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Abstract 

 
A multi-layered neural network based on multi-valued neurons is considered in the paper. It is shown 

that using a traditional architecture of multi-layered feedforward neural network (MLF) and the high 
functionality of the multi-valued neuron, it is possible to obtain a new powerful neural network. Its training 
does not require a derivative of the activation function and its functionality is higher than the functionality 
of MLF containing the same number of layers and neurons. These advantages of MLMVN are confirmed by 
testing using Parity n, two spirals and "sonar" benchmarks. 
 

I. INTRODUCTION 

Neural networks with a backpropagation learning algorithm have started their history from the ideas 
presented by D.E. Rumelhart and J.L McClelland in [1]. These neural networks are characterized by a 
multi-layer architecture with a feedforward dataflow through nodes requiring full connection between 
consecutive layers. This architecture is the result of a "universal approximator" computing model based on 
Kolmogorov's Theorem [2] (see e.g. [3], [4] and the more comprehensive observation done by R. Hecht-
Nielsen in [5]). It has been shown in [6]-[7] that these neural networks are universal approximators. So 
there are two main ideas behind a feedforward neural network. The first idea is a full connection 
architecture: the outputs of neurons from the previous layer are connected with the corresponding inputs of 
all neurons of the following layer. The second idea is a backpropagation learning algorithm, when the errors 
of the neurons from the output layer are being sequentially backpropagated through all the layers from the 
"right hand" side to the "left hand" side, in order to calculate the errors of all other neurons. One more 
common property of a major part of the feedforward networks is the use of sigmoidal activation functions 
for its neurons.  

It is possible to find hundreds of papers and many books published during last 10-15 years, where the 
ideas of multi-layered neural networks and backpropagation learning were developed. One of the most 
comprehensive observations is presented e.g. in [8]. 

At the same time there is at least one important problem, which is still open. Although it is proven that 
a feedforward network is a universal approximator, a practical implementation of learning often is a very 
complicated task. It depends on several factors: the complexity of the mapping to be implemented, the 
chosen structure of the network (the number of hidden layers, the number of neurons on each layer), and the 
control over the learning process (usually this control is being implemented using the learning rate). 
Increasing both the number of hidden layers and neurons on them, we can make the network more flexible 
to the mapping to be implemented. This corresponds to the well-known Cover's theorem [9] on the 
separability of patterns, which states that a pattern classification problem is more likely to be linearly 
separable in a high dimensional feature space than in a low dimensional one, while projected into a high 
dimensional space nonlinarly. However, the computations in a higher dimensional space require more 
resources and much more time. The case of MLF and similar networks is not an exclusion. Moreover, 
increasing the number of hidden neurons increases the risk of overfitting. 

In order to minimize the implementation of complex mappings, several supporting algorithms were 
proposed. A very popular family of kernel-based learning algorithms that use nonlinear mappings from 
input spaces to high dimensional feature spaces should be mentioned. The best known of them is the 
support vector machine (SVM) introduced in [10]. Different kernel-based techniques are considered e.g. in 
[11]. A fuzzy kernel perceptron [12] should be distinguished among the most recent publications, where the 
kernel-based approach is developed. 

Another direction is related to improvement of the MLF learning, search for more sophisticated 
learning techniques, as well as different modifications of the MLF structure and architecture. From the very 
recent publications we can mention [13], where the modular feedforward networks, with not fully 
connected neighboring layers are studied and [14], where the original modification of the MLF learning 
algorithm is considered. 
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At the same time it is very attractive to consider a different solution, which will preserve a traditional 
MLF architecture, however, it will be based on the use of the different basic neurons. We will consider in 
this paper a multi-layered neural network based on multi-valued neurons (MLMVN). A multi-valued 
neuron (MVN) was introduced in [15]. It is based on the principles of multiple-valued threshold logic over 
the field of the complex numbers formulated in [16] and then developed in [17]. A comprehensive 
observation of MVN, its properties and learning is presented in [18]. The most important properties of 
MVN are: the complex-valued weights, inputs and output coded by the kth roots of unity and the activation 
function, which maps the complex plane into the unit circle. It is very important for us that MVN learning is 
reduced to the movement along the unit circle. The MVN learning algorithm is based on the simple linear 
error correction rule and does not require a derivative. Moreover, it converges very quickly. Different 
applications of MVN have been considered during the last years. We will mention some of them: MVN has 
been used as a basic neuron in cellular neural networks [18], as a basic neuron of neural-based associative 
memories [18], [19]-[22] and as the basic neuron of different pattern recognition systems [22]-[24].  

It is very important that the functionality of a single MVN is higher than the functionality of a single 
neuron with a sigmoid activation function [18]. So it is very attractive to consider a multi-layered neural 
network with the same architecture as MLF, but with MVN as a basic neuron. It should be mentioned that 
the feedforward networks based on the neurons with the complex-valued weights have been already 
considered, for example in [25]-[27]. But in these papers a classical sigmoid function and a classical 
backpropagation algorithm were generalized for the complex-valued valued case. We will consider here a 
different solution. 

It is also important to mention that the development of the complex-valued neural networks is 
becoming more and more popular. It is possible to refer to the recently published book [28], where, for 
example, the MVN-based associative memory presented in [20] and the complex domain backpropagation 
presented in [27] are observed in more details. 

In the Section  II we will remind some basic ideas related to MVN and its learning. A modified 
continuous-valued activation function also will be introduced. In the Section  III MLMVN will be 
introduced. We will consider a backpropagation learning algorithm for it, which does not require a 
derivative of the activation function. Two possible variants of the backpropagation will be considered. 
Simulation results will be presented in the Section  IV. Using some standard benchmarks, we will show the 
efficiency of MLMVN. It will be shown that such popular problems as parity N, two spirals and "sonar" can 
be solved using a simpler and smaller network than the known ones. 

II. DISCRETE AND CONTINUOUS MVN 

Let us remind some basic ideas related to MVN and its training. A single MVN performs a mapping 
between n inputs and a single output ([15], [18]). This mapping is described by a multiple-valued (k-valued) 

function of n variables )( 1 nx ..., ,xf  with n+1 complex-valued weights as parameters: 
 

)()( 1101 nnn xw...xwwPx ..., ,xf +++=  (1) 

 
where nx ..., ,x1  are the variables, on which the performed function depends and n  , ...,w,ww 10  are the 
weights. The values of the function and of the variables are complex. They are the kth roots of unity: 

)2exp(  j/kij π=ε , }10{ k- ,j∈ , i is an imaginary unity. P is the activation function of the neuron: 
 

/kj+ zj/k, if  j/ki=zP )1(2 arg2)2exp()( π<≤ππ  (2) 

 
where j=0, 1, ..., k-1 are values of the k-valued logic, nn xw...xwwz +++= 110  is the weighted sum , 
arg z is the argument of the complex number z. Equation (2) is illustrated in Fig. 1. Function (2) divides a 
complex plane onto k equal sectors and maps the whole complex plane into a subset of points belonging to 
the unit circle. This is exactly a set of kth roots of unity. Function (2) was initially proposed in [16] as a k-
valued predicate csign, which is a key element of multiple-valued threshold logic over the field of the 
complex numbers [17]-[18]. 
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Fig. 1 Geometrical interpretation of the MVN activation function 

 
MVN learning is reduced to the movement along the unit circle. This movement does not require a 

derivative of the activation function, because it is impossible to move in the incorrect direction. Any 
direction of movement along the circle will lead to the target. The shortest way of this movement is 
completely determined by the error that is a difference between the "target" and the "current point", i.e. 
between the desired and actual output, respectively. This MVN property is very important for the further 
development of the learning algorithm for a multi-layered network. Let us consider how it works. 

 

 

Let Tq =ε  be a desired output of the neuron (see Fig. 2). Let )(zPYs ==ε  be an actual 
output of the neuron. The MVN learning algorithm based on the error correction learning rule is defined as 
follows [18]: 

 

X -εε
n+
C+WW sqm

mm+ )(
)1(1 = , (3) 

 
where X is an input vector1, n is the number of neuron inputs, X  is a vector with the components complex 
conjugated2 to the components of vector X, m is the number of the learning iteration, mW  is a current 

weighting vector (to be corrected), 1+mW  is the following weighting vector (after correction), mC  is a 

                                                 
1 We will add to the n-dimensional vector X an n+1th component 10 ≡x  realizing a bias, in order to 
simplify mathematical expressions for the correction of the weights 
2 Here and further x  is a number complex conjugated to x and X  is a vector with the components 
complex conjugated to the components of X. 

 
Fig. 2 Geometrical interpretation of the MVN learning rule 
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learning rate. The convergence of the learning process based on the rule (3) is proven in [18]. What is a 
sense of the rule (3)? It ensures such a correction of the weights that a weighted sum is moving from the 
sector s to the sector q (see Fig. 2). The direction of this movement is completely defined by the difference 

sq ε−ε=δ .Thus 
sq ε−ε=δ  determines the MVN error. According to (3) a correcting item 

nix -εε
n+
Cw i

sqm
i ,...,1,0 ,)(

)1(
==∆ , which is added to the corresponding weight in order to 

correct it, is proportional to δ . 
 

The correction of the weights according to (3) changes the value of the weighted sum exactly on δ . 

Indeed, let nn xwxwwz +++= ...110  be a current weighted sum. Let us correct the weights according 
to the rule (3) (we take C=1):  
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The weighted sum after the correction is obtained as follows: 
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 (4) 

 

Equation (4) shows the importance of factor 
1

1
+n

 in the learning rule (3). This factor shares the error δ  

uniformly among the neuron's inputs. 
Evidently, the activation function (2) is discrete. More exactly, it is piece-wise discontinuous, it has 

discontinuities on the borders of the sectors. Let us modify the function (2) in order to generalize it for the 
continuous case in the following way. Let us consider, what will happen, when ∞→k  in (2). It means 
that the angle value of the sector (see Fig. 1) will go to zero. It is easy to see that the function (2) is 
transformed in this case as follows: 

 

||
)) (arg exp()(  

z
zezizP ziArg === , (5) 

 
where z is the weighted sum, Arg z is a main value of its argument and |z| is a modulo of the complex 
number z. 

The function (5) maps the complex plane into a whole unit circle, while the function (2) maps a 
complex plane just on a discrete subset of the points belonging to the unit circle. The function (2) is 
discrete, while the function (5) is continuous. We will use here exactly the function (5) as the activation 
function for the MVN. Both functions (2) and (5) are not differentiable as functions of a complex variable, 
but this is not important, because their differentiability is not required for MVN learning. The learning rule 
(3) will be modified for the continuous-valued case in the following way: 

X 
z
z-

n+
C+WX -e

n+
C+WW qm

m
ziArgqm

mm+ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ε=ε=

||)1(
)(

)1(
 

1 . (6) 

 
It is absolutely clear that convergence of the learning algorithm based on the learning rule (6) may be 

proven in the same way as it was done in [18] for the rule (3).  
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Let us consider how the weighted sum is being moved to the correct direction according to the rule (6). 

Let T be a desired and 
|| z

zY =  be an actual output. Thus, the error and simultaneously the direction of the 

correction is determined by the difference 
 

||
||

|| z
zzT

z
zTYT −
=−=−=δ . (7) 

 
Taking into account (7) and we can now transform (4) as follows: 
 

,
||||||

~
z
zzT

z
zTz

z
zTzzz −+=−+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=δ+= . (8) 

 
and it is clear that a step of learning determined by (6) is as successful, as smaller is the absolute value of 

|| z
zz − , because it ensures a smaller deviation of ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

||
arg

z
zzT  from Targ . 

It is also interesting to consider the following modification of (6): 
 

X 
n+
C+WW m

mm+ δ=
~

)1(1 , (9) 

where δ
~

 is obtained from |||| z
zT

z
zq −=−ε=δ  using a normalization by the factor 

||
1
z

: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=δ=δ

||||
1

||
1~

z
zT

zz
, (10) 

 
and instead of (8) we obtain the following: 
 

22 ||||||||||||
1~~

z
zz

z
T

z
z

z
Tz

z
zT

z
zzz −+=−+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+=δ+= . (11) 

 
Learning according to the rule (9)-(10) makes it possible to squeeze a space for the possible values of the 
weighted sum.  

 
Fig. 3. Normalization of the weighted sum z by the factor 1/|z| (see (9)-(11) ) 
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Using (9)-(10) instead of (6), we can reduce this space to the respectively narrow ring, which will include 
the unit circle inside (see Fig. 3). Indeed, if 1|| <z  and we correct the weights according to (9)-(10), then 

according to (11) zz >~  and z~  will be closer to the unit circle than z, approaching to the unit circle form 

"inside". If 1|| >z  and we correct the weights according to (9)-(10), then according to (11) zz >~  and 

z~  will be closer to the unit circle than z, approaching to the unit circle form "outside". This approach can 
be useful in order to make z more smooth as a function of the weights and to exclude a situation, when a 
small change either of the weights or the inputs will lead to the significant change of z. At the same time the 
choice of the learning rule depends on a particular mapping that we want to implement. For example, if it is 
described by the smooth function, there is no reason to use (9)-(10) adding more calculations. We will 
return below to the choice of the learning rule, when we will discuss a learning algorithm for the MVN-
based neural network. 

III. MULTI-LAYERED MVN-BASED NEURAL NETWORK AND  
A BACKPROPAGATION LEARNING ALGORITHM 

 
Let us consider a multi-layered neural network with traditional feedforward architecture, when the 

outputs of neurons of the input and hidden layers are connected with the corresponding inputs of the 
neurons from the following layer. Let us suppose that the network contains one input layer, m-1 hidden 
layers and one output layer. We will use here the following notations. 

Let 

kmT  - be a desired output of the kth neuron from the mth (output) layer  

kmY  - be an actual output of the kth neuron from the mth (output) layer. 
Then a global error of the network for the kth neuron of the mth (output) layer can be calculated as follows: 
 

kmkmkm YT −=δ*
 - error for the kth neuron from output layer (12) 

 

km
*δ  will denote here and further a global error of the network. We have to distinguish it from the 

local errors kmδ  of the particular neurons. 
The learning algorithm for the classical feedforward network is derived from the consideration that a 

global error of the network expressed in the terms of squared error (SE) must be minimized. The functional 
of error may be defined as follows: 

 

∑ δ=Ε
k

km W )()(
2
1 2*

 (13) 

where 
*
km

δ  is a global error of the kth neuron of the mth (output) layer and W  are the weighting vectors of 
all the neurons of the network (it is principal that the error depends not only on the weights of the neurons 
from the output layer, but on all neurons of the network). The minimization of the functional (13) is reduced 
to the search for those weights for all the neurons that ensure a minimal MSE.  

Let us remind briefly how it works for MLF. The most important problem for network learning is to 
express the error of the each neuron through the global errors of the network. This problem is solved using 
the backpropagation of the global errors through the network: from the output layer through all the hidden 
layers. It is also well known that the correction of the weights for all neurons is organized in such a way that 
each weight iw  has to be corrected by a correcting item iw∆ , which must be proportional to the gradient 

iw
E

∂
∂

 of the error function )(wE  with respect to the weights [8]. This lead to the following: 
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For each neuron of the network this gives the following ( )(zy  is a neuron's activation function, z is the 
weighted sum, δ  is the error for the considered neuron). Since  

1  ; ..., ,1 ,0  ,)...( 0 110 ≡==′+++=
∂
∂ xnixxwxww
w
z

in
i

; 

)(zy
z
y ′=
∂
∂

; 1)( −=′−=
∂
δ∂ YT
y

 

and according to (13) δ=
δ∂

∂E
, then we obtain 

 

1  ; ..., ,1 ,0  , )( 0 ≡=′δ=
∂
∂
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w
z

z
y

y
E

w
E

i
ii

 and 

 

⎩
⎨
⎧

′αδ

′αδ
=

∂
∂

α−=∆
          ,for     )(
,...,for   )(

0

1

wzy
wwzyx
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i
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where 0>α  is a coefficient representing a learning rate.  

The errors of the neurons are obtained as follows. For the neurons of the mth (output) layer we obtain 
the following expression of their errors: 

 
*)( kmkmkm zy δ′=δ , (15) 

 
where )( kmzy′  is the derivative of the activation function, calculated on the value of the weighted sum 

kmz  for the kth neuron of the mth (output) layer, 
*
kmδ  - is a global error of the network calculated 

according to (12) for the same kth neuron of the mth (output) layer. 
To obtain the errors for the neurons of all other layers, a sequential error backpropagation through the 

network from right to left (from the mth layer to the m-1st one, from the m-1st one to the m-2nd one, …, from 
the 2nd one to the 1st one) is organized. When the error is propagated from the layer j+1 to the layer j, the 
error of each neuron belonging to the j+1st layer is being multiplied by the weight connecting the 
corresponding input of this neuron from the j+1st layer with the corresponding output of the neuron from the 

jth layer. For example, the error 1+kjδ  is propagated from the neuron kj+1 (the kth neuron from the j+1th 

layer) to the ljth neuron (the lth neuron from the jth layer) as follows: 1+kjδ  is multiplied by the 

weight
1+kj

lw , namely by the weight corresponding to the lth input of the neuron kj+1. 
Let us use the following notation. 

Let 
kj
iw  be the weight corresponding to the ith input of the neuron kj (kth neuron of the jth level). Let 

ijY  be the actual output of the ith neuron from jth layer (j=1,…,m). Let jN  be the number of the neurons in 

the jth layer. By the way, it means that the neurons from the j+1st layer have exactly jN  inputs. Let 

nxx ,...,1  be the network inputs (they are also the inputs of the neurons from the 1st layer, respectively). 
Then the error for any neuron excepting the neurons from the output layer is expressed as follows: 
 

∑
+

=

+
+δ′=δ

1

1

1
1)(

jN

i

ij
kijkjkj wzy  - error for the kth neuron from jth layer (j=1,…,m-1), (16) 
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where 1+jN  is the number of the neurons in the j+1st layer, )( kjzy′  is a derivative of the activation 

function, calculated on the value of the weighted sum kjz of the kth neuron from the jth layer, 1+δij  is the 
error of the ith neuron from the j+1st layer (j=1,…,m-1). 

Let us now move back to the MLMVN. As it was mentioned from the beginning, the MVN activation 
function (5) is not differentiable. It means that the formulas (15)-(16) that determine the error calculation 
for MLF and (14) that determine the weights correction for MLF cannot be applied for the case of MLMVN 
because all of them contain the derivative of the activation function. However, for the MVN-based network 
this is not a problem! 

As it was shown above for the single neuron, the differentiability of the MVN activation function is not 
required for learning. Since MVN learning is reduced to the movement along the unit circle, the correction 
of the weights is completely determined by the neuron's error. The same property is true not only for the 
single MVN, but for the network (MLMVN). The errors of all the neurons from MLMVN are completely 
determined by the global errors of the network (12). As well as MLP learning, MLMVN learning is based 
on the minimization of the error functional (13). Let us generalize all considerations that we made above for 
the single neuron for the case of MLMVN. 

To make things simpler, let us start from the simplest case, which is a network with two neurons (one 
hidden neuron and one output neuron) with a single input (see Fig. 4). 

 

                                                 1x                                    11Y                                    12Y  

Fig. 4 The simplest MLMVN 

 

The error on the network output is equal to 12YT −=δ , where T is a desired output. We need to 
understand how we can obtain the errors for each particular neuron, backpropagating the error δ  form the 
right-hand side to the left-hand side.  

Let us suppose that the errors for the neurons 11 and 12 are already known. We will use the learning 
rule (6) for the correction of the weights. We will also take into account that correction of the weights 
according to (6) leads to the correction of the weighted sum according to (8). Let us suppose that the neuron 
11 from the 1st layer is already trained. Let us now correct the weights for the neuron 12 (the output neuron) 
and estimate its weighted sum: 
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(17) 

 

where ),( 12
1

12
0 ww  is an initial weighting vector of the neuron 12, 11Y  - an initial output of the neuron 

11, 12Y  - an initial output of the neuron 12, 12z  - the weighted sum on the neuron 12 before the 

correction, 11δ  - unknown error of the neuron 11 and 12δ  - unknown error of the neuron 12. 
To ensure that after the correction procedure the output of the network will be equal exactly to 

δ+12Y , it is clear from (17) that we need to satisfy the following: 
 

11 12 
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δ=δ+δ 11
12
112 w . (18) 

 
Of course, if we will consider (18) as a formal equation, we will not get something useful. This equation has 
infinite number of solutions, while we have to find among them a single solution, which will correctly 
represent the local errors of each neuron through the global error of the network and through the errors of 
the neurons of the "oldest" layers. 

Let us come back to the learning rule (6) for the single MVN. In this rule 

X 
z
z-

n+
C

W qm
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ε=∆

||)1( . It contains a factor 
)1(

1
+n

 in order to distribute a contribution of the 

correction uniformly among all n+1 weights nwww ,...,, 10 . It is easy to see that if we will omit this factor 

then the corrected weighted sum will not be equal to δ+z  (see (4)), but to δ++ )1(nz . On the other 
hand, since all the inputs are equitable, it will be correct and natural that during the correction procedure 

W∆  will be distributed among the weights uniformly, so it must be shared among the weights. This makes 

clear the important role of the factor 
)1(

1
+n

 in (6). 

If we have not a single neuron, but a feedforward network, we have to take into account the same 
property. It has to be used, to implement properly a backpropagation of the error through the network. It 

means that if the error of a neuron on the layer j is equal to δ
~

, this δ
~

 must contain a factor equal to 
js

1
, 

where 11 += −jj Ns  is the number of neurons whose outputs are connected to the inputs of the considered 

neuron (let us remind that iN  is the number of neurons on the layer i, and all of this neurons are connected 
to the considered neuron) incremented by 1 (the considered neuron itself). This ensures sharing of the error 
among all the neurons on which the error of the considered neuron depends. In other words, the error of 
each neuron is uniformly distributed among the neurons connected to it and itself. It should be mentioned 
that for the 1st hidden layer 11 =s  because there is no previous hidden layer, and there are no neurons, 
with which the error may be shared, respectively. 

If we will apply this rule to our network (see Fig. 4), then we will conclude that 12δ  must contain in 

its expression through a global error δ  a factor 
2
1

 (the input of the neuron 12 is connected with 1 neuron 

and we have to share the error with the neuron 12 itself), while 11δ  will not contain a mentioned factor 

"de-facto", because 1
1
1
= . 

It is clear now that for the neuron 12 we have 
 

δ=δ
2
1

12 . (19) 

 

We have to take also into account that the error 11δ  is a result of backpropagation of the error 12δ  to the 
first layer (to the neuron 11). On the other hand, from (18) we obtain: 
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But from (19) 122δ=δ  and therefore from (20) we obtain the following expression for 11δ : 
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(21) is not only a formal expression for 11δ , but it leads us to the following important conclusion: during a 
backpropagation procedure the backpropagated error must be multiplied by the inverse values of the 
corresponding weights.  

Let us now substitute 11δ  and 12δ  from (19) and (21) to (17): 
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So, we obtained exactly the result that is our target: . ~
1212 δ+= zz  

Now it will not be difficult to generalize everything that we considered for the simplest network (Fig. 
4) to the network with arbitrary number of layers and arbitrary number of neurons in each layer. We will 
obtain the following. The global errors of the whole network are determined by (12). 
For the errors of the mth (output) layer neurons: 
 

*1
km

m
km s

δ=δ , (23) 

 

where km is a kth neuron of the mth layer; 11 += −mm Ns  (the number of all neurons on the previous 
layer (m-1, to which the error is backpropagated) incremented by 1). 
 
For the errors of the hidden layers neurons: 
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where kj is a kth neuron of the jth layer (j=1,…,m-1); 1  ;,...,2   ,1 11 ==+= − smjNs jj  (the number 
of all neurons on the previous layer (previous to j, to which the error is backpropagated) incremented by 1). 

It should be mentioned that the backpropagation rule (24) is based on the same heuristic assumption as 
for the classical backpropagation. According to this assumption we suppose that the error of each neuron 
from the previous (jth) layer depends on the errors of all neurons from the following (j+1st) layer. 

After calculation of the errors, the weights for all neurons of the network must be corrected. To do it, 
we can use the learning rule (6) applying it sequentially to all layers of the network from the first hidden 
layer to the output one. The rule (6) can be rewritten for this case in the following form: 
 
Correction rule for the neurons from the 2nd hidden layer till the mth (output) layer (kth neuron of the jth layer 
(j=2, …, m): 
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Correction rule for the neurons from the 1st hidden layer: 
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(26) 

 
where kjC is a learning rate for the kth neuron of jth layer and n is the number of the corresponding neuron 
inputs. 

On the other hand we have to take into account the following consideration. For the output layer 
neurons we have the exact errors calculated according to (12), while for all the hidden neurons the errors are 
obtained according to the heuristic rule. This may cause a situation, where either the weighted sum for the 
hidden neurons (more exactly, the absolute value of the weighted sum) may become a not-smooth function 
with dramatically high jumps or the hidden neuron output will be close to some constant with very small 
variations around it. In both cases thousands and even the hundreds of thousands of additional steps for the 
weights adjustment will be required. To avoid this situation we can use for the hidden neurons the learning 
rule (8)-(9) instead of the rule (6) and therefore to normalize W∆  for the hidden neurons by |z| every time, 
when the weights are being corrected. This will make the absolute value of the weighted sum for the hidden 
neurons (considered as a function of the weights) more smooth. This also can avoid the concentration of the 
hidden neurons output in some very narrow interval. On the other hand, the factor 1/|z| in (9) can be 
considered as a variable part of the learning rate. While used, it provides the adaptation of W∆  on each 
step of learning. At the same time it is not reasonable to use the rule (8)-(9) for the output layer. The exact 
errors and the exact desired outputs for the output neurons are known. On the other hand, since these errors 
are shared among all neurons of the network according to (23)-(24), there is no reason to normalize by 1/|z| 
the errors of the output neurons. The absolute value of the output neurons weighted sums belongs to the 
narrow ring, which includes the unit circle (see Fig. 3), without this normalization. We will return to these 
features of the learning algorithm in the Section  IV, where several examples will be considered. So the 
weights of the output neurons may be corrected by the rule (6). In this way we are coming to the following 
modification of the correction rule (25)-(26). 
 
Correction rule for the neurons from the mth (output) layer (kth neuron of mth layer): 
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Correction rule for the neurons from the 2nd till m-1st layer (kth neuron of the jth layer (j=2, …, m-1): 
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Correction rule for the neurons from the 1st hidden layer: 
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(29) 

 
We cannot exclude a priori the case, when a mapping to be implemented by the network will be 

presented by a so complicated nonlinear and non-smooth function, when the adaptation of the output 
neurons weights will require their normalization by 1/|z|. However, we did not find such a function testing 
the network using different benchmarks. To use this normalization, it is only necessary to use (28) instead 
of (27) for the neurons from the output layer. 

All the considerations above lead us to the conclusion that the errors of the output layer neurons and 
therefore the global errors of the network will descent after correction of the weights according to the rules 
(27)-(29). It means that the error functional (13) will also descent step by step. In general the learning 
process should continue until the following condition is satisfied 

 

ε≤δ∑
k

km W )()( 2*
, (30) 

 
where ε  determines the precision of learning. In particular, it should be the case 0=ε , and (30) will be 

transformed to 0)()( 2* =δ∑
k

km W .  

It is necessary to make one remark regarding the error backpropagation. The equation (24) for the error 
of the neuron belonging to any hidden layer was obtained from equation (21) representing the case of the 
simplest network by its direct generalization and taking into account a general heuristic view on the error 
backpropagation. This view says that the error of each neuron from the layer j+1 must be weighted by the 
kth weight of this neuron, while backpropagated to the kth neuron from the layer j.  

 

 
On the other hand this view does not take into account that the error of each neuron form the j+1st layer 

contains the errors of all neurons from the layer j. To clarify this, let us consider the following simple 
network containing two layers and two neurons on each of the layers (see Fig. 5). 

Let us suppose without loss of generality that the weights are being corrected according to (25)-(26). 
Let us represent the weighted sums of the neurons 12 and 22 after the correction of the weights. 

 
 

 
Fig. 5 A fragment of MLVN 
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It follows directly from the last two equations that 
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and, respectively, 
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Formally the last system of equations can be considered as a system of linear algebraic equations with 

respect to 11δ  and 21δ . But we cannot always consider it in this way. It is good, if such a system will 
contain the same number of equations as the number of unknowns. It will mean that the system has a unique 
solution, while its determinant is not equal to zero and rank of its matrix its equal to the one of the extended 
matrix. In this case it is very easy to solve the system using, for example, a classical Kramer's rule. But the 
first condition will hold only for the networks that contain the same number of neurons on the neighboring 
layers. So an exact solution of the system may be obtained for the case, when the neighboring layers contain 
the same number of neurons. 

If not, we can assume that the neurons from the layer j equitably and independently contribute to the 
errors of the neurons from the layer j+1. This heuristic assumption leads us to the conclusion that the errors 

of the neurons from the layer j+1 do not depend on each other. This means that in our example errors 11δ  

and 21δ  do not depend on each other and may be calculated separately from the assumption that their 
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contribution to the errors 12δ  and 22δ  of the neurons 12 and 22 is equal that means 
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1 3

1
δ=δ=δ ww  and 2221
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1 3

1
δ=δ=δ ww . In this way we obtain the following 

systems of equations for 11δ  and 21δ , respectively: 
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It is easy to obtain from the last two systems that 
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Let us generalize the considered case of the network containing two layers and two neurons on each of them 
for the case of the m-layered network. The errors for the neurons of output layer (mth layer) are still defined 
by (23). But for the neurons from the hidden layers 1, …, m-1 we obtain the following.  
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(31) is the system of k equations with respect to kjδ . We omit a factor 
1

1

+js
 in the right hand part of (31), 

because when j+1=m this factor is already included to the corresponding δ  (see (23) ), while for all other 
layers we will include the corresponding factor to the equation that will determine the backpropagation, like 

it was done in (24). Thus we obtain the following formula for the error kjδ  of any neuron belonging to 
any hidden layer from 1 to m-1:  
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where jN  is the number of neurons on the layer j, kj is a kth neuron of the jth layer (j=1,…,m-1); 

1  ;1,...,2   ,1 11 =−=+= − smjNs jj  (the number of all neurons on the previous layer (previous to 
j, to which the error is backpropagated) incremented by 1).  

The backpropagation rule (32) is an alternative to the rule (24). Both of them are based on different 
heuristic assumptions about mutual dependence and influence of the errors corresponding to the neurons 
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from the neighboring layers. In particular, for the network consisting of a single hidden layer and the output 
layer (32) coincides with (24). The experimental testing does not show that one of this backpropagation 
rules is better than the another one. Both of them show in average the same efficiency. It means only that 
both heuristic assumptions about the mutual dependence and mutual influence of the errors for the neurons 
from the neighboring layers are not contradictory.  

IV. SIMULATION RESULTS 

Simulating MLMVN we were trying to operate with a network with a minimal possible number of the 
hidden layers and with a minimal possible number of the neurons. So the simulation results that we will 
consider now, were obtained using the simplest network structure n S 1 (n inputs, S neurons on the 1st 
hidden layer and 1 neuron on the output layer). It should be mentioned that adding additional hidden layers 
we did not get any significant improvement. So the efficiency of the backpropagation algorithm (23)-(24) 
(or (23)-(32), which is the same for the network with a single hidden layer) and of the learning algorithm 
based on the rules (27)-(29) has been tested by the experiments with the three standard and popular 
benchmarks: parity n, two spirals and "sonar". For two spirals and "sonar" benchmarks we downloaded data 
from the CMU benchmark collection3 

The neural network was implemented using a software simulator that was run on the PC with a 
Pentium III 600 MHz processor. The real and imaginary parts of the starting weights were taken as random 
numbers from the interval [0, 1] for all experiments. 
 
Table 1 Implementation of the Parity n function ( 9,...,3,2=n ) on the MLMVN S 1 ( nS ≤ ) 

Function Configuration of the 
network 

Number of epochs 
(the median value of 5 independent experiments 

is taken) 

Processing time 
on  

P-III 600 MHz 
Parity 3 3 2 1 57 2 seconds 
Parity 4 4 2 1 109 3 seconds 
Parity 5 5 3 1 2536 15 seconds 
Parity 6 6 4 1 7235 30 seconds 
Parity 7 7 4 1 26243 2 min. 50 sec. 
Parity 8 8 7 1 312541 122 min.  
Parity 8 8 6 1 1085677 215 min. 
Parity 9 9 7 1 24234 20 min. 
 
The parity n functions )93( ≤≤ n were trained completely (see Table 1) using the network n S 1, 
where nS < . It should be mentioned that parity 9 and parity 8 functions were implemented using only 7 
and 6 hidden neurons, respectively. These results show advantages of MLMVN in comparison with the 
traditional solutions. Indeed, it was reported in [29] that the most optimistic estimation for the number of 
the hidden neurons for the implementation of the n bit parity function using one hidden layer is n , while 
the realistic estimation is Ό(n). In [30] it was shown up to 4=n , that the minimum size of the hidden 
layer required to solve the N-bit parity is n. Using a special learning algorithm the parity 7 function was 
implemented using a 7-4-1 MLF in [14]. Using a modular network architecture the parity 8 function was 
implemented in [13]. We did use neither some special architecture nor some specific learning strategy. 
Moreover, no adaptation of the constant part of the learning rate was used in all our experiments not only 
with the parity functions, but with all the benchmarks, i.e. all 1=kjC  in (27)-(29). 

Let us return to the role of the factor 
kjz
1

 in the correction rule (28)-(29) for the hidden neurons and to 

absence of this factor in the correction rule (27) for the output neurons. Without loss of generality we can 
consider the example of parity 6 function. This function is implemented using the network 6 4 1 (four 
hidden neurons and one output neuron), as it is shown in Table 1. Training this network, we applied the rule 
(25)-(26) and (27)-(29) starting from the same randomly chosen weighting vector. With the rule (27)-(29) 
we get the convergence after 5874 epochs. The distribution of the weighted sums after the convergence is 
shown for the output neuron and one of the hidden neurons on the Fig. 6a and Fig. 6b, respectively. 
 

                                                 
3 http://www-2.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/neural/bench/cmu (a number of references to 
the different experimental results and the summary of these results can be also found at the same directory) 
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(a) output neuron after convergence of the learning algorithm. The weighted sums belong to the ring, whose 

longer border is limited by the circle of a radius 1.5 

 
(b) the first neuron from the hidden layer after convergence of the learning algorithm (the rule (29) was 

used, 5874 epochs). The weighted sums are distributed in such a way that the neuron's output belongs to the 
wide interval approximately equal to the half of the unit circle 

 
Fig. 6 Distribution of the weighted sums for the output neuron and one of the hidden neurons  

for the network 6 4 1 implementing the parity 6 function after the convergence.  
64 weighted sums are shown as points on the complex plane 

 
 
It is clearly visible from the Fig. 6a that the weighted sums for the output neuron belong to the narrow ring, 
whose longer border is limited by the circle of a radius 1.5. For the first hidden neuron (Fig. 6b) the 
weighted sums are distributed in such a way that the neuron's output belongs to the wide interval 
approximately equal to the half of the unit circle. Actually, exactly this is our target: we introduce the 
hidden layer in order to replace a Boolean non linearly separable function (parity N) by the multiple-valued 
function with a binary output, however with informally multiple-valued inputs. With the rule (25)-(26), 

which does not contain factor 
kjz
1

 as a variable part of the learning rate for the hidden neurons, we can't get 

the convergence even after 20000 epochs with the same starting weighting vector. 
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(a) the first neuron from the hidden layer after 10000 epochs without convergence using the rule (26). The 

weighted sums are distributed within a narrow domain and the neuron's output also belongs to a quite 
limited domain 

 
(b) the first neuron from the hidden layer after 20000 epochs without convergence using the rule (26). 

Almost no changes in comparison with the picture (b) after additional 10000 epochs. 
 

Fig. 7 Distribution of the weighted sums for the output neuron and one of the hidden neurons  
for the network 6 4 1 implementing the parity 6 function without a self-adaptation of the learning rate 

and without the convergence.  
64 weighted sums are shown as points on the complex plane 

 
 
Fig. 7a shows that after 10000 epochs the weighted sums for the first hidden neuron are concentrated within 
a narrow domain, which looks as a stripe. As a result, the neuron's output belongs to a very limited domain. 
It is not binary, but it is not enough multiple-valued. Projections of too many weighted sums on the unit 
circle coincide with each other. There are practically no changes after additional 10000 epochs (Fig. 7b). 

This example is typical. It shows that the use of the factor 
kjz
1

 as a variable part of the learning rate is very 

important for the hidden neurons. It makes the learning rate self-adaptive to the particular case. 
The two spirals problem is a well known classification problem, where the two spirals points to (see 

Fig. 8) must be classified as belonging to the 1st or to the 2nd spiral. The two spirals data also was trained 
completely without the errors using the networks n 40 1 (800123 epochs is a median of 11 experiments) 
and n 30 1 (1590005 epochs is a median of 11 experiments). For example, for MLF with an adapted 
learning algorithm there is the result with about 4% errors for the network n 40 1 and with about 14% 
errors for the network n 30 1 after about 150000 learning epochs [14]. This result is reported as one of 
the best ones. It should be mentioned that after  the same number of learning epochs the MLMVN shows 
not more than 2% of errors for the network n 40 1 and not more than 6% errors for the network 
n 30 1.  
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On the other hand the two spirals data set containing 194 points was separated into training (98 points) 

and testing (96 points) subsets (the first two points were assigned to the training subset, while the next two 
points were assigned to the testing subset, etc). After training using the first subset, the prediction capability 
was tested using the second one. For this experiment we used the networks containing 26, 28, …, 40 hidden 
neurons on the single hidden layer. The networks with the larger number of the hidden neurons are trained 
much faster, but the prediction results are approximately the same for all the networks. Table II shows, how 
the number of training epochs decreases with increasing of the number of the hidden neurons. The median, 
minimal and maximal numbers of the epochs for nine experiments with each network are shown.  
 
Table II Correspondence between the number of hidden neurons and the number of training epochs  

 
The prediction results for the two spiral benchmark are stable for all the considered networks from 
2 26 1 till 2 40 1. The prediction rate for the two spirals testing set obtained as a result of nine 
independent experiments with each network is 68-72%. These results that obtained using a smaller and 
simpler network are comparative with the best known results (70-74.5%) [12]. It should be also mentioned 
that some additional series of the experiments show that it is possible to obtain even a better prediction rate 
(74-75%). This result appeared very randomly (2 times per 100 independent experiments with the 2 40 1 
network), so it can not be recognized as a stable result, but it is an additional argument for the high potential 
capabilities of MLMVN. 

The same experiment was performed for the "sonar" data set, but using the simplest possible network 
60 2 1 (the "sonar" problem initially depends on 60 input parameters) with only two neurons in the 
hidden layer. The "sonar" data set contains 208 samples. 104 of them are recommended to be used for 
training and another 104 for testing, respectively. The training process requires 400-2400 epochs and a few 
seconds, respectively. This statistics is based on 50 independent experiments. The prediction results are also 
very stable. The predictions rate from the same experiments is 88-93%. This result is comparative with the 
best known result for the fuzzy kernel perceptron (94%) [12] and SVM (89.5%), however our result is 
obtained using the smallest possible network. On the other hand the whole "sonar" data set was trained 
completely without the errors using the same simplest network 60 2 1. This training process requires 
from 817 till 3700 epochs according to the results of 50 experiments. 

 
Fig. 8 Two spirals 
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V. CONCLUSIONS 

In this paper a new feedforward neural network was proposed. A multi-layered neural network based 
on multi-valued neurons (MLMVN) is a network with a traditional feedforward architecture and a multi-
valued neuron (MVN) as a basic one. A single MVN has the higher functionality than the traditional 
neurons. Its learning, which is reduced to the movement along the unit circle, does not require the 
differentiability of the activation function. The learning process is completely determined by the simple 
linear rule. These properties make MLMVN more powerful than traditional feedforward networks. The 
backpropagation learning algorithm for MLMVN that was developed in the paper also does not require the 
differentiability of the activation function. Being similar to the classical backpropagation algorithm, it has 
some important differences that make it more stable and less heuristic. The main differences are: sharing of 
the network error among all the neurons of the network and a self adaptation of the learning rate for the 
hidden neurons.  

These advantages of the MLMVN make it possible to solve different prediction, recognition and 
classification problems using a smaller network and a simpler learning algorithm than ones traditionally 
used. MLMVN shows a good performance in convergence speed. Its testing using several traditional 
benchmarks shows better or comparative to the best known results.  
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