ground. By 

manually shifting the threshold level and observing the resulting black and white 

image, a ‘flower threshold’ level was chosen for each image. For each harvest the 

threshold values were saved as an input-file to MatLab. 

The next step was to read the images into MatLab and apply specific functions 

pertaining to the Image Analysis Toolbox from the same program. The original code 

was written by and obtained from Preben Klarskov Hansen (Flakkebjerg, Denmark) 

and was adapted to account for and calculate the area that was covered by flowers.  
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To determine ‘plant ground cover’, ‘flower area’ and ‘leaf area’ in MatLab, the image 

analysis procedure took the following steps (see Appendix 2): 

1. In MatLab, after splitting the image into its Red, Green and Blue channels, 

the ‘Red Channel’ image was converted to BW based on a threshold level that 

was determined in Corel PSP. Experience showed that this threshold level 

was too variable to be calculated automatically in MatLab as was done later 

on to segment leaves from background. This results in images with white 

flowers (white petals + yellow centres) and black background (leaves + soil) 

2. The number of white pixels is calculated and expressed as a proportion of the 

total number of pixels. From the actual total area calculated earlier the actual 

flower area is determined using this proportion. 

3. A new image is created from the RGB channels according to the excessive 

green parameter: ExcessiveGreen = 2 * Green – Red – Blue (Woebbecke et 

al., 1995); this colour index is computationally simple and gives good results 

in distinguishing (green) plants from a non-plant background. 

4. For the newly created image a threshold level is calculated using Otsu’s 

method (Otsu, 1979), this threshold level is used to separate foreground and 

background pixels and thus create a binary black-and-white image. 

Comparison of the resulting BW images with the originals showed that the 

calculated threshold levels systematically underestimated leaf area; therefore 

the threshold level was multiplied with a scaler, the value of which was 

empirically determined. The white pixels comprise all leave parts but also the 

yellow centres of the flowers; this image is referred to as ‘incomplete plant 

groundcover’.  

5. To obtain ‘total plant ground cover’, the images containing ‘floral area’ and 

‘incomplete plant groundcover’ were combined (i.e. in the resulting image a 

pixel was white if it was white in either one, or both images). 

6. To obtain ‘leaf area’, the BW ‘flower area’ image is subtracted from the BW 

‘total plant ground cover’ image; in a BW image, white pixels have the value 

1 and black pixels 0, therefore subtracting the flower area from the total plant 

area results in white pixels constituting flower area becoming black (1-1), 

white pixels constituting leaf area remaining white (1-0) and black pixels 

(background) remaining black (0-0).  
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The image analysis process as described above is visualised in the 4 graphs in Figure 

4-6. 

 
 

 

Data analysis 

The Beta distribution function was suggested by Yin et al. (2003) as an alternative 

sigmoid growth curve to other sigmoid functions such as the Richards, Weibull and 

Gompertz functions. The simplicity of this function, the lack of asymptotes and the 

biological meaning of the parameters makes this a more appealing function than the 

Richards function and other sigmoid growth functions. Assuming growth, W, is 

simulated from the start of growth (W = 0 and t = 0) the Beta distribution is written 

as: 
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Figure 4-6 Resulting BW images after manipulation of the original RGB image of a T. 
inodorum plant at Harvest 2 (top left) in MatLab using the Image Analysis Toolbox. The ‘Leaf 
area’ picture (bottom right) is produced by subtracting the ‘Flower area’ (top right) from the 
‘Ground cover’ image (bottom left). 
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where wmax is the maximum biomass that is reached at te. The maximum growth rate 

occurs at tm, which is equivalent to the X-

coordinate of point P2 in the Richards 

function. Like other sigmoid growth 

functions, the Beta distribution can take on 

different shapes determined by the position of 

tm relative to te. However, in the form 

proposed by Yin et al. (2003) it does not have 

the same properties as ‘true’ sigmoid curves 

such as the Richards function. If the Beta 

distribution is right-skewed (tm<0.5*ts) then 

the growth acceleration curve (second 

derivative) has just one maximum (P1) which 

mathematically speaking is located prior to 

emergence (see Figure 4-7), which is 

unrealistic. If the Beta distribution is 

symmetric (tm=0.5*ts) then the growth 

acceleration curve (second derivative) is a 

linearly declining line and contains neither a 

minimum nor maximum. Only if biomass 

growth is left-skewed (tm>0.5*ts) can point P1 

be defined (see Figure 4-7). Regardless of the 

location of tm, the second derivative always 

lacks a minimum over the sigmoid growth 

part and the Beta distribution as proposed by 

Yin et al. (2003) therefore does not define P3. 

For the purpose of this analysis it is just point 

P1 and point P2 that are of interest. The Beta distribution was fitted to the biomass 

data as a function of effective day-degrees (EDD) from transplanting using the 

species-specific parameters specified by Storkey (2004) to check the position of tm 

relative to te. If t ≤m  0.5*te, then a Beta distribution was not capable of defining point 

P1 and a Richards growth curve should be fitted to the data. Point P1 and P2 can be 

calculated by finding the intersection with the X-axis of the second and third 

derivatives respectively using the formulas given by Yin et al. (2003) for the Beta 

distribution and by Gregorczyk (1998) for the Richards function. 

 

Figure 4-7 From the top down: 
Beta distributions and their 1st and 2nd 
derivatives. Dotted, solid and dashed 
lines represent Beta distributions (see 
Equation 4-4) with Tm=0.25*Te, 
Tm=0.50*Te and Tm=0.75*Te 
respectively. Points P1 and P2 represent 
maximum growth acceleration and 
maximum growth rate respectively. 
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Flowering did not start immediately after transplanting (ts ≠ 0) and to model flowering 

area as a function of EDD, the ts parameter has to be included in the Beta distribution. 

With the starting parameter, ts

Equation 4-5 

, the Beta distribution for flower area is now written as: 
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where Fa is the area covered by flowers as calculated in MatLab. Without 

constraining any parameters, the Beta distribution predicted that onset of flowering 

(ts) occurred prior to the first harvest whereas in fact no plants were flowering and 

only at the time of the second harvest 14 out of 20 of the sampled plants had started 

flowering. From the images it was estimated that the day on which 50% of the 

population had initiated flowering was one to two days prior to the second harvest and 

therefore, ts was constrained as (not being allowed to go below) the effective day-

degrees accumulated until two days before the 2nd harvest. Points P1 and P2

Equation 4-6 

 were 

calculated as for the Beta distribution fitted to biomass increase. To compare the 

shape of the fitted Beta distributions for biomass and flowering area, the symmetry of 

both functions was calculated as:  

se

sm
Beta tt

tt
s

−
−

=    

with ts

 

 being zero for the Beta distribution for biomass increase. 

4.3.3 Results 
Unfortunately the stock population of S. media that was used in this study had an 

atypical reproductive strategy compared to individuals of the natural population that 

were observed in the trial area. For no apparent reason the majority of the S. media 

plants grown in this trial did not flower at all which was in stark contrast with 

‘background’ weeds that flowered within 5 weeks after emergence. Therefore only 

data for T. inodorum is presented here.  

The parameter values for the Beta distribution that gave the best fit (R2

W

 = 0.88) to 

biomass as a function of accumulated effective day-degrees (EDD) were:   

max = 416.5, te = 1314 and tm = (P2

The estimated (average) maximimum weight for plants was only 8% higher than the 

average weight at harvest 5 and would have been reached exactly two weeks after 

) = 1003.  
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harvest 5. This seems plausible given that around two weeks after harvest 5 the plants 

had started senescing which was the primary reason why the 6th harvest was not 

carried out. The symmetry of the Beta distribution for growth was 0.76 and this 

allowed point P1 to be defined using the Beta distribution. For the above written 

combination of parameter values, point P1,

 

 the time when growth acceleration was 

maximal, was at 692 EDD after transplanting (see orange diamond in Figure 4-8).  

The estimated time of 50% flowering was at 432.5 EDD after transplanting.  At the 

third harvest all harvested plants had produced flowers. Inspection of the images 

showed that flowering continued until the 5th harvest and beyond. The parameter 

values (with ts constrained at 432.5) for the Beta distribution that gave the best fit (R2 

= 0.80) to flower area as a function of accumulated effective day-degrees (EDD) 

were:  Famax = 2586, te = 1178 and tm = (P2

giving an s

) = 943.3, 

Beta of 0.69. For the above written combination of parameter values, point 

P1, the time when the acceleration of flower area was maximal, was at 709 EDD after 

transplanting (see orange diamond in Figure 4-8). Hence, first flowering occurred 

well before (21 days) maximum acceleration of growth. The growth rate of flowering 

area peaked (P2) earlier than that of biomass. In contrast, there was a close agreement 

(1 day difference) between the estimated timing of maximal acceleration of growth 

(P1) of biomass and flowering area. 

 

Figure 4-8 Biomass (solid line and semi-filled diamonds, plotted on left Y-axis) and ‘Flower 
area’ (dashed line and filled circles, plotted on right Y-axis) of T. inodorum after transplanting to 
the field on the 28th of June. Fitted lines are Beta distributions.  The black arrow indicates the 
estimated time with 50% of plants flowering.  The orange filled diamonds indicate the timing of 
acceleration (P1) and the green circles indicate maximum growth (P2). Error bars represent SEM. 
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4.3.4 Discussion 
Fitting a Beta distribution to the experimental data for T. inodorum does not confirm 

Gregorczyk’s (1998) observation that first flowering occurs at the time of maximal 

acceleration of biomass. The acceleration of biomass reached a maximum 21 days 

after the initiation of flowering and this was unexpected since flowers are thought to 

contribute less to photosynthesis than leaves and over time the flowers bar the light 

from reaching the leaf layer underneath. Investing in reproductive structures therefore 

‘should’ reduce growth rate. In contrast, it appeared that maximal acceleration of 

biomass coincided with maximal acceleration of flowering. 

It should be noted that these plants grew isolated and reached gigantic proportions; by 

the time of the 5th harvest the total ground cover of the largest individual exceeded 1.6 

m2

The temporal distribution of flowering can result in symmetrical, left-skewed or right-

skewed flowering curves (Thomson, 1980; Malo, 2002) but inevitably the number of 

newly produced flowers levels off to zero after a peak. Estimates of flower area are 

not cumulative unlike cumulative frequency distribution of flowers over time. The 

flower area consists for a large part of the white petals that shrivel up and fall off 

before all seeds on the seed head have matured. The flower area of a plant therefore 

decreases before plants cease accumulating biomass. Overlapping flowers and the 

less-than-horizontal position of flowers at the time of image capture are other factors 

that contribute to flower area being only a relative estimate of reproductive potential. 

This probably accounts for the fact that the maximum growth rate (P

 (dry weight = 619 gr.). As will be shown in Section 4.4 and 4.5, in general larger 

plants flower longer than smaller plants and as a consequence of that reach their 

maximal reproductive output later. For smaller plants the absolute amount of time 

between flowering and reaching the maximum acceleration of growth is therefore 

limited. 

2) of flower area 

occurred earlier than the maximum growth rate (P2

Ideally measurements on plant biomass and flower area would have been carried out 

more frequently to obtain a more precise estimate of the parameters. The symmetry 

values reported in this study should be regarded with caution as they are dependent on 

the fitted values of a non-ideal dataset. Perhaps values higher than 0.5 may have been 

caused by a delay in plant growth after transplanting.  

) of biomass. 
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4.4 Towards a dynamic biomass - seed production 
relationship (Part I) 

 

4.4.1 Introduction 
Most of the early approaches to weed population dynamics models kept track of the 

population density in units of individuals rather than, or as well as, plant biomass 

(Cousens and Mortimer, 1995; Holst et al., 2007). To estimate the seed return to the 

seed bank the average number of produced viable seeds / plant is then multiplied with 

the number of surviving plants.  

The problem is that, without taking into consideration plant size (biomass), estimates 

of seed production can be out by a large factor. Different times of emergence lead to 

large size differences that are reflected by large differences in seed potential as has 

been observed in many studies (Fernandez Quintanilla et al., 1986; Sattin et al., 1992; 

Bello et al., 2000). Average weed seed production per plant varied between five and 

fifteen-fold for different crops, reflecting the differences in crop competitiveness 

(Lutman, 2002; Steinmaus and Norris, 2002).  

Seed production of an individual plant may vary hugely within the same crop, site and 

year; for Chenopodium album in cabbage, seed production varied by a factor 35 

(Grundy et al., 2004), for Sinapis arvensis in wheat it varied by a factor 300 (Lutman, 

2002) and for Tripleurospermum inodorum

The variation in reproductive output is largely a reflection of the underlying variation 

in plant biomass. Hence, accurate prediction of seed production requires accurate 

prediction of plant biomass.  

 in wheat it varied by a factor 1000 

(Lutman, 2002). This variation may be attributed to (local) variation in the crop 

and/or weed density, patches of high nutrient availability or genetic make-up.  

Most attempts to relate biomass to seed production follow the function Y = aXb

• ‘a’ represents the number of seeds per unit biomass (steepness of slope)  

 + c, 

where X is plant weight, Y is reproductive structures, and a, b and c are parameters;  

• ‘b’ determines if reproductive output is size-dependent (linearity of function), 

values lower than 1 indicate that large plants produce relatively fewer seeds 

per unit biomass than small plants 

• ‘c’ indicates presence of a minimum size for reproduction 
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The function can be simplified to Y = aX by assuming there is no minimum size for 

reproduction (c=0) which was argued for by Rees and Crawley (1989) and that 

reproductive output is size-dependent in an approximate linear fashion (b=1) as was 

suggested previously (Samson and Werk, 1986; Weiner, 1988). A large body of 

studies (Debaeke, 1988b; Wilson et al., 1988; Thompson et al., 1991; Wright, 1993; 

Lintell Smith et al., 1999; Schnieders, 1999; Baumann et al., 2001; Lutman, 2002; 

Mertens and Jansen, 2002; Grundy et al., 2004) supports the latter notion. 

However, there are two factors that make it likely that the parameter a, the number of 

mature seed(head)s per unit biomass, is not constant but a function of plant age: 

1. initially all photosynthate is allocated to vegetative structures and the 

proportional allocation of photosynthate to reproductive structures only 

maximises at the end of a plant’s life cycle 

2. a lag phase exists between flower production and seed maturation 

The current static [biomass – seed number] relationships that are derived from long-

maturing crops may therefore result in a considerable overestimation of seeds for later 

emerged weeds or in the case of earlier maturing crops / varieties. Since the currently 

built model is dynamic it requires a seed production component that accounts for the 

age of the plant.  

Within the DEFRA project of which this Phd is a part, a joint experiment was set up 

with Paul Neve to explore the effect of variation in the emergence times of crop and 

weed on size hierarchy and crop yield. The design of this experiment allowed 

establishment of the biomass – seed production relationship of plants that had 

accumulated different amounts of thermal time as it included early established weeds 

versus late established weeds that were to be harvested at the same time. The specific 

aim of the experiment was to find a meaningful way of accounting for seed 

production per unit biomass over time rather than just at crop harvest.  
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4.4.2 Methodology 
The experiment was conducted in the spring-summer season of 2005. Prior to 

establishment, soil was regularly cultivated to stimulate weed emergence and emerged 

seedlings were controlled with herbicide to reduce weed emergence from the natural 

seed bank over the course of the experiment. Prior to seedbed preparation, the area 

was fertilised at a rate identical to that used for field beds. Irrigation lines were put in 

place and irrigiation was supplied when required. 

 

 

Experimental design 

The experiment was conducted on a 5.5 x 20m plot of land as a randomised block 

design with the following treatments: 

 

1 x crop monoculture    Carrot 

2 x Interactions:    Carrot vs S.media 

      Carrot vs T. inodorum 

 

4 x Relative establishment times:  Early weed (single weed cohort) 

      Early weed (5 weed cohorts) 

      Early carrot (single weed cohort) 

      Early carrot (5 weed cohort) 

 

4 x Harvest intervals 

3 x Replicates 

 

96 PLOTS (crop-weed competition) + 12 PLOTS (crop monoculture) 

 

Individual plots were 50 x 50 cm. and each of the 96 crop-weed competition plots 

consisted of alternating rows of crop and weed spaced 5 cm. from each other (see 

Figure 4-9).  
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All crop (carrot cv. Nerac) and weed (S. media / T. inodorum) individuals were 

established as transplants previously raised under glass and hardened off for a period 

prior to field transplanting. The four relative emergence time treatments were 

simulated by sowing appropriate mixtures of even-aged individuals or of mixtures of 

cohorts of various ages (see Table 4-6). In all plots the carrot crop was the same 

age/size and was transplanted to the field 21 days after sowing (DAS) pre-germinated 

seed into Hassy trays. Weeds of each cohort were sown at appropriate times to 

acquire the right age at the time of transplanting to the field (28th

 

 of June) (see Table 

4-6). Plots and surrounding area were weeded frequently to avoid background weeds 

competing with either or both of the target weeds and/or carrot. 

50 cm

25 cm

50 cm 30 cm

50 cm

weed

carrot

5 cm 15 cm 25 cm 35 cm 45 cm

5 cm

plant not harvested

 

Figure 4-9 Plot size of carrot-weed competition experiment and transplanting pattern of 
carrot and weed plants within plots. In multi-cohort plots the position of different-aged weeds was 
randomly allocated. 
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Table 4-6 Treatments, age at transplanting and relative density of weeds in multi-cohort plots 

Plants Cohort Age at transplanting (28th Relative density  of June) 

Carrot -- 21 -- 

 

Early – single cohort E3 28 -- 

Early – multi-cohort 

E1 35 1.5 

E2 31 2.5 

E3 28 4 

E4 25 2.5 

E5 21 1.5 

Late – single cohort L3 14 -- 

Late – multi-cohort 

L1 21 1.5 

L2 18 2.5 

L3 14 4 

L4 12 2.5 

L5 10 1.5 

 

 

Harvest and measurements 

The four harvests took place on 13 July, the 5 August, the 31 August and the 21 

September. Plants from the earliest cohorts just initiated flowering at the 3rd

The outer rows of weed plants were not harvested, nor were the plants at each end of 

crop and weed rows (see Figure 4-9). Hence a total of 28 crop plants and 24 weed 

plants / plot were harvested.  

 harvest 

but mature seeds had not yet been produced. Therefore, measurements on biomass 

and seed production were only taken for plants harvested on the last harvest day. 

Since most weeds will be either 

unrooted or cut off at crop harvest, 

the number of buds and flowers is 

irrelevant since they do not 

contribute to seed production. 

Therefore, only the number of seed 

capsules or mature seed heads was 

counted for each of the 24 weed 

plants in a plot. In the case of T. 

inodorum a seed head was counted 

 

Figure 4-10 The earliest stage of a seed head of 
T. inodorum to be counted as ‘mature seed head’.  

 

 



 169 

as ‘mature’ if (at least) the white ray-flowers had shrivelled up (see Figure 4-10), 

indicating that a proportion of the seeds were viable (Kucewicz and Hodynski, 2003).  

To estimate the number of seeds / seedhead, five intact seed heads were collected 

from 12 randomly assigned plants in the one-cohort plots. In the multi-cohort plots, 5 

seedheads were taken from 2, 3 and 5 plants of the cohorts with relative density 1.5, 

2.5 and 4 respectively.  

Seedheads were put individually in small paper envelopes and stored together with the 

plant to which they belonged. After being dried in the oven at 80 ˚C for 24 hrs., plant 

weight, including reproductive structures (buds, flowers and seedheads) added with 

the weight of the 5 seedheads that were taken off, was recorded. At a later stage the 

seed heads were gently broken up and a subsample selected from which the seeds 

were counted. 

 

Statistical analysis 

Although the assumption of homoscedasticity (standard deviation of y constant for all 

x) is not met in the data, regression analysis was performed on untransformed data to 

provide a more intuitive representation of the effects of plant size and age on 

reproductive output. Regression analysis of the number of mature seedheads against 

biomass was performed for each of the four datasets using the extra-sum-of-squares 

F-test (Motulsky and Christopoulos, 2004) comparing different regression models.  In 

these comparisons, the null-hypothesis always was that the simpler model (model 

with one parameter less) is correct vs the alternative hypothesis that the model with 

the extra parameter is correct. The analysis was performed in two runs to evaluate the 

effect of the b (Analysis 1) and c (Analysis 2) parameters separately, resulting in four 

possible regression models (see Figure 4-11). The focus in this analysis was not to 

define the precise values of the a, b and c parameters (see Section 4.4.1) but rather to 

focus on the mechanisms involved in biomass – seed production relationships. 
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Reproductive effort 

was determined for all 

plants (Early and 

Late) and expressed as 

a function of plant 

size to reveal age x 

size interactions in 

allocation patterns. It 

has to be noted that 

‘reproductive effort’ 

has been interpreted in 

two different ways in 

biomass allocation 

studies (Karlsson and 

Méndez, 2005). One definition regards the proportion of resources invested in 

reproduction whereas the other definition focuses on the cost involved for the 

organism. Klinkhamer et al. (1992) argued that reproductive effort is best defined and 

analysed as the total biomass of seeds, R, divided by the total biomass of vegetative 

plant material, V. In most of the weed ecological studies an approximation of this 

concept is used, i.e. the total number of reproductive structures (e.g. flowers, capsules, 

mature seedheads or seeds) per unit total plant biomass and this approach will be 

adopted here as well. 

 

Analysis 1: H0 : Y = aX+c      vs.      H1 : Y = aXb + c

Do not reject H0 Reject H0

Analysis 2: 

H0 : Y = aX      

vs. H1 : Y = aX + c

Analysis 2: 

H0 : Y = aXb

vs.       H1 : Y = aXb + c

Do not reject H0 Reject H0 Do not reject H0 Reject H0  

Figure 4-11 Decision rules used to determine which regression 
model fitted best to each of the 4 biomass – seed production datasets. 
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4.4.3 Results 
Unlike T. inodorum which is an erect species, S. media is prostrate and produces roots 

at the internodes. At the time of the 3rd

After the seed heads of T. 

inodorum were dried in the oven, 

inspection showed that many of the 

immature seeds had shriveled up 

and clumped together. As a result, 

counting the seeds became very 

time-consuming and was 

subsequently abandoned. Rather 

than presenting the [biomass – seed 

production] results, the data will be 

restricted to the [biomass – # of mature seed heads] relationship. When presenting the 

data in this way it should be noted that some distinction is lost because the criterion 

‘mature seed head’ imposed in this study, includes seed heads where all the seeds are 

still on the cone (viability in these seed heads is only 10-20% from fully matured 

seeds) up to seed heads where all the seeds had been shed. In other words, the ‘mature 

seed heads’ criterion tends to overestimate the reproductive output of ‘Late’ weed 

cohorts compared to ‘Early’ weed cohorts. 

 harvest, S. media plants had become tangled 

into each other so much (see Figure 4-12) that it was impossible to distinguish the 

original plants. Trying to do so 

resulted in loss of branches, leaves 

and reproductive structures. Since 

the measurements had to be taken 

on individual plants, the decision 

was taken to omit S. media from 

the analysis.  

On the other hand, the onset of senescence and the concomitant shedding of leaves 

and reproductive structures led to a reduction in biomass at the 4th harvest (compared 

to 3rd harvest) for the early established cohorts. Since the weight of reproductive 

structures was not excluded from total plant weight, the shedding of seeds for the 

early cohorts will tend to overestimate the reproductive effort (# of mature seed heads 

/ unit biomass) for ‘Early’ compared to ‘Late’ weed cohorts.  

 

Figure 4-12 Plot with carrot and Stellaria media;  
image taken on the 10th of August.   
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Reproductive output in relation to plant age and plant size 

Plants of the two ‘Early’ treatments had produced more mature seed heads than plants 

of the ‘Late’ treatments at crop harvest and this effect was disproportionally larger for 

larger plants (see Figure 4-13).  

 

The four datasets could not be modeled using just one regression model (see Table 4-

7). The values of the parameters a, b and c are not given since they can not be 

compared to each other given different regression models.  

If the three large plants with relatively few mature seed heads in the ‘Early – 5 

cohorts’ were considered outliers (see Figure 4-12), then the simplest regression 

model, Y=aX is sufficient for the ‘Early’ treatments whereas the regression model 

with the b parameter, Y=aXb

 

 is required for the data of the ‘Late’ treatments. If the 

best regression model included the b parameter then the value of b was always lower 

than 1 indicating that in these datasets large plants at the time of sampling had 

produced fewer mature seed heads per unit biomass than small plants.  

 

Figure 4-13 Plant biomass – seed production relationship for T. inodorum plants at crop 
harvest; on average (‘Early’) and (‘Late’) weeds were 7 days older and younger than carrots 
respectively.  Weed and crop plants were all transplanted and harvested on the same day.  
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Table 4-7 Results of extra sum-of-squares F-test for regression models of the biomass – mature 
seed heads datasets.  

 Run 1: Reject H0 Run 2: Reject H? 0 Regression model ? 

Early (1 cohort) No (P=0.802) No (P=0.091) Y=aX 

Early (5 cohorts) Yes (P<0.0001) Yes (P<0.05) Y=aXb

Early (5 cohorts, 
minus 3 outliers) 

+c 

No (P=0.695) No (P=0.077) Y=aX  

Late (1 cohort) Yes (P<0.05) No (P=0.277) Y=aXb

Late (5 cohorts) 

  

Yes (P<0.01) No (P=0.333) Y=aXb

 
  

 

Reproductive effort in relation to plant size and plant age 

Plotting reproductive 

effort as a function of 

plant biomass at harvest 

confirms the results found 

above: small plants tend 

to have a higher 

reproductive effort than 

large plants and this 

effect was more 

pronounced for the late 

cohorts than for the early 

cohorts (see Figure 4-14). 

Hence reproductive effort 

is both size- and age 

dependent.  

 

 

 

Figure 4-14 Relationship between realized reproductive 
effort for ‘Early’ and ‘Late’ cohorts of T. inodorum and plant 
biomass at harvest. 
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4.4.4 Discussion and implementation 
The data presented in this section suggests that small T. inodorum plants either start 

flowering earlier than late plants or that they finish flowering sooner than larger 

plants, i.e. have a reduced life-span. The latter option seems most plausible since 

plants that can acquire more resources relative to their neighbours also produce 

photosynthates longer and will end up larger. Either way, since the proportional 

allocation to reproductive structures only maximizes towards the second half of a 

plant’s life span, it follows that the reproductive effort in large plants is lower than 

that of small plants unless the timing of sampling is after all plants have senesced. 

Indeed, during harvesting it was commonly observed that larger plants had more buds 

and flowers than smaller plants, regardless of age-cohort. The higher the number of 

weed individuals per unit area, the smaller individual plant size becomes and the 

faster the maximum reproductive effort is reached. For heavily infested fields, the best 

strategy would therefore be to shift to early maturing crop varieties.  

Samson and Werk (1986) illustrated that reproductive effort is size-independent only 

when the y-intercept of the linear regression line of reproductive biomass as a 

function of vegetative biomass is zero. From a biological point of view, negative y-

intercepts are obvious but positive y-intercepts are counter-intuitive since they 

indicate that a plant of zero weight produces seed. Positive Y-intercepts are most 

likely artifacts due to the incorrect assumption that the b parameter is 1 whereas in 

fact the b parameter in the function Y=aXb

If the data of the ‘Early’ treatments truly followed the model Y=aX, then the 

reproductive effort should be constant regardless of plant size. However, the shape of 

the data-cloud in Figure 4-14 reveals that reproductive effort is larger for small plants. 

This is characteristic of a linear biomass seed production relationship with a positive 

Y-intercept (c>0), i.e. plants of zero weight produce seeds (Samson and Werk, 1986). 

As mentioned in the methodology section, reproductive effort of ‘Early’ plant 

biomass was overestimated in that plant weight included the weight of reproductive 

structures but at the time of harvest many plants had already shed seeds and lost 

leaves due to a dry summer. Whether or not seeds had been shed, a mature seedhead 

was still counted as such. In reality therefore the datapoints should be shifted 

 + c, is lower than 1; it takes only a few 

scattered data points of disproportionally large plants that are still flowering to cause 

positive Y-intercepts.  
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horizontally to the right in Figure 4-13. If small plants have lost more biomass, in 

absolute terms, than large plants then the Y-intercept could become negative. 

The results of this experiment clearly showed that prior to full maturation, biomass – 

seed relationships are curvilinear and the relationship becomes linear only once the 

plants approached the end of the life-cycle. Over the course of flowering duration, the 

b parameter increases from 0 to 1. At the same time the ‘a’ parameter (slope) 

increases to its maximum as well. Both parameters are positively related to the age of 

plants after induction of flowering, but both are affected by the size-distribution of the 

population as well. By assuming the linearity parameter (b) is less important than the 

slope parameter (a), conceptually a simpler model remains (Y=aX+c) where the static 

biomass – seed production relationship can be made dynamic in a more simplistic 

way.  The minimum biomass a plant should acquire to produce one flower (or the 

equivalent number of seeds) is defined as the ‘hinge’ point, around which a linear 

regression line ‘hinges’ with the slope of the line being a function of time (see Figure 

4-15). 

 
This would be an indirect way of modelling seed production over time in that flower 

production itself is not accounted for. However, what is still required for this ‘model’ 

to be implemented, is data and/or assumptions about: 

• the minimum size of flowering 

• the onset and end of flowering 

 

Figure 4-15 Conceptual representation of how the biomass-seed production relationship can 
be made dynamic. The slope of the line is a function of accumulated thermal time, with the amount 
of thermal time required being a function of plant size at the initation of flowering. The blue point 
represents the ‘hinge’ point, that is, the minimum plant size that can support 1 flower. After 
producing the flower the plant does not produce any more biomass and therefore remains in the 
same position. 



 176 

• the rate at which the slope parameter increases from 0 to its maximum value 

For a single plant, reproductive effort increases according to the ratio of the 

cumulative distribution of produced flowers over time vs the weight increase over the 

same interval. If flower production in annuals follows approximately a Gaussian 

distribution, then the slope parameter is a function of (thermal) time in a logistic way. 

Hence, the pace with which the slope parameter increases for a population of plants 

depends on the size-distribution within the population; if the population consists of 

many small plants (that are assumed to have short flower duration) then the slope 

parameter increases more rapidly than for a population with a few large individuals.  

This was indeed observed by van Acker et al. (1997) for S. media planted at two 

densities (see Figure 4-16). Their data also suggests that small plants have an 

inherently higher reproductive effort than large plants which would lead to a non-

linear biomass – seed 

production relationship. The 

drop in the number of 

capsules per g DW for S. 

media planted at high 

density (in contrast with 

those planted at low 

density) also suggests that 

small plants finish the life-

cycle earlier than large 

plants and therefore flower 

over a shorter time span. 

The temporal change in 

reproductive effort of weeds 

is much like the increase in 

harvest index (HI) in crops 

(Lecoeur and Sinclair, 

2001) and the increase in HI can be modelled in a simple way as was shown by 

Soltani et al. (2004).  

From a mechanistic modelling point of view, adopting ‘empirical shortcuts’ is a 

somewhat unsatisfactory approach. On the other hand such ‘shortcuts’ can be 

accepted in parsimonious models if their predictive potential matches the actual 

situation over a range of environmental conditions. However, phenological 

 

Figure 4-16 Temporal changes of the number of S. 
media capsules per g dry weight (DW). ▲ ---▲= high density 
(average density = 600 plants m-2), ■ ---■ = low density 
(average density = 50 plants m-2). Cross hairs represent SED 
(figure and data after van Acker et al., 1997). Note: the drop 
in the ‘high density’ data after 198 Julian days respresents the 
loss of capsules through abscission. 
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characteristics such as onset and duration of the reproductive phase are much less 

uniform in weeds than in crops. It is therefore better to define simple rules for 

processes such as biomass increase, onset and duration of flowering and how they are 

related. Even though these rules or assumptions may be too simplistic it is more likely 

to increase understanding and from an academic point of view that is of greater worth. 

 

 

 



 178 

4.5 Towards a dynamic biomass - seed production 
relationship (Part 2) 

 

4.5.1 Introduction 
The results of the experiment described in Section 4.4 led to the decision to model 

flowering itself rather than reproductive effort. Section 4.3 showed that the number of 

flowers that a plant produces during its lifetime is closely, in fact linearly, related to 

its final size. However, small plants seemed to realise their maximum reproductive 

output before large plants did. This could mean that small plants tend to flower over a 

shorter period or that plants that are large at the time of harvest started flowering later. 

The latter could be explained as that those plants exploited their relative superior 

competitive position by prolonging the vegetative state. The larger the physical 

support network (branches), the more numerous the ‘photosynthesis factories’ (green 

leaves) and the bigger the reproductive potential. On the other hand, delaying 

flowering is risking precocious mortality and hence unrealised reproductive output. 

Cumulative flowering curves of individual plants generally follow a sigmoid shape 

(Hof et al., 1999; Meagher and Delph, 2001) which provides the opportunity to use 

the Beta distribution with four parameters as applied in Equation 4-6. Since tmax refers 

to the point in time where the growth rate of the relevant variable is maximal, it could 

be regarded as the parameter reflecting the skewness of flowering. One of the main 

aims of the work done in this section is to examine how tmax can be expressed relative 

to ts and te. Thomson (1980) successfully showed that the skewness of flowering 

curves was related to the timing of flowering which is basically a mechanism to 

facilitate flower pollination. If skewness of the cumulative distribution of flowers in 

T. inodorum is related to plant size or to phenological characteristics such as the onset 

and/or duration of flowering, then tmax ought to be made a function of this / these 

characteristic(s). If this is not the case then tmax

Using Equation 4-6, t

 can be represented by a fixed value 

with the null assumption being that flowering is symmetric.  

max

Equation 4-7: t

 can be expressed as: 

max=sBeta*(te-ts)+ts ⇒  tmax= sBeta*te+(1-sBeta)*t

For symmetric flowering (s

s 

Beta=0.5), tm

Equation 4-8: t

 can be expressed as: 

max=0.5*(te-ts)+ts ⇒  tmax=0.5*(te+ts) 
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Unless emergence of weed seedlings from species that have a wide periodicity of 

emergence such as S. media and T. inodorum (Roberts, 1964; Chancellor, 1986) is 

(assumed to be) prevented by the presence of a crop, small flushes of weeds may 

emerge when the crop has already established. The longer the interval between crop 

establishment and weed emergence, the more final biomass, and therefore seed return 

to the seedbank, will be impaired. Baumann et al. (2001) showed that 90 days after 

crop establishment, average plant biomass / m2 of Senecio vulgaris was reduced by 

51%, 83%, 96% and 99% if Senecio vulgaris

In conclusion the following research questions were proposed: 

 emerged 10, 20, 30 or 40 days after crop 

(leak / celery intercrop) establishment compared to simultaneous emergence of S. 

vulgaris with crop establishment. Those weeds that emerge 30 or 40 days later may 

not produce viable seeds if they do not reach the minimum size for reproduction or if 

crop harvest precedes the time required to produce viable seeds. Hence estimates of 

the minimum size for flowering, the onset of flowering and the interval between 

flowering and seed dispersal are required.  

1. What is the probability of and minimum weight for flowering? 

2. How is the onset of flowering distributed in the population and is it correlated 

with plant weight? 

3. Is the duration of flowering related to plant weight? 

4. Is the time to flowering dependent on the timing of establishment?  

5. Can flower production over time be modelled using a symmetrical Beta 

distribution (tmax = 0.5*(te+ts

6. Is the skewness of flowering related to plant size or to onset and/or duration of 

flowering? 

)) ? 

7. How many accumulated day(-degree)s are required from first flowering to first 

seed shedding? 
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4.5.2 Methodology 
The experiment was conducted in the spring-summer season of 2007 and was 

conducted as a randomised block design with the following treatments: 

 

2 x Interactions:    Carrot vs S. media 

      Carrot vs T. inodorum 

 

2 x Establishment times   May, June 

3 x Replicates 

 

12 PLOTS  

 

To answer the research questions this experiment aimed at generating a population of 

weeds over a range of sizes representative of a commercial vegetable field, for which 

phenological characteristics can be collected over the season.  

Two establishment times were included: one simulataneous with and the second 

several weeks after crop establishment.  

Prior to sowing soil was prepared as a stale seedbed in March and sprayed off with 

glyphosate approximately two weeks before crop sowing. The soil was irrigated 

because of excessive drought and then power harrowed a few days before crop 

sowing. Carrots cv Nerac were sown on the 20th

Since the aim of this experiment was to generate weeds of different sizes and not to 

explicitly measure plant competition, individual plots comprised 1.75 m. long sections 

of the bed without additional space between the plots. Weed seedlings used for 

transplanting were acquired from and grown as described in section 4.2.2. Plots were 

divided in two sections: in the first 1.0 m, weeds were transplanted within the three 

carrot rows whereas in the remaining 0.75 m weeds were transplanted between the 

rows (see Figure 4-17). Weeds were transplanted at different densities both within and 

between the rows, to generate plants at a range of sizes within each establishment 

 of April as four triple row bands on a 

standard bed width (1.83 m), at an average of 75 seeds / meter giving approximately 

600.000 seeds/acre. Due to drought crop emergence was irregular and occurred over a 

time span of 15-35 days after sowing. The plots were handweeded regularly over the 

course of the experiment.  



 181 

treatment. At the time of transplanting in May the seedlings were at the 4th true leaf 

stage, but seedlings were transplanted between the 2nd and 3rd

 

 true leaf stage in June. 

Due to poor emergence not enough weed seedlings were available at the 2nd

 

 

establishment time to create an identical transplanting pattern, therefore no weeds 

were transplanted within the two outer carrot triplet rows (June) (see Table 4-8) but 

the distance between individual plants remained the same.  

Table 4-8 The number of transplanted seedlings per experimental plot for different sections 
within the carrot crop (see also Figure 4-17) 

 Position on bed (B=between row, W=within row) 

Transplant date W1 B1 W2 B2 W3 B3 W4 

18 & 25 May 2007  24 1 3 24 30 6 3 6 

15 June 2007 0 3 24 24 6 0 0 
1

1.00 m

0.75 m

0.09 m

0.06 m
0.36 m

0.36 m

CarrotWeed

1.83 m

W1 W2 W3 W4B1 B2 B3

 T. inodorum was transplanted a week later than S. media because of slower growth 

 

Figure 4-17 Position and planting distance in a plot of weed seedlings transplanted in May. 
Carrot positions within an individual row were less regular than indicated due to irregular sowing 
and failed emergence. Not on scale. Letter codes indicate from left to right the various ‘Within-
row’ (W) and ‘Between-row’ (B) sections of the bed in which the weed seedlings were transplanted 
(see Table 4-8 and 4-9). 
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For each of the transplanted weeds, the date of first flowering and first seed shedding 

was determined. The latter is easy for T. inodorum since the seed are attached to the 

receptacle in a honeycomb kind of way, so as soon as one or more seeds get dislodged 

and fall off the receptacle a space becomes visible. In each plot nine weeds from the 

within- or between-row sections were randomly allocated and labelled and the 

number of flowers over time was followed until no more flowers were produced (see 

Table 4-9). In addition, at the second establishment time, 10 weed seedlings were 

transplanted in the field at sufficient distance to avoid competition of each other of 

which two plants were selected to count the cumulative numbers of flowers over time.  

Plots were harvested from the 9th to the 12th

 

 of September, 142-145 days after sowing 

which is slightly later than the recommendation (130 days) for this carrot variety from 

Elsoms. For the weed seedlings transplanted in May, the number of flower buds, open 

flowers and seed heads was counted for 36-50 plants per replicate, including the 

plants within the carrot rows for which flowering over time was followed (see Table 

4-9). At harvest the buds, flowers and mature seed heads were counted and then cut 

off the plant to avoid the overestimation of biomass for plants that had shed few seeds 

relative to plants of which most seeds had been shed. Four batches of in total 80 seed 

heads were taken to the lab to count viable number of seeds per seed head. Seed heads 

were gently crushed per batch and the seeds then thoroughly mixed to avoid seed 

samples of unrepresentative seeds. 3 batches of 100 seeds were counted and weighed 

and the total viable seeds determined. Seeds were counted as viable if they looked 

plump rather than shriveled which proved to be a good descriptor in germination 

experiments. 

Table 4-9 Number of transplanted weeds in May per experimental plot for different sections 
within the carrot crop (see also Figure 4-17) for which flowering over time was followed and for which 
biomass – reproduction relationship at harvest was established (numbers varied per replicate). 

 Position on bed (B=between row, W=within row) 

 W1 B1 W2 B2 W3 B3 W4 

Flowering over time 1 1 1 3 1 1 1 

Biomass – reproduction  8-12 2-3 8-12 9-15 2-4 2-3 2-3 

 

Due to time constraints, duration of flowering and time from first flowering to seed 

shedding was only measured for the weed seedlings transplanted in May. The biomass 

of the seedlings transplanted in June was reduced to a great extent compared to the 
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seedlings transplanted in May so much so that a proportion did not meet the minimum 

requirement for flowering. This allowed expressing the proportion of plants flowering 

as a logistic function (Verhulst) of plant biomass (W), to determine the minimum 

weight for flowering (prfl

Equation 4-9: 

 = 0.99). 

( )( )fl50WWkfl
e1

1pr
−−+

=  

Where k is the slope of the logistic equation and W50(fl)

For the various analyses, dates were converted to Julian days. Data of flowering over 

time was expressed against accumulated effective day-degrees after the first plant that 

started flowering. Prior to fitting a Beta distribution, the data were modified in the 

following way: 

 is the weight of plants at 

which 50% is able to initiate flowering. 

• when no additional flowers were produced at the following census-day(s) the 

median value for accumulated effective day-degrees replaced the two or more 

values 

• flowering was set as zero on the census-day preceding the census-day with 

first flowering 

 

To test whether the distribution of flowering is symmetrical, i.e. whether plants reach 

tmax halfway between ts and te, for each of the 27 plants for which flowering over time 

was followed, two versions of the Beta distribution were fitted to the data. In the null 

hypothesis model, tmax was explicitly made a function of ts and te: tmax = 0.5*(te+ts) 

whereas in the alternative hypothesis model tmax

• t

 was allowed to vary. Significance 

was tested with the extra sum of squares F-test.  

s

• t

 was set at zero on the census-day preceding the census-day with first 

flowering 

e was set as the number of accumulated effective day-degrees from Tb

For each plant the degree of symmetry of the fitted Beta distribution, expressed as 

s

 until 

the last census-day for which new flowers were produced 

beta, was then expressed as in Equation 4-6. Values for sBeta were tested for normality 

using the D’Agostino-Pearson K2 omnibus test. sBeta was then correlated with plant 

biomass, day of first flowering and duration of flowering to examine if tmax

 

 should be 

made a function of other factors. 
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4.5.3 Results 
As in the image-analysis trial only a few (<1%) of the transplanted S. media seedlings 

started to flower before harvesting in September and therefore only results for T. 

inodorum could be obtained.  

 

 

Probability of and minimum size for flowering  

All weed seedlings transplanted into the carrot crop in May survived and 99% of the 

plants produced flowers before harvest on the 8th

The absolute minimum 

requirement for flowering 

was at 0.04 gram (see Figure 

4-18). The parameters of the 

fitted logistic equation (see 

Equation 4-9) were: K = 156.3, W

 of September. In contrast, six 

percent of the weed seedlings 

transplanted in June died and 

only 74% of the remaining 

weed seedlings flowered and 

before harvest in September. 

All of the plants that did not 

flower (26%), weighed less 

than 0.14 gram dry weight.  

50(fl) 

 

= 0.046. Hence, out of a sample of weed 

seedlings weighing 0.046 gram (dry weight) at harvest, half of the seedlings will 

flower. The dry weight at which 99% of the seedlings will flower is 0.075 gram. 

 

Figure 4-18 Size-dependency of the probability of 
flowering for T. inodorum seedlings transplanted in a carrot 
crop in June. Line is fitted logistic function (Verhulst). 

 



 185 

First flowering date: distribution and relationship to plant size 

The onset of flowering 

approximately followed a 

normal distribution pattern 

and was more right-skewed in 

May than in June (see Figure 

4-19). The median first 

flowering date for T. 

inodorum plants transplanted 

in the carrot crop on the 25th 

of May and 18th of June was 

on Julian day 198 (17th of 

July) and 226 (14th

Regardless of whether plants were transplanted in the crop in May or June, no 

relationship was found between weed biomass at harvest and the first day of 

flowering; the slope of the linear regression line of biomass against Julian day was not 

significantly different from 

zero (P=0.08, May and 

P=0.08, June; see Figure 4-

20). However, whereas each 

of the ten seedlings 

transplanted to a non-

competitive environment in 

June had started flowering by 

the 13

 of August) 

respectively. The time from 

emergence in the seedling trays until median date of flowering was 83 and 84 days 

respectively for the May and June transplants.  

th of August, only 45% 

of the original number of 

weeds transplanted in the 

crop at the same time had 

started flowering by that day. 

The plants growing in 

isolation were considerably 

larger than those transplanted in the crop. Hence, both the probability and onset of 

 

Figure 4-20 Relationship between plant biomass at 
harvest (8 September) and the date of first flowering for T. 
inodorum seedlings transplanted in a carrot crop in either 
May or June. Note that X-axis is on log scale. 

 

Figure 4-19 Distribution of first flowering date for T. 
inodorum plants transplanted in a crop in May and June. In 
June fewer plants were transplanted in the carrot crop but the 
proportion of plants flowering was lower as well. 
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flowering are affected by the intensity of competition for resources but the effect of 

biomass on the onset of flowering is masked by the large individual variation 

independent of size.  

 

 

Duration of flowering and plant weight 

The duration of flowering in T. inodorum was positively correlated with plant size at 

harvest and the correlation between the two variables was significant (P<0.005). 

However, only 29% of the 

variability in duration of 

flowering could be explained 

by plant size (Pearson r = 

0.54).  

After dividing the data into 

two groups based on first day 

of flowering there was no 

significant correlation for 

early flowering plants (n=12, 

P=0.38) though the 

correlation was significant for 

late flowering plants (n=14, 

P<0.01) – see Figure 4-21. 

The segmentation of the data did not consistently improve the percentage of explained 

variation (r2 = 0.077 for early flowering plans and r2 

Unfortunately the two plants for which flowering over time was followed were 

accidentally removed by Horticultural Services staff in October, so information on dry 

weight of these plants is not available. By that time, the two plants had accumulated 

621 and 581 flowers and flower duration was 79 and 95 days respectively. Including 

that data in Figure 4-21 would suggest a positive (non-linear) relationship between 

plant biomass or total flowers and flower duration is evident. 

= 0.39 for late flowering plants). 

With such high plant to plant variability a larger number of plants would have to be 

monitored to get a clearer picture of the effect of first flowering date.  

 

 

Figure 4-21 Correlation of plant biomass at harvest, 
when all plants had stopped flowering, and duration of 
flowering for T. inodorum seedlings transplanted in a carrot 
crop around May and harvested in September.  
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Can flower production over time be modelled by a symmetrical Beta 

distribution? 

Flower production over time followed a sigmoid pattern in most of the monitored 

plants which was more apparent for larger plants (many flowers) as compared to 

small plants (few flowers) (see Figure 4-22). However the duration of flowering in 

plants of the same size varied greatly. 

 
In general the Beta distribution fitted the cumulative flower counts rather well; the R2

s

 

ranged from 0.926 to 0.997 with a median of 0.985.  

Beta varied between 0.11 and 0.65 with the mean being 0.43. Despite the frequency 

distribution of sBeta values being left-skewed, the sBeta values did not significantly 

deviate from normality (D’Agostino-Pearson Omnibus K2 = 2.17, P=0.338). No 

single value for sBeta exists that fitted all of the flowering curves. For 18 out of the 27 

plants for which a Beta distribution was fitted to the flowering data over time, the null 

hypothesis (Beta model with tm = 0.5*(te+ts)) was rejected. When the null hypothesis 

was formulised as tmax = 0.43*te+(1-0.43)*ts

 

 (see Equation 4-7), it was rejected for 14 

out of the 27 plants, indicating the high plant to plant variability and that even the best 

fitted value is not suitable for more than half of the population. 

 

Figure 4-22 Flowering curves, fitted with the Beta distribution, for 6 individuals of T. 
inodorum. Note that X-axis is on the same scale but Y-axis is not. Although flowering duration 
generally increases with plant size, large plant phenotypic variability exists in plant growth rates 
and consequently flower duration. 
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Relationship between skewness of flowering and phenological characteristics 

Based on the data collected in this experiment, the position of tm relative to ts and te is 

not associated with final biomass or with phenological characteristics; neither the 

correlation between plant biomass at harvest and curve-symmetry (SBeta) (Pearson r = 

0.29; P=0.153, two-tailed), between flower duration and curve symmetry (Pearson r = 

0.05; P=0.823, two-tailed) nor the correlation between first flowering date and curve-

symmetry (Pearson r = -0.22; P=0.272, two-tailed) were significant. Hence, regardless 

of other growth characteristics tmax can be defined as tmax = 0.43*te+(1-0.43)*ts

 

. 

 

Time from first flowering to first seed shedding 

The time from flowering to first seed shedding was recorded for 261 plants that 

started flowering over the period from 6 to 31 July and started seed shedding from the 

8th of August until the 4th

The ratio of the standard 

deviation relative to the median 

was 0.10 both if measured on a 

daily basis and on a degree-day 

basis. There was no relationship between the time of first flowering and the time from 

first flowering to first seed shedding (data not shown). After acquiring enough degree 

days to complete maturation on the plant, chance events play some part in dislodging 

seeds from capitula and it was observed that seeds were being retained on the capitula 

of some seed heads much longer than on others. Consequently, the number of days / 

day degrees from first flowering to seed shedding was variable as well.  

 of 

September. The median time 

from first flowering until seed 

shedding was about 34 days / 556 

degree-days (see Figure 4-23). 

This is similar to the findings by 

Leguizamon and Roberts (1982) 

who found that it took between 

25 and 40 days from first anthesis 

to dispersal of the first ripe seeds 

regardless of when the seedlings 

emerged. 

 

Figure 4-23 Box-plots of number of days (left) 
and day-degrees (right) from first flowering until seed 
shedding of T. inodorum plants transplanted in carrot 
in May. Whiskers represent 1.5 times interquartile 
distance. Outliers are represented by black dots and are 
defined as those datapoints within the range 1.5-3.0 
times the interquartile range, below or above the 1st or 
3rd quartile respectively. 
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4.5.4 Discussion 
 

The identification of a minimum size for flowering as discussed in Section 4.4 was 

confirmed in this study. This emphasizes the notion that the delayed fulfillment of 

maximum reproductive effort by large plants relative to small plants increases the 

value of the Y-intercept of the linear regression of the non-transformed biomass – 

seed numbers data, and thus obscures the presence of a minimum weight for 

flowering.  

The equivalent time to flowering for plants in May and June was not expected given 

the observations by Roberts and Feast (1974) that the vegetative period of plants that 

emerge later is shortened. Transplanting conditions for May and June were different 

(4th vs 2nd

Small plants at harvest did not start flowering earlier as suggested in Section 4.4.4 as 

one possible explanation for small plants reaching the maximum reproductive effort 

earlier. Although biomass at the time of flowering could not be assessed, there is no 

reason to suggest that if plants had been harvested at the time of flowering, an effect 

of biomass on the timing of flowering would have been present. Interestingly, isolated 

plants transplanted to the field in June did start flowering earlier than their equivalent 

aged siblings transplanted in the carrot crop. Since these plants were not restricted by 

competition for light with the crop they had accumulated much more biomass at the 

time of flowering. Hence, if anything, there is a negative relationship between plant 

size and first flowering date rather than positive. 

 true leaf stage & 35 vs 50 days after crop sowing respectively) and perhaps 

this affected the switch to the reproductive phase. Blackshaw and Harker (1997) also 

provided evidence that the photoperiodic response to day-length is an essential feature 

for T. inodorum.  

A positive effect was found between the duration of flowering and plant weight at 

harvest, the other explanation suggested in Section 4.4.4 for small plants reaching the 

maximum reproductive effort earlier. Similarly, Asumadu et al. (1998) showed a 

positive linear relationship between the duration from first flowering to harvest 

maturity and plant dry weight at harvest for soyabean cultivars. When dividing the 

data into two groups based on first day of flowering the effect disappeared for the 

early-flowering plants but not for the late-flowering plants. Perhaps the biomass range 

over which this was assessed was not large enough compared to the high plant-to-

plant variability.  
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The question is if the biomass at the onset of flowering determines the duration of 

flowering (causation) or if both are the outcomes of the quality of the habitat 

(correlation). If the concept of habitat is understood as “the sum of the factors at a 

point in space that may affect a plant’s ability to survive and to contribute offspring to 

the next generation” (Cousens and Mortimer, 1995), then biomass accumulation of a 

weed plant is a function of the quality of a habitat. Habitats can be qualitatively poor 

because of low-nutrient soil conditions or because of intense competition for 

resources (as in crop-weed competition). Flowering stops in annual plants because 

resource acquisition has come to a halt and plants start to senesce. The duration of 

flowering is therefore most likely a reflection of the quality of the habitat.  

When plants compete for resources without subsequent disturbance of the plant 

canopy, initial size-differences are magnified over time (Obeid et al., 1967; Weiner 

and Solbrig, 1984). Given that only 29% of the variability in the duration of flowering 

could be explained by plant size it is likely that plant weight at the time of flowering 

is even less significant in explaining the duration of flowering. The best way therefore 

seems to distinguish habitats with different quality that can explain both flowering 

duration and final biomass. 

The pattern of flowering was not symmetrical but the flowering pattern of more than 

half of the plants was better modeled with a different value for sBeta than the mean 

value for all plants. At the same time none of the variation of sBeta

If day-degrees is a more accurate descriptor of the time to seed shedding than days, 

then the standard deviation of the time measured in days should be higher than the 

standard deviation of the day-degrees to seed shedding. This was not the case, 

suggesting that either seed shedding is not so much affected by temperature but by 

other conditions like wind speed or that temperature within the experimental period 

was rather constant. Inspection of the temperature data revealed that this was indeed 

the case.  

 could be attributed 

to onset or duration of flowering or plant weight at harvest. This suggests that the 

allocation of biomass to flowers is an intrinsic trait that is regulated by the plant’s 

genotype.  
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4.6 Summary of research findings  
 

The experiments described in this chapter addressed a number of research questions 

that had to be clarified in order to define a holistic modelling approach for biomass 

increase, flowering and seed shedding. This section briefly recapitulates the objectives 

and the obtained results  

1. To establish the appropriate environmental conditions that drive (early) 

growth and to quantify the amount of this environmental variable to reach 

defined growth stages (1st, 2nd, 4th and 6th

The experiments showed that the biomass increase of both weed species, S. 

media and T. inodorum, is better described as a response to effective day 

degrees, a combined estimator of temperature and solar radiation, rather than 

temperature alone, as was suggested by an earlier study (Storkey, 2004). 

Seeding weights for the 1

 true leaf stages).  

st to 4th true leaf stage were determined from 

experimental results and seedling weight for 6th

2. To establish how the onset and development of flowering over time is 

related to biomass increase.  

 true leaf stage was extrapolated 

from data and from information in the literature. 

Prior to the data analysis it was hypothesized that the onset of flowering would 

coincide with the acceleration of biomass increase. Using a novel approach to 

image analysis this was found not to be the case. Instead, the acceleration of 

growth occurred 21 days after the initiation of flowering, suggesting that shortly 

after flowering, the time being dependent on plant size, the allocation to 

reproductive biomass is not reducing the overall rate of biosynthate produced 

during photosynthesis. 

3. To establish how plant age at crop harvest affects the static biomass – seed 

production relationship.  

A clear effect of plant age on the biomass – seed relationship was found for T. 

inodorum, confirming the findings by van Acker et al. (1997) for S. media. The 

results also showed a non-linear relationship between biomass and mature 

seedheads for the ‘young’ but not for ‘old’ plants, in other words, small plants 

reached maximum reproductive effort earlier than large plants. This suggested 

that either small plants started flowering earlier or small plants had a shorter 

flower duration. 
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4. To explore the onset, pattern and duration of flowering and the potential 

role of biomass in these phenomena 

• A minimum plant weight to initiate flowering was found for T. inodorum 

suggesting that the lack of a minimum size as found in many studies is 

the result of a combination of the low minimum size in many annual 

plants and the delayed fulfillment of maximum reproductive effort of 

large plants. 

• The onset of flowering was approximately normally distributed in the 

plants. There was no effect between plant size at harvest and the onset of 

flowering, for either the seedlings transplanted in the carrot crop in May 

or June. However, isolated (larger) plants transplanted to the field at the 

same time as the seedlings transplanted in the crop in June started 

flowering earlier. 

• A positive effect between plant weight and the duration of flowering was 

found but this effect was weaker for plants that started flowering later. 

• There was no difference in the time to flowering for the May and June 

transplanted seedlings which is contrary to what was expected according 

to a previous study (Roberts and Feast, 1974). 

• The pattern of flowering of individual plants was not symmetrical, with 

the peak in flowering occurring slightly before the halfway point (0.43 

instead of 0.5) 

• The (a)symmetry of produced flowers over time is neither related to 

plant size, onset of flowering or duration of flowering but appears to be a 

function of plant genotype 

• The time from first flowering to first shedding of seeds was 34 days and 

day-degrees was not a better estimator than days. 



 193 

4.7 Implementation in ECOSEDYN  
 

In the concluding section of this chapter the research findings are integrated and 

model components presented for Biomass increase, Flowering and Seed shedding 

respectively. Both the mathematical representation and the parameterisation are given 

in this section. 

Despite its shortcomings, the Beta growth function is attractive in terms of modelling 

plant growth and flower production. Using the Beta growth function it is easier to 

allow models for biomass increase, flower production and seed shedding to match in a 

meaningful way than using other sigmoid growth curves, due to the straightforward 

biological interpretation of the parameters. For example, the timing parameters can be 

used to implement a simple delay of seed shedding relative to flowering. The 

maximum value of the dependent variable of each of the three Beta distributions can 

also easily be related to each other since the number of seeds shed on the surface is 

dependent on the average number of seeds produced per flower and the number of 

flowers is dependent on plant size. Note that whereas in the previous sections of this 

chapter the notation for start, end and the timing of maximum increase of the Beta 

growth function were indicated by ts, te and tmax, following the original notation by 

Yin et al. (2003), in this section and in ECOSEDYN they are represented by ds, de 

and dmax

 

 respectively.  
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4.7.1 Biomass increase 
 

4.7.1.1 Mathematical representation 
For each weed cohort of a maximum of 12 that emerge over consecutive 5 day 

intervals, biomass increase of a single plant within that cohort is modelled by a Beta 

growth function: 

Equation 4-10: 
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Here the parameters dWs, dWe, dWmax reflect the start time, end time and time of 

maximum rate of growth of biomass relative to the simulation day, dsim. Wcum is the 

accumulated biomass as a function of the simulation day, the weed cohort (time of 

emergence) and the crop habitat (more or less competitive). It will be equal to     

Wmax-r(c,h) when dsim is equal to dWe

The start date of biomass increase for a given weed cohort, d

(c), i.e. when a plant of a given cohort has 

stopped accumulating biomass.  

Ws

For summer annuals the end of biomass increase for a given weed cohort, d

(c), follows from the 

way in which the emerged seedlings, as forecast by the autonomous ‘Germination and 

Emergence’ model, have been separated into weed cohorts (see Section 2.5.2.2 and 

Equation 4-28).  

We(c),  

generally occurs in late autumn whereas for winter annuals it occurs in late spring. 

Because of their wide periodicity of emergence S. media and T. inodorum can not be 

identified as strict summer or winter annuals and are therefore sometimes referred to 

as facultative winter annuals (Håkansson, 2003). T. inodorum seedlings that emerge in 

August or later, survive as rosettes over winter with no appreciable growth until 

spring. It is assumed that in annual plants, the start of senescence, dWe, coincides with 

the end of flowering, dFe

Equation 4-11: 

: 

( ) ( )cdcd FeWe =  

where the end of flowering is defined explicitly in the next section (see Equation 4-

32). The timing of maximum rate of biomass growth for a given weed cohort is a 

function of sBeta_W (see Equation 4-7): 
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Equation 4-12: ( ) ( ) ( )( ) ( )cdcdcd*scd WsWsWeW_BetamaxW +−=  

The final, or maximum, size that a plant can realise, Wmax-r, is a function of various 

intrinsic and extrinsic factors. Isolated individuals of each plant species have an 

intrinsic maximum size above which no biomass can be accumulated, Wmax-t

Since climate scenarios are included in the simulations it is relevant to incorporate the 

effect of environmental conditions on biomass increase / seed production. Several 

studies have observed the drought-sensitivity of S. media (van der Vegte, 1978; 

Sobey, 1981; Leguizamon and Roberts, 1982) and often dry summer conditions end 

the life-cycle. Moist conditions also favour growth of T. inodorum (Blackshaw and 

Harker, 1997) and higher yield losses have been reported in wet years as compared to 

dry years (Douglas et al., 1991). Final plant biomass of winter emerged T. inodorum 

in a winter wheat crop in a dry year was only a third of the final plant biomass in a 

wet year and biomass reduction in summer annuals was reduced even more. The 

geographic distribution of T. inodorum is largely confined to the northern part of 

Europe (Kay, 1994; Radics et al., 2004) as it is not able to maintain itself in 

conditions of high summer temperatures combined with low rainfall. Lutman (2002) 

found that a dry year resulted in a reduction of over 50% of the number of seeds / 

gram plant dry matter in both S. media and T. inodorum.  

. In 

photoperiodic species this intrinsic maximum size can be reduced by late emergence 

(e.g. Blackshaw and Harker, 1997). Extrinsic factors that regulate plant size comprise 

the number, size and proximity of surrounding crop and weed plants at the time of 

emergence and/or later stages, soil heterogeneity, weather and genotype (relative 

growth rate).  

It is hypothesised here that there is a theoretical absolute maximum size, Wmax-t

• no competition with other plants 

, for 

any weed that can be reached only under ideal conditions. The ideal conditions in 

order of importance are: 

• ideal weather  

• no reduction in the length of the vegetative growth period 

More specifically in ECOSEDYN it was assumed that the realized final plant size, 

Wmax-r, is determined by the intrinsic maximum weight, Wmax-t

• the number, size, proximity and relative timing of emergence of surrounding 

crop and weed plants, altogether referred to as ‘habitat quality’. Habitat 

, modified by three 

factors: 
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quality is a function of crop competitivity and crop density. Hence, for crops 

that are grown in rows on beds different habitats need to be distinguished. 

Habitat quality is also a function of crop development (weed cohort): the later 

a weed seedling emerges relative to the crop, the more plant growth will be 

restricted   

• rainfall and temperature over the growing season. This varies depending on 

the day of crop sowing, the timing of weed emergence (weed cohort) and the 

weather year. 

• the time of emergence  

It is proposed here that suboptimal conditions in each of the three categories can 

diminish the maximum weight that can be attained by weed plants, Wmax-t

 

. Hence 

‘biodiversity conservation coefficients’, bcc, are proposed for each of these three 

categories (see Table 4-10), that should represent what proportion of the maximum 

biomass is maintained as a function of the relevant factors.  

Table 4-10 The three ‘biodiversity conservation coefficients’ proposed to modify the maximum 
weight that can be obtained by weed plants, W

Plant size determining factors  
max-t 

Notation of biodiversity conservation coefficients 

Habitat quality  

1 

bcchq

Rainfall and temperature 

 (c,h) 

bccrf+t (c,dsowing

Time of emergence 

,wy) 

bccem (c,dsowing) 
1 Acronyms in brackets: ‘c’=cohort, ‘h’=crop habitat, ‘dsowing

 

’=day of crop sowing, ‘wy’=weather year 

 

In reality (and therefore in ECOSEDYN) these constraints operate at the same time. 

The realized maximum plant weight, Wmax-r, is therefore a function of the theoretical 

plant weight, Wmax-t

Equation 4-13: 

, in the following way:  

( ) ( ) ( ) ( )( )sowingemsowingtrfhqtmaxsowingrmax d,cbcc*wy,d,cbcc*h,cbcc*Wwy,h,d,cW +−− =
 

The fact that genotype is ignored means that no size-hierarchies can develop within 

weed cohorts that emerged in the same interval, i.e. all plants have the same initial 

growth rate and all plants are equally limited by competing plants. Although this is 

not exactly true, seedlings within a cohort would be spread out spatially so that 

competition for resources would be both within and between cohorts. It was therefore 
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assumed that, provided the interval over which seedlings were grouped was not too 

large, larger size differences would develop between age-cohorts than within. 

Separate sections address how the three biodiversity conservation coefficients are 

defined. 

 

 

4.7.1.1.1 Habitat quality - bcc

The objective is for bcc
hq 

hq

Equation 4-14: 

(c,h) to be able to account for differences in the relative 

timing of emergence of crop and weed, and for weed density. Cousens et al. (1987) 

proposed a regression model for relative crop yield loss as a function of weed density 

and the period between crop and weed emergence. This was formulated by Kropff and 

van Laar (1993) as: 

( ) wcw

w
c

N
z
xTyexp

NxRYL






+

=  

Here RYLc is the relative yield loss of the crop, Nw is the weed density (plants m-2), 

Tcw

An Excel chart was created where the behavior of the RYL

 is the relative time of emergence of crop and weed and ‘x’, ‘y’ and ‘z’ are non-

linear regression coefficients. This regression model considers the relative yield loss 

of total crop yield for a given (fixed) crop density due to weed density and relative 

time of emergence of crop and weed. This principle was thought to apply to per plant 

weed weight as well: for a given (fixed) crop density, the relative yield loss of per 

plant weight of weeds is a function of weed density and time of weed emergence 

relative to the crop.  

c function was examined 

for different combinations of parameter values. Assuming a constant plant weight, it 

was found that the RYLc function produces results that are fundamentally counter-

intuitive for per plant weed weight as a function of weed density and relative time of 

emergence. This is illustrated in Figure 4-24 (left) for the Cousens function with Tcw 

= 0 and Tcw = 15 where the coefficients ‘x’, ‘y’ and ‘z’ had values 0.05, -0.05 and 1 

respectively.   
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It is common sense to expect that a delay of weed emergence relative to the crop 

(Tcw=15) would result in a higher relative yield loss of per plant weight and the RYLc 

model confirms this. However, the RYLc model predicts that the difference between 

the proportion relative yield loss of per plant weight initially increases and then 

decreases (see red triangles in Figure 4-24) which is counter-intuitive. Each additional 

weed plant beyond a certain threshold density (1 m-2 for T. inodorum), should be 

causing the average per plant weight to decrease more in a crop that establishes prior 

to a weed cohort than in a crop that establishes together with, or later than a weed 

cohort, because of reduced intraspecific competition in the latter. Therefore, one 

would expect to find that the density at which the difference between the relative yield 

loss of per plant weight for Tcw=0 and Tcw

Given the inadequacy of the RYL

=15 is largest, is at a density of one plant 

and is monotonically declining towards zero beyond this density.  

c function, it was therefore used as a template to 

create a new function that was representative of the relative yield loss of per plant 

weed weight, RYLw

Equation 4-15: 

 as a function of weed density and relative timing of emergence 

of crop and weed:  

 ( ) ( )
( ) ( )
( ) ( )optcw

optcw

optcw PP*xd*yexp
1PP*xd*yexp

PP*xd*yexp
11RYL

−+

−−+
=

−+
−=  

where the notations of Nw and Tcw have been replaced by P and dcw respectively. The 

new RYLw equation was used to create the right chart in Figure 4-24 in which the per 

 

Figure 4-24 Relative yield loss (% reduction) of per plant weight as a function of plants per 
m2, Nw / P with weed emergence at Tcw / dcw = 0 (open squares) and Tcw / dcw = 15 (filled 
diamonds). Red lines represent the difference in relative yield loss between the two curves. Left 
figure is result of Equation 4-14 as proposed by Cousens et al. (1987). Right figure is result of 
Equation 4-15, as proposed in this Phd research. 
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plant weight loss due to later emergence of the weed relative to the crop 

monotonously declined with weed density. With regard to the biological meaning of 

the parameters: 

• Popt

• The ‘y’ parameter indicates the sensitivity of final per plant weight due to 

delayed emergence of weed cohorts relative to the crop; the higher the value 

for ‘y’, the more final plant weight is reduced for a cohort emerging a given 

amount of time after the crop. This parameter is a function of the 

competitiveness of the crop habitat, h, since the more competitive a crop, the 

more impact a delay of weed emergence relative to crop emergence will have 

on per plant biomass. 

 is the maximum plant density in the absence of plants of other species at 

which there is no per plant yield loss due to intraspecific competition for 

resources. The ‘x’ parameter is a measure of the strength of intraspecific 

competition; the higher the value for ‘x’, the more final plant weight is 

reduced with increasing weed density.  

• The ‘z’ parameter, the maximum relative yield loss per weed plant, is not 

included as it is assumed to be 1. It is plausible that the maximum relative 

yield loss for a crop is lower than one, since no grower would apply weed 

control to such low standards that it would result in complete crop yield loss. 

For weeds however, biomass reductions of up to 99% have been observed. In 

one year, biomass of S. media plants emerging 10 and 20 days after an oilseed 

rape crop were reduced by 86 and 98% respectively compared to those 

emerging with the crop (Klostermyer, 1989).  

• The dcw parameter is not equivalent to the Tcw in the Cousens function since in 

the newly proposed function, negative values for dcw, i.e. weeds emerging 

prior to crop, would result in relative yield losses higher than one. The 

scenario with dcw=0 therefore represents the situation in which weeds emerged 

so much earlier than the crop that, regardless of the weed density, final per 

plant weight is not further reduced by crop competition. To retain the time of 

emergence of the crop relative to various weed cohorts, dcw

Equation 4-16: 

 can be written as: 

( ) ( ) ( ) cwcWCcw ccdeltacd
ss

+= →  

and 

Equation 4-17: ( ) ( )cdelta cWC ss→
 = ( )

ss CW dcd −  
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i.e. if a weed cohort emerges earlier than the crop, ( ) ( )cdelta cWC ss→
 becomes 

negative. The values for ( ) ( )cdelta cWC ss→
 can be easily calculated from the day 

of 50% crop emergence, dCs

( )cd Ws

 (see Section 2.5.2.2) and the median day of 

emergence of each crop cohort, . 

ccw is the maximum number of days required for a weed to emerge prior to the 

crop without suffering additional weight loss during growth. It is likely that 

ccw is a function of the competitiveness of the crop. Since crop 

competitiveness is already addressed by the ‘y’ parameter, this additional 

complexity was omitted and instead it was assumed that ccw 

 

would be constant 

in both winter wheat and carrot.  

It should be noted that the concepts of relative yield loss of per plant weed weight, 

RYLw, and bcchq

Equation 4-18: 

 are complimentary: 

1bccRYL hqw =+  

Hence, from the RYLw function, the biodiversity conservation coefficient relating to 

habitat quality, bcchq

 

, is easily derived. 

 

Weed cohorts 

With regard to plant density, P, in Equation 4-15, different weed cohorts should be 

distinguished as the size differences between plants in early and late weed cohorts can 

be so large that it would be incorrect to count individuals of such cohorts as equal. 

Hence, a weighted plant density is calculated for each habitat, Pwt(h): for each weed 

cohort the average per plant weight, Wcum(c), is divided by the average per plant 

weight of the weeds in the first weed cohort to emerge after crop sowing, Wcum(1) and 

then multiplied with the plant density in the cohort, P(c). The weighted cohort 

densities are then summed to obtain the overall plant density in a given crop habitat, 

Pwt

Equation 4-19: 

(h):  

( ) ( )
( ) ( )∑

= =
=

maxc

1c cum

cum
wt h,cP*

1cW
h,cW

hP  
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By substituting unweighted plant density, P, in Equation 4-15 for the weighted plant 

density in a given (crop) habitat, Pwt

Equation 4-20:  

(h), the function is written as: 

( ) ( ) ( )( ) ( )( )optwcw
w PhP*xcd*hyexp

11hc,RYL
−+

−=  

 

Density dependent competition for resources 

An assumption of the newly proposed relative yield loss function of per plant biomass 

is that density-dependent resource 

competition effects operate on the weed 

population even at low densities, which is 

incorrect (see Figure 4-25).   

In fact, the more maximum plant (weed) 

weight is restricted by crop competition, 

the higher the minimum density is below 

which there are no density-dependent 

competition effects. The reason for this is 

that the zone of resource exploitation of a 

plant is a function of plant size. The higher 

the inter-specific competition with the crop 

the more (weed) plant size is restricted so 

that the so-called zones of influence of 

different weeds do not start to overlap 

whereas that would have happened in the absence of the crop. Equation 4-20 was 

therefore modified to include Pdd-th

Equation 4-21:  

, the relative threshold weed density below which 

no density-dependent size regulation occurs:  

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )thddoptwcw
wthddoptwt

cw
wthddoptwt

PPhP*xcd*hyexp
11hc,RYL:PPhPif

cd*hyexp
11hc,RYL:PPhPif

−
−

−

+−+
−=+>

−=+≤

 

It should be noted that Pdd-th is not absolute but relative to Popt; for example, a 

hypothetical plant species might have a Popt of 5 plants m-2 and, given a certain crop 

at a certain density, a Pdd-th of 2 plants m-2, so that in reality the absolute threshold 

 

Figure 4-25 The reciprocal per plant 
weight versus plant density in maize.  Below 
five plants m-2 the zones of influence of 
plants did not overlap and the maximum 
plant weight is density independent. Data 
from Spitters (1983) and figure from Kropff 
and van Laar (1993). 
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weed density at which no density dependent size regulation occurs is 7 plants m-2 

Arguably P

for 

that particular scenario.  

dd-th is a reflection of the balance between intra- and interspecific 

competition. The more competitive the crop, the higher Pdd-th, the more competitive 

the weeds, the lower Pdd-th. It is therefore positively influenced by y(h) and dcw(c) 

 

but 

negatively by ‘x’. The threshold value would be higher if all weeds emerged in one 

late cohort relative to the crop, as compared to one early cohort relative to the crop. 

The reason is that late emergence results in weeds facing more competition from the 

crop, their growth rates and zones of influence being reduced and therefore the weed 

density at which no intraspecific plant competition occurs becoming higher. In reality, 

weeds are most likely to emerge as multiple cohorts and the actual threshold, 

assuming homogenous distribution of weed cohorts and individual plants over space, 

is a function of the number of weeds in each cohort.  

 

Scale 

Since the weighted plant density, Pwt(h), expresses total plant density in terms of the 

number of weeds in the first weed cohort, Pdd-th was therefore also expressed relative 

to the first weed cohort by using the value of dcw for the first cohort to emerge, 

dcw

Equation 4-22:  

(c=1): 

( ) 





 +==− x

beta)1c(d*hy*scaler)h(P cwthdd  

The additional ‘scaler’ parameter needs to be included since the actual threshold 

density is completely dependent on the scale at which weed population dynamics are 

considered. Following Equations 4-18 and 4-21, the biomass conservation coefficient, 

bcchq

Equation 4-23: 

(c), can then be formulated as: 

( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )hPPhP*xcd*hyexp
1hc,bcc:hPPhPif

cd*hyexp
1hc,bcc:hPPhPif

thddoptwcw
hqthddoptw

cw
hqthddoptw

−
−

−

+−+
=+>

=+≤
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4.7.1.1.2 Rainfall and temperature – bcc

It was shown in Section 4.7.1.1 that growth for both S. media and T. inodorum is 

limited under hot and dry weather conditions. It is assumed that higher temperature 

favours growth but only if moisture conditions are sufficient, otherwise high 

temperature actually negatively affects growth. A simple function was sought that 

reflected that the higher the accumulated (effective) day-degrees over the interval over 

which plants grow, the larger the difference between final biomass under dry and 

moist conditions. The third biomass reduction coefficient, bcc

rf+t 

rf+t

Equation 4-24: 

, is a linear function 

of rainfall and temperature:  

( ) ( ) ( ) bwy,dc,X*a*wy,d,crfwy,d,cbcc sowingsowingsowingtrf +=+   

where ‘a’ is the slope of the linear relationship, ( )wy,d,crf sowing  represents a 

coefficient of rainfall for a certain weed cohort over the growth interval, varies 

between -1 and 1 and therefore basically modifies the slope value, ‘a’, to be positive, 

zero or negative. ( )wy,d,cX sowing  represents the accumulated effective day degrees 

(EDD) for a certain weed cohort over the growth interval. b represents the intercept 

with the Y-axis of the linear lines: –a* ( )wy,d,cX sowing + b(rf=-1) and : 

a* ( )wy,d,cX sowing  + b (rf = 1). If these two lines intersect at X = 0, then the intercept 

with the Y-axis, b, is a constant, independent of rainfall. For an intersection at any 

point other than at X = 0, b is different for both lines and therefore both the slope, a, 

and intercept, b, would be a function of rainfall. It is assumed that if moisture is 

optimal (rf-coefficient is 1) and the number of accumulated effective day-degrees is 

maximal, then there is no weight reduction, i.e. ( )cbcc trf + = 1. It was further assumed 

that weight could be reduced by 50% in an unusually dry year compared to a year 

with optimum rain. Since the rf-coefficient ranges between -1 and 1 it can be shown 

that the y-coordinate ( ( )cbcc trf + ) of the intersection of the two lines is at 0.75 by 

expressing the equation as a function of the a parameter:   

Equation 4-25: 

( ) ( )
( ) ( )









−
=→+=+=

−
=→+−=−=

wy,d,cX
b1abwy,d,cX*a0.11rfif

wy,d,cX
5.0babwy,d,cX*a5.01rfif

sowing
sowing

sowing
sowing

 

By equating the right-hand sides it follows that b=0.75. Suppose ( )wy,d,cX sowing  is 

expressed as the cumulative effective day-degrees over the interval from April to 
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September using the weather data of 17 different years. Now the potential gain (and 

loss) of biomass is more affected by soil moisture than by effective day-degrees (see 

Figure 4-26, left). If on the other hand ( )wy,d,cX sowing  is expressed as the cumulative 

effective day-degrees above the minimum cumulative effective day-degrees in any 

one year over the same period, then the sensitivity to temperature has increased but 

the sensitivity to moisture is zero for the year with the least accumulated day-degrees 

(see Figure 4-26: right).  

 

 
Between these two alternatives the left scenario seems the most plausible and the 

scenario with ( )wy,d,cX sowing  expressed as effective day-degrees from the median 

date of emergence of a given weed cohort until harvest and a maximum reduction of 

biomass of 0.50 due to drought (rf = -1) was therefore applied in ECOSEDYN.  

 

 

 

Figure 4-26 Illustration of how the definition of X(c,dsowing,wy) affects the sensitivity of 
bccrf+t to temperature and soil moisture. It is assumed that the worst combination of temperature 
and soil moisture can reduce per plant weight by up to 50%. In the left graph X(c,dsowing,wy) is 
defined as the total accumulated EDD from 1 April to 30 September. In the right graph X(c) is 
defined as the accumulated EDD above the minimum accumulated EDD. The red points reflect the 
maximum and minimum value for bccrf+t in the year with the least accumulated day-degrees. 
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4.7.1.1.3 Timing of emergence - bcc

What is required to decide on the mathematical representation of bcc
em 

em

Equation 4-26: 

 is empirical 

data of final plant biomass of T. inodorum plants sown at different times of the year. 

In the experiment described in Section 4.4, only one planting date of T. inodorum was 

examined whereas Park et al. (2001) applied three planting dates. The latter study 

showed a trend of decreasing biomass for later sowings but data were not collected 

over a wide enough time frame to be able to show detailed pattern. Blackshaw and 

Harker (1997) measured 

final plant biomass for 

isolated individuals of T. 

inodorum sown at five 

different planting dates. 

Their data show a clear 

reversed sigmoid pattern 

(see Figure 4-27). This lead 

to the assumption that 

seedlings emerging early in 

spring experience no 

reduction in final biomass, 

but seedlings emerging 

from early May onwards 

experience a sigmoidal decline in the final biomass. In the absence of weed control or 

cultivation, the late emerging seedlings would remain as rosettes over winter and start 

to increase biomass again in spring. However, in ECOSEDYN all plants were set to 

be killed at crop harvest and final biomass is therefore an appropriate concept. Hence 

final biomass due to date of emergence can be described by modified logistic 

equations (Verhulst, 1838): 

( )max-WsWs dd*k
minfmax-f

maxff e1
WW

WW
−−

−
−

+

−
−=  

where Wf is final per plant biomass and is a function of the start of biomass increase, 

dWs, i.e. the day of emergence. Wf-max is the maximum amount of biomass that plants 

can possibly accumulate (upper asymptote), if emerging prior to last half of May.   

Wf-min is the minimum amount of biomass that plants will accumulate (lower 

 

Figure 4-27 Relationship between planting date and 
final biomass for T. inodorum plants sown between May and 
August at two different locations in Canada. Data from 
Blackshaw and Harker (1997). 
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asymptote), k, is the slope of the downward curve and dWs-max is the timing at which 

Wf is half the value of Wf-max

To create a function for bcc

. 

em, the plant weight data needs to be transformed to 

proportional data, i.e. as a proportion of the maximum final biomass, Wf-max, where  

Wf-max = 1 over the interval for which day length is not limiting final biomass of 

plants. It was assumed that the minimum amount of biomass that plants would invest 

to survive winter as a rosette, Wf-min, is 1% of the maximum final biomass Wf-max. Wf-

max and Wf-min can then be represented as 1 and 0.01 respectively. The logistic 

equation that is used to calculate bccem 

Equation 4-27: 

for a given weed cohort in ECOSEDYN can 

therefore be written as: 

( ) ( )( )maxWsWs dcd*kem e1
99.01cbcc

−−−+
−=  

 

 

4.7.1.1.4 Early growth 

So far weed cohorts are explicitly distinguished based on age, but not on size. Since 

post-emergence weed control success is modeled only as a function of seedling size, 

size categories need to be created. Given that the experimentally derived 2nd, 4th and 

6th

 

 true-leaf weights of the seedlings are available (Section 4.2) for each age cohort 

the Beta distribution for biomass increase appears to be a suitable tool to classify the 

weed seedlings of a given age cohort into a true-leaf size class. 
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4.7.1.2 Parameterisation and implementation 
The parameters for which a value must be found are plant starting weight, 

sWdW (Equation 4-10), starting time of biomass accumulation, dWs (Equation 4-10), 

the Beta symmetry parameter, sBeta_W (Equation 4-12), the intrinsic maximum weight, 

Wmax-t (Equation 4-13) and the parameters relating to the three ‘biomass conservation 

coefficients’, bcchq, bccrf+t, bccem

 

, In addition the way in which seedlings were 

classified into ‘true-leaf’ stages during early growth needs to be specified.  

 

Plant starting weight 

The seed weight, 
sWdW , was taken as the starting weight for the seedling. The value 

for seed weight of S. media (5.1 x 10-4 gr.) was taken from the Ecological Flora of the 

British Isles (Fitter and Peat, 1994) and that for T. inodorum (4.26 x 10-4

 

 gr.) from an 

Oxfordshire population (Kay, 1994). 

 

Starting time of biomass accumulation 

For each weed cohort the Beta function was set to start accumulating biomass on the 

median day of the 5 day interval over which seedlings are grouped into a cohort (see 

Section 2.5.2.2). For the earliest possible weed cohort (c=1), the Beta function starts 

accumulating biomass two days after crop sowing, one of the cultural control 

components (see Table 2-1). For the second and following cohorts, the Beta function 

start accumulating biomass five days after the previous weed cohort: 

Equation 4-28: 
( )

( ) ( )



+−=
+=

≠
=

51cdcd
2d1d

1cif
1cif

WsWs

sowingWs   

 

 

Symmetry of Beta function 

It was assumed that the maximum rate of weed biomass growth occurs halfway 

(sBeta_W = 0.5) during a carrot year, but three-quarters (sBeta_W

 

 = 0.75) during a winter 

wheat year since plant growth is delayed during winter. 
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Intrinsic maximum weight 

Lutman (2002) found that T. inodorum plants that emerged in autumn in uncropped 

land and did not face further plant competition reached on average 407 grams in 

biomass by the following summer and this value was therefore used in ECOSEDYN 

for Wmax-t

 

 in Equation 4-14. 

 

 

4.7.1.2.1 Habitat quality - bbc

Because carrot and onion crops are grown in rows on 1.83 m centered beds different 

habitats exist. For carrots three different habitats can be identified: ‘between beds 

(bb)’, ‘within bed, between rows (wb-br)’ and ‘within bed, within rows (wb-wr)’. The 

canopy closes first within the carrot rows (wb-wr), then between the rows (wb-br) but 

the plant canopy does not develop sufficiently to close between the beds (bb). 

Proximity not only affects competition for light but also competition for water and 

nutrients. Ranking the habitats in order of the most competitive environment gives: 

wb-wr > wb-br > bb.  

hq 

Given that the centres of the beds are 1.83 meters from each other and the width of the 

tramlines between the beds is approximately 0.30 m, then on the field scale the 

percentage of the total habitat that is constituted by tramlines (bb) is approximately 

16%. Within a carrot crop the ratio of a between-row: within-row section is about 1.0, 

with 4 within-row sections and 3 between-row sections (see Figure 4-28). Hence the 

remaining 84% was split 

into 36% for the between-

row area and 48% for the 

within-row. Over time the 

carrots planted in rows 

will overgrow the 

between-row area and the 

distinction in the habitat 

quality is reduced.   

Figure 4-28 Carrot seed drilling using a Stanhay 
Singulaire 785.  Seeds are drilled as triple rows in the 
compressed strips. Image courtesy of Paul Neve. 
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Onions were assumed to be sown as five equidistant rows per bed, 25 cm apart 

(Grundy et al., 2004). Hence for onions there are two habitats, within-bed and 

between-bed. Winter wheat is sown in rows approximately 10 cm apart and over time 

a uniform crop-canopy will develop and this was therefore regarded in ECOSEDYN 

as one uniform habitat. The values for the parameters Popt, x, y, ccw

• Observations from the field experiment as described in Section 4.3.2 suggest 

that the value for P

 are listed below: 

opt is 1 plant m-2

• The value for the ‘x’ parameter could be found by fitting a curve through data 

derived from a simple weed density experiment in which the total area is kept 

constant but plant density is increased. In absence of this data, the way in which 

the ‘x’ parameter can be determined is from the fact that regardless of weed 

density total weed biomass per square meter should remain more or less 

constant. The only two parameters that affect how total biomass changes over 

time are ‘x’ and P

 for T. inodorum. 

opt. Hence, by implementing Equation 4-23 in an Excel 

spreadsheet model and setting Popt = 1, the value for ‘x’ was determined that 

results in a constant total weed biomass: ‘x’ = 0.99. Values for ‘x’ below 0.99 

would result in ever increasing total biomass whereas values higher than 0.99 

would result in a peak at 2 plants m-2

• The larger the value for ‘y’, the larger the relative weight loss for the first weed 

plant and the lower the additional relative yield loss for each additional weed 

plant added to the weed density beyond P

 and a decrease thereafter. 

dd-th, the threshold density for density 

dependent biomass regulation. Van Heemst (1985) classified carrots and onions 

as the least competitive of 25 crops and wheat as one of the most competitive 

crops. Data on the yield losses from volunteer potato, one of the most 

competitive weeds in both vegetable crops, suggest that onion is a less 

competitive crop than carrot (Williams and Boydston, 2006). The ranking for 

the y parameter therefore was set: winter wheat > carrot (wb-wr) > onion. 

Within carrot the ranking is ‘between-bed’ > ‘within-bed, between-row’ > 

‘within-bed, within-row’. Although the rate of crop development is dependent 

on the weather, the intrinsic differences of growth rate between the crops are 

likely to remain and for this reason the effects of weather on crop growth were 

not included. In addition, fast and slow maturing crop varieties were assumed to 

be equally competitive. There was no time available to properly parameterize 

‘y’ for all the crops and therefore ‘guestimates’ had to be made based on the 
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reduction of weight of T. inodorum plants as recorded in the field experiment 

presented in Section 4.5. After correction for biomass reduction due to late 

seasonal emergence the Excel spreadsheet model was used to find the ‘y’ value 

that gave the reduction in per plant biomass that corresponded with what was 

observed in the June vs May transplants. The values for ‘y’ for the various crops 

/ crop habitat are stored in Table 4-11. 

 

Table 4-11 Parameter values for the ‘y(h)’ parameter for the different crops and 
habitats;        bb= between beds; wb-br = within bed, between rows; wb-wr = within bed, within 
rows. 

Crop Habitat T. inodorum 

Carrot 

bb 0.028 

wb-br 0.052 

wb-wr 0.067 

Onion 
bb 0.028 

wb 0.043 

Winter wheat wb 0.067 

 

The ‘y(h)’ parameter for S. media was set at 80% of the value of the ‘y(h)’ 

parameter for T. inodorum since S. media is known to be shade tolerant and 

would therefore be less sensitive to a delayed emergence relative to the crop 

than T. inodorum. 

• It was assumed that the minimum number of days that weed seedlings have to 

emerge prior to the crop for final per plant weight of weeds not to be reduced, is 

75 days (i.e. ccw

• Since in ECOSEDYN weed population dynamics was modeled assuming a field 

size of 25 ha, the value for the ‘scaler’ in Equation 4-22 was set at 250000. 

=75 in Equation 4-16).  

 

4.7.1.2.2 Rainfall and temperature – bcc

Prior to a simulation run in ECOSEDYN, raw rainfall scores, rf(c,d
rf+t 

sowing,wy), are 

calculated for each of the combinations of twelve weed cohorts, eight sowing dates 

(carrot + winter wheat) and seventeen weather years to determine the maximum and 

minimum rainfall scores. The rainfall score for a certain weed cohort constitutes the 

average of the rainfall scores given to seven consecutive 10-day intervals. Although a 

weed’s lifecycle is expected to stretch beyond 70 days, it was assumed that after 70 

days the plant would have extended its root system to deeper soil layers, the moisture 
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degree of which would not be affected so much by rainfall. The rainfall score for a 

10-day interval is based on total accumulated rainfall over that period and, assuming 

that any rain beyond a cumulative of 30 mm rainfall would not deliver the plant any 

additional gain, is then scored as in Table 4-12.  

 

Table 4-12 Scores given according to the cumulative rainfall over a 10-day interval   

Amount of cumulative rainfall Score 

          Cumulative rain ≤  5 mm -1.00 

  5 ≤  Cumulative rain < 10 mm -0.66 

10 ≤  Cumulative rain < 15 mm -0.33 

15 ≤  Cumulative rain < 20 mm  0.00 

20 ≤  Cumulative rain < 25 mm  0.33 

25 ≤  Cumulative rain < 30 mm  0.66 

          Cumulative rain ≥  30 mm  1.00 

 

The first 10-day interval for which a rainfall score is calculated starts two days prior 

to the median day of emergence of each cohort. First the maximum and minimum 

rainfall score were determined over all weather years and sowing dates for carrot and 

winter wheat separately. Because arbitrary rainfall scores were given, the maximum 

and minimum rainfall scores were then shifted so that these scores were evenly 

balanced around zero. In other words, it is assumed that compared to an average 

weather year that would have a rainfall score of zero, the driest weather year is about 

as far from the average as the wettest weather year would have been. Raw rainfall 

scores in ECOSEDYN for any particular [crop-sowing date] combination were 

calculated as above and then scaled against the modified rainfall score for maximum 

rainfall. For example: suppose a weed management scenario where sowing date of 

carrot is the 1st of March and the assigned weather year is 1989 (i.e. actual date is 1st 

of March 1990). The calculated raw rainfall score for the first weed cohort is -0.6667. 

The maximum and minimum rainfall scores over all carrot sowing times, weather 

years and weed cohorts that are calculated at the start of the simulation are +0.7143 

and  -0.9048 respectively. The maximum range of rainfall scores is therefore 1.6190 

and this can be evenly balanced around zero so that the maximum and minimum are 

now 0.8095 and -0.8095 respectively. The calculated raw rainfall score of -0.6667 

now needs to have 0.0952 added to it (0.8095 – 0.7143) so that it becomes -0.5715. 

The final rainfall score for the first weed cohort (rf(1) in Equation 4-24) is now 
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calculated by dividing the modified rainfall score by 0.8095 so that rf(1) becomes: -

0.5715 / 0. 8095 = -0.7059. 

To calculate the amount of thermal time that a weed plant accumulates during its life 

time it is necessary to estimate the harvest date first. To generate a realistic harvest 

date, the prevailing weather conditions both prior to and after 50% crop emergence 

were considered. This required a pre-modelling re-calculation of the maturity time 

from days to thermal time (DD or EDD). For carrot, first the day to 50% crop 

emergence was calculated for each of the 85 weather year – sowing time 

combinations using the output from the germination and emergence model (see 

Section 2.5.2.2). The values ranged from 8 to 54 days and the time to 50% crop 

emergence between years with higher than average temperatures from April to 

September (‘Heating up’, see Section 2.3.3) and years with lower than average 

temperatures were not different. Similarly there was no trend for later sowing dates to 

result in shorter times to 50% crop emergence although there was a trend for more 

variability in the time to 50% crop emergence for later sowing dates.  

Commercial growers would normally make sure that the soil is irrigated to ensure 

rapid germination and this option is currently not implemented in the germination and 

emergence model. It was assumed that the maturity times (time from crop sowing to 

harvest) as given in Table 2-2 represent optimal conditions of germination and 

emergence, and that this constituted 14 days regardless of sowing time. Hence, the 14 

days were subtracted from the total time from crop sowing to harvest to obtain 84, 98 

and 116 days from 50% crop emergence to harvest. For each of the 17 weather years 

the minimum and maximum temperature and solar radiation values were used to 

calculate the daily effective day-degrees (EDD) from 14 days after the median sowing 

date (29 March) until the appropriate number of days had passed in each of the three 

‘maturity times’.  

Effective day-degrees were calculated as shown in Equations 4-1 and 4-2 following 

Scaife et al. (1987). The value of the parameters Tb

 

 and f that are required to calculate 

EDD were derived from Tei et al. (1996) for onion and from Thorup-Kristensen and 

van den Boogaard (1999) for the base temperature in carrot (see Table 4-13).  

Table 4-13 Parameter values to calculate the average number of effective day-degrees (EDD) 
required for biomass increase from 50% emergence to the harvest date. 

 Carrot Onion   Carrot Onion 

T 0 ˚C b 5.9 ˚C f 0.136 0.136 
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No data could be found for the value of the f parameter of carrot. Research conducted 

by Storkey (2004) showed that crops that can be both sown in spring and autumn 

(wheat, oilseed rape) have a low f value. Carrot is predominantly spring-sown and the 

value of the f parameter of onion was therefore assumed to be a suitable proxy. The 

daily values for EDD were summed over the interval for each of the 17 complete 

weather datasets collected on site (Warwick HRI, Wellesbourne) between 1989 and 

2006 and an average value was then calculated. The average amount of EDD required 

from 50% crop emergence to harvest was 950, 1159 and 1438 for the early, 

intermediate and late maturing variety respectively. 

In ECOSEDYN the harvest date of the carrot crop in any particular year and weed 

management scenario is determined as follows: first the day to 50% crop emergence 

is calculated from the output of the germination and emergence model and then using 

the weather data of the particular weather year assigned, the harvest date is 

determined by calculating on which day the required total EDD was reached, starting 

from the day of 50% crop emergence. 

For winter wheat day degrees rather than effective day degrees were used since data 

of the timing of the critical period of weed competition, which is required to calculate 

the timing of post-emergence weed control, was only available in day degrees. First 

each of the maturity times (313, 320 and 327 days) was recalculated from days to day 

degrees (DD) from the median sowing date (19 October) for each of the 17 weather 

years and then averaged. The average amount of DD accumulated was 2666, 2767 

and 2865 for the early, intermediate and late maturing variety respectively.  

In ECOSEDYN the harvest date of winter wheat in any particular year and weed 

management scenario is determined by subtracting the amount of DD required to 50% 

crop emergence under standard conditions (150 DD) from the total. As for carrot, the 

weather data of the particular weather year assigned was used to determine the harvest 

date by calculating on which day the required total DD was reached, starting from the 

day of 50% crop emergence. For 6 of the 135 scenarios the harvest date of winter 

wheat would have exceeded the end of the simulation year (i.e. 30th of September), 

which the model does not allow for. In these circumstances the harvest date was set to 

the 30th of September.  
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At the start of the simulation, the value for Xmax

1. Calculate the date with 50% crop emergence for each of the 17 weather year 

/ sowing time combinations 

 is obtained in the following way:  

2. Using the EDD values of the weed (f, Tb

3. Calculate the harvest date of the crop with the longest crop maturity time 

(A_MT = 3 / V_MT = 3) for each of the 17 weather years / sowing time 

combinations 

), calculate the total EDD for the 

earliest cohort that could possibly emerge, i.e. taking the median date of the 

first five days after seedbed preparation / crop sowing until 50% crop 

emergence 

4. Calculate the accumulated EDD for the weed from the date of 50% crop 

emergence until harvest date 

5. Sum the EDD values that are found in step 2 and 4 and find the maximum 

value for the 17 weather year / sowing time combinations. This value is 

referred to ‘Xmax

The a parameter is calculated by filling in the value for X

’.  

max

a = 0.25/X

 in Equation 4-25:  

max. For each weed management scenario, X (c,dsowing,wy) is determined 

for each of the 12 weed cohorts in the way as described above for Xmax

 

. 
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4.7.1.2.3 Timing of emergence - bcc

Only the study in Canada by Blackshaw and Harper (1997) provided a complete 

dataset. The latitude at which the data from Lacombe was collected, (52˚30’N), is 

similar to the latitude of the East Anglia region (52˚12’N - 53˚14’N) where most 

vegetables in the UK are grown. Hence, the Lacombe data (final plant biomass data 

for 1991 and 1994) were taken as a reference.  

em 

First, logistic equations (Equation 4-26) were fitted to the separate year data in 

GraphPad Prism to obtain the fitted value for Wf-max (Lacombe, 1991: R2=0.9994, 

SS=14.09; Lacombe, 1994: R2=0.9976, SS=6292). During fitting Wf-min was 

constrained to 1% of the average plant weight at the first sowing date but none of the 

other parameters were constrained. The time was expressed as a function of day 

number from the first of October to match simulation time in ECOSEDYN. Then the 

experimental data for each year were transformed to proportional data by dividing the 

year data by the respective fitted values for Wf-max

The logistic equation for bcc

.  

em (Equation 4-27) was then fitted to the proportional 

data, where Wf-max and Wf-min were constrained as 1.0 and 0.01 respectively. The 

fitted parameters were: k = 0.08198, dWs-max = 253 (10th June). Given the dates at 

which weeds in a given cohort emerge and start accumulating biomass, dWs(c), follow 

from the sowing date (see Equation 4-11) the bccem

( ) 1cbccem =

 (c) can be easily determined in 

ECOSEDYN. For S. media there is no documented effect of day-length on the 

maximum size of plants and thus for S. media: . 
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4.7.1.2.4 Early growth 

For each of the three crop habitats in carrot or for the single crop habitat in winter 

wheat a matrix was created with 12 rows (weed age cohorts) and 5 columns (growth 

stages). The growth stages distinguished were: 

• Cotyledon – 2nd true leaf stage (P1

• 2

) 
nd – 4th true leaf stage (P2

• 4

) 
th – 6th true leaf stage (P3

• 6

) 
th true leaf stage – flowering (P4

• flowering – senescence (P

) 

5

Initially biomass was chosen as the basis on which seedlings in the first three growth 

stages would be distinguished as this would be easy given the implemented Beta 

distribution function for ‘Biomass increase’. Prior to the real simulations, test-runs 

were performed to check how many days the seedlings would remain in each ‘true-

leaf’ class compared to the experimental observations. It was found that the seedlings 

remained in each seedling stage far longer than was realistic. This implies that 

although the Beta distribution function is a great tool for modeling biomass increase 

over a season, the s

) 

beta value chosen may not have been accurate and therefore early 

growth rate was underestimated. Since there was not enough time to find a more 

appropriate value for sbeta, it was decided to model early growth, i.e. progression from 

one true-leaf stage to the next, based on the experimentally determined threshold 

values for EDD rather than biomass. It was decided to take the ‘Ideal growth’ EDD 

values as they represent the scenario in which seedling growth is least likely to be 

underestimated. An underestimation of growth rate would lead to seedlings remaining 

longer in growth stages where the weed control efficacy is higher and therefore 

overestimating overall seedling mortality due to weed control. Hence the values 

required to reach the 2nd, 4th and 6th

 

 true leaf stage of T. inodorum were 163.0, 247.4 

and 331.8 respectively. In ECOSEDYN the daily EDD after emergence was 

calculated and seedlings were transferred in the matrix from one column to the next if 

the cumulative EDD had exceeded the relevant threshold value. 
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4.7.2 Flowering 
 

4.7.2.1 Mathematical representation 
The Beta function for cumulative flower production for one plant within a given weed 

cohort can be written as: 

Equation 4-29: 
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where Fcum is the accumulated number of flowers at a certain simulation day, dsim , 

Fmax the final number of flowers, dFs, dFe and dFmax

Equation 4-30: 

 are the parameters that define the 

start, end and the timing of maximum rate of flower production respectively. The Beta 

function for all plants in a given weed cohort and crop habitat, P(c,h) is: 

 ( ) ( ) ( )( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )
( ) ( ) 









−
−









−
−









−
−

+=
cdcd

cdcd

FsFe

Fssim

maxFFe

simFe
maxcum

maxFFe

FsFe

cdcd
cdd

cdcd
dcd

1h,cF*h,cPh,cF  

The start of flowering is independent of biomass and determined by the day of 

emergence plus FsWsdelta → (c), the time from emergence to flowering:  

Equation 4-31: ( ) ( ) ( )cdeltacdcd FsWsWsFs →+=  

FsWsdelta →  is either constant over the season (S. media) or otherwise a function of 

dWs 

Investment in reproduction is the last activity in the plant’s life, therefore the end of 

flowering coincides with the end of biomass increase:  

(T. inodorum) and needs to be parameterised.  

Equation 4-32: ( ) ( ) SenFsFsFe deltacdcd →+=   

Following Equation 4-7 the timing of maximum rate of flower production can be 

expressed as: 

Equation 4-33: ( ) ( ) ( )( ) ( )cdcdcd*scd FsFsFeF_BetamaxF +−=   

The final number of flowers produced by all plants in a cohort, Fmax(c), is a function 

of final plant size, Wmax-r(c), which is dependent on the crop habitat. The log-log 
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relationship between plant biomass and the number of produced flowers is 

represented by the linear function:  

Equation 4-34: ( )( ) ( )( ) FWrmaxFWmax bh,cWlog*ah,cFlog −−− +=  

Hence, if for individual plants over a range of plant sizes data is available that 

includes biomass and total number of flowers produced at senescence, then from that 

the final number of flowers per plant can be obtained: 

Equation 4-35: ( ) ( )( )h,cmaxFlog10h,cFmax =  

If the raw data is not available then the number of reproductive structures (flowers or 

seed capsules) per gram plant dry weight should be obtained. This is simply the slope 

parameter ‘a’ of the simplest linear regression model  

Equation 4-36: aXY =  

with reproductive structures against plant dry weight (see Section 4.4.3).  
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4.7.2.2 Parameterisation and implementation 
The parameters for which a value need to be found are the time from emergence to 

flowering, FWsdelta →  (Equation 4-31), the duration of flowering, SenFsdelta → (Equation 

4-32), the measure of symmetry of the Beta distribution function for flowering, sbeta 

(Equation 4-33) and the slope and intercept of the log-log relationship between 

biomass and flower production, aW-F and  bW-F

 

 (Equation 4-34). 

Time from emergence to flowering  

T. inodorum is a long-day plant and seedlings emerging later than the second half of 

July (Blackshaw and Harker, 1997) or the beginning of August (Roberts and Feast, 

1974) do not flower in that year but 

overwinter as a rosette. Since weed 

germination and emergence are only 

assumed to happen as a consequence 

of seedbed preparation, the time from 

sowing to flowering has to be defined 

for the period (60 days) after carrot 

and winter weed seedbed 

preparation. However, implementing 

the datapoints shown in Figure 4-29 

resulted in the first and last cohort of 

weeds to emerge after sowing on the 

1st of March, to start to flower on the 

12th and 24th of July respectively, 

which is (at least) a month later than 

observed in the field (during seed 

movement work). The literature suggests that flowering of overwintered rosettes starts 

in May and for seedlings emerged in spring in June at the earliest (Woo et al., 1991; 

Kay, 1994). A modification of the Roberts and Feast (1974) data was therefore 

applied to prevent late flowering. Equation 4-40 represents that seedlings emerging 

from the 21st of April (day 203) until the end of June (day 273) will start to flower 

after 55 days but any seedlings emerging prior to this interval take a longer time from 

emergence to anthesis: 

 

Figure 4-29 Relationship between induction 
of flowering and time of emergence of T. 
inodorum. Data and figure after Roberts and Feast 
(1974). 
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Equation 4-37: 




=≤≤
+−=≤

→

→

55delta273d203if
0.227d*847.0delta202dif

FsWsWs

WsFsWsWs  

 

For S. media flowering usually takes place from early spring until late autumn 

although it can be found flowering throughout the year (van den Brand, 1987). From 

the literature the variability in time from emergence to flowering becomes apparent. 

Van Delden et al. (2002) mention that without competing crop, S. media flowered 30 

days after emergence but in a wheat crop plants started flowering seven days later. 

Leguizamon and Roberts (1982) recorded that seed rain from plants emerged in April 

commenced in July. Briggs et al. (1991) showed that there is wide variability between 

populations of different habitats but also between populations of the same habitat with 

the time from sowing to 50% flowering between 100 and 132 days. Finally, Barnwell 

and Cobb (1989) showed that mecoprop resistant plants of S. media took longer to 

start flowering than susceptible plants: 33 and 57 days from sowing respectively. 

In the experiment described in section 4.2 it was observed that individuals from the 

natural population of S. media flowered much earlier (>2 months) than the individuals 

of the experimental population. Given the time from sowing to harvest (‘maturity 

time’) was a cultural control option in the weed management scenarios, this 

variability is guaranteed to have a large impact on the predictions in ECOSEDYN. It 

appears that model conclusions are valid only for the population from which the 

parameters were derived. Experimental research is needed to quantify the variability 

within natural populations in agricultural fields (experimental seeds were obtained 

from a commercial supplier). The FWsdelta →  parameter for S. media could then be 

made stochastic and multiple model runs with values drawn from a distribution 

applied. As a default value, 60 days was proposed, an arbitrary figure within the range 

as reported in the literature.  

 

Duration of flowering 

The correlation between duration of flowering (days), SenFsdelta → (Equation 4-32) and 

plant biomass at harvest explained only little of the variation (see Section 4.5.3). 

Moreover, over the limited range of plant sizes that can be expected to occur in a 

carrot or winter wheat crop, there was no effect of plant size on duration of flowering 

for early flowering plants, which comprises all the plants in winter wheat and the 
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majority in carrot. Duration of flowering, SenFsdelta → , is therefore represented as a 

constant value of 35 days.  

 

Symmetry of Beta function 

The experimental results in Section 4.5 indicated a value of 0.43 for sBeta_F of the Beta 

function of the area covered by flowers. It is possible that the value for sBeta_F

 

 for the 

Beta function of flower production is different, in particular when assessed for plants 

emerged at a different time, but until that information becomes available the best 

information is the current value of 0.43. 

aW-F and  b

The parameters a
W-F 

W-F and bW-F can not be derived from the data presented in Section 

4.4 (see Figure 4-13) since only 

mature seed heads were 

counted and included in the 

plant weight. The data are 

available however from the 

experiment presented in Section 

4.5 where harvest was delayed 

until plants had matured 

sufficiently. It was noted that 

87% of the plants harvested 

contained only flowers and 

mature seed heads and no 

flower buds, an indication of 

the advanced stage of maturity 

of the population. To meet the 

condition of homoscedasticity, the vegetative plant weight and total reproductive 

structures (buds, flowers and seed heads) were log-transformed before linear 

regression. The values of the parameters aW-F and bW-F for T. inodorum are derived 

from this regression (see Figure 4-30 and Table 4-14) and are 0.93 and 0.95 

respectively. For S. media no raw data were available but the value of the slope 

parameter ‘a’ in Equation 4-36, the number of seed capsules per gram plant dry 

weight, 33.9, as established by van Acker et al. (1997) can be used.  

 

Figure 4-30 Relationship between log10 vegetative 
plant dry weight and the log10 transformed value of the 
cumulative number of buds, flowers and seed heads per 
plant for T. inodorum individuals transplanted in a carrot 
crop in May (see Section 4.5). 
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4.7.3 Seed shedding 
 

Apart from the Beta distribution for seed shedding, the Beta distribution for viable 

seed production needs to be determined to calculate viable seeds added to the 

seedbank during the harvest operation. Omitting this would result in underestimating 

seed production since only shed viable seeds would be counted as seeds added to the 

seedbank. It was assumed that the two Beta distribution functions had the same shape 

but that the ‘start’ and ‘end’ points of the Beta distribution for viable seed production 

precede the Beta distribution function for seed shedding by a constant number of 

days.  

 

4.7.3.1 Mathematical representation  
Until the day of harvest, seed shedding for a single plant in a given cohort is defined 

by the Beta distribution for seed shedding, which is represented as: 

Equation 4-38: 
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It is basically a staggered and slightly stretched version of the Beta distribution for 

flower production in that the start, end and max point are defined relative to the Beta 

distribution for flower production. The Beta distribution initiates if sufficient time, 

SFdelta → , has accumulated from the time of first flowering (dFs

Equation 4-39: 

) onwards. 

SFFsSs deltadd →+=  

The end of seed-shedding occurs at: 

Equation 4-40: ssSFFeSe xdeltadd ++= →   

i.e. a plant finishes seed shedding at the time the last flower is produced plus the 

interval required from opening the flower to first seeding, SFdelta → , and an unknown 

period, xss, over which seed shedding continues before all seeds are shed from the 

plant. The point in time where the rate of seed shedding on the surface is maximal, 

dSmax

Equation 4-41: 

, is expressed as: 

SsSsSeS_BetamaxS d)dd(*sd +−=  

Finally Smax is related to Fmax in the following simple way: 
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Equation 4-42: maxfmax F*SS =   

where Sf

Equation 4-43: 

 is the average viable number of seeds produced per flower. To calculate the 

maximum number of seeds shed for a complete weed cohort, the number of plants in 

that cohort is included: 

( ) ( ) ( )cP*cF*ScS maxfmax =  

The Beta function for the total number of shed seeds for a given cohort and crop 

habitat can thus be written as: 

Equation 4-44:  
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The daily number of seeds shed then becomes: 

Equation 4-45: ( ) ( )1dSdSS simcumsimcums −−=  

 

On the day of harvest, seed production is defined by the cumulative number of seeds 

shed until the day of harvest, added to the number of mature seeds that were still on 

the plant but are incorporated into the soil during crop harvest and/or further 

cultivation practices (i.e. discing). Experimental work not presented in this thesis 

showed that viable seed production starts between 14 and 21 days after flower 

opening. Since seed shedding is set to start 34 days after flower opening, the 

maximum duration of the interval between seed production and seed shedding is 20 

days. The number of viable seeds that are produced on day = T is therefore equal to 

the number of seeds that would have been shed on day = T+20. Given that all weeds 

were set to be killed on the day of harvest (dhar) the cumulative number of viable 

produced seeds on the day of harvest is calculated as in Equation 4-46. 
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Equation 4-46: 
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if dhar+20>dSs(c) and dhar+20>dSe
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The number of seeds added to the seedbank on the harvest day can be calculated as in 

Equation 4-45, where dsim = dhar

 

.  

4.7.3.2 Parameterisation and implementation 
The parameters for which a value need to be found are the duration from flowering to 

first seed shedding, SFdelta →  (Equation 4-39, 4-40), the duration of seed shedding, xss 

(Equation 4-40), the measure of symmetry of the Beta function, sBeta_S (Equation 4-

41) and the number of viable seeds per flower, Sf 

 

(Equation 4-42, 4-43), need to be 

defined for both weed species. In addition, from the Beta distribution for seed 

shedding the Beta distribution of viable seed production needs to be determined on 

the day of harvest. Omitting this would mean that on the day of harvest only the shed 

seeds are counted as seeds added to the seedbank whereas in fact seeds that have not 

yet been shed but are mature and viable are added to the seedbank if mature plants are 

killed during the harvest operation. 

Duration from flowering to first seed shedding 

From the data there was no indication that day-degrees was a far superior estimator of 

time from first flowering to first seeding and therefore the data based on days was 

implemented in ECOSEDYN. For T. inodorum the experimentally derived value for 
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SFdelta →  was 34 days (see Figure 4-23). For S. media no specific value could be 

found, although the review by Sobey (1981) suggested two weeks. From experience 

in the field a value closer to 3 weeks seems appropriate for the SFdelta →  of S. media.  

 

Duration of seed shedding 

No literature or experimental data are available for either species for the xss 

parameter. For T. inodorum it probably depends largely on the weather, with dry 

weather promoting rapid seed shedding compared to seeds sticking on the capitula in 

wet conditions. S. media seemed less affected by the weather. It was ‘guestimated’ 

that the xss SFdelta → parameter was equally as long as  (i.e. xss

SFdelta →

=34) for T. inodorum 

and half as long as  for S. media, i.e. xss

 

=17. 

Symmetry of Beta function 

The measure of symmetry for seed shedding, sBeta_S, was set in accordance with the 

value for sBeta_F, i.e. sBeta_S

  

=0.43. 

Number of seeds per flower 

The number of apparently viable seeds for T. inodorum ranged from 222 to 330 with 

an average of 263 seeds per flower. This is in congruence with Kay (1994) but lower 

than Blackshaw and Harker (1997) and Woo et al. (1991) who estimated between 345 

and 533 seeds per capitulum. However, even when using an average of 250 seeds per 

capitulum, a plant weighing 10 gram would produce 18,941 seeds, three times as 

many as Lutman (2002) projected.  

For S. media the number of seeds per flower or capsule is also highly variable, for 

example, on average 12.81 seeds per capsule were found in a linseed crop and only 

6.57 in a field bean crop (van Acker et al., 1997). From the references mentioned by 

Sobey (1981) an average of 9 seeds / capsule seems a reasonable value. The chosen 

parameter values are summarised in Table 4-14. 

 

Table 4-14 Parameter values for the Beta function for ‘Seed shedding’ 

 Parameter Units Stellaria media Tripleurospermum inodorum 

SFdelta →  days 21 34 

 x days ss 11 34 

 S days f 9 263 
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5 Modelling – Part 2: Results  
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5.1 Introduction 
In Chapters 2, 3 and 4 all the required model components have been presented and 

parameterized and a complete conceptual representation of the weed biological cycle 

as implemented within ECOSEDYN is given in Figure 5-1. With the implementation 

of ECOSEDYN complete it is time to focus again (see Section 2.3) on the aim of this 

modeling study. From the outset the aim of this Phd project was to identify those 

weed management scenarios, based on cultural control, that are intrinsically best 

suited to counteract the loss of herbicides. The methodology chosen was to build a 

model framework, able to rapidly simulate the impacts of a wide range of weed 

management scenarios over a long-term period. The agricultural system that is 

represented in ECOSEDYN comprises a 6 year crop rotation with carrot in the first 

year and winter wheat in the remaining 5 years. This crop rotation is repeated four 

times to create a timeframe long enough to filter out weather effects. The cultural 

control methods under investigation and to be applied in the two crops were:  

• Crop sowing time 

• Crop variety (maturity time) 

The cultural components were to be assigned different levels, then combined in a 

factorial manner to create a range of weed management scenarios which would be run 

against two possible future weather projections. It was anticipated to simulate the 

combinations of two weed species (S. media and T. inodorum) and two vegetable 

crops (carrot and onion). However, the complexity of the model meant that model 

building took considerably longer. To demonstrate the potential of ECOSEDYN, one 

of the four anticipated simulation sets was carried out. Since more accurate data were 

available for T. inodorum and carrot, that crop-weed combination was chosen for the 

simulations. Three questions were addressed through the simulation study: 

1. Which cultural control practice, sowing time or crop variety (maturity time), 

and applied in which crop, has most potential in alleviating long term weed 

seedbank levels? 

2. Can cultural control practices applied in one crop (carrot or winter wheat) 

maintain sufficient low weed seedbank levels or is the application in both 

crops required? 

3. Are the answers given for questions 1-2 different under the two climate 

scenarios? 
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Regarding the 135 weed management scenarios (see Section 2.3.2) a specific 

hypothesis was proposed:  

The three weed management scenarios (orange shaded in Table 5-1) that are best 

suited to reduce the level of the weed seedbank after 24 years, regardless of climate, 

have a late weed sowing time in carrot (reduction of weed biomass through day length 

effect) and fast maturing carrot and winter wheat varieties.  
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Figure 5-1 Graphical representation of weed biology processes and regulating factors as 
implemented in ECOSEDYN. 
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Table 5-1 Factorial of cultural control components (sowing time and maturity time) to create 
135 weed management scenarios. A_MT and A_ST represent sowing and maturity time in winter 
wheat whereas V_MT and V_ST represent sowing time and maturity time in carrot respectively. The 
orange shaded scenarios are hypothesized to result in the lowest levels of the weed seedbank after 24 
years compared to other weed management scenarios.  

 
A_MT 1 2 3 

A_ST 1 2 3 1 2 3 1 2 3 

V_MT V_ST  

1 

1 X X X X X X X X X 

2 X X X X X X X X X 

3 X X X X X X X X X 

4 X X X X X X X X X 

5 X X X X X X X X X 

2 

1 X X X X X X X X X 

2 X X X X X X X X X 

3 X X X X X X X X X 

4 X X X X X X X X X 

5 X X X X X X X X X 

3 

1 X X X X X X X X X 

2 X X X X X X X X X 

3 X X X X X X X X X 

4 X X X X X X X X X 

5 X X X X X X X X X 

 

Considering the two climate scenarios, it is hypothesized that the ‘Heating up’ 

Scenario will lead to higher levels of the weed seedbank after 24 years than the ‘No 

change’ Scenario. The reason is that on average the 8 chosen years are warmer but not 

drier which should, according to the principles proposed in Section 4.7.1.1.2, work in 

favour of T. inodorum biomass and seed production. 

In Section 5.2 the modelling methodology and analysis of the results is given, then in 

the following section the simulation results are presented and the chapter finishes with 

the conclusions and discussion in Section 5.4. 
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5.2 Methodology 
 

5.2.1 Software 
At the start of the project MatLab was suggested as the preferred software package as 

it provides a number of advantages over other packages. It is a numerical computing 

environment based on matrix algebra which is ideal for structuring the state variables 

of the weed population into matrices and vectors. Another advantage is that MatLab is 

an interpreted language which means that, contrary to a compiled language such as 

C++ or Visual Basic, one can write scripts and functions, examine the result of 

individual commands quickly and tweak where necessary. Functions exist to integrate 

MATLAB based algorithms with external applications and languages, such as C, 

C++, Fortran, Java, COM, and Microsoft Excel (2007). Early in the project two 

alternatives to Matlab were explored; Simulink (The MathWorks) and Stella (isee 

Systems). Both packages differ from MatLab in that they offer a graphical block 

diagramming tool. Some modelling was done in these programs but it was soon 

realised that the possibilities, especially with regard to matrix manipulations, were 

severely limited and that it was therefore much easier to proceed using MatLab. The 

simulations were run on a PC with Intel(R) Core(TM)2 Duo CPU processor (E8400 

@ 3.00GHz) and 1.95 GB of RAM. The time required to run the two sets of 135 

simulations under those parameters was approximately an hour. 

 

 

5.2.2 Code structure 
The complete Matlab code exists of (see Figure 5-2), or uses:  

• two Matlab function files (crop files) in which the model components 

described in Chapter 2, 3 and 4 are implemented in relation to the farming 

practices occurring in the carrot and winter wheat year respectively. The 

simulation runs from 1 October to 30 September and the files contain a 

counter (‘for-loop’ in Matlab terms) from 1 to 365 to enable specific and 

precise dates for crop sowing and harvest and weed biology events. 

• one Matlab script file (scenario file) which encodes the weed management and 

climate scenarios into a series of ordinal scores so that the right weather year 

file is selected and crop sowing and harvest in the crop files occur at the right 
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time. This file also stores the data that is being produced by the two crop two 

Matlab function files (crop files).  

• auxiliary Matlab function files (calculation files) that enable certain 

calculations (e.g. to infer harvest date) to be made outside the crop files.  

• independent data files containing parameter values (e.g. weather data, weed 

seed size, germination data) created prior to running ECOSEDYN and loaded 

into the crop files at the start of a specific year or simulation run.  

 
At the end of each simulation year (i.e. dsim

Due to weather differences, individual years varied greatly in the level of weed seed 

production and different weather year randomisations could therefore lead to 

considerable differences in the average size of the weed seedbank over the last crop 

=365) the total size of the seedbank is 

calculated in the crop function-file, then passed on to and stored by the scenario 

script-file and once again passed on to either one of the crop function-files. Some 

other characteristics such as annual seed production, date of 50% crop emergence and 

crop harvest are also passed on and stored by the scenario script-file to aid explaining 

the rank order of the weed management scenarios. For each weed management 

scenario (i.e. 24 simulation years, 4 crop rotations) the average size of the seedbank 

over the last crop rotation is calculated and stored.  

Auxiliary 
files

• Seedbank size / distribution (new)

• Add. char. (e.g. harvest date)

Scenarios

Winter wheat

Data files

Carrot

• Weather year

• Cultural control (e.g.: V_MT=1)

• Seedbank size / distribution

Parameter values

Parameter values

x5

x1

 

Figure 5-2 Dataflow within ECOSEDYN during one crop rotation (one year of carrot followed 
by five years of winter wheat) 
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rotation. Each of the two sets of 135 weed management scenarios was therefore run 

for 50 different weather year sequences and the average seedbank size calculated over 

the 50 randomisations.  

Once all weed scenarios have finished, Matlab exports the output data to an Excel file. 

The complete Matlab code of ECOSEDYN was too long to be included as an 

Appendix but is available upon request (e-mail bastiaan.brak@googlemail.com 

or Andrew.Mead@warwick.ac.uk). 

 

 

 

5.2.3 Initiation of seedbank 
Prior to running the weed management scenarios a representative ‘starting’ seedbank 

density had to selected. According to recent estimates of seed banks in agricultural 

fields the total number of weed seeds in most fields is about 4000 m-2 (Squire et al., 

2003). To initiate the seedbank for each of the scenarios it was assumed that on the 1st 

of October, the target species constituted 10% of that total, i.e. 400 m-2. This number 

was multiplied by 250,000 to reflect a field size of 25 ha. Since the dormancy status 

of the seeds is a function of seed age, the seedbank was to be divided over four 

different age groups in the seedbank matrix in ECOSEDYN (see Section 2.5.2.3). If 

the first simulation year is identified as Y1 then it was assumed that 50% of the initial 

seed bank were produced in Y0, 25% of the seed bank were produced in Y-1

2Y −≤

 and that 

25% are from years before that: .  

Seeds produced in Y0 were stored in Array 2. The distribution of seeds followed that 

as described in Section 2.5.6, i.e. 57% on the soil surface, 29% in the 0-5 mm and 

14% in the 5-10 mm soil layer. Seeds produced in Y-1

2Y −≤

 would have been subject to one 

[Plough + power harrow] cultivation. The maximum depth of cultivation in the 

rotation, and hence the distribution of weed seeds, is assumed to be limited to 30 cm. 

These seeds, that were for convenience assumed to be all on the surface at the time of 

cultivation, were therefore distributed over the soil layers according to the first 

column (‘Surface’) of the transition matrix shown in Figure 3-34. These T. inodorum 

seeds would have been in Array 2 in the previous season and were therefore stored in 

Array 3. The seeds produced two or more years ago, , were stored in Array 4. 

These seeds would have received two or more [Plough + power harrow] cultivations 

and were evenly distributed over the 0-30 cm.  

mailto:Bastiaan.brak@googlemail.com�
mailto:Andrew.mead@warwick.hri.ac.uk�
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5.2.4 One year simulations 
After the 24 year simulations had been finished, additional one-year simulations were 

carried out for each of the 9 or 15 maturity time x sowing time combinations within 

winter wheat and carrot respectively, and for each of the 17 weather years, to help 

understand the rank order of the weed management scenarios. The model parameter 

values were kept the same as during the 24 year simulations except for the Wmax-t and 

Sf parameters. It became apparent that during the 24 year simulations different values 

for these two parameters had been defined in the carrot and winter wheat files. In the 

one year simulations the value for Wmax-t and Sf

• number of emerged weed seedlings 

 listed in Section 4.7.1.2 and 4.7.3.2 

respectively were used in both carrot and winter wheat. The variables assessed were: 

• total weed biomass (gram dry weight) at crop harvest 

• stage of weed maturity: a single ‘maturity score’ was calculated from the 

weeds in the different cohorts (1-12) that represented the proportion realized 

seed production of the maximum seed production Smax

Equation 5-1  

. The score was 

calculated in the following way:  
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where ‘h’ represents the crop habitat and ‘c’ represents the (number of) 

cohorts. H is the total number of habitats within a crop; for carrot H=3 

whereas for winter wheat H=1.  

• number of viable seeds produced at crop harvest 
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5.2.5 Analysis 
The Matlab output contained the day at which 50% of the crop had emerged and the 

day at which the crop is harvested for each of the 135 weed management scenarios x 

50 randomisations and for each of the 24 years within each weed management 

scenario. Using this information and the sowing dates (see Table 2-1), the average 

duration of crop sowing to 50% crop emergence and of crop sowing to crop harvest 

could be determined under the two climate scenarios for each of the weed 

management scenarios within the two crop [MT x ST] factorials.  

As an informal analysis, and for illustration purpose, scatter plots were made of the 

rank order of the weed management scenarios against the ordinal scores of the 

cultural control components. In addition, analysis of variance tests were performed on 

the seedbank data. Because of unequal within-group variance in the dataset, a log10

For each weed management scenario the effect of climate was assessed in two ways:  

 

transformation was performed first on the seedbank numbers to meet the assumption 

of homoscedasticity. Then an ANOVA test was performed in GenStat for the datasets 

for each weather scenario and for the two datasets combined. For the separate 

analyses, replicates were marked as ‘blocks’ and the 4 different cultural control 

components as treatment factors. The analysis included all interactions between the 

four treatment factors. For the combined dataset the two climate scenarios were 

marked as ‘blocks’ and the replicates as nested within that, with the cultural 

components again as treatment factor and the fitted model including interactions 

within climate scenario. 

• the mean seedbank size was determined over the 50 weather randomisations 

for each of the two climate scenarios and the difference between the two 

means was then determined from it 

• 50 pairs of simulation results were formed by comparing the seedbank size 

under the two different climate scenarios for each of the 50 independent 

weather randomisations. From this data the probability of the seedbank 

increasing if the weather were to change from ‘No change’ to ‘Heating up’ 

was determined.  

Means and standard errors were calculated for the variables that were obtained using 

the one-year crop simulations under the two climate scenarios ‘No change’ (n=17) 

and ‘Heating up’ (n=8). 
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5.3 Results 
 

Time to 50% crop emergence and crop harvest 

For both carrot and winter wheat, the later the crop sowing date, the less time it took 

from sowing to harvest for a given crop maturity time (see Table 5-2). Carrot harvest 

date tended to be 2-3 days earlier under ‘Heating up’ as compared to ‘No change’ 

climate, except for the weed management scenarios with [V_ST=3] and [V_ST=4]. In 

(some of) the weather years from the ‘Heating up’ climate, the soil was rather dry at 

these sowing dates. Since no irrigation was assumed in the germination and 

emergence simulation model, crop emergence was delayed relative to the average of 

the ‘No change’ weather years. It is noteworthy also that the standard deviation of the 

time to 50% carrot emergence is twice as large under ‘Heating up’ as compared to 

‘No change’ climate.  

 

Table 5-2 Average duration from crop sowing to 50% crop emergence and crop harvest under 
two climate scenarios (‘No Change’ = NC and ‘Heating up’ = HU) for the factorial of crop sowing time 
x crop maturity time in carrot and winter wheat.  

 MT=1 MT=2 MT=3 

 
em%50sd →  1 harvestsd →  1 em%50sd →  1 harvestsd →  1 em%50sd →  1 harvestsd →  1 

V_ST NC HU NC HU NC HU NC HU NC HU NC HU 

1 21 20 115 112 21 20 129 127 21 20 148 145 

2 17 15 106 103 17 15 120 117 17 15 138 135 

3 19 24 100 102 19 24 114 115 19 24 132 133 

4 16 20 92 94 16 20 106 107 16 20 124 125 

5 16 13 87 84 16 13 101 98 16 13 120 116 

 

A_ST NC HU NC HU NC HU NC HU NC HU NC HU 

1 14 13 318 311 14 13 324 317 14 13 331 324 

2 18 17 311 305 18 17 319 311 18 17 326 318 

3 24 25 302 296 24 25 309 302 24 25 316 309 
1

 

 For carrot: average of 200 values (50 weather randomisations x 4 years within weed management 
scenario). For winter wheat: average of 1000 values (50 weather randomisations x 20 years within 
weed management scenario). 

 

Winter wheat was predicted to be harvested 6-8 days earlier under ‘Heating up’ as 

compared to ‘No change’ climate at each sowing date (see Table 5-2). Under the 
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assumptions used to model winter wheat germination in ECOSEDYN (see Section 

2.5.2.2), the later the sowing of winter wheat, the longer the duration from sowing to 

50% crop emergence but the shorter the duration from sowing to crop harvest. 

 

 

Weed management (cultural control) scenarios 

The scatter plots show that the time from sowing to harvest in carrot was by far the 

most important cultural control factor affecting the ranking of the weed management 

scenarios in both climate scenarios (see Figure 5-3) and this is confirmed by 

comparing the variance ratios (v.r.) in the ANOVA tables (Table 5-3 and 5-4). Under 

‘No change’ climate, sowing time of carrot was of secondary importance followed by 

sowing time of winter wheat. Time from sowing to harvest in winter wheat (winter 

wheat variety) was the least important of all and there was no significant effect 

whereas for the other cultural control factors the effects were highly significant 

(P<0.001; see Table 5-3 and 5-4).  

 

 

Figure 5-3 Rank order of weed management scenarios (the higher the ranking number the 
higher seedbank level) under two Climate scenarios, ‘No Change’ (left) and ‘Heating up’ (right), 
according to the average seedbank size (50 weather replicates) over the course of the last crop 
rotation. Blue, green and orange points represent fast, intermediate and slow maturing carrot 
varieties (V_MT=1, V_MT=2, V_MT=3) respectively. Data points of the same colour represent the 
maturity time in winter wheat with the consistent rank order: A_MT=1< A_MT=2< A_MT=3 
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For each of the 45 weed management scenarios with a given V_MT score under the 

‘No Change’ climate scenario, the weed management scenarios where carrot was 

sown on the latest date (V_ST=5) had the lowest ranking numbers (i.e. relatively low 

seedbank sizes) compared to the other carrot sowing times (see Figure 5-3). The 

carrot variety that took the longest time from sowing to harvest (V_MT=3; see orange 

data points in left graph of Figure 5-3) showed a trend for later sowings to end up 

with lower seedbanks whereas the other two carrot varieties (maturity times) did not. 

Hence the interaction between sowing time and maturity time in carrot was significant 

(P<0.001, see Table 5.3). None of the second or third order interactions were 

significant.  

 

Table 5-3 Anova table for the treatment (cultural control) and first-order effects on the log-
transformed seedbank simulation data under ‘No change’ climate. 

Source of variation  d.f. s.s. m.s. v.r. F. pr. 

      

Rep 49 2.39E+02   4.88E+00    62.17  

V_ST 4 7.25E+02   1.81E+02 2311.86 <.001 

V_MT 2 9.88E+03   4.94E+03 62953.02 <.001 

A_ST 2 4.68E+01   2.34E+01   298.32 <.001 

A_MT 2 1.12E-01   5.57E-02     0.71 0.491 

V_ST * V_MT 8 3.29E+02   4.12E+01   524.62 <.001 

V_ST * A_ST 8 1.73E-02   2.16E-03     0.03 1.000 

V_MT * A_ST 4 3.49E-01   8.73E-02     1.11 0.348 

V_ST * A_MT 8 1.50E-05   1.91E-06     0.00 1.000 

V_MT * A_MT 4 2.20E-04   5.49E-05     0.00 1.000 

A_ST * A_MT 4 1.73E-01   4.33E-02     0.55 0.697 

V_ST * V_MT*A_ST 16 9.19E-03 5.74E-04 0.01 1.000 

V_ST * V_MT*A_MT 16 2.04E-05 1.28E-06 0.00 1.000 

V_ST * A_ST*A_MT 16 4.32E-05 2.70E-06 0.00 1.000 

V_MT * A_ST*A_MT 8 3.31E-04 4.13E-05 0.00 1.000 

V_ST * V_MT*A_ST*A_MT 32 3.52E-05 1.10E-06 0.00 1.000 

Residual 6566 5.15E+02 7.84E-02   

Total 6749 1.17E+04    

 

In contrast, under ‘Heating up’ climate, the maturity time of winter wheat had a 

significant effect on the seedbank levels (P=0.007, Table 5-4). Comparing the 

variance ratios under the two climate scenarios shows that, relative to the sowing time 

in carrot, the sowing time of winter wheat had more impact under ‘Heating up’(see 
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Table 5-3 and 5-4). In addition, the interaction between sowing time and maturity 

time in winter wheat was significant (P=0.003).  

Contrary to ‘No change’ climate, a clear trend for later sowings to end up with lower 

seedbanks was not present under ‘Heating up’ for any of the carrot varieties nor was 

there any carrot sowing date that was consistently resulting in the lowest seedbanks 

(see right graph in Figure 5-3). Instead, for each carrot variety the rank order of 

seedbank size according to carrot sowing date was different and hence the interaction 

(V_ST*V_MT) was significant (P<0.001, see Table 5.4).  

 

Table 5-4 Anova table for the treatment (cultural control) and first-order effects on the log-
transformed seedbank simulation data under ‘Heating up’ climate. 

Source of variation  d.f. s.s. m.s. v.r. F. pr. 

      

Rep 49 2.02E+02 4.13E+00 73.90  

V_ST 4 1.66E+02 4.14E+01 741.32 <.001 

V_MT 2 1.04E+04 5.18E+03 92774.10 <.001 

A_ST 2 1.73E+02 8.63E+01 1545.48 <.001 

A_MT 2 5.62E-01 2.81E-01 5.03 0.007 

V_ST * V_MT 8 1.31E+02 1.64E+01 293.57 <.001 

V_ST * A_ST 8 6.96E-03 8.70E-04 0.02 1.000 

V_MT * A_ST 4 3.60E-01 9.00E-02 1.61 0.168 

V_ST * A_MT 8 1.55E-05 1.93E-06 0.00 1.000 

V_MT * A_MT 4 2.25E-03 5.63E-04 0.01 1.000 

A_ST * A_MT 4 8.84E-01 2.21E-01 3.96 0.003 

V_ST * V_MT*A_ST 16 9.58E-03 5.99E-04 0.01 1.000 

V_ST * V_MT*A_MT 16 1.25E-04 7.83E-06 0.00 1.000 

V_ST * A_ST*A_MT 16 4.36E-05 2.72E-06 0.00 1.000 

V_MT * A_ST*A_MT 8 3.84E-03 4.80E-04 0.01 1.000 

V_ST * V_MT*A_ST*A_MT 32 1.93E-04 6.02E-06 0.00 1.000 

Residual 6566 3.67E+02 5.59E-02   

Total 6749 1.14E+04    
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Cultural control hypothesis: best three weed management scenarios are 

characterized by [V_MT=1, V_ST=5, A_MT=1] 

The three weed management scenarios with the lowest seedbank after 24 years were 

not precisely those as hypothesized (see Table 5-1). Under ‘No Change’ climate they 

had three characteristics in common: V_MT=1, V_ST=5, A_ST=1. Under ‘Heating 

up’ climate they had two characteristics in common: V_MT=1, A_ST=1 (see Figure 

5-3). Hence, a fast maturing carrot variety and early sowing in winter wheat are the 

most consistent, ‘climate proof’, cultural control components that can maintain low 

weed seedbank levels. 
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One year simulation results 

The autonomous ‘Germination and Emergence’ model predicted that the later carrot is 

sown, the fewer T. inodorum seedlings would germinate and emerge (see charts in 

first row of Figure 5-4). At the same time, the duration from crop sowing to 50% crop 

emergence generally decreased for later sowing dates (see Table 5-2) which results in 

a decrease in the maximum per plant biomass for each cohort. Together these effects 

resulted in lower total weed biomass at crop harvest for later crop sowings (see charts 

in second row of Figure 5-4).  

 
The more time a carrot variety required from sowing to harvest, the higher the 

proportion of maximum seed production (maturity score) that was realised by weeds 

at crop harvest (see charts in third row of Figure 5-4). Maturity scores tended to be 

 

Figure 5-4 Results of 1 year simulations in carrot. Charts in the first, second and third 
column represent increasing times from sowing to harvest (V_MT). X-axes of charts represent 
carrot sowing time (V_ST). The green lines represent the mean over 17 weather years (‘No change’ 
climate) and the red lines represent the mean over the 8 hottest weather years (‘Heating up’ 
climate) from those seventeen years. Bars represent standard error. Note that Y-axes of the charts in 
row 4 (seed production) have different scales. 
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highest for the third and / or fourth sowing times. The reduction in the maturity score 

at the fourth but particularly the fifth sowing time is related to the way the timing of 

flowering is modeled in ECOSEDYN (see Equation 4-37), which is itself a reflection 

of the presence of photoperiodicity in T. inodorum. For weed cohorts that emerge 

after 21 

 

April, the starting date of flowering is delayed by 5 days for each subsequent 

cohort whereas for each subsequent weed cohort that emerges prior to 21 April the 

starting date of flowering is delayed at most by one day (see Figure 5-5).  

  
 

Even though the time from sowing to harvest decreases for later sowing times (see 

Table 5-2), the average harvest date is still 5 to 10 days later for each consecutive 

sowing time. The average number of days over all cohorts by which flower initiation 

is delayed for consecutive sowing times is lower than the average number of days by 

which crop harvest is delayed for early sowing times, but higher for later sowing 

times. The maturity score therefore initially increases but later decreases for 

consecutive sowing times.  

Maturity scores tended to be lower under ‘Heating up’ than ‘No change’ climate 

because either one of the following conditions held: 

• Carrot tended to be harvested earlier under ‘Heating up’ than ‘No change’ 

climate (V_ST=1, V_ST=2 and V_ST=5) 

• Average weed seedling emergence tended to be later under ‘Heating up’ than 

under ‘No change’ climate (V_ST=3, V_ST=4) (see Figure 5-6) 

 

Figure 5-5 Start of weed flowering dates (dFs) for each of the 12 weed 
cohorts at each of the five different carrot sowing times. Earliest weed flowering 
date is 251 (8 June). 
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Seed production at crop harvest is a function of both biomass production and the 

phenological stage of a plant; the latter factor explains most of the variation in weed 

seed production at various sowing times when a fast maturing carrot variety 

(V_MT=1) is grown, whereas weed biomass explains most variation when a slow 

maturing carrot variety (V_MT=3) is grown. Seed production (see charts in fourth 

row of Figure 5-4) correspond rather well with the rank order of the weed 

management scenarios as shown in Figure 5-3. Bearing in mind that each weather 

year is selected once in the one year simulations, any discrepancies between the 

graphs are most likely due to a relatively low number of weather randomizations (50) 

in the 24 yr weed management scenario simulations. 

 

Figure 5-6 Average distribution of weed emergence under ‘No change’ climate (17 weather 
years) and ‘Heating up’ climate (8 weather years) after seed bed preparation of carrot at five 
sowing dates. V_ST=1-5 represent carrot sowing dates as given in Table 2-1. The first weed cohort 
comprises all weed seedlings that emerged within 5 days from sowing / seed bed preparation, the 
second weed cohort represents all the weeds that emerged in the 6-10 day interval after sowing, etc. 
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For winter wheat the dynamics are rather different (see Figure 5-7). Fewer T. 

inodorum seedlings emerged in winter wheat than in carrot but there was no effect of 

sowing time.  

 
 

Since crop development is slow in autumn there was no dampening effect of the 

canopy on weed seed germination and therefore equal numbers of weeds emerged and 

survived until crop harvest in winter wheat varieties with different lengths from 

sowing to harvest. The first sowing time resulted in the lowest amount of total weed 

biomass at crop harvest. At first sight this may appear surprising, given that on 

average more seedlings were produced at the first than at the second or third sowing 

time. However, this total consists of twelve weed cohorts of weeds of different size. It 

is the relative time of emergence of crop and weed that has the largest effect on total 

 

Figure 5-7 Results of 1 year simulations in winter wheat. Charts in the first, second and third 
column represent increasing times from sowing to harvest (A_MT). X-axes of charts represent 
carrot sowing time (A_ST). The green lines represent the mean over 17 weather years (‘No change’ 
climate) and the red lines represent the mean over the 8 hottest weather years (‘Heating up’ 
climate) from those seventeen years. Bars represent standard error.  

 



 244 

plant biomass. The distribution of weed seedling emergence over time and the 

duration until 50% crop emergence are the key factors in determining final plant weed 

biomass. Assuming a weed seedling survives weed control, the earlier it emerges 

relative to the crop the higher the potential biomass Wmax

1. On the one hand, the earlier winter wheat was sown, the more right-skewed 

the distribution of emergence was over time (see Figure 5-8). A shift occurs in 

the distribution of emergence towards more seedlings emerging in later 

cohorts for later sowing dates. All other factors being equal this would result 

in a decrease in total weed biomass for later sowing dates.  

-r. Hence, given an equal 

number of seedlings, the more right-skewed a weed emergence distribution is over the 

twelve cohorts, the higher total weed biomass gets. At the same time, given a certain 

distribution of weed emergence, the longer crop emergence is delayed, the more the 

potential biomass for weeds in each cohort will increase. In winter wheat, two 

antagonistic effects were operating:  

 
 

2. On the other hand, the later winter wheat was sown, the longer the duration 

from sowing to 50% crop emergence (see Table 5-2). This results in higher 

values for the parameter bcchq which represents the proportion that per plant 

biomass is maintained relative to the maximum per plant biomass due to plant 

competition, (see Equation 4-23) and therefore higher values for the realized 

per plant biomass, Wmax-r (see Equation 4-13) for each cohort for later sowing 

 

Figure 5-8 Average distribution of weed emergence over 17 weather years after 
seed bed preparation of winter wheat for three sowing dates. A_ST=1-3 represent an early, 
intermediate and late winter wheat sowing date respectively, as given in Table 2-1. The 
first weed cohort comprises all weed seedlings that emerged within 5 days from sowing / 
seed bed preparation, the second weed cohort represents all the weeds that emerged in the 
6-10 day interval after sowing, etc. 
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times. All other factors being equal this would result in an increase in total 

weed biomass for later sowing dates.  

The net result is that the intermediate sowing time of winter wheat results in the 

highest total weed biomass production. Given that in winter wheat weed seed 

production is exclusively a function of total weed biomass, the intermediate sowing 

time resulted in the highest amount of seed production and therefore weed 

management scenarios with [A_ST=2] resulted on average in higher seedbanks than 

weed management scenarios with [A_ST=1] or [A_ST=3] (see Figure 5-3). 

The total amount of weed biomass produced was not affected by winter wheat variety 

since the number of weed seedlings was constant and the harvest date exceeded the 

end of flowering, dFe

 

, after which biomass does not increase, for all [A_MT] x 

[A_ST] x weather year combinations. The phenology component predicted that the 

latest weed cohort to emerge would finish seed shedding on day 339 (4 September), 

342 or 344 for the different wheat sowing times (see Table 5-5).  

Table 5-5 Start and end dates of flowering (dF) and seed shedding (dS

 

) for the last weed cohort 
to emerge after three different winter wheat sowing dates.    

dFs dFe dSs dSe 

1 October (A_ST=1) 236 271 270 339 

19 October (A_ST=2) 239 274 273 342 

8 November (A_ST=3) 241 276 275 

 

344 

This means that the point with maximum viable seed production in the population has 

been reached twenty days earlier than these dates (see Section 4.7.3). Given that 

harvest dates of winter wheat generally exceeded these ‘maximum viable seed 

production’ dates and that the last weed cohort generally constitutes only a very small 

proportion of the weed population, this resulted in maturity scores close to one in 

nearly all scenarios. Due to this lack of distinction in seed maturity, the variation in 

seed production was explained exclusively by total weed biomass at crop harvest; 

seed production was lowest for the first sowing date and highest for the second and 

this is reflected in the rank order of the weed management scenarios as well (see 

Figure 5-3). 
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Climate hypothesis: seedbank (‘Heating up’) > seedbank (‘No change’) 

For the majority of the weed management scenarios (93 out of 135), the average 

seedbank of a given weed management scenario under ‘Heating up’ climate was 

lower than its equivalent under ‘No change’ climate, unlike hypothesised. If carrot 

was sown in March (V_MT=1, V_MT=2 or V_MT=3) then the weed management 

scenarios under ‘Heating up’ climate resulted, on average, in lower seedbanks than 

the weed management scenarios under ‘No change’ climate (see Table 5-6). 

Conversely, if carrot was sown on the 4th or the 5th

 

 sowing date, then ‘Heating up’ 

climate was on average more likely to result in larger seedbanks than ‘No change’ 

climate. This effect was enhanced by increasing time from sowing to maturity in 

carrot (V_MT). 

Table 5-6 Relative seedbank sizes for the full factorial of weed management scenarios under 
two climate scenarios: Hu = ‘Heating up’ and Nc = ‘No change’. Colours indicate the order of 
magnitude of the difference between the seedbank size under the different climate scenarios for the 
model parameter values used in the 24 year scenarios. Blue shades indicate that ‘Heating up’ results in 
lower seedbanks than ‘No change’ whereas orange shades indicate the reverse.  

 
A_ST 1 2 3  

A_MT 1 2 3 1 2 3 1 2 3 

V_MT V_ST  

1 

1          

2          

3          

4          

5          

2 

1          

2          

3          

4            Hu<Nc:  1.0E08 – 1.0E

5 

10 

          Hu<Nc:  1.0E06 – 1.0E

3 

08 

1           Hu<Nc:  1.0E04 – 1.0E

2 

06 

          

3           Hu>Nc:  1.0E04 – 1.0E

4 

06 

          Hu>Nc:  1.0E06 – 1.0E

5 

08 

          Hu>Nc:  1.0E08 – 1.0E

 

09 

The ANOVA of both datasets combined indicated that ‘Climate’ had a significant 

impact on seedbank size (P<0.001, see Table 5-7). Significant interactions were found 

between ‘Climate’ and all cultural control treatments except time from sowing to 
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harvest in winter wheat (A_MT). Sowing time in carrot (V_ST) is the cultural control 

component that would show the largest response to a change in climate but perhaps 

surprisingly, sowing time in winter wheat (A_ST) was highly significant too; if the 

climate were to change to ‘Heating up’ then sowing winter wheat at the first, second 

or third date would reduce population size by about 45%, 20% and 9% on average 

compared to their equivalent sowing dates under ‘No change’. The 2nd

 

 order 

interaction between ‘Climate’ and ‘V_ST’ and ‘V_MT’ was the only higher order 

interaction that was significant (P<0.001).  

Table 5-7 Anova table for the 1st and 2nd

Source of variation  

 order effects on the log-transformed seedbank 
simulation data. 

d.f. s.s. m.s. v.r. F. pr. 

      

Scenario (Sc) 1 5.87E+01 5.87E+01 13.03 <.001 

Residual 98 4.41E+02 4.50E+00 67.05  

      

Sc * V_ST 4 2.26E+02 5.64E+01 839.98 <.001 

Sc * V_MT 2 8.04E+00 4.02E+00 59.85 <.001 

Sc * A_ST 2 2.83E+01 1.42E+01 210.74 <.001 

Sc * A_MT 2 8.64E-02 4.32E-02 0.64 0.526 

Sc * V_ST * V_MT 8 4.89E+01 6.11E+00 91.06 <.001 

Sc * V_ST * A_ST 8 9.67E-03 1.21E-03     0.02 1.000 

Sc * V_MT * A_ST 4 3.44E-02 8.61E-03 0.13 0.972 

Sc * V_ST * A_MT 8 3.08E-05 3.84E-06 0.00 1.000 

Sc * V_MT * A_MT 4 5.36E-04 1.34E-04 0.00 1.000 

Sc * A_ST * A_MT 4 1.37E-01 3.43E-02 0.51 0.728 

…..      

Residual 13132 8.82E+02 6.71E-02   

Total 13499 2.32E+04    

 

 

The high variance ratio for ‘Residual’ in Table 5-7 relative to that of ‘Scenario’ 

reflects that the random weather permutations have a considerable impact on 

seedbank dynamics within ECOSEDYN. This is largely due to the different seed 

production potential in the different weather years. For example, the number of viable 

seeds produced at the time of harvest of the carrot variety with the intermediate 

maturity time (V_MT=2) under ‘No change’ climate, varies approximately by a factor 
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15 in the 1st sowing time but by a factor 250 for the 5th

Hence, even for weed management scenarios where the average size over 50 

replicates under one climate scenario is much larger than the average size under the 

other climate scenario, for a given weather year there is always a certain probability 

for a reverse effect (see Table 5-8, note that row order is different than in Table 5-6). 

 sowing time between the least 

and the most beneficial weather year. Hence, cultural control scenarios in which three 

or four of the weather years assigned to carrot happen to be very advantageous for 

seed production result in far larger seedbanks than when three of the worst weather 

years for seed production are assigned to carrot (see Figure 5-9).  

 

 

For example, the average size of the seedbank of the three weed management 

scenarios with the characteristics [V_MT=3, V_ST=3, A_ST=3] is much larger under 

‘No change’ than under ‘Heating up’ (1.0E08 – 1.0E10, see Table 5-6) but there is still 

a 41-60% probability that a given weather year results in a higher seedbank under 

‘Heating up’ than under ‘No change’ (see Table 5-8). Interestingly, whereas the 

maturity time in carrot (V_MT) has a large effect on the amplitude of the difference 

between the seedbank sizes in the two different climate scenarios (see Table 5-6), it is 

of minor importance regarding the probability of a given weather year resulting in a 

higher seedbank under one climate scenario than under another. The probability of the 

seedbank being higher under ‘Heating up’ than under ‘No change’ is largely a 

function of the time of sowing, both in carrot and winter wheat; the later the time of 

sowing, the higher the probability that the seedbank is larger under ‘Heating up’. The 

 

Figure 5-9 Seed population dynamics for four different weather randomisations over the 
course of 4 crop rotations. The cultural control components were constant (A_ST=1, A_MT=1, 
V_ST=5, A_MT=3) as was the climate scenario (‘No Change’). The black and the red line 
represent scenarios where three of the four weather years with carrot were in the top 3 and bottom 3 
respectively of the seed production rank order. 
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weed management scenarios with the characteristics [V_ST=5, V_MT=1, A_ST=1] 

form a noteworthy exception to this trend. In addition, if winter wheat is sown early 

(A_ST=1) and a fast maturing carrot variety is chosen (V_MT=1), then, regardless of 

winter wheat variety (A_MT) or sowing time of carrot (V_ST), the probability that 

the seedbank will increase if the climate were to change to ‘Heating up’ is always less 

than 20%. 

 

Table 5-8 Probability of the seedbank being higher under ‘Heating up’ (HU) than under ‘No 
change’ (NC) for the full factorial of weed management scenarios. Blue shades indicate the percentage 
of 50 paired simulations in ECOSEDYN in which seedbanks were larger under ‘Heating up’ than under 
‘No change’. 

 
A_ST 1 2 3  

A_MT 1 2 3 1 2 3 1 2 3 

V_ST V_MT  

1 

1          

2          

3          

2 

1          

2          

3          

3 

1          

2          

3          

4 

1            Probability of HU>NC 

2           0-20% 

3           21-40% 

5 

1           41-60% 

2           61-80% 

3           81-100% 
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5.4 Conclusions and discussion 
The following research questions were postulated prior to the simulations: 

1. Which cultural control practice, sowing time or crop variety, and applied in 

which crop, has most potential in alleviating long term weed seedbank levels? 

2. Can cultural control practices applied in one crop (carrot or winter wheat) 

maintain sufficient low weed seedbank levels or is the application in both 

crops required? 

3. Are the answers given for questions 1-2 different under the two climate 

scenarios? 

Choosing a fast maturing carrot variety is the key to maintaining a low seedbank 

regardless of the prevailing climate. It must be emphasized that this result relies to 

some extent on the assumption of the carrot varieties being equally competitive, i.e. 

reducing the maximum per plant weed weight Wmax-t to the same extent. Bennett and 

Shaw (2000) found that late (i.e. slow) maturing soybean cultivars reduced weed seed 

production compared to intermediate maturing, most likely due to increased 

competitiveness. If slow maturing carrot varieties are associated with a higher 

reduction of maximum per plant weight Wmax-t through bcchq (i.e. more competitive 

than fast maturing carrot varieties), then the benefits of choosing a fast maturing 

carrot variety may be reduced. However, the magnitude of difference of seed 

production between the fast (V_MT=1) and slow (V_MT=3) carrot varieties is so 

large (see bottom charts in Figure 5-4) that the reduction in maximum per plant weed 

weight Wmax-t

The results of the ECOSEDYN simulations suggest that it is of no real benefit for 

carrot growers to persuade the arable farmer from whom the land is rented to select a 

fast maturing winter wheat variety unless varieties become available that mature 

considerably faster than the variety represented by [A_MT=1]. The reason for this is 

that each winter wheat variety is generally harvested after all or the vast majority of 

viable seeds have been produced whereas the harvest date of carrot either precedes or 

falls within the interval of viable seed production by the weed plants, depending on 

weather year and maturity time.  

 in a slow carrot variety should be enormous to compensate for that.  

The simulations in ECOSEDYN further suggest that by consistently sowing winter 

wheat at the earliest date, the seedbank can be kept at a lower level than by sowing 

winter wheat at the second or third date. This shows that the benefit of a short time 
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from sowing to 50% crop emergence outweighs the disadvantage of a right-skewed 

weed seedling emergence distribution. This effect was enhanced under ‘Heating up’.  

In addition, compared to the intermediate and late sowing dates for winter wheat, 

sowing on the 1st

The simulations in ECOSEDYN suggest that, regardless of variety chosen, sowing 

carrot at the 5

 of October results in the lowest probability of seedbanks increasing 

in size if the climate were to change to ‘Heating up’. Even though carrot maturity time 

is more influential in keeping the seedbank low, it is therefore still of extra benefit to 

select the earliest sowing date for winter wheat as an option of cultural weed control.  

th

If the climate were to change towards warmer spring – summer periods (‘Heating 

up’), then sowing carrot at the 5

  sowing date (26 April) is the best strategy to maintain low seedbank 

levels if the climate does not change towards warmer spring – summer periods (i.e. 

remains as under ‘No change’). The fifth sowing time of carrot resulted in lower 

seedbank levels than other sowing times because simultaneously less biomass and 

fewer mature seeds per unit plant biomass were being produced.  

th sowing date is still best for the weed management 

scenarios with the longest maturity time of carrot [V_MT=3], but the 1st and 2nd 

sowing date result in slightly lower levels of the seedbank after 24 years than sowing 

at the 5th

An encouraging result for growers is that this research suggests that the weed 

management scenarios that result in the lowest seedbank levels given ‘No Change’ 

climate, [V_MT=1, V_ST=5, A_ST=1], will lead to a decrease in seedbank levels of 

T. inodorum if the weather were to change towards warmer spring-summer periods 

(‘Heating up’) as well as a low probability for a bad year under ‘Heating up’. The 

weed management scenarios that are recommended based on this research are 

therefore characterized by short maturity time in carrot, late sowing time of carrot and 

early sowing time of winter wheat. 

 sowing date for the weed management scenarios with the short and 

intermediate maturity time of carrot, [V_MT=1] and [V_MT=2].  

The results of the one year simulations provided explanation for the patterns observed 

in the 24 year simulations really well. This makes sense since the different parameter 

values for Sf (number of seeds per flower) and Wmax-t

For the carrot varieties with the short and intermediate maturity times, [V_MT=1] and 

[V_MT=2], there was no clear trend for seedbanks to be lower when sowing time was 

delayed (see Figure 5-4). Hence, components such as the distribution of seedling 

 used in carrot and winter wheat 

during the 24 year simulations affect only the number of seeds produced but not the 

ranking of the scenarios relative to each other.  
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emergence, the time of 50% crop emergence and in particular the start of flowering 

are far more important in determining total plant biomass than the reduction in 

maximum per plant biomass due to late emergence in the season (see Section 

4.7.1.1.3). This suggests that if the latest carrot sowing time does not exceed the 26th 

of April, the third biodiversity conservation coefficient for Wmax, i.e. bccem

Because the germination and emergence model assumed no irrigation took place 

around the time of crop sowing, the distribution of seedling emergence varied widely 

and according to rainfall patterns. Assuming that primed carrot seeds require less 

moisture to germinate than weed seeds, then withholding irrigation would result in a 

more left-skewed distribution of weed seedling emergence, particularly in dry years. 

This in turn would mean that on average, weeds will remain smaller and start 

flowering and producing seeds later, resulting in lower seedbank levels. 

, which 

relates to the proportion by which per plant biomass is maintained relative to the 

maximum per plant biomass when emerging early in the season, can therefore be left 

out of the model.  



 253 

 

 

 

 

 

 

 

 

 

6 Synthesis and discussion  
 

 

 

 

 

 



 254 

6.1 Introduction 
A brief overview is given of the research findings of the experimental work described 

in Chapters 3 and 4, with additional points for discussion. I then focus on the main 

priority of this PhD project, the development of ECOSEDYN, a modelling framework 

capable of simulating the long-term dynamics of weed populations. First I summarise 

the weed management guidelines based on the simulation results presented in Chapter 

5. I then reflect on the model development phase of ECOSEDYN, the remaining work 

(sensitivity analysis and validation) and a general perspective on the future of weed 

science. 

 

6.2 Experimental work 
Although each experiment started out with a clear purpose related to the model, 

several experiments led to a discovery or development of techniques that were not 

anticipated beforehand but proved to be advantageous to the understanding of and the 

accuracy with which the system was represented within ECOSEDYN. These 

‘accidental discoveries’ are an inherent serendipitous feature of research in all 

scientific disciplines (Singh, 2002). For example, the image analysis code to 

determine plant leaf area in MatLab had to be expanded to cope with the bright white 

flowers of T. inodorum. This enabled measuring ‘flowering area’ over time and 

propelled the idea to link biomass and flower production conceptually. Ultimately this 

led to a coherent set of model components for Biomass increase, Flowering and Seed 

shedding.  

 

 

6.2.1 Seed distribution due to cultivation 
The work on seed modelling revealed several issues, either directly from the 

experiments or afterwards from increased understanding. The experimental results 

showed that the ‘raw’ transition matrices of separate cultivation implements can not 

be directly multiplied if the effect on soil bulk density of successive cultivation events 

is opposite. This refers to cultivation events where the first cultivation expanded and 

the second cultivation compressed the soil. In practice this includes each cultivation 

event after the plough and possibly the spader. Given the experimental difficulties of 

sampling uneven loose soil and the imperative analytical modification of the 

transition matrix of the ‘soil compressing’ cultivation event afterwards, it is suggested 
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from this work that for pragmatic reasons such combinations be modeled as one 

transition matrix. In that sense the decision to use one transition matrix for the 

ploughing plus the additional cultivation afterwards by Cousens and Moss (1990) was 

correct although at the time these analytical issues were not clarified. 

A second result from the experimental work is the considerable replicate to replicate 

variation of transition matrices, partly a function of variation in working depth of the 

cultivation implement. From the experimental results it is hypothesized that the true 

working depth in the field follows a normal distribution around the working depth as 

set by the farm personnel. It follows that vertical re-distribution of seed in the soil also 

varies. This emphasizes the use of continuous models such as the one based on the 

Beta distribution used by Mohler et al. (2006) which assigns a probability density 

function for seeds at any depth prior to cultivation. To account for the variability in 

working depth, the parameters of the probability density function should be expressed 

as a function of starting depth and working depth of the cultivation implement. 

Combining spatially explicit models such as cellular automata, the Beta distribution 

function for the probability of vertical seed movement and germination and 

emergence models, the effects of variation in working depth could then be assessed on 

the variation in timing of emergence in the field. 

A simple evaluation of average soil height before and after ploughing and the 

decrease of soil height over time indicated that the mechanistic soil movement models 

proposed by Colbach et al. (2000) and Roger-Estrade et al. (2001) underestimated 

final soil height. In reality the soil is compacted less than as suggested by these 

models and therefore the proportion of seeds in the active layer from where 

germination is not inhibited by depth-sensing mechanisms deployed by the seeds, is 

overestimated. On the other hand this would not necessarily have to lead to an 

overestimation of germination since the increase in soil compaction would result in a 

reduction of gas exchange in the soil with a consequent lower probability of 

germination (Benvenuti, 2003). The level of detail included in the germination and 

pre-emergence growth model used in combination with these seed movement models 

therefore determines the bias. 

Indirectly the work on seed movement and the use of transition matrices as a tool for 

modelling seed movement, led to the realization that transition matrices have not 

considered seeds as part of the soil matrix but as independent particles. Except for 

seeds on the surface it is highly implausible to suggest that seeds at any depth in the 

soil should behave differently than the surrounding soil particles. The reason this 



 256 

might occur nonetheless under experimental conditions is because beads were applied 

at one depth in the soil rather than mixing the beads over a soil layer and/or uneven 

sampling. The stable depth distribution of a transition matrix with even soil layers 

should therefore be homogenous. In order to comply with this condition the row sums 

of such transition matrices should add up to one. This added constraint was 

implemented in ECOSEDYN for the hypothesized transition matrices of seedbed 

preparation and harvesting of carrots.  

 

 

6.2.2 Plant growth and reproduction 
The experimental work conducted on plant growth and reproduction was necessary to 

understand and represent the intricate relations that are present both temporally and 

quantitatively between biomass increase, flowering and seed production. The most 

important outcome of this work is a coherent set of component models based on the 

Beta growth function that was proposed by Yin et al. (2003) that has been described 

and parameterized in Chapter 4.  

Mathematical descriptions were proposed for the effects of increased density of weed 

plants, delayed emergence relative to the crop, daylength and rainfall on the 

maximum size for plants, Wmax

Other results included the confirmation of effective day-degrees rather than day-

degrees as the environmental variable to which S. media and T. inodorum responded 

in terms of biomass production. The relative growth rate of biomass was very similar 

to the relative growth rate of ‘green area’ reported by Storkey (2004). 

. This was done based on established principles in crop 

and plant ecology such as the reciprocal yield law (Yoda et al., 1963), empirical data 

found in the literature and by carefully scrutinizing the species-specific information 

that is available for T. inodorum. 

In a paper by Gregorczyk (1998) it was hypothesized that the onset of flowering 

would coincide with the timing after which the increase in growth rate would start to 

decrease. This seemed intuitive given that reproductive structures generally contribute 

less than leaves to photosynthates. This was not the case however with a lag phase of 

21 days in the response of biomass growth rate to the changed allocation patterns. 

Perhaps the cost of photosynthate allocation to reproductive plant parts consisting of 

less efficient photosynthetic tissues can be compensated for by the difference in 

specific leaf area (g m-2) of buds as compared to leafs. Lower SLA figures imply 
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reduced self-shading for plants in the early flowering stage when most reproductive 

structures are buds.  

Interestingly, experiments show that large plants reach their reproductive effort later 

than small plants, leading to a non-linear relationship between plant biomass and 

reproductive structures. A correlation of the duration of flowering and plant size was 

hypothesized as a possible explanation for this which was confirmed in a second 

experiment. The non-linear relationship also provides a good explanation for the lack 

of a minimum size for flowering that is commonly inferred from linear regression 

lines. In practice a minimum size for flowering of 0.04 gr. was observed for T. 

inodorum. 

 

 

6.3 ECOSEDYN 
I started out this project with the expectation that models were like take-away diners 

that just needed picking up from the right restaurant but ultimately it was back to the 

kitchen to create a recipe first for most of the component models. Clearly the order in 

which a modeling project should be carried out starts first and foremost with 

understanding the biology of the system, reflecting at what level it should be 

represented mathematically in the model and then finding plausible parameters. This 

was a slow process because of the sheer amount of new information at the start of the 

Phd. 

A phenomenological approach was chosen for ECOSEDYN, i.e. including biological 

phenomena even if the exact relationships between the underlying mechanisms are 

not yet fully understood. This inevitably necessitated making assumptions. As long as 

it is clear when an assumption is made and on what arguments it is based there is no 

fundamental argument against taking assumptions. Science has to deal with reality 

and in reality we do not know everything, hence the need for assumptions. Providing 

clarity and rationale for assumptions was therefore attempted throughout the thesis. 

From a research point of view it is quite likely that a modelling project is one of the 

most successful ways of coming up with new hypotheses exactly because so many 

assumptions had to be made. This is one of the indirect contributions that models can 

make to research as argued by France and Thornley (1984). In that way from this 

thesis a range of further questions could be addressed over a wide range of scientific 

disciplines.  
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6.3.1 Weed management guidelines based on simulation 
results 

 

Based on the simulations in ECOSEDYN the recommended weed management 

guidelines to carrot growers are in order of importance: 

1. Select a fast maturing carrot variety. The sooner carrots are harvested the fewer 

viable weed seeds are produced. This study was limited to main crop carrots, i.e. 

those sown from April to mid-June but not the early carrots grown under 

polythene. However, large commercial carrot growers will grow a wide range of 

carrot types and varieties. According to the latest information from Elsoms 

(2009b), the fastest maturing carrot varieties are the Chantenay carrot (± 90 days), 

the varieties grown for bunching (± 88-90 days), some of the coloured varieties 

(e.g. Purple Haze F1, ± 85 days) and a few varieties for the pre-pack market (± 

104 days). Given that crop growers aim to supply a wide variety of carrot types 

throughout the year they should, soil conditions permitting, try to alternate slow 

and fast maturing carrot varieties in the crop rotation of a given field. Fields that 

are known to have high weed levels could receive a higher proportion of fast 

maturing carrot varieties. 

2. Persuade the arable farmer of whom the land is rented to sow winter wheat early 

in October. The reason for this is that the later winter wheat is sown, the longer 

the duration from sowing to 50% crop emergence. Since weeds do not experience 

an equal delay in emergence, the early winter wheat sowing is characterized by a 

lower total weed biomass. However, if weather conditions don’t permit sowing in 

early October it is better to postpone sowing until the end of, rather than halfway, 

October because the delay of weed seed emergence is more proportional to the 

delay of crop emergence.  

3. Sow carrot late in April, rather than early in March. This is down to the 

combined effects that are induced by later carrot sowing times: a tendency of 

weed seedling emergence to decrease, a reduction of per plant weed biomass due 

to faster crop emergence and an increase of the proportion of weed plants in which 

flowering is initiated too late to achieve maximum seed production 

(photoperiodicity effect, see Figure 5-5). This study compared carrot sowing times 

over a time frame (March – April) narrower than the potential range of sowing 

times according to the cropping guide from Elsoms (2009a). It is most likely that 
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sowing carrot in May will result in even lower long-term weed seed bank levels 

because all of the above effects are enhanced.  

The simulations also emphasise the importance of seed priming; the treatment of crop 

seed in such a way that minimises the level of soil moisture required to germinate. 

Indirect recommendations are therefore to maximize the potential of seed priming and 

to use irrigation only sparingly. In that way only the crop seed base water potential is 

fulfilled but not that of the majority of the weed seeds. Alternatively, since late 

sowing is recommended, irrigation may be applied some time prior to crop sowing in 

order to stimulate weed seed germination and emergence, followed by an application 

of glyphosate. 

 

 

6.3.2 Future work 
 

It would be unrealistic to divorce the required work on ECOSEDYN and the 

opportunities to address alternative research questions using ECOSEDYN from the 

somewhat bleak situation that weed science finds itself in at the moment. 

Over the last decade, the UK, and other countries in the EU such as the Netherlands, 

have experienced a reduced interest from policy makers and funding bodies in 

traditional agronomical sciences and weed science in particular (Fernandez 

Quintanilla et al., 2008). The current situation at Warwick HRI with just one active 

researcher in the Weeds group is symptomatic for many institutes and Universities in 

the UK that used to hold weed research groups. Has weed research become so 

successful that it has made itself redundant? Ask this question to the carrot growers 

affected by the loss of herbicides and the answer would be an unsurprising and 

resounding ‘No’. Ask the same question to the arable farmers that are faced with 

multiple resistance problems in blackgrass (Alopecurus myosuroides) and the answer 

is likely to be no again. What then causes this perceived notion of redundancy that 

surrounds applied agronomical sciences such as entomology, soil science and weed 

research?  

Fernandez-Quintanilla et al. (2008) attribute this trend to “an increasing social and 

political perception of our lack of power to offer valuable services to society”. In the 

same paper they note that one of the major weaknesses in weed research is the relative 

weak knowledge of the biology and ecology of weeds. The plethora of assumptions 

that were required to ‘guestimate’ the value of parameters for biological model 
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components in this project confirms this notion. According to Fernandez-Quintanilla 

et al. (2008) the “very limited human and financial resources available in the past” are 

to blame. Hence, weed science finds itself in a vicious circle in that without consistent 

research grants coming in, no consistent research programme can be set up to derive 

the imperative information on the biology and ecology of weed species. In turn, the 

lack of knowledge contributes to the high uncertainty related to yield loss predictions 

that has not been solved by recent modelling approaches.  

Even some weed scientists remain skeptical about the role that models can play in 

weed research with Stephen Moss (2007) posing the question ‘Weed management: is 

it a case of trying to predict the unpredictable?’ at the 14th

It would be more correct and would help avoid disappointment if the potential of 

models be communicated as giving projections rather than predictions. The definition 

of projection (from The Free Dictionary) better captivates the essence of what models 

are about: 

 EWRS Symposium in 

Hamar. This notion exists most likely due to false expectations of the potential of 

models. Perhaps this is a result of exaggerating the potential of models in order to find 

the available funding from research funding bodies or stakeholders.  

To project: to calculate, estimate, or predict (something in the future), based 

on present data or trends.  

To predict: to state, tell about, or make known in advance, especially on the 

basis of special knowledge. 

It is difficult to meet expectations if the bar has been set too high, and in the long run, 

over hyping the potential of models is likely to prove counterproductive to the 

probability for weed research proposals aiming for a modeling approach. This idea 

has been reflected in the design of the modelling framework where ECOSEDYN was 

designed to be: 

• ambitious in the range of processes included  

• thorough at the level of representing the biology  

• modest at the level of complexity  

• realistic in the evaluation of model output  

A quote epic amongst modelers is that ‘all models are wrong but some are useful’ by 

George Box (1979). The question whether a model is useful should be extended to 

include whether the assessment of model output is useful. The absolute value of the 

seedbank after 24 years is sensitive to a wide range of parameters but the ranking of 
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the weed management scenarios is only sensitive to the values of the parameters in 

those component models that, when changed, affect some scenarios more than others. 

Ranking the outcome of the simulated weed management scenarios by ECOSEDYN 

should warrant the certificate ‘useful model’ since the uncertainty of most model 

parameters will equally affect each weed management scenario. 

One of the most important phases of a modelling project is the evaluation phase 

(‘validation’) of the constructed model. Evaluating the proposed modelling 

framework is possible by comparing the ranking of the weed management scenarios 

with long-term field experiments. Though this can verify the projections of 

ECOSEDYN, it is not a verification of the component models themselves since it is 

possible that underestimation in one area is cancelled out in another. Given the 

scarcity of research grants available it is doubtful that such long-term evaluation 

studies are feasible in the current situation. A proper model evaluation therefore 

should attempt a validation on a component basis. Within the current timeframe this 

was feasible only for the model component for seed redistribution due to cultivation. 

More specifically, future work on ECOSEDYN should address and focus on those 

model components (parameters) that have the highest impact on the ranking of the 

weed management scenarios.  

The fact that maturity time of carrot is the dominant factor determining the ranking of 

the cultural control scenarios suggests that the starting time and duration of flowering 

are likely to be the two most sensitive components of the model. The limited data for 

flower duration that was available suggested that for the range of plant sizes expected 

within crops, flower duration is independent of starting time of flowering or plant 

size. In addition, the extent to which carrot varieties are equally competitive, i.e. 

reducing the maximum per plant weed weight, Wmax-t

It is important to note that the ranking of the scenarios is likely to be weed-specific; 

weed species with a more restricted period of emergence and/or weed species that are 

not photoperiodic are less likely to be affected as much by the maturity time in carrot 

and more by sowing time, either in carrot or winter wheat. This emphasizes the point 

that individual weed species would each be best controlled by different combinations 

 should be evaluated. Attempts 

at validating the model should therefore prioritise these three issues. A multi-year 

survey of the range of individual weed biomass present at harvest of both crops and 

crop varieties would provide some sort of validation of the chosen parameters of crop 

competitivity and the year-to-year variation due to weather effects on individual plant 

size. 
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of cultural control options. For ECOSEDYN to become of more practical value, it 

needs to be expanded with additional weed species, so that the optimal combination of 

cultural control options can be tailored to the particular weed species mixture present 

in the soil. However, this research has shown that to collect the required weed biology 

parameters for just one species already requires a substantial effort.  

A potential step for ECOSEDYN is to simulate seedbank dynamics whilst alleviating 

the constraint of fixed cultural control factors. Suppose, for example the hypothetical 

situation where each of the three carrot varieties should be grown at least once over 

the course of 24 years. The question could be asked: what is the most beneficial order 

in which the varieties must be grown? ECOSEDYN could also be used to assess ideal 

crop rotation length (from a sustainable weed pressure perspective) for carrot varieties 

with intermediate to long times from sowing to harvest. 

A number of significant factors are expected to change within the agricultural sector. 

In Europe the available number of herbicide products is expected to continue to 

decrease as well as the release of new products due to high investment costs (Kropff 

et al., 2008). The current interest in biofuel crops is expected to increase over the 

coming decades and this could provide opportunities to get more diverse crop 

rotations and include highly competitive crops to compensate for reduced weed 

control in some years of the crop rotation (Kropff et al., 2008). The reduced number 

of herbicides available should raise more interest in cultural control options that can 

be addressed by modeling frameworks such as ECOSEDYN.  
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Appendix 1 – Questionnaire to carrot/onion growers 
 
Date:        Name + Address (optional): 
 

1. 
a) Do you plough the area where the carrots are grown?  Yes   No  

Cultivation 

b) If yes, how deep do you plough the soil? 
c) What secondary cultivation do you use? 
d) Do you use a de-stoner?      Yes   No 
e) Do you use a sub-soiler?      Yes   No 

 
 

2. 
a) How would you characterise the soil where you grow onions (e.g. sandy loam etc.)?  

Soil characteristics 

b) If you happen to have more specific soil type information (e.g. from ADAS) what are the soil characteristics? 
c) What type of growing system do you use?  Bed system   Ridges   Other  
d) If you ticked the ‘Other’ box in the previous question could you please explain this. 

 
 

3. 
a) Which weeds do you consider the most problematic within your carrot growth system? 

Weed control 

b) Which weed control strategy do you apply to prevent / control weeds within the carrot crop? 
 

 
4. 

a) How do you grow your onions / carrots?   Cropping rotation   Continuous 
Land use 

b) If you use a crop rotation, could you please specify the current (or last used) rotation? 
c) Do you have a specific crop to precede a carrot crop? If so, could you specify please 
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Agricultural calendar:
 

  

d) With regard to the soil where carrots are grown, could you indicate in chronological order which activities (cultivation, 
weeding, fertilising and harvesting) happen and when (by shading the appropriate times in the table), from the moment of 
harvesting the crop preceding a carrot crop, to the moment the carrots are harvested. See below for an example: 

 
Activities: Timing 

depends on: 
Jan Feb. Mar Apr May June July Aug Sept. Oct. Nov. Dec. 

                          
                          
                          
                          
                          
                          
                          
                          
                          
                          
                          
                          

For example: 
Activities: Timing 

depends on: 
Jan Feb. Mar Apr May June July Aug Sept. Oct. Nov. Dec. 

Power 
harrowing 

Weather, type 
of carrot 
grown 

                        

 
Extra remarks: 
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Appendix 2 – Determination of leaf and flower area through image analysis in MatLab 
 
mlvalid = 0; 
        while imlvalid==0 

dirname = uigetdir('M:\Projects\AG\AG0190\Objective 4 - PhD - Bastiaan Brak\Ph.D files\growth parameter estimation', 'Pick the 
directory where the target images are stored') 

            if dirname==0 
                disp('*** You must give the directory where the target images are stored - try again ***') 
            else 
                imlvalid=1; 
            end 
        end 
  
        cd(dirname) 
  
        txtfile = dir('imagelist.txt'); 
         
        if isempty(txtfile) 
            jpgfiles = dir('*.jpg'); 
  
            fid=fopen('imagelist.txt','wt+'); 
  
            fprintf (fid, '%s', dirname); 
            fprintf (fid, '%c\n', 92); 
  
            for n=1:length(jpgfiles) 
                if n==length(jpgfiles) 
                    fprintf (fid, '%s\n\n\n', jpgfiles(n).name); 
                else 
                    fprintf (fid, '%s\n', jpgfiles(n).name); 
                end 
            end 
            fclose(fid); 
        end 
  
        cd .. 
  
        flbwvalid = 0; 
        while flbwvalid==0 
            [flbwfiles,flbwpath]=uiputfile('xxxxxx.tif',... 
                'Give the path where BW flower tif images will be saved'); 
            if flbwpath==0 
                disp('*** You must give the path where the BW flower images are to be stored - try again! ***') 
            else 
                flbwvalid=1; 
            end 
        end 
        disp(['BW flower images are put in: ',flbwpath]) 
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        maxgrcbwvalid = 0; 
        while maxgrcbwvalid==0 
            [maxgrcbwfiles,maxgrcbwpath]=uiputfile('xxxxxx.tif',... 
                'Give the path where b&w tif images for max groundcover will be saved'); 
            if maxgrcbwpath==0 
                disp('*** You must give the path where the BW - max grc - images are to be stored - try again! ***') 
            else 
                maxgrcbwvalid=1; 
            end 
        end 
        disp(['BW max groundcover images are put in: ',maxgrcbwpath]) 
         
        plmanvalid = 0; 
        while plmanvalid==0 
            [plmanfiles,plmanpath]=uiputfile('xxxxxx.tif',... 
                'Give the path where manipulated images will be saved'); 
            if plmanpath==0 
                disp('*** You must give the path where the manipulated images are to be stored - try again! ***') 
            else 
                plmanvalid=1; 
            end 
        end 
        disp(['Manipulated (2G-R-B) images are put in: ',plmanpath]) 
  
        grcbwvalid = 0; 
        while grcbwvalid==0 
            [grcbwfiles,grcbwpath]=uiputfile('xxxxxx.tif',... 
                'Give the path where b&w tif images for ground cover will be saved'); 
            if grcbwpath==0 
                disp('*** You must give the path where the BW - ground cover - images are to be stored - try again! ***') 
            else 
                grcbwvalid=1; 
            end 
        end 
        disp(['BW groundcover images are put in: ',grcbwpath]) 
  
        labwvalid = 0; 
        while labwvalid==0 
            [labw1files,labwpath]=uiputfile('xxxxxx.tif',... 
                'Give the path where BW tif images for pure leaf area will be saved'); 
            if labwpath==0 
                disp('*** You must give the path where the BW - pure leafarea - images are to be stored - try again! ***') 
            else 
                labwvalid=1; 
            end 
        end 
        disp(['BW pure leafarea images are put in: ',labwpath]) 
  
        excvalid = 0; 
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        while excvalid==0 
            [excelfile,excelpath]=uiputfile('Result_logfile.xls',... 
                'Give the path to the spreadsheet with the results.'); 
            if excelpath==0 
                disp('*** You must give the path where the Excel file with the results is to be stored - try again! ***') 
            else 
                excvalid=1; 
            end 
        end 
         
        load fllevel.dat; 
         
        PLOT=[]; 
        PLANT=[]; 
        PLLEVEL=[]; 
        MODPLLEVEL=[]; 
        TOTAREACM2=[]; 
        FLOWERLEVEL255=[]; 
        FLOWERAREACM2=[]; 
        INCOMPLETE_GROUNDCOVERAREACM2=[]; 
        MAXGROUNDCOVERAREACM2=[]; 
        GROUNDCOVERAREACM2=[]; 
        PURELEAFAREACM2=[]; 
  
        cd(dirname) 
        fid1=fopen('imagelist.txt'); 
  
        imagepath = fgetl(fid1); 
         
        fprintf('\nCurrently processing:\n\n') 
        b=0; 
        while 1 
            imagefile = fgetl(fid1); 
            if isempty(imagefile) 
                fprintf('\n\n') 
                disp(['number of analysed files: ',int2str(b)]) 
                fprintf('\n') 
                break 
            end 
  
            renamedIMG=strrep(lower(imagefile),'.jpg','.tif'); 
            flbw=[flbwpath,renamedIMG]; 
            plman=[plmanpath,renamedIMG]; 
            grcbw=[grcbwpath,renamedIMG]; 
            maxgrcbw=[maxgrcbwpath,renamedIMG]; 
            labw=[labwpath,renamedIMG]; 
             
             
            if exist(flbw)==2 
                disp(['The file "',flbw,'" already exists and the code can not proceed!']) 
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            else 
                if exist(plman)==2 
                    disp(['The file"',plman,'" already exists and the code can not proceed!']) 
                else 
                    if exist (grcbw)==2 
                        disp(['The file"',grcbw,'" already exists and the code can not proceed!']) 
                    else 
                        if exist (maxgrcbw)==2 
                            disp(['The file"',maxgrcbw,'" already exists and the code can not proceed!']) 
                        else 
                            if exist (labw)==2 
                                disp(['The file"',labw,'" already exists and the code can not proceed!']) 
                            else 
                                imfilp=[imagepath,imagefile]; 
  
                                fprintf('%s\n',imagefile); 
  
                                origIMG=imread(imfilp);          
  
                                redIMG =   origIMG(:,:,1);                   
                                greenIMG = origIMG(:,:,2);                   
                                blueIMG =  origIMG(:,:,3); 
  
                                flowerlevel255=fllevel(b+1); 
                                flowerlevel=(fllevel(b+1))/255; 
  
                                flbwIMG=im2bw(redIMG,flowerlevel); 
  
                                flbwfiltIMG=bwareaopen(flbwIMG,75); 
  
                                imwrite(flbwfiltIMG,flbw,'tif'); 
  
                                flpixels=bwarea(flbwfiltIMG); 
  
                                origdblIMG = double(origIMG)/255;              
  
                                reddblIMG =   origdblIMG(:,:,1);                   
                                greendblIMG = origdblIMG(:,:,2);                   
                                bluedblIMG =  origdblIMG(:,:,3); 
  
                                mandblIMG=(2*greendblIMG-reddblIMG-bluedblIMG);                     
  
                                manuint8IMG=uint8(round(mandblIMG*255)); 
  
                                totpixels=prod(size(manuint8IMG)); 
  
                                imwrite(manuint8IMG,plman,'tif'); 
 
                                pllevel=graythresh(manuint8IMG);         
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                                maxgrcbwIMG=im2bw(manuint8IMG,0.003922); 
                                maxgrcbwfiltIMG=bwareaopen(maxgrcbwIMG,150); 
                                maxgrcpixels=bwarea(maxgrcbwfiltIMG); 
  
                                imwrite(maxgrcbwfiltIMG,maxgrcbw,'tif'); 
                                modpllevel=0.52*pllevel; 
  
                                incomplgrcbwIMG=im2bw(manuint8IMG,modpllevel);           
 
                                incomplgrcbwsoftIMG=medfilt2(incomplgrcbwIMG,[3 3]);       
 
                                incomplgrcpixels=bwarea(incomplgrcbwsoftIMG); 
 
                                grcbwIMG=flbwfiltIMG | incomplgrcbwsoftIMG; 
 
                                grcpixels=bwarea(grcbwIMG); 
  
                                imwrite(grcbwIMG,grcbw,'tif'); 
  
                                labwIMG=grcbwIMG-flbwfiltIMG; 
 
                                labwpixels=bwarea(labwIMG); 
  
                                imwrite(labwIMG,labw,'tif'); 
 
                                s=double(imagefile); 
  
                                plot=str2double(char([s(1,2),s(1,3)]));  
                                plant=str2double(char([s(1,6)]));  
                                totareacm2=str2double(char([s(1,8),s(1,9),s(1,10),s(1,11),s(1,12)]));                         
 
                                flowerareacm2=totareacm2*(flpixels/totpixels); 
                                incomplete_groundcoverareacm2=totareacm2*(incomplgrcpixels/totpixels); 
                                pureleafareacm2=totareacm2*(labwpixels/totpixels); 
                                groundcoverareacm2=totareacm2*(grcpixels/totpixels); 
                                maxgroundcoverareacm2=totareacm2*(maxgrcpixels/totpixels); 
  
                                PLOT=[PLOT;plot]; 
                                PLANT=[PLANT;plant]; 
                                FLOWERLEVEL255=[FLOWERLEVEL255;flowerlevel255]; 
                                FLOWERAREACM2=[FLOWERAREACM2;flowerareacm2]; 
                                PLLEVEL=[PLLEVEL;pllevel]; 
                                MODPLLEVEL=[MODPLLEVEL;modpllevel]; 
                                TOTAREACM2=[TOTAREACM2;totareacm2]; 
 
                               INCOMPLETE_GROUNDCOVERAREACM2=[INCOMPLETE_GROUNDCOVERAREACM2;incomplete_groundcoverareacm2]; 
                                MAXGROUNDCOVERAREACM2=[MAXGROUNDCOVERAREACM2;maxgroundcoverareacm2]; 
                                GROUNDCOVERAREACM2=[GROUNDCOVERAREACM2;groundcoverareacm2]; 
                                PURELEAFAREACM2=[PURELEAFAREACM2;pureleafareacm2]; 
                            end 
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                        end 
                    end 
                end 
            end 
            b=b+1; 
        end 
        
        exc=[excelpath,excelfile]; 
  
        excel=actxserver('excel.application'); 
 
        set(excel,'visible',1); 
  
        workbooks=excel.workbooks; 
        workbook=invoke(workbooks,'add'); 
  
        sheets=excel.activeworkbook.sheets; 
        sheet=get(sheets,'item',1); 
 
        headerrange=get(sheet,'range','A1','A1');  
        colheaderrange=get(sheet,'range','A3','K3'); 
        datarange=get(sheet,'range','A4',['K' num2str(b+3)]); 
  
        set(headerrange,'Value','Results of Image Analysis') 
        set(colheaderrange,'Value',{'Plot','Plant','Pllevel','Modpllevel',... 
            'Totareacm2','Flowerlevel','Flowerareacm2','Incgrcareacm2',... 
            'Maxgroundcoverareacm2','Groundcoverareacm2','Pureleaf1areacm2'}) 
         set(datarange,'Value',[PLOT,PLANT,PLLEVEL,MODPLLEVEL,TOTAREACM2,... 
            FLOWERLEVEL255,FLOWERAREACM2,INCOMPLETE_GROUNDCOVERAREACM2,... 
            MAXGROUNDCOVERAREACM2,GROUNDCOVERAREACM2,PURELEAFAREACM2]) 
         
        invoke(workbook, 'SaveAs', exc); 
  
        fclose('all'); 
        fprintf('\n') 
        toc 
    end 
     
    disp('All relevant information is saved in the Excel file and the program now closes') 
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