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Abstract-
If the fitness values are perturbed by noise then they do
not have a definitive total order. As a consequence, tra-
ditional selection procedures in evolutionary algorithms
may lead to obscure solutions. A potential remedy is as
follows: Construct a partial order on the set of noisy fit-
ness values and apply those evolutionary algorithms that
have been designed for finding the minimal elements of
partially ordered sets. These minimal elements are the
only reasonable candidates for the unperturbed true so-
lution. A method for reducing the number of candidate
solutions is suggested. From a theoretical point of view it
is worth mentioning that all convergence results for evo-
lutionary algorithms with partially ordered fitness sets re-
main valid for the approach considered here.

1 Introduction

The Gaussian distribution is the predominant choice for mod-
eling noise frequently observable in measurings of various
kinds. Here, we hold the view that a noise distribution with
unbounded support (like the Gaussian, Cauchy, Laplace, Lo-
gistic, and others) may be quite unrealistic. Actually it is at
least equally plausible to assume that the noise cannot exceed
certain limits due to technical characteristics of the involved
measurement unit. Even if a distributional shape close to a
Gaussian appears reasonable we can resort to a symmetrical
Beta distribution which can converge weakly to a Gaussian
distribution under continuously increasing but bounded sup-
port (see e.g. Evans et al. 1993, p. 36). This assumption will
have significant theoretical and practical impacts on the evo-
lutionary algorithms (EAs) considered here.

Traditional measures for coping with noisy fitness func-
tions in evolutionary algorithms include the resampling of the
random fitness value with averaging, the appropriate adjust-
ment (i.e., enlargement) of the population size, and in case of
continuous search spaces also the rescaling of inherited mu-
tations; see Beyer (2000) for a summary of work on EAs for
noisy fitness functions.

Here, we add yet another avenue for dealing with noisy
fitness functions: Instead of using a selection procedure that
is based on the totally ordered set of noisy fitness values we
endow the probabilistic fitness set with an appropriate par-
tial order and deploy EAs with those selection methods being
explicitly designed for coping with arbitrary partially ordered
fitness sets (Rudolph 1998, 2001; Rudolph and Agapie 2000).

Section 2 offers a brief introduction to partially ordered

sets in general and in particular to interval orders (Fishburn
1985) which constitute the first step towards the partial or-
der to be used later on. Since the noise is supposed to have
bounded support we can easily equip these intervals with a
probability measure (representing the noise distribution). Thus,
the interval order turns to a partial order on random variables.
This subject is detailed in Section 3 which also contains the
presentation of the EA along with a discussion of the in-
herited theoretical properties from the general case (Rudolph
2001). Preliminary experimental results can be found in Sec-
tion 4.

2 Partially Ordered Sets

Let F be a set. A reflexive, antisymmetric, and transitive re-
lation “�” on F is termed apartial order relationwhereas a
strict partial order relation“�” must be antireflexive, asym-
metric, and transitive. The latter relation may be obtained by
the former relation by settingx � y := (x � y) ^ (x 6= y).
After these preparations one is in the position to turn to the
actual objects of interest.

Definition 1 LetF be some set. If the partial order relation
“�” is valid on F then the pair(F ;�) is called apartially
ordered set(or short: poset). If x � y for somex; y 2 F then
x is said todominatey. Distinct pointsx; y 2 F are said to
becomparablewhen eitherx � y or y � x. Otherwise,x and
y are incomparablewhich is denoted byx k y. If each pair of
distinct points of a poset(F ;�) is comparable then(F ;�)
is called atotally ordered setor a chain. Dually, if each pair
of distinct points of a poset(F ;�) are incomparable then
(F ;�) is termed anantichain. ut

For example, letII = f[x1; x2] � IR : x1 � x2g be the set
of closed intervals ofIR and define

[x1; x2] � [y1; y2] iff x2 < y1 ;

[x1; x2] = [y1; y2] iff x1 = y1 ^ x2 = y2 ;

[x1; x2] � [y1; y2] iff x � y _ x = y :

It is easily seen that(II;�) is a partially ordered set in which
distinct intervals with a nonvoid intersection are incompara-
ble. Similarly, the infinitely large but countable set(II";�)
with II" = f[x � "; x + "] � IR : x 2 IN0g with " > 1=2
is a poset with incomparable elements whereas(II";�) with
" < 1=2 is totally ordered and therefore a chain. An example
for an antichain is the set of “minimal elements” introduced
next.
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Definition 2 An elementx� 2 F is called aminimal element
of the poset(F ;�) if there is nox 2 F such thatx � x�.
The set of all minimal elements, denotedM(F ;�), is said
to becompleteif for eachx 2 F there is at least onex� 2
M(F ;�) such thatx� � x. ut

In contrast to infinitely large posets the completeness of
M(F ;�) is guaranteed for finitely large posets. Of course,
completeness of infinitely large posets is not precluded. For
example, the set(II";�) with " = 2=3 is infinitely large and
the set of minimal elementsM(II";�) = f[�2

3 ;
2
3 ]; [

1
3 ;

5
3 ]g is

complete.

3 Coping with Noisy Fitness Functions

3.1 Assumptions

Let S be the finite search set and assume that the determinis-
tic fitness functionf : S ! IR is perturbed by additive noise
Z, i.e., ~f(x) = f(x) + Z for x 2 S. As mentioned ear-
lier, here we insist that random variableZ has bounded and
knownsupport in form of a closed interval ofIR. For exam-
ple,Z may have a uniform or symmetric beta distribution on
its support[�a; a] with a > 0.

At first it is assumed that every point/individualx 2 S is
evaluated only once. Later on this assumption is dropped.

3.2 Partial Order Approach

When an individualx 2 S is evaluated via~f (x) = f(x) +
Z then the noisy fitness value is an element of the interval
[f(x) � a; f(x) + a]. Since the EA only has knowledge of
the support bounda > 0 and in no case of the true fitness
valuef(x), the noisy evaluation ofx 2 S only leads to the
information that the true fitness valuef(x) must be in the
interval[ ~f(x) � a; ~f(x) + a]. Thus, each point or individual
is associated with a realization of a random interval.

Next we declare a strict partial order on these intervals
and thereby also a strict partial order on the individuals. Let
x; y 2 S and w.l.o.g.~f(x) < ~f(y). If

~f (x) + a < ~f (y) � a (1)

then we define~f(x) � ~f(y) and therebyx � y. This choice
is reasonable because we can immediately infer fromx � y
thatf(x) < f(y) with probability1. One should mention that
this partial order is a special case of a partial order introduced
in Guddat et al. (1985), p. 29. Moreover, notice that the
connection to interval orders gets evident by the equivalence
between equation (1) and

[ ~f(x) � a; ~f(x) + a] \ [ ~f(y) � a; ~f(y) + a] = ; : (2)

Thus, whenever two intervals as those above have a nonvoid
intersection then the noisy fitness values and therefore also
the individuals are incomparable, in symbols:~f (x) k ~f(y)
resp.x k y.

It remains to examine whether the set of minimal elements
of such posets represents a reasonable and useful set of can-
didate solutions. For this purpose define

f� = minff 2 Fg with F = ff(x) : x 2 Sg and
~f� = minf ~f 2 eFg with eF = f ~f(x) : x 2 Sg :

In general,~f� and eF are random objects. But since it is as-
sumed that each elementx 2 S is evaluated only once, one
can hold the view thateachelement ofS has been evalu-
ated alreadybeforethe EA is run such that the seteF and the
quantity ~f� are deterministic during the run of the EA. In this
manner one obtains a unique partial order oneF and onS for
each run. The set of minimal elements is then given by

eF� = f ~f 2 eF j 69 ~f 0 2 eF : ~f 0 � ~fg
= f ~f 2 eF j ~f � ~f� + 2 ag : (3)

Needless to say, it is reasonable to postulate that the noisy
image ~f (x�) of an unperturbed optimal pointx� 2 S is con-
tained in the set of minimal elements. As shown below, this
requirement is fulfilled.

Theorem 1
For all x� 2 S with f(x�) = f� holds ~f (x�) 2 eF� regard-
less of the value ofa > 0.
Proof: First notice the equivalence

~f (x�) 2 eF� () ~f(x�) � ~f� + 2 a

which is easily deduced from equation (3). Since the support
of random variableZ is [�a; a] the relation

~f(x�) = f(x�) + Z = f� + Z � f� + a (4)

holds with probability1. For the same reason one obtains
~f� > f��a() f� < ~f�+a. Insertion in equation (4) leads
to ~f (x�) � f� + a < ( ~f� + a) + a = ~f� + 2 a. ut

The next result offers an assessment of the ’solutions’ con-
tained in the seteF�.
Theorem 2 maxf ~f 2 eF�g � f� + 3 a.
Proof: Owing to equation (3) each element ofeF� is upper
bounded by~f� + 2 a. Since the support ofZ is [�a; a] one
obtains~f� � f� + a. Putting all together yields the desired
inequalitymaxf ~f 2 eF�g � ~f� + 2 a � f� + 3 a. ut

Notice that under this partial order the set of minimal ele-
ments of a given finite populationP is determinable in linear
time: Find the individual with the smallest perturbed fitness
value ~f� in the population. This takes�(jP j) time. Each in-
dividual with fitness~f < ~f�+2 amoves to the set of minimal
elements. Since this takes�(jP j) time the entire run time is
�(jP j).
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3.3 The Base Algorithm

The pseudo code given in Figure 1 is taken from Rudolph
(2001). Notice that an individualp 2 Pt of a population at
generationt � 0 gathers all quantities of interest, i.e.,p 2
S � eF � : : :. The partial ordering of the individuals is based
on their noisy fitness values~f 2 eF of course. The expression
Q = offspring(Pt) in phase 1 encapsulates the operation
of generating� new individuals from the current population
Pt of size� with � � � at generationt � 0.

initializeP0; sett = 0
repeat

(* PHASE 1 *)
Q = offspring(Pt)
Q� =M(Q;�)
Q = Q nQ�
P 0 = Q0 = ;
(* PHASE 2 *)
for eachq 2 Q�:
D(q) = fp 2 Pt : q � pg
if D(q) 6= ; then
Pt = Pt nD(q)
P 0 = P 0 [ fqg
Q� = Q� n fqg

endif
if D(q) = ; ^ q k p for all p 2 Pt then
Q0 = Q0 [ fqg
Q� = Q� n fqg

endif
endfor
(* PHASE 3 *)
Pt+1 = Pt [ P 0
if jPt+1j < � then

fill Pt+1 with elements from:
1. Q0

2. Q�

3. Q
until Pt+1 = �

endif
t = t+ 1

until stopping criterion fulfilled

Figure 1: Pseudo code of the evolutionary algorithm with par-
tially ordered fitness.

3.4 The Theoretical Property Inherited

Since the base algorithms’ properties are valid for arbitrary
partially ordered fitness sets, any instantiation inherits the the-
oretical properties from the general case (Rudolph 2001).

Theorem 3 Let the search space of the base algorithm in
Figure 1 be finite and the partial order of the fitness set be
as described in Section 3.2. If every collection of offspring

can be generated from an arbitrary collection of parents with
some positive minimum probability, then the entire popula-
tion will enter the seteF� after a finite number of generations
with probability1 and stays there forever. ut

As we know from Theorems 1 and 2 the set of minimal
elementseF� contains the noisy version of the global mini-
mum and each member ofeF� is at most3 a away from the
true minimumf�. In this sense, we may calleF� also the set
of "-optimal solutions with" = 3 a.

3.5 The Virtue of Resampling Revisited

A (3 a)-optimal solution may be sufficient or may not. For
the latter case one should look for a method of decreasing
this bound. Here we use the technique of resampling that
is common practice in EAs with noisy fitness values. Usually
each point/individual is sampled several times and the thereby
obtained noisy fitness values are averaged. This makes the es-
timator of the true fitness value more and more reliable by re-
ducing its variance by a factor of1=

p
n in case ofn samples.

Nevertheless, the estimator’s value is afflicted with some un-
certainty and every statement concerning its deviation from
the true value may be false with some probability. For ex-
ample, in case of Gaussian noise with known variance�2 we
only can say that the true valuef is in the interval�

�f � �p
n
��1

�
1 + 

2

�
; �f +

�p
n
��1

�
1 + 

2

��
with probability > 0. Here, �f denotes the average ofn
fitness samples and��1(�) is the inverse of the cumulative
distribution function (c.d.f.) of the standard normal distribu-
tion.

A moment reflection reveals that the partial order intro-
duced in Section 3.2 is actually a partial ordering of confi-
dence intervals. Since the support of the noise is bounded the
confidence intervals for the true value have a confidence level
of  = 1 in contrast to < 1 for Gaussian noise. But here
we don’t use resampling for averaging; rather, the informa-
tion gained from the additional samples is used to narrow the
uncertainty interval containing the true fitness value.

Let ~fn = f + Zn denote thenth sample of the noisy fit-
ness function at a certain point in the search space. The first
sample ~f1 = f + Z1 leads to the initial confidence interval
[ ~f1 � a; ~f1 + a] for the true valuef . Since each sample leads
to a different confidence interval in general andf must be
contained in each of these intervals we immediately obtain

f 2
n\

k=1

[ ~fk � a; ~fk + a ]

=

�
max
k�n

f ~fkg � a;min
k�n

f ~fkg+ a

�
=

�
f +max

k�n
fZkg � a; f +min

k�n
fZkg+ a

�
= [f; f ] + [Zn:n � a; Z1:n + a ] (5)
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whereZk:n denotes thekth smallest outcome ofn samples
in total. Thus, aftern samples one knows for sure that the
true valuef is somewhere in the interval given in equation
(5). The uncertainty interval[Zn:n � a; Z1:n + a ] shrinks
to [0; 0] for n ! 1. The speed of narrowing can be deter-
mined as follows: LetLn = Zn:n � a andRn = Z1:n + a.
Then j[Ln; Rn]j=(2 a) is the relative size of the uncertainty
or incomparability interval[Ln; Rn] aftern samples and the
probability that it is then still larger than100 " percent of its
initial size is given by

P
� j[Ln; Rn]j

2 a
> "

�
= P

�
Rn � Ln

2 a
> "

�
= P

�
1� Zn:n � Z1:n

2 a
> "

�
= Pf 1�Wn > " g
= PfWn < 1� " g

whereWn = Bn:n � B1:n is known as thesample rangeof
n samples of random variableB. Here it is assumed thatB
has support[0; 1] such that the noiseZ = a (2B � 1) has
support[�a; a]. The distribution of the sample range can be
determined via

PfWn � w g = n

1Z
�1

[FB(x+w)� FB(x)]
n�1 f(x) dx

(see e.g. Arnold et al. 1992, p. 31) such that

PfWn < 1� " g = n (1� ")n�1 � (n� 1) (1� ")n

� n (1� ")n�1

if B is the uniform distribution on[0; 1]. In this case the rela-
tive size of the uncertainty interval aftern samples is given by
1�Wn with E[ 1�Wn ] = 2=(n+1) andV[ 1�Wn ] � 2=n2.
If B is a symmetric Beta random variable with probability
density function

fB(x) =
�(2 b)

�(b)2
xb�1 (1� x)b�1 � 1[0;1](x) (6)

thenE[ 1 �Wn ] � 2n�1=b. Thus, the closerB should re-
semble Gaussian noise(b !1) the slower is the narrowing
of the uncertainty or incomparability interval.

4 First Numerical Experiments

4.1 Instantiation of the Base Algorithm

The search space is a finite subset of thed-dimensional set
of integers with box constraints. An individual is represented
by a d-tuple of integers (the chromosomes) and the bounds
of the confidence interval that is needed for the comparison
of the individuals according to equation (2). Mutations of
the chromosomes obey a bilateral geometrical distribution on
the integers (Rudolph 1994) that is truncated at the box con-
straints. If the self-adaptation of the mutation distribution is

switched on then an additional parameter (chromosome) must
be represented in the individual. The recombination of two
chromosomes is realized by uniform crossover, the potential
real-valued chromosomes for self-adaptation are averaged.

4.2 Realization of the Noise Generator

The noise used here is represented by a Beta randomZ =
a (2B � 1). A Beta random variableB on [0; 1] with pa-
rameterb 2 IN and probability density function as given in
equation (6) can be generated viaB = G1=(G1+G2) where

G1 = � log

 
bY

i=1

Ui

!
and G2 = � log

0@ bY
j=1

Uj

1A
with uniformly distributed random numbersUi; Uj.

4.3 Preliminary Results

The search space isS = ZZ30 \ [�1000; 1000]30 for the test
function

f(x) =
30X
i=1

�xi
10

�2
with optimal solutionx� = (0; : : : ; 0) andf(x�) = 0.
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Figure 2: Number of surviving parents and(3a)-optimal so-
lutions for noise bounda = 1.
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Figure 2 shows a typical run for a population size of� =
� = 50 and a support bounda = 1 for the uniformly dis-
tributed noise(b = 1), whereas the support bound was in-
creased toa = 5 in Figure 3 anda = 10 in Figure 4.
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Figure 3: Number of surviving parents and(3a)-optimal so-
lutions for noise bounda = 5.

As can be seen in all three cases the number of surviving
parents rapidly increases at about the maximum size as soon
as the population enters the set of(3 a)-optimal solutions. It
appears plausible that this happens the earlier the larger is the
noise bounda, but it must be noted that there is no statistical
support for this conjecture at the moment.

Nevertheless, we dare to use the number of surviving par-
ents as an indicator for the event of entering the(3 a)-optimal
set. When this happens then the individuals cannot be com-
pared due to the size of the noise interval. Therefore, the re-
sampling of the fitness values should begin right now. Many
rules for the indicator mechanism are possible.

Here, we introduce a width parameter! that is initially
set to! = 2 a. If two individuals are incomparable and at
least one of them has a confidence interval larger than!, then
the individual with the largest interval is re-evaluated and its
interval bounds are updated. This is repeated as long as the
individuals are incomparable or both confidence intervals are
smaller than!. The decrease of! by 10 % is triggered as
soon as90 % of the parents have survived, provided that! �
1=100. The EA is stopped as soon as! < 1=100 and no

parent has been replaced in the last selection process.
Of course, these parameters are chosen arbitrarily for the

next experiment—other values may yields far better results.
The identification of “good” parameter settings is not the goal
here; rather, we like to gain first insights concerning the be-
havior of this EA.
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Figure 4: Number of surviving parents and(3a)-optimal so-
lutions for noise bounda = 10.

For this purpose the noise bound is set toa = 10 and
the EA is run. Figure 5 shows some characteristic quantities
recorded during a typical run of the EA.

At about generation 2000 the population begins to enter
the set of30-optimal solutions. No re-evaluation of the in-
dividuals was triggered until now. The number of surviving
parents oscillates considerably while the width parameter is
continuously decreased. This leads to a rapid increase of the
number of re-evaluations along with a significant improve-
ment of the solutions as can be seen from the number of par-
ents below certain (normally unavailable) true fitness values.

The number of re-evaluations, however, is much too large
for practical use. This might be caused by an unlucky choice
of the EA parameters. In the next experiment the width thresh-
old was chosen a magnitude larger, namely,! = 1=10. Table
1 summarizes the results obtained from 50 independent runs.
The number of re-evaluations is considerably smaller now,
but the optimal true solution was never contained in the final
population, in contrast to some other tests with! = 1=100.
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mean std. dev. skew.
generations 3231 740.6 0.46
re-evaluations 2:2� 106 6:5� 105 0.85
bestf of last pop. 0.13 0.031 0.17
worstf of last pop. 0.25 0.039 0.46

Table 1: Summary of results for 50 runs with! = 1=10.

Needless to say, some parameter studies are necessary to find
a useful parametrization of this EA.
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