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SUMMARY

This thesis deals with dual-polarized multiple input multiple output (MIMO) channels,

an important issue for the practical deployment of multiple antenna systems. The MIMO

architecture has the potential to dramatically improve the performance of wireless systems.

Much of the focus of research has been on uni-polarized spatial MIMO configurations,

the performance of which, is a strong function of the inter-element spacing. Thus the

current trend of miniaturization, seems to be at odds with the implementation of spatial

configurations in portable handheld devices. In this regard, dual-polarized antennas present

an attractive alternative for realizing higher order MIMO architectures in compact devices.

Unlike spatial channels, in the presence of polarization diversity, the subchannels of

the MIMO channel matrix are not identically distributed. They differ in terms of average

received power, envelope distributions, and correlation properties. In this thesis, we report

on an indoor channel measurement campaign conducted at 2.4 GHz, to measure the co-

polarized and cross-polarized subchannels, under line-of-sight (LOS) and non-line-of-sight

(NLOS) channel conditions. The measured data is then analyzed, to draw a fair comparison

between spatial and dual-polarized MIMO systems, in terms of channel characteristics and

achievable capacity.

The main drawback of the MIMO architecture is that the gain in capacity comes at a

cost of increased hardware complexity. Antenna selection is a technique using which we can

alleviate this cost. We emphasize that this strategy is all the more relevant for compact

devices, which are often constrained by complexity, power and cost. Using theoretical anal-

ysis and measurement results, this thesis investigates the performance of antenna selection

in dual-polarized MIMO channels. Our results indicate that, antenna selection when com-

bined with dual-polarized antennas, is an effective, low-complexity solution to the problem

of realizing higher order MIMO architectures in compact devices.

x



CHAPTER I

INTRODUCTION

The multiple-input multiple-output (MIMO) architecture has the potential to dramatically

improve the performance of wireless systems. MIMO systems increase the spectral efficiency

by multiplexing data on parallel independent channels without incurring any cost in terms

of bandwidth or power. As a result of this multiplexing gain, the capacity of these systems

increases linearly with the number of antennas [12]. Furthermore MIMO systems offer ad-

ditional degrees of diversity which can be used to combat multipath fading in a wireless

channel. This leverage, often referred to as the diversity gain, reduces the signal fluctu-

ations and improves the overall link reliability [15]. These salient features make MIMO,

an indispensable technology for future wireless systems requiring high data rates, such as

wireless local area networks (WLANs), broadband wireless access networks (WiMaX) and

third and fourth generation cellular networks (3G and 4G).

The multiplexing and diversity gains achieved by a MIMO system are a strong function

of the channel characteristics, which in turn depend on the scattering environment and

on the array configuration deployed at the transmitter and the receiver [39]. Much of the

focus of research has been on uni-polarized spatial array configurations where the multiple

antenna elements are separated in space. These systems require an inter-element spacing

of the order of a wavelength to achieve significant gains in indoor environments; even larger

spacing is required for line-of-sight (LOS) channels [26]. Thus the current trend of minia-

turization, seems to be at odds with the implementation of spatial MIMO architectures

in portable handheld devices. Also having multiple antennas separated far apart in space

could complicate the physical design of devices.

In this regard, polarization diversity has received much attention as an attractive alter-

native for realizing higher order MIMO architectures in compact devices [39]. Polarization

diversity refers to the signaling strategy whereby, information signals are transmitted and
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received simultaneously on orthogonally polarized waves. Thus two parallel channels can

be created without any requirement of spatial separation. Polarization diversity can be ex-

ploited by using the following configurations: (1) an array of dual-polarized elements, and

(2) an array of spatially separated orthogonally polarized elements, which will be referred to

as the hybrid configuration in this thesis. Dual-polarized antennas provide a compact solu-

tion [38], wherein a single antenna element can replace two spatially separated uni-polarized

elements. On the other hand, hybrid systems exploit both spatial and polarization diversity.

MIMO channels with polarization diversity cannot be modeled like pure spatial channels,

because the subchannels of the MIMO channel matrix are not identically distributed [11].

They differ in terms of average received power, Ricean K factor, cross-polar discrimination

(XPD) and correlation properties. The main aim of this thesis is to investigate the perfor-

mance of MIMO systems employing polarization diversity, in comparison with traditional

spatial configurations, taking into account these differences in the channel structure.

Polarization diversity has been studied mostly in the context of outdoor mobile com-

munications (See [48] and the references therein). Indoor wireless channels tend to have

significantly different characteristics when compared to outdoor channels [22]. Recently a

few indoor channel measurements using dual-polarized or hybrid array configurations have

been reported in the literature [51, 31, 34, 23, 49]. In [31] the capacity obtained by hy-

brid systems is compared with uni-polarized spatial systems, as a function of separation

between the transmitter (Tx) and receiver (Rx) arrays. [51] presents LOS and non-line-

of-sight (NLOS) measurements at 2, 5 and 60 GHz in a typical indoor environment. But

their data analysis is limited to evaluating average received power and XPD as a function

of Tx-Rx separation. 2 × 2 hybrid and dual-polarized configurations have been studied in

[49]. But their analysis is limited to an inter-element spacing of λ/2 and only to LOS chan-

nel conditions. All these measurement campaigns reported in literature are restricted to a

fixed array geometry, i.e. they do not take into account the spacing between the antenna

elements at the transmitter and receiver. Since the main motivation behind using dual-

polarized antennas is to achieve compactness, we note that inter-element spacing should be

an important factor, while comparing spatial MIMO with dual-polarized/hybrid systems.

2



The main drawback of the MIMO architecture is that the gain in capacity comes at a

cost of increased hardware complexity in terms of multiple RF chains at the transmitter

and receiver. Antenna selection is a technique using which we can alleviate this cost, but

still exploit the diversity gain offered by the MIMO architecture [36, 18]. This strategy

has been extensively studied in the context of spatial MIMO channels (See [36] and the

references therein). We emphasize that this strategy is all the more relevant for compact

portable devices, which are often constrained by complexity, power and cost. Hence antenna

selection, when combined with dual-polarized antennas, may be a solution that could enable

compact systems to exploit the benefits of the MIMO architecture, with only a nominal

increase in complexity. Owing to the fact that the channel characteristics of dual-polarized

MIMO systems are significantly different from those of spatial channels, the performance of

antenna selection needs to be re-evaluated for these systems. To the best of our knowledge,

this issue has not been addressed in the literature.

In this thesis, we report on an indoor channel measurement campaign conducted at 2.4

GHz using dual-polarized antennas. We analyze the measured data in terms of the Ricean K

factor, subchannel correlations and cross-polar discrimination (XPD). We highlight the dif-

ferences between vertically polarized and horizontally polarized transmissions in the course

of our analysis. In our measurements, we observe a coincidence of low K factors and high

XPD values. In such channels, MIMO configurations employing polarization diversity incur

a diversity and an SNR loss when compared to spatial configurations. Using the measured

capacity distributions, we draw a fair comparison between dual-polarized, hybrid and spa-

tial array configurations. We consider 2× 2 and 4× 4 MIMO systems for a range of values

of inter-element spacing, under LOS and NLOS channel conditions.

In this thesis, we also investigate the performance of antenna selection in dual-polarized

MIMO channels. We analytically study the impact of cross-polar discrimination on the

achieved selection gain. We first evaluate the performance of the popular capacity based

selection strategy [37, 18]. However, capacity based solutions are unlikely to achieve opti-

mum error performance for systems with limited complexity receivers [6]. Hence we analyze

3



minimum mean squared error (MMSE) based selection for VBLAST (Vertical Bell Labs Lay-

ered Space Time Architecture) systems employing linear receivers [14]. Finally, we study

the performance of antenna selection for dual-polarized MIMO systems employing orthog-

onal space time block coding (OSTBC). We provide a theoretical framework for analyzing

the performance of norm-based selection for these systems. We use the measured channel

samples collected in LOS and NLOS channel conditions, to compare the performance of

spatial and dual-polarized MIMO configurations, with respect to antenna selection.

The subsequent portion of the thesis is organized into four chapters. Chapter II makes

the reader familiar with the characteristics of the spatial MIMO channel and concept of

antenna selection. In the process, it motivates the need for dual-polarized MIMO config-

urations. Chapter III discusses in detail, the dual-polarized MIMO channel characteristics

and their impact on channel capacity. The chapter also presents analytical lower bounds for

the ergodic capacity of 2 × 2 dual-polarized MIMO channels. Chapter IV provides details

about the channel measurement campaign and presents data analysis in terms of envelope

distributions, subchannel correlations, and XPD. Spatial, dual-polarized and hybrid MIMO

configurations are analyzed and compared in terms of achievable capacity in this chapter.

Chapter V deals with the problem of antenna selection for dual-polarized MIMO channels.

It provides analysis for systems employing VBLAST and OSTBC. Chapter VI concludes

the findings of this thesis and presents the scope of extending this work in future. We wish

to mention that throughout this thesis, an effort has been made to augment measurement

and simulation results with theoretical analysis, wherever possible.
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CHAPTER II

BACKGROUND

Multiple input multiple output (MIMO) communication systems employ multiple antennas

at the transmitter and the receiver. The input-output relation for a nr × nt narrowband

MIMO channel with nt transmit and nr receive antennas can be expressed as

r =

√
Es

nt
Hs + n, (1)

where r and s are the baseband complex received and transmitted signal vectors respectively.

n represents the circularly symmetric complex Gaussian noise vector with autocorrelation

Rnn = σ2Inr
. Here, Inr

is an identity matrix of size nr × nr. Es denotes the total transmit

signal power which is equally distributed among all the transmit antennas. H = [hij ] is

nr × nt channel transfer matrix with its entries hij representing the complex subchannel

gain between the jth input and the ith output. We define SNR as ρ = Es/No. In this thesis

we assume perfect channel knowledge at the Rx but none at the Tx.

Traditionally multiple transmit and receive antennas have been used to combat mul-

tipath fading and interference. The diversity gain offered by MIMO systems, reduces the

signal fluctuations and improves the overall link reliability [15]. The diversity performance

of a MIMO channel is dictated by the statistics of its squared Frobenius norm [39], given

by

W = ‖H‖2
F =

nr∑

i=1

nt∑

j=1

|hi,j |2 =

r∑

i=1

|λi|2 (2)

where λi, 1 ≤ i ≤ r are the r non-zero eigenvalues of the matrix H and r ≤ min(nt, nr)

is its rank. Receive diversity techniques like maximal ratio combining (MRC), equal gain

combining (EGC) and selection combining (SC), have been popular techniques to leverage

this benefit for single-input-multiple-output (SIMO) channels [5]. Recently transmission

strategies like space time block coding (STBC), which effectively exploit the diversity gain

of MIMO channels, have been proposed in the literature [2, 47].
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Multiple receive antennas have also been used to enhance the SNR of the received signal.

Coherent combination of the signals impinging on different receive antennas, results in an

array gain for the system. The average increase in the SNR is proportional to average

squared Frobenius norm of the channel, W̄ = E{‖H‖2
F }.

A MIMO channel can be decomposed into r parallel non-interfering single-input-single-

output (SISO) channels (eigenmodes) with gains |λi|2, 1 ≤ i ≤ r. By multiplexing inde-

pendent data onto these independent channels, we can get an r-fold increase in spectral

efficiency in comparison to a SISO system. This increased data rate is called the multiplex-

ing gain. Optimal exploitation of these eigenmodes requires perfect channel knowledge at

the Tx. But, suboptimal layered signaling techniques like VBLAST have been proposed

[12]. In VBLAST, which is often referred to as spatial multiplexing, the data stream is mul-

tiplexed into nt parallel streams, which are then independently encoded and transmitted

using the nt antennas.

Shannon Capacity is an important measure of performance for communication systems.

It indicates the maximum achievable data rate for a given bandwidth and power. We

note however, that this metric does not take into account, another important constraint

effecting most communication systems, namely complexity. The open loop MIMO capacity

for a unit-bandwidth static MIMO channel H, at a reference SNR of ρ, is given by [13]

C(H, ρ) = log2

[
det

(
Inr +

ρ

nt
HHH

)]
, (3)

where AH denotes the conjugate transpose of the matrix A. Strictly speaking this metric

measures the spectral efficiency of the channel. In the presence of fading, H is a random

matrix and C(H, ρ) is a random variable. The relevant capacity metric for fading channels

is the ergodic capacity, which is defined as

C̄(ρ) = E{C(H, ρ)} = E

{
log2

[
det

(
Inr +

ρ

nt
HHH

)]}
(4)

=
r∑

i=0

E

{
log2

(
1 +

ρ

nt
|λi|2

)}
.

Here E{Z} denotes the expectation of the random variable Z. Clearly, the ergodic capacity

of a narrowband MIMO channel is a strong function of the channel statistics, especially of

6



the rank, eigenvalues and the squared Frobenius norm. The statistical nature of the channel

is in turn dictated by the array configuration deployed at the Tx and Rx and also by the

wireless environment [39].

2.1 Spatial MIMO channels

Much of the focus of MIMO research has been on uni-polarized spatial array configurations

where the antenna elements are separated in space. In this thesis, spatial MIMO channels

serve as a benchmark, against which the performance of dual-polarized MIMO channels

is compared. Shown in Figure 1, is a typical 2 × 2 spatial MIMO system. Here d mea-

sures the physical separation between the antenna elements. Herein, we briefly describe the

Tx Rx

d d

Figure 1: 2 × 2 MIMO with vertically polarized spatial array configuration

characteristics of a spatial MIMO channel. In the process we highlight the practical difficul-

ties in realizing these structures in compact devices and motivate the use of dual-polarized

antennas.

Subchannel powers

All the subchannels of a normalized spatial MIMO channel have unity average power.

The average squared Frobenius norm of a spatial channel is given by, W̄ = nrnt [12, 39].

Thus the spatial MIMO channel achieves maximum possible array gain. Further it can

achieve a maximum of η = nrnt degrees of diversity. The actual diversity gain depends

upon the correlation between the subchannels.

Envelope distributions

Under LOS conditions, all the subchannels of a spatial MIMO channel matrix H, have

a non-zero mean because of the presence of a direct component. For such channels, the

7



envelope of the subchannel gains, R = |hij |, is well modeled by a Ricean distribution [43]

fR(r) =
2(K + 1)r

Ω
exp(−K − (K + 1)r2

Ω
)Io(2

√
K(K + 1)

Ω
r) r ≥ 0, K ≥ 0, Ω ≥ 0 (5)

where In(.) is the n-th order Bessel function of the first kind, Ω = E{R2} and K is the

Ricean factor. The K factor characterizes the Ricean distribution and is the ratio between

the average powers of the deterministic and the random components of the channel. In the

absence of any dominant paths, K = 0 and the Ricean distribution reduces to a Rayleigh

distribution given by [43]

fR(r) =
2rexp( r2

2Ω)

Ω
r ≥ 0, Ω ≥ 0. (6)

The MIMO channel matrix can thus be decomposed into a LOS and NLOS components as

follows [39]

H =

√
K

K + 1
HLOS +

√
1

K + 1
HNLOS (7)

For i.i.d Rayleigh MIMO channels, the authors in [13] have shown that the ergodic

capacity increases linearly with r = min(nr, nt), for a fixed transmit power and bandwidth.

This result is the main inspiration for much of the research into MIMO systems. While

the linear growth of capacity with the number of antennas is indicative of the tremendous

potential of multiple antenna systems, the result is limited in scope by the assumptions it

makes. These assumptions hold only in ‘ideal’ NLOS conditions, where the subchannels

of a spatial MIMO channel are uncorrelated. In this case, the spatial channel achieves the

maximum diversity order of η = nrnt. However, any correlation between the subchannels

reduces the diversity gain [42].

Capacity of Ricean MIMO channels has been studied in [17, 39]. Clearly, HNLOS domi-

nates channel behavior for low values of K, while HLOS dominates as K increases. When

HLOS is full rank, the capacity of a MIMO channel increases with K. However in scenarios

where HLOS is rank-deficient, a high K factor could be a liability. Physically, a rank defi-

cient LOS component results when the separation between the Tx and Rx, D >> d. Hence

the inter-element spacing should be large for short-range LOS MIMO channels. Tradition-

ally, the elements of HLOS have been modeled using the plane-wave assumption. However,
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it has been recently shown in [26], that the plane-wave model under-estimates the capacity

of short-range LOS spatial MIMO channels. Hence [26] proposes to calculate the elements

of the LOS component, precisely based on the inter-element spacing and the separation

between the Tx and Rx.

Subchannel correlations

Any correlation between the subchannels diminishes the diversity gain of a MIMO sys-

tem and thus diminishes its capacity [42]. According to the Kronecker product model [29],

under the assumption that all the antenna elements in a MIMO configuration have the same

polarization and antenna pattern, the correlation between the elements at the transmitter

can be considered independent of the receiver element chosen as the reference and vice

versa. The correlation matrix can then be written as

R = ΘR ⊗ ΘT, (8)

where ΘR = [θR
ij ] and ΘT = [θT

i,j ] are the nR ×nR and nT ×nT correlation matrices on the

receive and transmit side respectively. The elements of these Hermitian matrices are given

by

θR
i,j = < hi,m, hj,m >

θT
i,j = < hm,i, hm,j >,

(9)

where < a, b > is the power correlation coefficient between the complex random variables a

and b, defined as [29]

< a, b >=
E

[
|a|2 |b|2

]
− E

[
|a|2

]
E

[
|b|2

]
√

E

[
|a|4 −

(
E

[
|a|2

])2
]
E

[
|b|4 −

(
E

[
|b|2

])2
] . (10)

We note that the magnitude of the complex correlation can be approximated from the power

correlation values as |θcomplex| ≈
√

θpower [32].

Shown in Figure 2, is the variation of ergodic capacity of a 2×2 Rayleigh MIMO channel

as a function of transmit correlation for θR = 1, ρ = 20 dB. It is evident from the figure that

as the correlation between the subchannels increases, the capacity decreases. Correlation

between the subchannels is in turn dependent on the multipath richness of the environment

9
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Figure 2: Impact of transmit correlation on the ergodic capacity of a 2×2 Rayleigh MIMO
channel with θR = 0 and SNR = 20 dB

and on the inter-element spacing between the antenna elements. In general, increasing the

inter-element spacing enhances the achievable capacity, especially in scenarios with limited

scattering [42, 26].

It is evident from this discussion that the inter-element spacing dictates the performance

of spatial MIMO channels, especially in environments with limited scattering, like the LOS

channels. A large inter-element spacing is required to lower the subchannel correlations

and ensure a full-rank for HLOS. Typically d needs to be of the order of a wavelength for

these channels [26]. When d < λ/2, the mutual coupling between the adjacent antenna

elements results in diminished capacity [24, 35]. Hence a minimum inter-element spac-

ing of λ/2 is recommended even in NLOS channels. Note that at 2.4 GHz, which is the

transmission frequency for indoor WLAN, λ = 12.0 cm. Thus this requirement of large

inter-element spacing, renders the realization of spatial MIMO configurations impractical

for many compact devices, especially at lower frequencies.
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2.2 Antenna Selection

Implementation of the MIMO architecture requires, in addition to the multiple antennas,

complex digital signal processing (DSP) and multiple radio-frequency (RF) chains at the

Tx and Rx. Antennas are generally cheaper elements and the additional DSP is becoming

less of a burden as digital processing become even more powerful. However, each RF

chain consists of hardware units such as analog-to-digital converters, mixers, and low-noise

amplifiers, which are extremely expensive and power consuming.

Antenna selection is a technique which can alleviate these costs, but still exploit the

diversity benefits offered by the MIMO architecture. This strategy has been extensively

studied in the context of spatial MIMO channels. In this section, we provide an overview

of antenna selection. We also motivate the use of antenna selection with dual-polarized

antennas in compact devices.
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Figure 3: Dual-polarized MIMO with (nr, lr)/(nt, lt) antenna selection

Given a specific channel realization, a selection algorithm can be implemented in DSP

to select the “optimal” lt out of the nt available transmit antennas and/or the “optimal”

lr out of the nr receive antennas. Symbolically we denote this process as (nr, lr)/(nt, lt)

selection. Figure 3 depicts a typical antenna selection system with dual-polarized antennas.

This strategy also requires a RF switch at the Tx and Rx.

Implementation of selection at the Tx requires feedback of information from the Rx, as

shown in Figure 3. This is an example of a closed-loop MIMO system. In order to maximize

the capacity of such a system, the transmitter should distribute its power optimally across

the various eigenmodes using water-pouring. Thus to maximize the performance, optimal
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power allocation should be implemented in conjunction with antenna selection at the Tx [8].

In this paper we do not address the issue of power allocation. We assume that the selection

algorithm is implemented at the receiver and simply the information about the optimal

subset of the transmit antennas is fed back through a low bandwidth feedback channel. We

note that low bandwidth feedback channels are typically available in many communication

systems for synchronization, power control, rate adaptation, and automatic repeat request

(ARQ). Thus selection can be easily implemented at the transmitter.

In a typical antenna selection system, the receiver estimates the nr ×nt channel matrix

H. The lr available receive RF chains and the lt available transmit RF chains have to switch

through all the antennas, to facilitate channel estimation at the receiver. In this thesis

we assume perfect channel knowledge at the receiver. Further, the feedback of selection

information to the transmitter incurs a delay. Thus antenna selection is generally suitable

for quasi-static channels. In this thesis, we consider block fading channels with Rayleigh or

Ricean distributions. We note that adaptive antenna selection strategies for time varying

channels have been recently proposed [7].

A typical selection strategy is devised to optimize a certain performance metric, F(H̄).

H̄ is obtained by eliminating nr − lr columns and nt − lt rows from H and S(H̄) denotes

the set of all possible H̄, whose cardinality is
(
nr

lr

)(
nt

lt

)
. The problem reduces to finding the

lr × lt submatrix H̃ ∈ S(H̄) that optimizes the function F(H̄).

Various antenna selection schemes have been studied in the literature. A selection

mechanism is proposed in [18], according to which the best subset of transmit and receive

antennas is selected to maximize the Shannon capacity. This approach has been very

popular and has been extensively studied in the context of spatial MIMO channels (See

[37] and the references therein). However, such antenna selection solutions are unlikely

to achieve optimum error performance for systems with limited complexity receivers [14].

Hence selection criteria have to be tailored to different receiver implementations. Different

approaches to minimize the error rates of spatial multiplexing systems using linear receivers

have been proposed in the literature [14, 19, 6]. Also, selection mechanisms to maximize

the channel Frobenius norm, have been proposed for MIMO systems employing orthogonal
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space time coding (OSTBC) techniques [20, 46].

Selection of the optimal subset of antennas requires an exhaustive search. Although

feasible when nr and nt are small, it is impractical for higher order MIMO configurations.

Hence sub-optimal algorithms have been proposed for the various schemes described above.

Efficient algorithms for the capacity maximizing scheme can be found in [21, 41]. For spatial

multiplexing systems, sub-optimal algorithms corresponding to the various strategies have

been proposed [14, 19, 6]. For space-time coded systems, the selection strategy involves the

calculation of the norm which is not very computationally intensive. Hence no algorithms

have been proposed for these systems.

Compact devices are often constrained by complexity, cost and power. Hence antenna

selection is all the more relevant for these systems. However, as discussed in the previous

section, dual-polarized antennas are the only way to realize higher order MIMO architectures

in compact devices. To the best of our knowledge, the issue of antenna selection for dual-

polarized MIMO channels has not been addressed in the literature.

In this thesis, we study the performance of various antenna selection strategies for dual-

polarized MIMO channels. We first analyze the performance of capacity based selection.

We then consider MMSE based selection for VBLAST systems and norm based selection

for systems employing OSTBC. We use the measured channel samples to a compare the

performance of antenna selection for spatial and dual-polarized configurations, in terms of

bit-error-rate (BER) and capacity, for a range of values of the array length (L).
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CHAPTER III

DUAL-POLARIZED MIMO CHANNELS

The requirement of large inter-element spacing, renders the spatial array configuration

impractical for implementing higher order MIMO architectures in compact devices. In this

regard, dual-polarized antennas have received much interest as a compact alternative. In

this section, we provide a detailed overview of dual-polarized MIMO channels, based upon

the insights developed during the course of this research.

3.1 Polarization Diversity

Polarization of an electromagnetic (EM) wave is defined as the direction of its electric field

vector. Polarization diversity refers to the transmission strategy whereby, information sig-

nals are transmitted and received simultaneously on orthogonally polarized waves. Thus

two parallel channels can be created without any requirement of spatial separation. Anten-

nas are referred to as vertically or horizontally polarized, based upon the polarization of

the electromagnetic waves they transmit and receive. In practice two polarization schemes

are typically used: horizontal/vertical (0 ◦/90 ◦) or slanted (+45 ◦/− 45 ◦). In this work we

will use the horizontal/vertical configuration.

When an EM wave traveling through air collides with a wall or ceiling, the properties of

the reflected waves would depend upon the kind of material the walls or ceiling are made of

and also upon the state of polarization of the incident wave. As a result, the propagation

characteristics of the vertically and the horizontally polarized waves are significantly differ-

ent [33]. In the course of this thesis, we attempt to highlight these differences. Further,

the transmitted EM wave as it traverses through the wireless channel, undergoes multiple

reflections and scattering, resulting in a coupling into the orthogonal state of polarization.

This phenomenon is referred to as depolarization and is a characteristic property of wire-

less channels. Depolarization mainly occurs because of oblique reflections of the walls and
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scattering from indoor clutter. Thus the extent of depolarization depends on the level of

scattering in the environment.

Polarization diversity can be exploited by using the following configurations: (1) an array

of dual-polarized elements, and (2) an array of spatially separated orthogonally polarized

elements. Dual-polarized antennas provide a compact solution, wherein a single antenna

element can replace two spatially separated uni-polarized elements. On the other hand,

hybrid systems exploit both spatial and polarization diversity.

Dual-polarized antennas can be visualized as a combination of two co-located anten-

nas ideally with orthogonal polarization. By using a dual-polarized feed, an antenna can

transmit two orthogonally polarized waves on the same frequency. Another such antenna

can then receive the two orthogonally polarized waves and separate them by means of an

electrically identical dual polarized feed. In this thesis, we assume that dual-polarized an-

tennas can perfectly separate vertically and horizontally polarized waves and focus only on

the depolarization resulting from the propagation channel.

3.2 System Model

When antennas with different polarizations are used at both ends of a MIMO link, the

properties of the channel matrix H are significantly different from the uni-polarized spatial

case. Shown in Figure 4, is a 2 × 2 dual-polarized MIMO system. Note that here d = 0,

which is the main motivation behind using this configuration. Here hV V and hHH denote

Tx Rx

VV
h

HH
h

VH
hHV

h

Figure 4: 2 × 2 MIMO with dual-polarized antennas

the vertically polarized and horizontally polarized co-polar subchannels, while hHV and

hV H are the corresponding cross-polar subchannels. For spatial MIMO configurations, all
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the subchannels of H are usually modeled as identically distributed with unity variance.

However, when antennas with different polarizations are employed, the properties of the

co-polar subchannels differ significantly from those of the cross-polar subchannels. Hence

for a nr × nt hybrid and dual-polarized MIMO configurations, the channel matrix can be

conveniently written as

H =




HV V
(nV

r ×nV
t )

HV H
(nV

r ×nH
t )

HHV
(nH

r ×nV
t )

HHH
(nH

r ×nH
t )




(nr×nt)

(11)

Here nV
t , nH

t are the number of vertical and horizontally polarized elements at the trans-

mitter respectively. Similarly nV
r , nH

r are the number of vertical and horizontally polarized

elements at the receiver respectively. When dual-polarized antennas are used at either ends,

nV
r = nH

r = nr/2 and nV
t = nH

t = nt/2. The elements of the submatrices HV V = [hV V
ij ]

and HHH = [hHH
ij ] correspond to the co-polar subchannels in H, while HV H = [hV H

ij ] and

HHV = [hHV
ij ] correspond to the cross-polar subchannels. In the following subsections, we

highlight the differences between the subchannels of this MIMO channel matrix.

3.3 Channel Characteristics

In this section we discuss the statistical nature of the channel matrix, H, in the presence of

polarization diversity and study their impact on channel capacity.

3.3.1 Subchannel Power Imbalances

In a spatial MIMO channel, the average received power on all the subchannels is identical.

However this is not true for the case of MIMO channels with polarization diversity. We

consider a 2× 2 MIMO system using a dual-polarized antenna at both ends, to study these

power imbalances between the various subchannels. The channel matrix in (11) reduces to:

H =




hV V hV H

hHV hHH


 , (12)

The cross-polar subchannels of the channel matrix result from the depolarization of the

transmitted signal. The average power of these subchannels depends on the cross-polar
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discrimination (XPD) of the channel. XPD measures the extent of depolarization in a

wireless channel and is defined as [27]

XV = E{|hV V |2}/E{|hHV |2}

XH = E{|hHH |2}/E{|hV H |2}
(13)

Implicit in these definitions, is the assumptions that the XPD of the dual-polarized antennas

is infinity, i.e. there is perfect isolation between the orthogonal feeds. Most authors assume

that XV ≈ XH , but we note that this is not always true owing to the fact that depolarization

not only depends on the environment, but also on the antenna patterns of the V and H

elements [51]. In general, high values of XPD would indicate a higher level of separability

between the two states of polarization and such channels are amenable to polarization

multiplexing techniques. On the other hand channels with lower values of XPD would

indicate significant cross-coupling between the two states of polarization and encourage

diversity techniques [38]. Under LOS channel conditions where the K factor is high, a high

XPD could help diagonalize an otherwise rank deficient spatial MIMO channel. However in

NLOS scenarios, a high XPD would indicate a diversity deficit for MIMO systems employing

polarization diversity when compared to traditional spatial configurations.

The propagation characteristics of the vertically and the horizontally polarized waves

are significantly different. In general E{|hV V |2} > E{|hHH |2} = β ≤ 1, because of the

Brewster angle phenomenon for horizontally polarized transmission [33]. This disparity

could also arise from the differences in the antenna patterns of the orthogonally polarized

elements.

Taking into account these subchannel power losses, the average squared Frobenius norm

of this channel can be written as

W̄ = nV
r nV

t + β(nH
r nH

t ) +
1

XV
(nH

r nV
t ) +

β

XH
(nV

r nH
t ) ≤ nrnt. (14)

Note that as XPD increases or as β increases, W̄ diminishes. As a result, the array gain

achieved by using multiple dual-polarized antennas is smaller when compared to pure spatial

channels. Also due to these power losses, the diversity gain of a dual-polarized MIMO

channels is diminished for high XPD, β values. For example, the available degrees of
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diversity for a (nr × nt) i.i.d. Rayleigh MIMO channel are ηs = nr · nt [39]. But for dual-

polarized NLOS channels with β = 1 and XV = XH = X → ∞, the number of diversity

orders offered by the channel are

η ≈ nV
r nV

t + nH
r nH

t < nrnt. (15)

Thus MIMO systems employing polarization diversity incur SNR and diversity penalties,

when compared to their spatial counterparts.

3.3.2 Envelope Distributions

In a LOS scenario, it is well known that the envelope of the co-polar subchannels (hV V
ij , hHH

ij ),

follow a Ricean distribution (5). However, it is important to note that even in LOS con-

ditions, the cross-polar subchannels (hV H
ij , hHV

ij ), follow a Rayleigh distribution [11]. This

can be attributed to the fact that when we have orthogonally polarized antennas with good

isolation properties, at both ends of the link, the cross-polar terms are completely because

of diffuse scattering and hence the deterministic component of these subchannels is very

small. The Rayleigh characteristic is confirmed by our measurements, as shown in the next

chapter. We however point to the possibility of K factors of cross-polar terms being greater

than zero for channels with a stationary environment or when the cross-polar discrimination

of the antennas is not very good. Under NLOS channel conditions, the K factor for both

co-polar and cross-polar subchannels is 0 and hence all the subchannels follow a Rayleigh

distribution.

In all when the dual-polarized antennas have high XPD, we can model the cross-polar

subchannels as:

hII
ij = βI

(√
KII

KII + 1
h̄II

ij +

√
1

KII + 1
h̃II

ij

)
, (16)

where, I ∈ {V, H} and βV = 1. h̄II
ij is a complex number with unit amplitude and a random

phase. We can model the phase of h̄II
ij according to the spherical wave model [26]. h̃II

ij is

a complex random variable with its real and imaginary components following a Normal

distribution with zero mean and variance 1/2. The cross-polar subchannels can be modeled
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as,

hIJ
ij =

βJ

XJ

(√
KIJ

KIJ + 1
h̄IJ

ij +

√
1

KIJ + 1
h̃IJ

ij

)
, (17)

where, I, J ∈ {V, H}, I 6= J . h̄IJ
ij and h̃II

ij have similar definitions as their co-polar counter-

parts. We note that for low K factors, the deterministic component in (17) vanishes.

3.3.3 Subchannel Correlations

For MIMO channels employing polarization diversity, owing to the fact that horizontally and

vertically polarized antennas have different radiation patters and because the propagation

characteristics of vertically polarized waves differ from those of horizontally polarized waves,

the Kronecker product model for correlations, is not valid for these systems. The Kronecker

model still applies for the co-polar submatrices HV V and HHH , but not for the cross-polar

submatrices HV H and HHV . For a detailed discussion of correlation modeling for dual-

polarized MIMO, we refer the interested reader to [28].

Polarization diversity results in low values of correlations between the subchannels, even

in environments where the spatial channels are highly correlated. This is confirmed by our

measurement results, presented in the next chapter.

3.4 Channel Capacity

MIMO channels with polarization diversity achieve low correlation between the subchannels,

which is beneficial for its capacity, as observed in Figure 2. However, these channels incur

SNR and diversity losses which are detrimental to their performance. In this section, we

analyze the effect of these power losses on the channel capacity. We also derive an analytical

lower bound for the ergodic capacity of 2 × 2 dual-polarized MIMO channel.

3.4.1 Impact of Subchannel Power Losses

To analyze the impact of these subchannel power losses on the capacity, we consider a

2 × 2 MIMO channel with a Ricean fading distribution. We assume that β = 1, XV = XH

and KV V = KHH = K. Further we assume that the subchannels are independent. In

Figure 5, we plot the ergodic capacity as a function of XPD for K ∈ {0, 2, 4, 10}. It is

evident that as the XPD increases, the capacity decreases for both Rayleigh and Ricean
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Figure 5: Effect of XPD on the capacity of 2 × 2 dual-polarized MIMO channels

fading distributions. An interesting observation from Figure 5 is that the capacity decrease

is more prominent for lower values of K than for channels with high K factors. This is

because, for channels with low K factors, subchannel power losses incur a diversity loss in

addition to the SNR loss.

So far, we have discussed how a high XPD value diminishes the capacity of dual-

polarized/hybrid MIMO channels. However, there is scenario where a high XPD could

help achieve better capacity for dual-polarized MIMO channels, when compared to its spa-

tial channels. Consider a LOS channel with K → ∞. Further assume a rank deficient 2× 2

spatial MIMO channel, which occurs when d << D as discussed in Section 2.1. As a re-

sult of this rank deficiency, this channel performs only as good as a SISO link. However, as

shown in Figure 6, when we use polarization diversity in such scenarios, the high XPD helps

diagonalize the channel matrix. As a result, the dual-polarized configuration can perform

better than very compact spatial configurations, in LOS channels.

On one hand, the subchannel power losses are, in general, detrimental to the capacity

of MIMO channels employing polarization diversity. But on the other hand, these config-

urations achieve very low correlation between the subchannels, which is beneficial. Thus
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both these conflicting factors have to be taken into account, when evaluating the capacity

of MIMO channels in the presence of polarization diversity.

Limiting case: XPD → ∞

Before we conclude this section, we note a few interesting observations about MIMO

channels with infinite XPD. Consider a nr × nt MIMO channel with the same assumptions

as above. Further assume a dual-polarized configuration where nV
r = nH

r = nr/2 and

nV
t = nH

t = nt/2. In the limiting case of XV = XH = X → ∞, the MIMO channel matrix

in (11) reduces to

H =




HV V
(nV

r ×nV
t )

0(nV
r ×nH

t )

0(nH
r ×nV

t ) HHH
(nH

r ×nH
t )




. (18)

Noting that det(H) = det(HV V ) · det(HHH), we can write

C(H, ρ) = C
(
HV V , ρ/2

)
+ C

(
HHH , ρ/2

)
. (19)

This equation implies that in the limiting case, dual-polarized MIMO channel reduces to

two non-interfering lower dimensional spatial MIMO channels, one of which is vertically
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polarized, while the other is horizontally polarized. This idea has inspired combined multi-

plexing/STBC based transmission techniques [10].

Further, from (18), we claim that unless nV
r = nV

t and nH
r = nH

t , the MIMO channel

matrix is always rank deficient. This claim of ours can be easily proved through contradic-

tion. Hence it is recommended to have equal number of vertically and horizontally polarized

elements at the Tx and the Rx.

3.4.2 Analytical Lower Bound for Ergodic Capacity of 2 × 2 MIMO Channels

For a spatial MIMO channel, all the elements of H are identically distributed and as a

result W = HHH is a Wishart matrix. Using the properties of these matrices, analytical

expressions for ergodic capacity have been derived in the literature [13]. However for dual-

polarized MIMO channels, W is not a Wishart matrix and it is not straightforward to derive

exact expressions for ergodic capacity. To the best of our knowledge, [40] is the only paper

in the literature that addresses this issue. In this paper, the authors derive lower bounds

for 2 × 2 dual-polarized MIMO, assuming a general physical scattering model.

In this section, we derive tight lower bounds for 2×2 dual-polarized MIMO channels for

Ricean and Rayleigh fading distributions. We follow a same approach as [40], but we extend

the results therein to derive explicit expressions for the lower bound in terms of Ricean K

factor, and the subchannel power losses (XPD, β). The 2×2 dual-polarized MIMO channel

matrix can be written as

H =




hV V hV H

hHV hHH


 .

The correlation between the elements of a dual-polarized MIMO channel is very low.

Thus it is reasonable to assume that all the channel entries are independent of each other.

Further, we make the simplifying assumption that XV = XH = 1/α, 0 < α ≤ 1. All the

channel entries are assumed to be complex circularly symmetric Gaussian random variables

with the following variances

E{|hV V |2} = 1; E{|hHH |2} = β

E{|hHV |2} = α; E{|hV H |2} = βα.
(20)
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The average power of hHH subchannel is lower than that of hV V because of the Brewster

angle phenomenon for horizontally polarized waves as mentioned in the previous section.

In general α ≤ β ≤ 1. In a LOS scenario, the cross-polar subchannels in H are Rayleigh

distributed while the co-polar subchannels are Ricean distributed. To simplify analysis, we

assume that the K factors for both the co-polar subchannels are equal i.e. KV V = KHH =

K. Thus the cross-polar subchannels have zero mean, while the co-polar subchannels have

a non-zero mean given by

E{hV V } =
√

K
K+1

E{hHH} =
√

βK
K+1 .

(21)

Denoting D = E
{

det
(
I2 + ρ

2W
)}

, the expression for ergodic capacity in (3) can be

expanded in Taylor series about E{D}. Ignoring the higher order terms in the expansion,

we can arrive at the following lower bound for the ergodic capacity,

C̄(ρ) ≥ log2(E{D}) − log2(e)

2

E{D2} − (E{D})2
(E{D})2 (22)

To derive a closed form expression for this bound, we need to evaluate E{D} and E{D2}.

E{D}, which also represents an upper bound to ergodic capacity by Jensens’ Inequality,

can be derived to be

E{D} = 1 +
ρ

2
(1 + α)(1 + β) +

ρ2

4
β(1 + α2), (23)

where wij , i, j ∈ {1, 2} are the elements of the matrix W. Note that the upper bound is

not a function of K. Now E(D2) can be computed to be

E{D2} = 1 + ρ(1 + α)(1 + β)

+
ρ2

2
(2(1 + α2 + α)(1 + β)2 + K̄(1 + β2))

+
ρ3

4
β(1 + β)((1 + α)(2α2 − α + 2) + K̄)

+
ρ4

16
β2((K̄ + 2)2 + 4α2 + 4α4), (24)

where K̄ = −K2/(K + 1)2. For complete derivations, we refer the interested reader to the

Appendix A.

Figure 7 shows the simulated ergodic capacity, obtained through Monte Carlo simula-

tions, and the analytical lower bounds for 2×2 Ricean MIMO channels with K ∈ {0, 1, 10}.
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Figure 7: Comparison of the simulated ergodic capacity and the analytical lower bound,
for 2 × 2 MIMO with polarization diversity

The XPD = 10 dB is kept the same for all the three channels. It is clearly seen that the

analytical lower bound is a close approximation to the ergodic capacity for both Rayleigh

(K = 0) and Ricean channels. Further, we can observe that the bound gets tighter as the

K factor increases. Infact, for K = 10, the bound is almost exact.

To further validate the derived analytical lower bound, in Figure 3.4.2, we compare

the measured ergodic capacities under LOS and NLOS channel conditions, with the values

predicted by (22). Details of the measurement campaign are provided in the next chapter.

In the measured channels XV 6= XH and KV V 6= KHH . Hence for the predictions, we have

used the average of these values. It is evident that the analytical bound provides a close

approximation to the measured capacity, under both LOS and NLOS channel conditions.

As expected, the bound is tighter for the LOS channel.

Finally we note that the analytical lower bound provides a tight approximation to the

ergodic capacity of 2 × 2 MIMO channels employing polarization diversity, under both

Rayleigh and Ricean fading environments and for a range of values of the SNR.
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Figure 8: Comparison of the measured ergodic capacity and the analytical lower bound,
for 2 × 2 dual-polarized under (a) LOS and (b) NLOS channel conditions
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CHAPTER IV

MEASURED INDOOR MIMO CHANNELS WITH

POLARIZATION DIVERSITY

In this chapter we report on an indoor channel measurement campaign conducted at 2.4 GHz

using dual-polarized antennas. We first provide details about the MIMO channel sounding

system and about the location where the measurements were taken. We then analyze the

measurement data in terms of average power, XPD, Ricean K factor, and subchannel corre-

lations. We highlight the differences between vertically polarized and horizontally polarized

transmissions, in the course of our analysis. Using the measured capacity distributions, we

draw a fair comparison between dual-polarized, hybrid and spatial array configurations, in

terms of achievable capacity.

4.1 Measurement System

The MIMO-channel measurement system used is illustrated in Figure 9. It is composed

of two parts: (1) the HP 85301B stepped-frequency antenna pattern measurement system,

which, because of its coherent reference signal, can measure the channel frequency response

HP83631B

Cart 1

HP83020A
HP8530 HP85310A

Cart 3Cart 2

HPIB Interface

Computer

Receiver
Transmitter

< 50 meters

Figure 9: Overview of our virtual array MIMO measurement system. The lower section
represents the HP85301B antenna pattern measurement system, and the upper section is
the 3D actuator system.
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directly, and (2) the actuator positioning system, which creates the virtual array by moving

the antenna to arbitrary pre-programmed locations. Figure 10 shows one of the portable

platforms and one of the actuator positioning systems. There were two of the setups shown

in Figure 10, one for each end of the MIMO link. This measurement system was developed

as part of some previous research at the Smart Antennas Research Laboratory (SARL)

[25]. This virtual array approach has been validated in [25] and offers great flexibility to

experiment with different antenna configurations. But it requires the environment to be kept

still throughout the measurement process. For a detailed description of this measurement

system, we refer the interested reader to [25].

Figure 10: Dual-polarized antenna mounted on the actuator system

The antennas used at both ends are dual-polarized narrowband antennas with a fre-

quency range of 2.400 - 2.483 GHz (model number: SPDPG-4O-H2O, Superpass Company

Inc.). The vertical and horizontally polarized elements have omni-directional patterns in

the azimuth plane but differ in their elevation patterns 1. A multi-channel controller HP

85330 and HP 85332 PIN switches are incorporated into the measurement system to mea-

sure the co-polar (VV and HH) and the cross-polar (VH and HV) subchannels successively.

This automated the entire experiment and reduced the experiment duration by a factor of

1http://www.superpass.com/SPDPG-4O-H2O.html
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four. The transmitter and the receiver are kept at a height of 1.35 m.

The entire measurement system was integrated, calibrated and tested for repeatability

before the actual measurements.

Measurement Settings

A measurement plan was devised, so as to measure MIMO channels for different inter-

element spacing (d) values, ranging between λ/2 to 2λ . A virtual 50 element (5 × 5 × 2)

cubicle array with a minimum inter-element spacing of λ/2, as shown in Figure 11, is

used at the transmitter (Tx) and the receiver (Rx). Previous measurements in the same

environment had indicated that the coherence bandwidth of the channel is about 15MHz.

Hence corresponding to each pair of transmit and receive antenna locations, six uncorrelated

channel samples are used, out of the 64 samples collected in the frequency range of operation.

y

x

z 2/

2/

2/

Virtual antenna locations

Figure 11: 5 × 5 × 2 Virtual array used for measurements

In order to obtain MIMO channel samples, subarrays of the required size are extracted

from the Tx and Rx cubicle arrays. The number of spatial samples depend on the array

length (L). In addition to these spatial samples, we also use the frequency samples. In this

thesis we consider 2×2 and 4×4 MIMO architectures. Higher order configurations could be

analyzed with these measurement settings but we limit our analysis to these configurations,
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because the main motivation for this work is compactness. We consider spatial (S), dual-

polarized (D) and hybrid (H) array configurations. The number of available samples for

each of these configurations is listed in Table 4.1.

Table 1: The number of measured MIMO channel samples (N) for different array configu-
rations

d 0 λ/2 λ 3λ/2 2λ

Spatial/Hybrid
2 × 2 - 9600 5400 2400 600
4 × 4 - 2400 - - -

Dual-polarized
2 × 2 15000 - - - -
4 × 4 - 9600 5400 2400 600

Measurement Location

The measurement campaign was conducted on the fifth floor of the Georgia Centers for

Advanced Telecommunication Technologies (GCATT) building in Atlanta, GA. The floor

plan of the measurement location is illustrated in Figure 12. The walls of the building
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Figure 12: Floor plan of the measurement location

are made of plasterboard with metal-studs in them. The ceiling and the floor are made of

reinforced concrete. The LOS measurements were taken in the hallway on the fifth floor,
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which is lined by offices on one side and laboratories on the other as shown in Figure 12.

The distance between the transmitter and the receiver was approximately 14 m in the LOS

scenario. For the NLOS measurements the receiver array was moved into the rear room of

the adjoining laboratory and both the doors leading to it were closed.

4.2 Channel Characterization

Using the measured data, we characterize the MIMO channels employing polarization di-

versity, in terms of average received power, XPD, envelope distributions, and subchannel

correlations.

4.2.1 Average power and XPD

Based upon the co-polar and cross-polar subchannel measurements, we evaluate the instan-

taneous received power for the various subchannels. It can be observed from Figure 13 that

in LOS conditions, the instantaneous received power is significantly higher for the co-polar

subchannels when compared to the cross-polar subchannels. This is because of the presence
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Figure 13: Instantaneous received power on cross-polar and co-polar subchannels under
LOS conditions

of a dominant direct component, which results in very little cross-coupling between the

orthogonal states of polarization. Thus the XPD values in the LOS scenario are very high.
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Such high values of XPD are expected in LOS scenarios [31, 51]. Further, it is also observed

that the average received power on VV co-polar subchannel is 1.6 dB higher than the HH

subchannel. This can be attributed to the Brewster angle phenomenon [31] for horizontally

polarized waves and the difference in the antenna patterns.

In the NLOS environment, as expected the received power on all four channels is sig-

nificantly lower than the corresponding powers in the LOS case. The average power of the

VV co-polar subchannel is 2.2 dB higher than the HH subchannel. Further the difference

between the received powers on the co-polar and cross-polar channels is diminished. This is

because of an increase in depolarization, when compared to the LOS scenario. However, as

shown in Table 2, the XPD values in our NLOS scenario are not as low as the XPD values

reported in [31], but values comparable to ours have been reported in [51].
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Figure 14: Instantaneous received power on cross-polar and co-polar subchannels under
NLOS conditions

Further we have observed that XV 6= XH owing to the different propagation character-

istics of vertically polarized waves and horizontally polarized waves [31]. This could also

result from the difference in the antenna patterns for the vertically polarized and horizon-

tally polarized elements . The difference is significant at 2.5 dB for the LOS scenario, but

it is negligible for the NLOS case.
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Table 2: Measured XPD values in dB

XV XH

LOS 16.96 14.50

NLOS 8.58 8.29

In all we conclude that because of the high XPD and β values, under LOS as well as

NLOS conditions, the subchannel power losses are significant in our measured channels.

4.2.2 Ricean K factor

Using the measured data, we also evaluate the envelope distributions for the various sub-

channels. The K factors for the co-polar and cross-polar subchannels were computed us-

ing the distribution fitting tool available in MATLAB. Under LOS channel conditions, as

shown in Figure 15, it is observed that the co-polar subchannels follow a Ricean distribu-

tion, whereas the cross-polar subchannels follow a Rayleigh distribution. This is expected

because of the fact that the cross-polar subchannel gains result from depolarization of the

transmitted signal, which in turn is because of scattering and oblique reflections. Thus

the subchannels of a MIMO channel employing polarization diversity are not identically

distributed.

0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ro

ba
bi

lit
y 

D
en

si
ty

| h
ij
 | | h

ij
 |

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

D
en

si
ty

Measured  VV

Ricean Fit VV

Measured HH

Ricean Fit HH

Measured  VV

Ricean Fit VV

Measured HH

Ricean Fit HH

 K = 0

 K = 1.3

 K = 0.78

Figure 15: Measured PDFs of the envelopes of: a) co-polar subchannels b) cross-polar
subchannels in the LOS scenario
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In the hallway, the measured K-factors are 0.78 and 1.30 for VV and HH co-polar

subchannels respectively. We note that the moment based estimation method [1], also

yields similar values. Although counterintuitive, such low K-factors have been observed in

previous measurements in the hallway environment [45], and have been explained based

upon the electromagnetic properties of waveguides [30]. Under NLOS channel conditions,

as expected, all the subchannels follow a Rayleigh distribution.

4.2.3 Subchannel correlations

The subchannel correlations effect the diversity performance of a MIMO channel as dis-

cussed in Section 2.1. They depend on the scattering environment and the antenna configu-

ration deployed at the transmitter and receiver. In this section we evaluate the subchannel

correlations, for the measured spatial and dual-polarized/hybrid MIMO channels

For a spatial MIMO channel, subchannel correlations are a strong function of the inter-

element spacing at the transmitter and receiver. In order to analyze the impact of inter-

element spacing on correlation, we consider a 2 × 2 uni-polarized spatial MIMO configu-

ration. The spacing between the elements at the transmitter and the receiver is kept the

same. We consider both vertically polarized (V) and horizontally polarized (H) configu-

rations. For the measured spatial channels, we have verified that the Kronecker product

model, discussed in Section 2.1, is valid. As a result, the correlation statistics of the 2 × 2

spatial MIMO channel can be analyzed in terms of two parameters: transmit correlation

(θT ) and receive correlation (θR), as defined in (9). Shown in Figure 16, is the measured

transmit and receive correlation values, for LOS and NLOS channel conditions, as a function

of the inter-element spacing.

The general trend suggests that increasing the spacing between the elements decorrelates

the subchannels. An inter-element spacing of d = 3λ/2 is required to sufficiently decorrelate

the subchannels in the LOS scenario and any further increase does not significantly decrease

the correlation. As expected for NLOS scenarios, correlation values are significantly lower

than their corresponding values in LOS. Although a definitive trend can be observed for

transmit correlation in the NLOS scenario, there is no trend in the receive correlation values.
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Figure 16: Transmit and receive correlation in LOS and NLOS scenarios

This is because the transmitter is placed in the hallway, whereas the receiver is kept inside

an adjoining laboratory, where the angular spread is uniform.

We also note that the horizontally polarized spatial configuration achieves higher cor-

relation values when compared to its vertically polarized counterpart, for both LOS and

NLOS scenarios. This could be attributed to the Brewster angle phenomenon, which results

in a more narrow angular spread for horizontally polarized waves when compared to verti-

cally polarized waves. Hence owing to the higher correlation values and the loss of power,

there is no motivation to use horizontally polarized spatial MIMO configurations.

As noted above, increasing the inter-element spacing can improve the capacity of spatial

MIMO channels in LOS scenarios. However, this would lead to impractical form factors for

portable devices. Hence a natural alternative would be to use dual-polarized configurations,

which could use the additional dimension of polarization to sufficiently decorrelate the

channel, even for small inter-element spacing.

The measured dual-polarized/hybrid MIMO channels confirm that the the Kronecker
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Table 3: Measured transmit and receive power correlation values for 2× 2 vertically polar-
ized spatial MIMO channels

L λ/2 λ 3λ/2

LOS
θT 0.56 0.30 0.18
θR 0.45 0.32 0.18

NLOS
θT 0.19 0.05 0.02
θR 0.08 0.04 0.10

model (8) is not valid for these configurations [28]. We have calculated the correlation

matrix R, for dual-polarized and hybrid configurations, for d ∈ {0, λ/2, λ, 3λ/2, 2λ}. The

correlation values for these configurations were found to be significantly lower than their

spatial counterparts, and were upper bounded by 0.25 in LOS and 0.15 in NLOS scenarios.

Further, no definitive trend has been observed, as the spacing between the V and H elements

was increased.

Thus a dual-polarized configuration with co-located antennas, is sufficient to achieve

low correlation values, even in LOS scenarios.

4.3 Capacity Analysis

In this section we compare the capacity achieved by dual-polarized/hybrid configurations

with spatial systems, for different values of inter-element spacing. We consider 2 × 2 and

4 × 4 MIMO configurations. On one hand, polarization diversity helps in dramatically

reducing subchannel correlations for compact configurations in LOS scenarios. But on

the other hand, these systems suffer from subchannel power losses because of high XPD

and horizontally polarized transmissions. These subchannel power losses imply diminished

degrees of diversity and SNR for MIMO channels with polarization diversity. Thus both

these opposing aspects need to be taken into consideration, while evaluating MIMO channels

in the presence of polarization diversity.

Channel Normalization

In order to isolate the small scale characteristics of the channel from the effects of shad-

owing and path-loss in the measured channel samples, we need to normalize the measured
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channel matrix Ȟ = [ȟij ] as H = Ȟ/N . The channel capacity can then be calculated

according to equation 3 for any reference SNR ρ. The normalization factor is generally

defined as [31]

N =
( 1

nrnt

∑

i

∑

j

E{|ȟij |2}
) 1

2
(25)

This normalization would result in an average SISO SNR of unity on all the subchannels.

This is appropriate for spatial MIMO channels for which E{||H||2F } = nrnt. On the other

hand, hybrid or dual-polarized configurations suffer from subchannel power losses, which

need to be accounted for, in their capacity calculations. If the the normalization in (25)

is used, the performance of these systems is overestimated. Thus in order to make a fair

comparison with spatial configurations, we normalize the channel so as to achieve an average

SISO SNR of unity on the elements of H̄V V = [h̄V V
ij ]. The normalization factor is calculated

as

N̄ =

(
1

nV
r nV

t

∑

i

∑

j

E
{
|ȟV V

ij |2
}) 1

2

(26)

Using the normalization in equation (26), leads to E{||HV V ||2F } = nV
r nV

t and the other

subchannels scale accordingly to reflect the power losses. Thus this normalization provides a

fair comparison between spatial and dual-polarized MIMO channels, for a constant transmit

power.

4.3.1 Results for 2 × 2 MIMO

The 2× 2 configuration is important for compact devices. The measurement data collected

provided us with enough uncorrelated channel samples to evaluate cumulative capacity

distribution functions (CDF), for 2 × 2 spatial and hybrid MIMO systems with an inter-

element spacing d ∈ {λ/2, λ, 3λ/2, 2λ}. Capacity CDFs are calculated as per (3) at ρ = 20

dB. The array configurations considered are illustrated in Figure 17. The capacity CDFs

obtained under LOS and NLOS channel conditions are plotted in Figures 18(a) and 18(b)

respectively.

Under LOS channel conditions, it is evident that as the inter-element spacing d is made

larger, the capacity of the spatial MIMO channel increases. This can be attributed to

the decreasing subchannel correlation and to the spherical wavefront effects [26]. There is
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Figure 17: 2 × 2 Array configurations (a) Spatial (b) Hybrid (c) Dual-polarized

an increase of about 2.5 bps/Hz in median capacity for the spatial configuration as d is

increased from λ/2 to 2λ. As d is increased, the capacity of hybrid MIMO channels also

improves. But this could be attributed to only the spherical wavefront effects, because the

subchannel correlations were found to be independent of d in our analysis in Section 4.2.3.

For d = λ/2, spatial and hybrid configurations achieve similar capacities. Furthermore,

the dual-polarized configuration (d = 0), also performs equally well. We know from Section

4.2.3 that for small inter-element spacing, polarization based configurations achieve much

lower subchannel correlation when compared to the spatial system. As a result they achieve

higher capacity, despite the loss in subchannel powers. For higher values of d, even the

spatial systems achieve lower subchannel correlation and as a result they outperform the

hybrid systems, owing to the subchannel power losses incurred by the latter configuration.

Under NLOS channel conditions, it is evident from Table 3, that the correlation between

the subchannels is low even for an inter-element spacing of λ/2. Hence the capacity does

not significantly increase, as the spacing between the antenna elements is increased for the

spatial configurations. Even the capacity of hybrid configurations is not very sensitive to

variations in d.

From our measurements, the correlation values for dual-polarized/hybrid configurations

are also very low in the NLOS channel. But these systems suffer from subchannel power

losses because of high XPD and β values, which negatively effects the capacity. As a

result, the spatial configurations outperforms the hybrid/dual-polarized configuration. For

d = λ/2, the spatial configurations achieves an higher median capacity by about 1.5 bps/Hz

over the co-located dual-polarized configuration.
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Figure 18: Capacity CDFs for 2 × 2 spatial, dual-polarized and hybrid MIMO channels at
SNR = 20 dB under (a) LOS and (b) NLOS channel conditions
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4.3.2 Results for 4 × 4 MIMO

4 × 4 configurations can be implemented in devices with larger form factors like notebook

computers. With our measurement settings, we are limited to d = λ/2, when evaluating

4 × 4 spatial and hybrid MIMO channels. We consider dual-polarized configurations with

d ∈ {λ/2, λ, 3λ/2, 2λ}. Note that a 4 × 4 dual-polarized configuration can be considered to

be a special case of the hybrid configuration. Figures 20(a) and 20(b) depict the measured

capacity CDFs under LOS and NLOS channel conditions respectively.

(b)

d

(a) (c)

dd

Figure 19: 4 × 4 Array configurations (a) Spatial (b) Dual-polarized (c) Hybrid

As expected, for all configurations, the 4 × 4 systems achieve higher capacity when

compared to their corresponding 2 × 2 counterparts.

The spatial configuration performs better than the hybrid configuration owing to the

loss in subchannel powers in the latter case. For the dual-polarized configuration, the

performance improves by increasing the inter-element spacing. This is because of the de-

creasing correlation between the elements of the co-polar submatrices, HV V and HHH .

Further for d = 3λ/2, dual-polarized configuration performs slightly better than the spatial

configuration with the same array length.

In the NLOS scenario, the capacity does not scale linearly with d. As for the 2 × 2

channels, the spatial system significantly outperforms both hybrid and dual-polarized con-

figurations, once again owing to the subchannel power losses for the latter configurations.

The spatial configuration with d = λ/2 performs about 1.5 bps/Hz better in median capac-

ity, than the dual-polarized configuration of the same array length.

In addition to compactness, dual-polarized antennas could also be used to realize higher

order MIMO architectures in compact devices. To underscore this point, we compare the

capacity achieved by 2 × 2 spatial array configuration with d = λ/2 and the 4 × 4 dual-

polarized MIMO configuration with the same array length. Under LOS channel conditions
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Figure 20: Capacity CDFs for 4 × 4 spatial, dual-polarized and hybrid MIMO channels at
SNR = 20 dB under (a) LOS and (b) NLOS channel conditions
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the 4 × 4 dual-polarized configuration achieves about 5 bps/Hz higher capacity than 2 × 2

spatial configuration. In the NLOS channel, this difference increases to 7 bps/Hz. Although

the 4 × 4 configuration incurs no additional cost in terms of space, it requires 2 additional

radio-frequency (RF) chains at the Tx and Rx, when compared to the spatial configuration.

These capacity results suggest than in systems wherein space is not a constraint, and

large values of d are realizable, spatial systems should be preferred over hybrid or dual-

polarized configurations, especially when the K-factor is low and the XPD is high. Our

results provide no motivation for using the hybrid array configuration. However for devices

like small sensors, wherein even a spatial array configuration with d = λ/2 cannot be re-

alized, dual-polarized antennas offer an attractive alternative. Furthermore, dual-polarized

antennas could be used to realize higher order architectures in devices with larger form

factors, when compared to the spatial configuration.
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CHAPTER V

ANTENNA SELECTION

In this thesis, we emphasize that the strategy of using only the “optimal” subset of all the

available antennas, is all the more relevant for compact portable devices, which are often

constrained by complexity, power and cost. Antenna selection, when combined with dual-

polarized antennas, may be a solution that could enable compact systems to exploit the

benefits of the MIMO architecture, with only a nominal increase in complexity. However,

MIMO channels with polarization diversity cannot be modeled like pure spatial channels,

because the subchannels of the MIMO channel matrix are not identically distributed [11].

They differ in terms of average received power, Ricean K-factor, cross-polar discrimination

(XPD) and correlation properties, as discussed in the previous chapters. As a result, the

performance of antenna selection for these channels needs to be evaluated. Antenna selection

has been extensively studied in the context of spatial channels. However to the best of our

knowledge, the issue of selection for dual-polarized MIMO channels has not been addressed

in the literature.

In this chapter, we first study the impact of subchannel power losses on the selection

gain achieved by (2, 1)/(2, 1) selection for a dual-polarized Rayleigh MIMO channel. We

analyze the performance of the popular capacity based selection approach, for dual-polarized

MIMO configurations. We then consider systems employing VBLAST transmission. We

evaluate the performance of MMSE based selection, in terms of BER, for these systems.

Finally, we study antenna selection for dual-polarized MIMO systems employing OSTBC

transmission. We provide a theoretical framework for analyzing the performance of norm-

based selection for these systems. We use the measured channel samples collected in LOS

and NLOS channel conditions, to compare the performance of antenna selection for spatial

and dual-polarized MIMO configurations. In our analysis, we assume lossless RF switching.

However, we caution that the insertion loss of RF switches degrades the performance of any
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antenna selection system and should be taken into account, while designing these systems

[44].

5.1 Effect of XPD on Selection Gain

The subchannels of a dual-polarized MIMO channels are not identically distributed. In this

section we study the influence of subchannel power losses on gain achieved by using antenna

selection. To make the analysis tractable, we consider a 2×2 dual-polarized MIMO channel.

In this case the channel matrix (11) reduces to

H =




hV V hV H

hHV hHH


 . (27)

All the subchannels are assumed to be independent circularly symmetric complex Gaussian

random variables. This is an appropriate assumption for the typical NLOS indoor channel

as seen in the previous chapter. Further, we make the simplifying assumptions that XV =

XH = X, 1 ≤ X < ∞ and β = 1. We note that when X = 1, dual-polarized MIMO channel

is equivalent to a spatial channel.

For (2,1)/(2,1) selection, the optimal strategy would be to select the subchannel which

has the maximum instantaneous power. The instantaneous post processing SNR for the

selected SISO channel (h̃) is given by Y Es/No, where the random variable, Y = |h̃|2. If h

is a CSCG random variable with zero mean and variance σ2, the cumulative distribution

function (CDF) of Z = |h|2 is given by, FZ(z) = (1 − e−z/σ2
)U(z), where U(z) is the unit

step function. Since all the elements of H are assumed to be mutually independent, the

CDF of Y can be derived as follows

FY (y) = Pr(|hV V |2 < y)Pr(|hHH |2 < y)Pr(|hHV |2 < y)Pr(|hV H |2 < y)

= Pr(|hV V |2 < y)2Pr(|hHV |2 < y)2

= (1 − e−y)2(1 − e−yX)2U(y). (28)
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The probability density function (PDF), fY (y) = dFY (y)
dy is given by

fY (y) = 2

(
e−y(1 − e−y)(1 − e−yX)2 + Xe−yX(1 − e−yX)(1 − e−y)2

)
U(y)

= 2

(
e−y(1 − e−y) + Xe−yX(1 − e−yX) + (1 + 2X)e−y(1+2X)

+(2 + X)e−y(2+X) − (1 + X)e−y(1+X)(2 + e−y(1+X))

)
U(y). (29)

Using the identity,
∫ ∞
0 xne−axdx = n!/an+1, the n-th moment of Y can be computed to be

E{Y n} = 2n!

[(
1 +

1

Xn

)(
1 − 1

2n+1

)
+

1

(1 + 2X)n
+

1

(2 + X)n

− 2

(1 + X)n

(
1 +

1

2n+2

)]
. (30)

0 5 10 15 20
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

XPD (dB)

S
N

R
 G

ai
n 

(d
B

)

Figure 21: Effect of XPD on (2,1)/(2,1) selection gain

The gain in average SNR, achieved by using antenna selection is G(X) = E{Y }, and

can be evaluated from (30) to be

G(X) =
3(1 + X)

2X
+

2

1 + 2X
+

2

2 + X
− 9

2(1 + X)
(31)
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The average SNR gain is a monotonically decreasing function of X, as shown in Figure 21.

The selection gain is maximum at 3.2 dB when X = 1 and asymptotically diminishes to

1.76 dB as X → ∞. These values are consistent with the well known result for SNR gain

of selection diversity with M independent and equal powered Rayleigh diversity branches,

given by
∑M

i=1
1
i [5].

The probability that one of the cross-polar subchannels is selected can be computed as

follows

P (X) = Pr{(h̃ = hV H) ∪ (h̃ = hHV )}

= 2 · Pr{hV H > hHV } · Pr{hV H > hHH} · Pr{hV H > hV V }

= 2 · (1/2) · Pr{hV H > hHH}2

=
1

(1 + X)2
(32)

As the XPD increases, the probability of the cross-polar subchannels being selected de-

creases and thus the average SNR gain diminishes. Further, limX→∞ P (X) = 0, which

indicates that in the limiting case, the available degrees of diversity reduce to 2, when com-

pared to 4 for X = 1. Thus a high XPD results in a diversity loss for dual-polarized MIMO

channels, when compared to spatial channels.

Shown in Figure 22, is the standard deviation of the instantaneous SNR gain, Y . It is

calculated as σY (X) =
√

E{Y 2} − E{Y }2. It is interesting to note that σY (X) is not a

monotonic function of X. It takes a maximum value of 0.75 dB for X = 1, a minimum

value of 0.24 dB for X = 2.5 and approaches 0.48 dB as X → ∞.

Similar analysis can be done for the parameter β. As a result of these subchannel

power losses, antenna selection for dual-polarized MIMO channels performs under par when

compared to uncorrelated spatial channels. However, it is well known that correlation

between the diversity branches reduces the selection gain. Thus in environments where the

spatial channel is highly correlated, this performance gap diminishes.
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Figure 22: Standard deviation of the SNR gain achieved by (2, 1)/(2, 1) selection

5.2 Capacity-based Selection

A popular approach to antenna selection for spatial MIMO channels has been to select the

best subset of transmit and receive antennas to maximize the mutual information. First

proposed in [18], this strategy has been extensively studied in the literature (See [37] and

the references therein). It has been shown that capacity based antenna selection achieves

the diversity order of a full system, for spatial channels [37]. In this section, we study the

performance of this approach for dual-polarized MIMO channels.

For a given lr× lt MIMO channel matrix, H̄, according to equation (3), channel capacity

at a reference SNR of ρ can be evaluated as C(H̄) = log2(det(Ilr + ρ
lt
H̄H̄H)). The strategy

for (nr, lr)/(nt, lt) selection can then be expressed as [18]:

H̃ = arg min
S(H̄)

{C(H̄)}, (33)

where H̄ is obtained by eliminating nr − lr columns and nt − lt rows from H. S(H̄) denotes

the set of all possible H̄, whose cardinality is
(
nr

lr

)(
nt

lt

)
. In this thesis, we assume optimal

selection, but we note that efficient algorithms for implementing this strategy can be found

in [16, 21, 41].
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To study the effect of XPD on the capacity of dual-polarized MIMO systems with

antenna selection, we consider a (2, 1)/(2, 1) system under similar assumptions as in Section

5.1. In this case, the ergodic capacity of the optimally selected SISO link is given by

E{C} =

∫ ∞

−∞
log2(1 + ρ(y))fY (y)dy (34)

where ρ(y) = yEs/No is the instantaneous output SNR of the selected SISO link and

fY (y) has been evaluated in (29). Shown in Figure 23, is the numerically evaluated ergodic

capacity curves for different values of the XPD. Also shown in there is ergodic capacity

curve for deterministic (or “no”) selection case. It is evident that the ergodic capacity
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Figure 23: Effect of XPD on the capacity of (2,1)/(2,1) dual-polarized MIMO channels

is maximum for X = 1 and approaches the limiting case (X → ∞) curve as the XPD

increases. However, we argue that inspite of the degradation in capacity for high XPD,

antenna selection with dual-polarized antennas performs much better than deterministic

selection. For example at SNR = 20 dB, selection with dual-polarized antennas provides a

minimum gain of 0.9 bps/Hz, while selection with spatial MIMO offers a gain of 1.5 bps/Hz.

Note that, unlike the spatial configuration, the dual-polarized configuration does not incur
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any additional cost in terms of space, when compared to the SISO system.

5.2.1 Measurement Results

In this section we analyze the performance of antenna selection in terms of ergodic capacity

for dual-polarized and spatial MIMO systems, using the measured channel samples. We

consider (2,1)/(2,1) and (4,2)/(4,2) optimal antenna selection according to the criteria out-

lined in (33), under LOS and NLOS channel conditions, for a range of values of inter-element

spacing. We use exhaustive search to achieve optimal selection.

In Figures 24(a) and 24(b), we plot the capacity curves for (2,1)/(2,1) selection under

LOS and NLOS channel conditions, respectively. We consider a 2 × 2 dual-polarized (D)

system with L = 0 and a spatial (S) system with L = λ/2. For reference, we also plot

the BER for a vertically polarized deterministic SISO link. In all the following figures, DS

stands for deterministic selection.

In the results for the hallway, shown in Figure 24(a), the dual-polarized system with

selection outperforms the SISO link by about 0.7 bps/Hz at SNR = 20 dB. The spatial

system with selection performs better than its dual-polarized counterpart by about 0.3

bps/Hz, owing to the subchannel power losses in the latter configuration. This difference is

not larger, because the spatial MIMO with L = λ/2 suffers from high subchannel correla-

tions as discussed in Section 4.2.3.

Under NLOS channel conditions, the dual-polarized system with selection outperforms

the SISO link by 0.5 bps/Hz at SNR = 20 dB. The performance gap between the spatial

and dual-polarized systems, in the presence of selection, increases to 0.6 bps/Hz. This is

because in the NLOS scenario, the spatial MIMO channel achieves significant decorrelation

and hence achieves full diversity. On the other hand, dual-polarized configuration suffers

from subchannel power losses.

In addition to providing compactness, dual-polarized antennas can also be used to realize

higher order MIMO configurations in devices with larger form factors. In Figures 25(a) and

25(b), we plot the capacity curves for (4,2)/(4,2) selection under LOS and NLOS channel

conditions respectively. A four element dual-polarized array can be realized as shown in
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Figure 24: Measured capacities of (2,1)/(2,1) antenna selection under (a) LOS and (b)
NLOS channel conditions
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Figure 25: Measured capacities of (4,2)/(4,2) antenna selection under (a) LOS and (b)
NLOS channel conditions
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Figure 19. This configuration could be useful for the not-so-compact handheld devices

like notebook computers. In these figures, we consider a 4 × 4 dual-polarized system with

L ∈ {λ/2, λ, 3λ/2} and a spatial system with L = 3λ/2. The minimum inter-element spacing

between the adjacent antenna elements is maintained at λ/2. For reference we also plot the

BER for deterministic selection (DS) for 2 × 2 spatial MIMO with L ∈ {λ/2, λ, 3λ/2}.

In the hallway, as the inter-element spacing is increased, the performance of the 2 × 2

spatial MIMO with deterministic selection improves owing to the decrease in the subchannel

correlations and the spherical wavefront effect [26]. Further the performance of the 4 × 4

dual-polarized MIMO with selection also improves with increasing inter-element spacing

because of the lower correlations between the elements of the co-polar submatrices HV V

and HHH . It is interesting to observe that the (4, 2)/(4, 2) dual-polarized configuration,

with L = λ/2, performs as well as the 2 × 2 deterministic spatial MIMO with L = 3λ/2,

thus providing compactness.

Under NLOS channel conditions, as expected, the performance is not a strong function

of the inter-element spacing. For L = λ/2, the 4 × 4 dual-polarized system with selec-

tion outperforms the 2 × 2 deterministic spatial MIMO by 1.5 bps/Hz at SNR = 20 dB.

The (4,2)/(4,2) spatial MIMO with L = 3λ/2 outperforms the dual-polarized MIMO with

selection by about 1.5 bps/Hz.

These results suggest that antenna selection with dual-polarized antennas could achieve

higher capacities than spatial systems without selection. More importantly, these configu-

rations do not incur any additional expense in terms of space.

5.3 Selection for Layered Space-Time Systems with Linear

Receivers

The capacity based approach discussed in the previous section has been very popular. How-

ever, such antenna selection solutions are unlikely to achieve optimum error performance

for systems with limited complexity receivers [6, 14]. Hence selection criteria have to be

tailored to different receiver implementations. In this section we consider VBLAST trans-

mission with linear minimum mean squared error (MMSE) receiver signal processing [5].
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Different approaches to minimize the error rates of spatial multiplexing systems using lin-

ear receivers have been proposed in the literature [14, 19, 6]. In this thesis, we consider

the MMSE based antenna selection approach proposed in [14], which has been shown to

out-perform other techniques for spatial multiplexing systems with linear MMSE receivers.

We note that a similar approach can be used for systems with zero-forcing (ZF) receivers.

Consider a lr × lt MIMO channel given by H̄. The basic premise of the VBLAST trans-

mission technique is to leverage the multiplexing gain provided by the MIMO architecture,

to achieve higher data rates. The number of parallel symbol streams that can be simul-

taneously transmitted is limited by the rank of the channel matrix. The data stream is

multiplexed into lt parallel streams which are then independently encoded and transmitted

using the lt antennas [12]. The input-output relation for this system can be expressed as

r =

√
Es

lt
H̄s + n,

where r = [ri], 1 ≤ i ≤ lr and s = [sj ], 1 ≤ j ≤ lt are the baseband complex received and

transmitted signal vectors respectively. It is assumed that the data streams on each antenna

are uncorrelated and hence E{ssH} = Ilt . n represents the complex circular Gaussian noise

vector with covariance matrix Rnn = NoIlr . Es denotes the total transmit signal power.

We define SNR as Es/No.

The task of the receiver is to jointly detect the transmitted symbol vector s, by sup-

pressing the interference presented by one stream on the other. Both linear and non-linear

receiver structures can be implemented. Linear interference suppression techniques like lin-

ear MMSE and ZF are easy to implement and perform significantly better than the matched

filter receiver. Non-linear techniques such as successive interference cancellation (SIC) and

parallel interference cancellation (PIC), outperform the linear techniques, but incur signif-

icant processing complexity. As the motivation for this work is to explore low-complexity

MIMO techniques for compact portable devices, we consider only linear MMSE receiver

signal processing.
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5.3.1 MMSE-based Selection

If the receiver employs a linear MMSE (LMMSE) detector, it uses a spatial filter w on the

received signal vector r, so as to minimize the mean squared error given by [5]

MSE = E{||wHr − s||2}

= tr

[
E

{(
wHr − s

)(
wHr − s

)H
}]

= tr

[(
wH − H̄HR−1

r

)
Rr

(
wH − H̄HR−1

r

)H
+

(
Ilr − H̄HR−1

r H̄
)]

, (35)

where, Rr = H̄H̄H + NoIlr and tr(A) denotes the trace of the matrix A. Since only the

first term in equation (35) depends on w, the MMSE solution chooses wopt = Rr
−1H̄, so

as to make it zero. Now the residual minimum mean squared error, is given by

ξ(H̄) = tr(Ilr − H̄HR−1
r H̄). (36)

The MMSE based antenna selection approach is devised to minimize this residual error [14].

As is evident from equation (36), the residual error is a function of H̄. For (nr, lr)/(nt, lt)

antenna selection, the selection criteria can be expressed as follows [14]:

H̃ = arg min
S(H̄)

{ξ(H̄)}, (37)

where H̄ is obtained by eliminating nr − lr columns and nt − lt rows from H. S(H̄) denotes

the set of all possible H̄, whose cardinality is
(
nr

lr

)(
nt

lt

)
. In this paper we assume optimal

selection, but we note that practical suboptimal algorithms to implement this strategy have

been proposed and they achieve near-optimal performance [14].

In order to study the influence of XPD on the bit-error-rate (BER) of dual-polarized

MIMO systems with antenna selection, we consider a (2, 1)/(2, 1) system under similar

assumptions as in Section 5.1. We note that the strategy outlined in (37) reduces to selecting

the subchannel which has the maximum instantaneous power. So the analysis performed in

Section 5.1 is applicable here.

For a given channel H, the bit error rate (BER) with Gray mapped 4-QAM constellation,

Pr(error/H) = Q(
√

2Y Eb

No
) where Eb/No = Es/(2ltNo) is the pre-detection SNR per bit and
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Q(x) = 1√
2π

∫ ∞
x e−

t2

2 dt. The average BER can be calculated as:

BER =

∫ ∞

−∞
Q

(√yEs

No

)
fY (y)dy (38)

For a spatial MIMO channel, a closed form expression for BER can be developed and it can
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Figure 26: Numerically evaluated BER curves for (2,1)/(2,1) selection for different XPD

be shown that at high SNR, BER ∝ 1
(Es/No)η [5]. As mentioned previously, the two extreme

cases i.e. X = 1 and X → ∞ result in diversity orders η = 4 and η = 2, respectively.

However, for other values of X it is not easy to arrive at such insightful approximations.

Hence to analyze the influence of XPD on BER, we numerically evaluate (38). As shown

in Figure 26, as the XPD increases, BER performance of selection diversity deteriorates.

The measured NLOS XPD values reported in the literature, for indoor environments

vary between 0 to 9 dB [31, 51]. From Figure 26, we observe that the BER curve corre-

sponding to X = 9 dB, is extremely close to the worst-case (X → ∞) curve for SNR < 8

dB. However as the SNR increases, X = 9 dB yields a BER that is significantly better than

the worst-case.

Similar analysis can be done for the parameter β. As a result of these subchannel
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power losses, antenna selection for dual-polarized MIMO channels performs under par when

compared to spatial channels. However in environments where the spatial channel is highly

correlated, the performance gap diminishes as shown in our measurement results.

5.3.2 Measured Channel Results

In this section we analyze the performance of antenna selection in terms BER, for dual-

polarized MIMO systems employing VBLAST transmission and linear MMSE receiver signal

processing. The measured channel samples are used to achieve this objective. The measured

MIMO channel samples were normalized to achieve E{||HV V ||2F } = nV
r nV

t as discussed in

Section 4.3.

The input symbols si were drawn from an equiprobable 4-QAM constellation {±1 ±

j}/
√

2. The channel was assumed to be static for a frame of 100 symbols. BER is calculated

for each frame and averaged over the N channel realizations provided by the measurements

(See Table 4.1). The array length is the same at the transmitter and the receiver. We con-

sider (2,1)/(2,1) and (4,2)/(4,2) optimal antenna selection according to the criteria outlined

in (37), under LOS and NLOS channel conditions, for a range of values of inter-element

spacing. We use exhaustive search to achieve optimal selection.

In Figures 27(a) and 27(b), we plot the BER curves for (2,1)/(2,1) selection under LOS

and NLOS channel conditions, respectively. We consider a 2× 2 dual-polarized (D) system

with L = 0 and a spatial (S) system with L = λ/2. For reference we also plot the BER

for a vertically polarized deterministic SISO link. In all the following figures, DS stands for

deterministic (or “no”) selection.

In the results for the hallway, shown in Figure 27(a), the dual-polarized system with

selection outperforms the SISO link by 8 dB at BER = 10−2. The spatial system with

selection performs better than its dual-polarized counterpart by about 1 dB, owing to the

subchannel power losses in the latter configuration. This difference is not larger because

the spatial MIMO with L = λ/2 suffers from high subchannel correlations (Table 3).

Under NLOS channel conditions, the dual-polarized system with selection outperforms

55



0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

SNR (dB)

B
E

R

S: L = 0; DS
D: L = 0
S: L = λ/2

(4,1)/(4,1) Selection
D: L = λ/2

(a)

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

SNR (dB)

B
E

R

S: L = 0; DS
D: L = 0
S: L = λ/2

(4,1)/(4,1) Selection
D: L = λ/2

(b)

Figure 27: BER over measured channels for (2,1)/(2,1) antenna selection for a VBLAST
system with LMMSE receiver under (a) LOS and (b) NLOS channel conditions
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the SISO link by 6 dB at BER = 10−2. The performance gap between the spatial and dual-

polarized systems, in the presence of selection, increases to 3.5 dB. This is because in NLOS

scenarios, a spatial MIMO channel achieves significant decorrelation and hence achieves full

diversity. On the other hand, dual-polarized configuration suffers from subchannel power

losses. We emphasize that despite these losses, dual-polarized antennas offer the distinct

benefit of compactness over the spatial configuration.

In addition to providing compactness, dual-polarized antennas can also be used to realize

higher order MIMO configurations in devices with larger form factors. To underscore this

point, we also plot in Figures 27(a) and 27(b), BER results for (4,1)/(4,1) selection with

dual-polarized antennas. This configuration could be realized in the same space as the

(2,1)/(2,1) spatial configuration, yet it achieves better performance under both LOS and

NLOS channel conditions.

In Figures 28(a) and 28(b), we plot the BER curves for (4,2)/(4,2) selection under

LOS and NLOS channel conditions respectively. In these figures, we consider a 4 × 4

dual-polarized system with L ∈ {λ/2, λ, 3λ/2} and a spatial system with L = 3λ/2. The

minimum inter-element spacing between the adjacent antenna elements is maintained at

λ/2. For reference we also plot the BER for deterministic selection (DS) for 2 × 2 spatial

MIMO with L ∈ {λ/2, λ, 3λ/2}.

In the hallway, as the inter-element spacing is increased, the performance of the 2 × 2

spatial MIMO with deterministic selection improves, owing to the decrease in the subchannel

correlations and the spherical wavefront effect [26]. Further the performance of the 4 × 4

dual-polarized MIMO with selection also improves with increasing inter-element spacing

because of the lower correlations between the elements of the co-polar submatrices HV V

and HHH . For an array length of L = 3λ/2, the 4 × 4 spatial and dual-polarized MIMO

systems perform equally well. They achieve a selection gain of 8 dB at BER = 10−2.

Under NLOS channel conditions, as expected, the performance is not a strong function

of the inter-element spacing. For L = λ/2, the 4 × 4 dual-polarized system with selection

outperforms the 2×2 deterministic spatial MIMO by 8.5 dB at BER = 10−2. The (4,2)/(4,2)

spatial MIMO with L = 3λ/2 outperforms the dual-polarized MIMO with selection by about
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Figure 28: BER over measured channels for (4,2)/(4,2) antenna selection for a VBLAST
system with LMMSE receiver under (a) LOS and (b) NLOS channel conditions

58



2.5 dB.

These measurement results indicate that while antenna selection with the spatial array

configuration performs the best under both LOS and NLOS channel conditions, it requires

a larger array length which is not always possible to realize in compact devices. On the

other hand, antenna selection with dual-polarized antennas performs significantly better

than deterministic selection, with only a nominal increase in complexity and with no cost

in terms of space.

5.4 Selection for Space Time Coded Systems

Unlike the layered BLAST architectures which attempt to increase the transmitted data

rate, space-time coding is a technique which increases the reliability of data transmission by

exploiting the diversity of a MIMO channel. Orthogonal space time block coding (OSTBC),

has received much interest owing to its simple linear decoding process. Antenna selection

for spatial MIMO channels with OSTBC has been studied in [20]. In this section, we follow

the same approach as [20], to study the performance of antenna selection for dual-polarized

MIMO systems with OSTBC transmission.

We first briefly review the popular Alamouti space time block coding scheme, which

is an example of OSTBC with two transmit antennas. The Alamouti space time block

code is a simple and an effective way to exploit the diversity of a MIMO channel. It

does not require channel knowledge at the transmitter, but yet it achieves full diversity

order. Consider a nr × 2 MIMO channel matrix H = [h1,h2]. To send a pair of symbols

s = [s1, s2]
T , a transmitter with two antennas that uses the Alamouti STBC requires two

signaling intervals. Here AT is the transpose of the matrix A. The code matrix can be

written as [2]

C(s) =




s1 −s∗2

s2 s∗1


 . (39)

The rows of the code matrix denote the spatial dimension and the columns, the temporal

dimension. If ri, i ∈ {1, 2} denotes the received signal vector in the i-th signaling interval.
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The input-output relationship for the system can be written as [5]

r =

√
Es

nt
Heffs + n, (40)

where nt = 2, r = [rT
1 , rT

2 ]T and n represents the circularly symmetric complex Gaussian

noise vector with covariance matrix Rnn = NoI2nr
. The effective 2nr × 2 MIMO channel

matrix is given by

Heff =




h1 h2

h∗
2 −h∗

1


 . (41)

The joint maximum likelihood (JML) receiver chooses ŝ = [ŝ1, ŝ2]
T to minimize E{||r −

Heffŝ||2}. Note that the matrix Heff is orthogonal i.e. HH
effHeff = ‖H‖2

F I2. As a result,

the JML receiver reduces to a simple matched filter receiver. The effective instantaneous

post-detection SNR for the data stream is

γ =
Es

ntNo
‖H‖2

F . (42)

Note that the Alamouti code is a full-rate linear orthogonal code for nt = 2 [5]. Further

it achieves maximal diversity, and owing to the simple receiver implementation, it is an

attractive transmission scheme for low-complexity systems. General orthogonal space time

codes for nt > 2 transmit antennas can be designed using the rank and determinant criterion

outlined in [47]. Even in this case, equation (42) is valid. However it has been shown that

there exists no full-rate OSTBC for nt > 2 [47]. Inspite of the loss in rate, the higher order

OSTBC could still be used, owing to the simple receiver implementation.

5.4.1 Performance of OSTBC in the presence of Polarization Diversity

In this section, we digress from the topic of antenna selection to study the performance of

OSTBC in dual-polarized MIMO channels. The squared Frobenius norm of the channel,

W = ‖H‖2
F , defined in equation (2), is a random variable. For a nr×nt i.i.d Rayleigh spatial

MIMO channel, W is a chi-squared random variable with η = nrnt degrees of freedom, with

PDF given by

fW (w) =
wη−1e−w

(η − 1)!
(43)
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However for a dual-polarized MIMO channel, the subchannels are non-identical and hence

the above equation is not valid. We assume that β = 1 and XV = XH = X. The PDF can

then be derived to be

fW (w) =
Xnxe−ww(nc−1)

(nx − 1)!(nc − 1)!

nc−1∑

k=0

(
nc − 1

k

)
(−1)k(nx + k − 1)!

wk(X − 1)nx+k
Γ[w(X − 1), nx + k], (44)

where nc and nx denote the number of co-polar and cross-polar subchannels in the matrix

H. For an integer n and a real x, the incomplete gamma function is defined as

Γ[x, n] =
1

(n − 1)!

∫ x

0
tn−1e−tdt. (45)

For a complete derivation, we refer the interested reader to Appendix B. We note that
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Figure 29: Probability density function of the squared Frobenius norm of a 2 × 2 dual-
polarized MIMO channel for different XPD

for the limiting case (X → ∞), the PDF in equation (44) reduces to equation (43) with

η = nrnt/2. Shown in Figure 29, are PDFs of W for a range of values of XPD. It is evident

that as the XPD increases, the mean and standard deviation of the random variable W are

diminished.
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For a given channel H, the bit error rate (BER) of a OSTBC system with Gray mapped

4-QAM constellation is Pr(error/H) = Q(
√

2WEb

No
) where Eb/No = Es/(2ntNo). The aver-

age BER can then be calculated as:

BER =

∫ ∞

−∞
Q

(√ wEs

ntNo

)
fW (w)dy, (46)
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Figure 30: BER performance of Alamouti STBC in dual-polarized MIMO channels for
different XPD values

For a spatial MIMO channel, a closed form expression for BER can be developed and

it can be shown that at high SNR, BER ∝ 1
(Es/No)η [5]. As mentioned previously, the two

extreme cases i.e. X = 1 and X → ∞ result in diversity orders η = nrnt and η = nrnt/2,

respectively. However, for other values of X it is not easy to arrive at such insightful

approximations. Hence to analyze the influence of XPD on BER, we consider a 2 × 2

Alamouti space time coded transmission and numerically evaluate (46). As shown in Figure

30, as the XPD increases, BER performance of Alamouti STBC deteriorates. It is interesting

to note that even for high XPD, the slope of the BER curve is parallel to X = 1 curve.
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5.4.2 Norm-based Selection

It is evident from equation (42), that maximizing the channel Frobenius norm maximizes the

SNR as well as the instantaneous probability of error for MIMO systems employing OSTBC.

Hence for (nr, lr)/(nt, lt) antenna selection, the selection strategy can be expressed as

H̃ = arg min
S(H̄)

{‖H̄‖2
F }, (47)

where H̄ is obtained by eliminating nr − lr columns and nt − lt rows from H. S(H̄) denotes

the set of all possible H̄. Joint selection at the transmitter and receiver requires a total

of
(
nr

lr

)(
nt

lt

)
computations of the Frobenius norm and then a search procedure to find the

maximum norm. This computation should not be a problem for practical systems where the

number of antennas rarely exceeds four to five. Hence no algorithms have been proposed

in the literature to implement this strategy.

To the best of our knowledge, joint selection has not been studied theoretically in the

literature, even for spatial MIMO channels. Performance analysis for transmit or receive

selection in spatial MIMO channels is provided in [20]. In order to understand the effect of

XPD on the selection gain we consider a (2, 2)/(nt, lt) system with transmit selection only.

Such configurations could be used in WLAN or cellular systems where one end of the link

is allowed to be more complex than the other. The analysis is general and is applicable to

any OSTBC and can be easily adapted for receive selection.

The selection strategy outlined in equation (47), chooses lt out of the nt available trans-

mit antennas to maximize the Frobenius norm of the channel. Let Tk, k = 1, . . . , nt denote

the squared Frobenius norm of the nt columns of H. Each column of H has two inde-

pendent but non-identical zero mean circularly symmetric complex Gaussian random vari-

ables with variances 1 and 1/X respectively. They have the probability density functions

g1(t) = e−tU(t) and g2(t) = Xe−XtU(t) respectively. The random variables Tk, k = 1, . . . , nt

are i.i.d random variables with the probability density function given by

fT (t) = g1(t) ∗ g2(t)

=
Xe−t

X − 1
(1 − e−(X−1)t)U(t) (48)
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where, the operator (∗) denotes the convolution operation. The cumulative distribution

function, can be derived to be

FT (t) =

∫ t

−∞
fT (x)dx

=

(
1 − e−t

X − 1
(X − e−(X−1)t)

)
U(t) (49)

Invoking the principles of ordered statistics [20], we generate new random variables T[k],

k = 1, . . . , nt from Tk, k = 1, . . . , nt such that

T[nt] ≥ T[nt−1] ≥ . . . ≥ T[k] ≥ . . . ≥ T[2] ≥ T[1]. (50)

where T[k] is the k-th largest of the nt random variables distributed according to (52). Note

that these ordered random variables are no longer independent. The average SNR after

selection can then be computed as

E{γ} = γo

(
E{T[nt]} + E{T[nt−1]} + . . . + E{T[nt−l+1]}

)
(51)

where γo = Es

ltNo .

The probability density function of of the k-th ordered statistic T[k] can then be evaluated

as [4],

fk(t) =
nt!

(k − 1)!(nt − k)!
FT (t)k−1(1 − FT (t))nt−kfT (t) (52)

The average value of the k-th order statistic can be computed to be

E{T[k]} =
nt!

(k − 1)!(nt − k)!

k−1∑

r=0

(−1)r

(
k − 1

r

)
Jnt−k+r (53)

where,

Jm =
m∑

i=0

(−1)i

(
m

i

)
Xm−i+1

(X − 1)m+1

[
1

(
(X − 1)i + m + 1

)2 −
1

(
(X − 1)(i + 1) + m + 1

)2

]
(54)

A complete derivation is provided in Appendix C. When X = 1, we note that this expression

in (53) reduces to [20]

E{T[k]}(X=1) =
nt!

(k − 1)!(nt − k)!

k−1∑

r=0

(−1)r

(
k − 1

r

) nt−k+r∑

i=0

(
nt − k + r

i

)
(2 + i)!

(nt − k + r + 1)i+3
.

(55)
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When X → ∞, the cross-polar subchannels of the 2×nt channel matrix H vanish to zero. As

a result each column has one zero element and the other element which is a zero mean unity

variance circularly symmetric complex Gaussian random variable. The selection problem

in this case reduces to selecting the largest lt elements out of the nt non-zero elements in

H. The expected value of the k-th order statistic could be derived to be

E{T[k]}(X→∞) =
nt!

(k − 1)!(nt − k)!

k−1∑

r=0

(−1)r

(
k − 1

r

)
1

(nt + r − k + 1)2
(56)

We refer the interested reader to Appendix C for a detailed derivation. In Table 4, we

reproduce the average values of the two highest ordered statistics for lt = 2 (Alamouti

code), for a range of values of XPD. It is evident that as the XPD increases, the average

output SNR decreases.

Table 4: Expected values of the highest and the second highest ordered statistics for
different XPD, transmit selection and Alamouti code

X = 0 dB X = 3 dB X = 6 dB X = 9 dB X → ∞

nt = 2
2.750 2.085 1.776 1.633 1.500
1.250 0.918 0.726 0.619 0.500

nt = 4
3.547 2.720 2.369 2.218 2.083
2.210 1.648 1.359 1.217 1.083

nt = 6
4.022 3.105 2.738 2.585 2.450
2.738 2.059 1.734 1.584 1.450

Performance Analysis

In order to quantitatively measure the performance gain achieved by using antenna

selection for dual-polarized MIMO channels, we define the gain metric GP (X). Note that

the average SNR for a 2 × lt dual-polarized MIMO channe with XPD X is γolt(1 + 1/X).

Denoting

G(nt,lt)(X) =

nt∑

k=nt−lt+1

E{T[k]}, (57)

we define GP (X) as follows

GP (X) =
E{γ}

γolt(1 + 1/X)
=

G(nt,lt)(X)

lt(1 + 1/X)
(58)
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Shown in Figure 31, are the GP (X) curves for (2, 2)/(nt, 2) transmit selection. It is in-

teresting to note that the gain increases as the XPD increases. Further the gain increases

with nt, but not linearly. The biggest gain is obtained by increasing nt = 2 (no selection)

to nt = 4. Increasing the number of transmit antennas from four to six will give much less

gain than going from two to four, and in general increasing nt yields diminishing returns in

terms of the SNR gain.
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Figure 32: Configurations for evaluation of performance of antenna selection with dual-
polarized antennas, over spatial channels. (a) D: 2×nt dual-polarized (b) S1: 2×nt spatial
(c) S2: 1 × nt

2 spatial.

It is imperative to understand the gain (or loss) in performance achieved by antenna
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selection for dual-polarized MIMO channels, in comparison with traditional spatial MIMO

channels. We note that the constraints of complexity and compactness should be taken into

account, to facilitate a fair comparison. We consider a NLOS scenario and assume that the

antenna elements are sufficiently separated so that the co-polar subchannels are uncorre-

lated. The configuration ‘D’ in Figure 5.4.2 corresponds to the 2×nt dual-polarized MIMO

configuration being analyzed in this section. The spatial configuration ‘S1’ has nt transmit

and 2 receive spatially separated uni-polarized antennas. It is reasonable to assume that the

realization of this configuration requires a much greater array length at the Tx and the Rx,

when compared to the dual-polarized configuration. The second spatial configuration ‘S2’

has nt/2 transmit and one receive uni-polarized antennas. This configuration has a similar

form factor as ‘D’ and it is assumed that nt > 2lt. All the elements of the spatial MIMO

channels ‘S1’ and ‘S2’ can be assumed to be i.i.d Rayleigh with unity variance. Further

we remind the reader that X = 1 corresponds to the spatial case and hence all the results

developed so far are applicable to these spatial configurations.

We define the first metric GS1(X) to provide a measure of the loss in performance of

(2, 2)/(nt, lt) antenna selection, incurred by using dual-polarized antennas for the sake of

compactness, instead of the spatial configuration ‘S1’. It is defined as

GS1(X) =
G(nt,lt)(X)

G(nt,lt)(1)
(59)

In addition to providing compactness, dual-polarized antennas could be used to realize

higher order MIMO architectures in compact devices. We define the metric GS2(X) to

provide a measure of performance improvement resulting from the use of antenna selection

with the higher order dual-polarized configuration ‘D’ instead of the uni-polarized spatial

configuration ‘S2’. Note that ‘S2’ uses only one RF chain at the receiver. Hence for a fair

comparison, (2, 1)/(nt, lt) selection must be implemented for the configuration ‘D’. The gain

metric GS2(X) is defined as

GS2(X) =
γD(X)

γS2(X)
, (60)

where γD(X) and γS2(X) are the average SNR of the (2, 1)/(nt, lt) dual-polarized config-

uration and (1, 1)/(nt/2, lt) spatial configuration ‘S2’ respectively. Since the theoretical
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analysis in this section is limited to selection at one end, we evaluate GS2(X) through

simulations.
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Figure 33: Performance of antenna selection with dual-polarized antennas with respect to
spatial configurations S1 and S2; nt = 6 and lt = 2.

Shown in Figure 33, are the GS1(X) and GS2(X) curves for nt = 6 and lt = 2. It is evi-

dent from the GS1(X) curve that the performance of antenna selection with dual-polarized

antennas is significantly diminished at high XPD, when compared to the spatial MIMO

configuration ‘S1’, with a larger form factor. Thus we contend that when space is not a

constraint, spatial MIMO should be preferred over dual-polarized MIMO. On the other

hand when dual-polarized and spatial configurations with similar form factors and com-

plexity are compared, antenna selection for the former configuration performs much better

than the latter even at high XPD. Hence antenna selection combined with dual-polarized

antennas present an attractive alternative, to realize higher order MIMO architectures in

compact devices.
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5.4.3 Measured BER Results

It is important to understand the performance of antenna selection for dual-polarized MIMO

channels in relation to traditional spatial MIMO channels. In this section we study the per-

formance of antenna selection for both spatial and dual-polarized MIMO systems employing

OSTBC. We use the normalized measured channel samples to achieve this objective. The

input symbols si were drawn from an equiprobable 4-QAM constellation {±1±j}/
√

2. The

channel was assumed to be static for a frame of 100 symbols. BER is calculated for each

frame and averaged over the N channel realizations provided by the measurements (See

Table 4.1). The array length is the same at the Tx and the Rx. Although we have theoret-

ically studied antenna selection for one end of the link, we maintain that selection could be

easily implemented at both ends with the availability of a perfect low bandwidth feedback

channel. Hence in this section, we consider (4,2)/(4,2) optimal antenna selection according

to the criteria outlined in (47), for an Alamouti space time coded system, under LOS and

NLOS channel conditions, for a range of values of inter-element spacing. We use exhaustive

search to achieve optimal selection.

In Figures 34(a) and 34(b), we plot the BER curves for (4,2)/(4,2) selection under

LOS and NLOS channel conditions respectively. In these figures, we consider a 4 × 4

dual-polarized system with L ∈ {λ/2, λ, 3λ/2} and a spatial system with L = 3λ/2. The

minimum inter-element spacing between the adjacent antenna elements is maintained at

λ/2. For reference we also plot the BER for deterministic selection (DS) for 2 × 2 spatial

MIMO with L ∈ {λ/2, λ, 3λ/2}.

In the hallway, as the inter-element spacing is increased, the performance of the 2 × 2

spatial MIMO with deterministic selection improves owing to the decrease in the subchannel

correlations and the spherical wavefront effect [26]. Further the performance of the 4 × 4

dual-polarized MIMO with selection also improves with increasing inter-element spacing

because of the lower correlations between the elements of the co-polar submatrices HV V

and HHH . For an array length of L = λ/2, the (4, 2)/(4, 2) dual-polarized MIMO system

outperforms the deterministic 2 × 2 spatial MIMO with the same array length by about

2.7 dB at BER = 10−2. On the other hand, the (4, 2)/(4, 2) spatial system with L = 3λ/2
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Figure 34: Measured BER for (4,2)/(4,2) antenna selection with Alamouti STBC under
(a) LOS and (b) NLOS channel conditions
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outperforms its dual-polarized counterpart by about 2 dB at BER = 10−2.

Under NLOS channel conditions, as expected, the performance is not a strong function

of the inter-element spacing. For L = λ/2, the 4 × 4 dual-polarized system with selection

outperforms the 2 × 2 deterministic spatial MIMO by just under 1.5 dB at BER = 10−2.

The (4,2)/(4,2) spatial MIMO with L = 3λ/2 outperforms the dual-polarized MIMO with

selection by about 3 dB.

We end this chapter with an important observation. The gains achieved by antenna

selection for MIMO systems employing OSTBC are lower than for spatial multiplexing

systems. In a multiplexing system with linear receiver processing, some of the degrees of

diversity are expended in suppressing the interfering data streams. As a result the system

achieves a diversity order of only nr − nt + 1. On the other hand, in OSTBC systems, all

the nrnt degrees of diversity are allocated to a single data stream. It is well known that

we achieve diminishing returns in performance as the degrees of diversity are increased [5].

Hence antenna selection, which basically provides additional degrees of diversity is more

effective for spatial multiplexing systems when compared to MIMO systems employing

OSTBC.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the contributions of this thesis and suggests some possible research

areas for future work.

Research Contributions

This thesis deals with dual-polarized MIMO channels, an important topic for the prac-

tical deployment of MIMO architectures in compact devices. The following are the major

contributions of this work.

1. This thesis provides a complete set of indoor MIMO channel measurements using

dual-polarized antennas at 2.4 GHz. Analysis presented herein highlights the differ-

ences between dual-polarized and traditional spatial MIMO configurations, in terms

of channel characteristics and achievable capacity [3].

2. It presents a tight analytical lower bound, for the ergodic capacity of 2 × 2 dual-

polarized Ricean and Rayleigh MIMO channels, in terms of the channel parameters.

3. This thesis is the first to explore the possibility of using antenna selection for compact

dual-polarized MIMO systems. Using theoretical analysis and measurement results, it

provides a comprehensive performance analysis of antenna selection for dual-polarized

MIMO systems employing VBLAST or STBC.

The current trend of miniaturization seems to be at odds with the implementation of spatial

MIMO architectures in compact wireless devices, such as handheld and notebook comput-

ers, mobile phones, music players and wireless sensors. The results presented in this thesis,

illustrate that dual-polarized antennas provide an attractive solution to the problem of

realizing higher order MIMO configurations in these devices. Furthermore, this thesis mo-

tivates the use of antenna selection combined with dual-polarized antennas for compact
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devices, which are often constrained by complexity, power and costs. Thus the benefits of

the MIMO architecture could be reaped, with only a nominal increase in complexity and

with no expense in terms of space.

Future Work

Unlike spatial MIMO channels, dual-polarized MIMO channels have not been extensively

studied in the literature. This thesis addresses a few issues related to this topic. However,

there remain many important issues that need to be resolved, before these configurations

can be deployed in future wireless devices.

• Extensive Measurements and Simulation Models: The measurements provided in our

thesis are limited to two typical scenarios in indoor environments. We emphasize

that more comprehensive measurements, in a wide range of channels, are needed to

accurately model dual-polarized MIMO channels. To the best of our knowledge there

exists no simulation model for 4 × 4 or higher order MIMO channels. Simulation

models are important, as they will enable system designers to simulate and evaluate

the performance of these systems under harsh radio propagation conditions.

• Wideband Channels: This thesis has dealt with only flat fading channels. However, fu-

ture wireless systems will employ wideband communication channels to deliver higher

data rates. Hence it is imperative to understand the characteristics and performance

of dual-polarized MIMO channels in the presence of frequency selective fading.

• Keyhole Channels: Recently, in multiple-input multiple-output (MIMO) fading envi-

ronments, the existence of rank-deficient channels called keyhole channels has been

demonstrated [9]. In such scenarios, the spatial MIMO matrix is unity rank and hence

achieves similar spectral efficiency as a SISO channel. We envisage that by using dual-

polarized antennas in such channels, the rank of the channel matrix can at least be

increased to two. This indicates a huge potential for performance improvement in

keyhole channels and hence warrants further study.
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APPENDIX A

DERIVATION OF EQUATIONS 23 AND 24

We first restate the assumptions made in Section 3.4.2, with a slight change in notation.

Consider a 2 × 2 dual-polarized MIMO channel matrix H = {hij} 1 ≤ i, j ≤ 2. We make

the simplifying assumption that XV = XH = 1/α, 0 ≤ α ≤ 1. All the channel entries

are assumed to be mutually independent circularly symmetric complex Gaussian random

variables with the following variances

E{|h11|2} = 1; E{|h12|2} = βα

E{|h21|2} = α; E{|h22|2} = β.
(61)

and the following means

E{h11} =
√

K
K+1 ; E{h12} = 0

E{h21} = 0; E{h22} =
√

βK
K+1 .

(62)

Here KV V = KHH = K is the K factor corresponding to the co-polar subchannels. For a

real gaussian random variable Z with mean µ and variance σ2, E{Z4} = µ4 + 6µ2σ2 + 3σ4.

Using this fact, the fourth order moment of the absolute value of a circularly symmetric

complex Gaussian random variable can be calculated. The fourth order moments of the

subchannel entries can be easily evaluated to be

E{|h11|4} = 1 + 2K+1
(K+1)2

; E{|h12|4} = 2β2α2

E{|h21|4} = 2α2; E{|h22|4} = β2
(
1 + 2K+1

(K+1)2

) (63)

Now consider the symmetric matrix

W = HHH

=




|h11|2 + |h12|2 h11h
∗
21 + h12h

∗
22

h∗
11h21 + h∗

12h22 |h21|2 + |h22|2


 . (64)

It is easy to see from (61) that the mean values of the elements of this matrix are given by

E{w11} = 1 + βα; E{w12} = 0

E{w21} = 0; E{w22} = α + β.
(65)
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Note that w11 and w22 are independent random variables. The values E{|w11|2} and

E{|w22|2} will be required in our calculations. Hence we proceed to calculate these val-

ues as follows

E{|w11|2} = E{(|h11|4 + |h12|4 + 2|h11|2|h12|2)}

= 1 +
2K + 1

(K + 1)2
+ 2β2α2 + 2βα (66)

Similarly,

E{|w22|2} = E{(|h22|4 + |h21|4 + 2|h22|2|h21|2)}

= β2

(
1 +

2K + 1

(K + 1)2

)
+ 2α2 + 2βα (67)

Denoting D = E{det(I2 + ρ
2W)}, the expression for the lower bound of ergodic capacity

of channel H is given by (22),

C̄(ρ) ≥ log2(E{D}) − log2(e)

2

E{D2} − (E{D})2
(E{D})2 (68)

Thus we need to evaluate E{D} and E{D2} using the statistics of the entries of the matrix

W computed above. E{D} can be derived as follows

E{D} = E{1 +
ρ

2
(w11 + w22) +

ρ2

4
(w11w22 − w12w21)}

= 1 +
ρ

2
E{(w11 + w22)} +

ρ2

4
E{|h11|2|h22|2 + |h12|2|h21|2}

= 1 +
ρ

2
(1 + α)(1 + β) +

ρ2

4
β(1 + α2), (69)

Now E{D2} is given by,

E{D2} = 1 + ρ E{w11 + w22}︸ ︷︷ ︸
A1

+
ρ2

4
E{w2

11 + w2
22 + 4w11w22 − 2w12w21}︸ ︷︷ ︸

A2

+
ρ3

4
E{w2

11w22 + w2
22w11 − w21w12(w11 + w22)}︸ ︷︷ ︸

A3

+
ρ4

16
E{(w11w22 − w12w21)

2}︸ ︷︷ ︸
A4

(70)

We compute each of the terms in the above expression individually. Using (65),(66) and

(67), terms A1 and A2 can be evaluated to be

A1 = (1 + β)(1 + α) (71)
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and

A2 = 2(2(1 + α2 + α)(1 + β)2 + K̄(1 + β2)) (72)

where, K̄ = −K2/(K + 1)2. Now to compute A3, we need the following values

E{w21w12w11} = E

{
|h11|4|h21|2 + |h22|2|h12|4 + |h11|2|h22|2|h12|2 + |h11|2|h21|2|h12|2

}

= α

(
1 +

2K + 1

(K + 1)2

)
+ 2β3α2 + β2α + βα2,

and similarly

E{w21w12w22} = E

{
|h22|4|h12|2 + |h11|2|h21|4 + |h11|2|h21|2|h22|2 + |h22|2|h21|2|h12|2

}

= β3α

(
1 +

2K + 1

(K + 1)2

)
+ 2α2 + βα + β2α2.

Then, A3 can be shown to be

A3 = β(1 + β)((1 + α)(2α2 − α + 2) + K̄) (73)

The final term A4 can be computed as follows,

A4 = E{(w11w22 − w12w21)
2}

= E

{
(|h11|2|h22|2 + |h12|2|h21|2 − h11h

∗
21h22h

∗
12 − h∗

11h21h
∗
22h12)

2

}

= E{|h11|4|h22|4} + E{|h12|4|h21|4} + 4E{|h11|2|h12|2|h21|2|h22|2}

=

(
1 +

2K + 1

(K + 1)2

)2

β2 + 4α4β2 + 4α2β2. (74)

Plugging these terms into equation (70) yields the desired equation in (24).
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APPENDIX B

DERIVATION OF EQUATION 44

Assume that XV = XH = X and β = 1. We assume that all the elements of the nr × nt

channel matrix H are independent and zero mean circularly symmetric complex Gaussian

random variables. The co-polar subchannels have unity variance while the cross-polar sub-

channels have a variance 1/X. The squared Frobenius norm of the nr × nt channel matrix

H can be written as

W = (‖HV V ‖2 + ‖HHH‖2) + (‖HV H‖2 + ‖HHV ‖2)

= Wc + Wx. (75)

The random variables Wc and Wx correspond to the co-polar and cross-polar submatrices

of the channel. They are independent but not identically distributed. Wc is a chi-squared

random variable with nc = nV
r nV

t +nH
r nH

t degrees of freedom and with a probability density

function,

fWc(w) =
wnc−1e−w

(nc − 1)!
U(w) (76)

Now using the fact that Wx = Wc

X , the probability density function of Wx can be easily

computed to be

fWx(w) =
Xnxwnx−1e−wX

(nx − 1)!
U(w), (77)

where nx = nV
r nH

t + nH
r nV

t . Since Wc and Wx are independent random variables, the

probability density function of W is given by
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fW (w) = fWc(w) ∗ fWx(w)

=

∫ ∞

−∞
fWc(w − t)fWx(t)dt

=
Xnxe−ww(nc−1)

(nc − 1)(nx − 1)

∫ w

0
t(nx−1)

(
1 − t

w

)nc−1

e−t(X−1)dt

= C

∫ w

0

nc−1∑

k=0

(−1)k

wk

(
nc − 1

k

)
t(nx+k−1)e−t(X−1)dt

= C

nc−1∑

k=0

(−1)k

wk

(
nc − 1

k

) ∫ w

0
t(nx+k−1)e−t(X−1)dt

= C

nc−1∑

k=0

(
nc − 1

k

)
(−1)k(nx + k − 1)!

wk(X − 1)nx+k
Γ[w(X − 1), nx + k], (78)

where the operator (∗) denotes the convolution operation, C = Xnxe−ww(nc−1)

(nc−1)(nx−1) and Γ[x, n] is

the incomplete Gamma function given by

Γ[x, n] =
1

(n − 1)!

∫ x

0
tn−1e−tdt.
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APPENDIX C

DERIVATION OF EQUATION 53

From (51), the average SNR of a (2, 2)/(n, l) selection is given by,

E{γ} = γo

(
E{T[n]} + E{T[n−1]} + . . . + E{T[n−l+1]}

)

where, the random variables T[k], k = 1, . . . , n have been defined earlier. Essentially we are

interested in the first order moments of T[k], k = 1, . . . , l. The probability density function

of of the k-th ordered statistic T[k] can then be evaluated as,

fk(t) =
n!

(k − 1)!(n − k)!
FT (t)k−1(1 − FT (t))n−kfT (t)

where

fT (t) =
Xe−t

X − 1
(1 − e−(X−1)t)U(t)

and the cumulative distribution function given by

FT (t) =

(
1 − e−t

X − 1
(X − e−(X−1)t)

)
U(t)

We have

E{T[k]} =
n!

(k − 1)!(n − k)!

∫ ∞

−∞
tFT (t)k−1(1 − FT (t))n−kfT (t)dt

=
n!

(k − 1)!(n − k)!

k−1∑

r=0

(−1)r

(
k − 1

r

) ∫ ∞

−∞
t(1 − FT (t))n−k+rfT (t)dt

=
n!

(k − 1)!(n − k)!

k−1∑

r=0

(−1)r

(
k − 1

r

)
Jn−k+r

where for an integer m
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Jm =

∫ ∞

−∞
t(1 − FT (t))mfT (t)dt

=

∫ ∞

0
t

(
e−t

X − 1
(X − e−(X−1)t)

)m Xe−t

X − 1
(1 − e−(X−1)t)dt

=
Xm+1

(X − 1)m+1

∫ ∞

0
te−(m+1)t

(
1 − e−(X−1)t

X

)m

(1 − e−(X−1)t)dt

=
Xm+1

(X − 1)m+1

∫ ∞

0
te−(m+1)t

( m∑

i=0

(−1)i

(
m

i

)
e−(X−1)it

Xi

)
(1 − e−(X−1)t)dt

=
Xm+1

(X − 1)m+1

m∑

i=0

(−1)i

Xi

[ ∫ ∞

0
te−

(
(m+1)+(X−1)i

)
tdt −

∫ ∞

0
te−

(
(m+1)+(X−1)(i+1)

)
tdt

]

=
m∑

i=0

(−1)i

(
m

i

)
Xm−i+1

(X − 1)m+1

[
1

((X − 1)i + m + 1)2
− 1

((X − 1)(i + 1) + m + 1)2

]

Limiting Cases

Now we consider the special cases of X ↓ 1 and X → ∞. We show that in these cases (53)

reduces to (56) and (55) respectively. The problem is to find

(a) lim
X↓1

∫ ∞

0
tfk(t)dt

and

(b) lim
X→∞

∫ ∞

0
tfk(t)dt

We first look at part (a). Invoking the Dominated Convergence Theorem [50], it can be

shown that

lim
X↓1

∫ ∞

0
tfk(t)dt =

∫ ∞

0
t

(
lim
X↓1

fk(t)

)
dt

And it is easy to see that f(t) = limX↓1 fT (t) = te−tU(t) and F (t) = limX↓1 FT (t) =

(1 − e−t − te−t)U(t). It follows that

g(t) = lim
X↓1

fk(t) = CF (t)k−1(1 − F (t))n−kf(t).
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where C = n!
(k−1)!(n−k)! . Expanding F (t)k−1 = (1− e−t − te−t)k−1 into a binomial series, we

get

∫ ∞

0
tg(t)dt = C

∫ ∞

0
tF (t)k−1(1 − F (t))n−kf(t)dt

= C
k−1∑

r=0

(−1)r

(
k − 1

r

) ∫ ∞

0
(1 + t)n−k+re−(n−k+r+1)tt2dt

= C
k−1∑

r=0

(−1)r

(
k − 1

r

) n−k+r∑

i=0

(
n − k + r

i

) ∫ ∞

0
e−(n−k+r+1)tti+2dt

Using the fact that
∫ ∞
0 xne−axdx = n!/an+1, we get the desired result in equation (55).

For part (b), a similar analysis follows by observing that f(t) = limX→∞ fT (t) = e−tU(t)

and F (t) = limX→∞ FT (t) = (1 − e−t)U(t).
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