
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Randomized Search Heuristics as an Alternative to
Exact Optimization

Ingo Wegener

No. CI-168/04

Technical Report ISSN 1433-3325 February 2004
Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46902712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Randomized Search Heuristics as an

Alternative to Exact Optimization

Ingo Wegener�

FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund,
Germany

ingo.wegener@uni-dortmund.de

Abstract. There are many alternatives to handle discrete optimization
problems in applications. Problem-specific algorithms vs. heuristics, ex-
act optimization vs. approximation vs. heuristic solutions, guaranteed
run time vs. expected run time vs. experimental run time analysis. Here,
a framework for a theory of randomized search heuristics is presented.
After a brief history of discrete optimization, scenarios are discussed
where randomized search heuristics are appropriate. Different random-
ized search heuristics are presented and it is argued why the expected op-
timization time of heuristics should be analyzed. Afterwards, the tools for
such an analysis are described and applied to some well-known discrete
optimization problems. Finally, a complexity theory of so-called black-
box problems is presented and it is shown how the limits of randomized
search heuristics can be proved without assumptions like NP �= P. This
survey article does not contain proofs but hints where to find them.

1 Introduction

For our purposes it makes no sense to look for the ancient roots
of algorithmic techniques. The algorithmic solution of large-scale
problems was not possible before computers were used to run the
algorithm. Some of the early algorithms of this period like Dantzig’s
simplex algorithm for linear programming from 1947 and Ford and
Fulkerson’s network flow algorithm from 1956 based on improve-
ments along augmenting paths were quite successful. In the fifties
and early sixties of the last century one was satisfied when the algo-
rithm was running efficiently – in most experiments. Nowadays, we
know that the simplex algorithm has an exponential worst-case run

� Supported in part by the Deutsche Forschungsgemeinschaft (DFG) as part of the
Collaborative Research Center “Computational Intelligence” (SFB 531) and by
the German Israeli Foundation (GIF) in the project “Robustness Aspects of Al-
gorithms”.

time and that small randomized pertubations in the input turn all
inputs into easy ones with respect to the input distribution based
on the pertubation (Spielman and Teng (2001)). The first network
flow algorithm was only pseudo-polynomial. Now, we know of many
polynomial network flow algorithms. However, the original simplex
algorithm still finds many applications and the best network flow
algorithms use ideas of Ford and Fulkerson.

Later, algorithm design was accompanied by a run time analy-
sis. Many algorithms have good worst-case run times. Randomized
algorithms are often simpler and faster than deterministic ones. The
NP-completeness theory proves that there are many important prob-
lems which are intractable – with respect to the worst case run time
(see Garey and Johnson (1979)). At the same time, approximation
algorithms guaranteeing good solutions in short time were presented
and analyzed (see Hochbaum (1997)). All the experts believe that
NP �= P ant it makes sense to argue under this hypothesis. In the
seventies many people believed that we cannot solve NP-hard opti-
mization problems for large instances. As computers got faster, ap-
plications were showing that this belief is wrong. There are problem-
specific algorithms solving the “typical cases” of difficult problems
sufficiently fast. In most cases, it was impossible to describe the
“easy instances” for such algorithms. Nowadays, we have a tool-
box of algorithmic techniques to design such problem-specific algo-
rithms. Among them are greedy algorithms, dynamic programming,
branch-and-bound, relaxation techniques, and many more. Random-
ized algorithms are now very common and even derandomization
techniques exist. The community working on the design and analy-
sis of algorithms has broadened its scope. The experimental tuning
of algorithms named algorithm engineering is part of this discipline.
However, the community is still focused on problem-specific algo-
rithms.

Randomized search heuristics (RSH) in their pure form are algo-
rithmic techniques to attack optimization problems with one general
strategy. They are heuristics in a strong sense. Typically, they do not
guarantee any (non-trivial) time bound and they do not guarantee
any quality of the result. Randomized local search (RLS) is a mem-
ber of this family of algorithms if it does not use problem-specific
neighborhoods. Simulated annealing (SA) and all kinds of evolution-

ary algorithms (EA) (including evolution strategies (ES) and genetic
algorithms (GA)) are typical RSHs. The idea was to simulate some
successful strategy of engineering (annealing) or nature (evolution).
The history of these RSHs dates back to the fifties and sixties of the
last century. Despite some early successes they did not find so many
applications before the late eighties since computers were not fast
enough. Nowadays, people in applications like these heuristics and
people in the algorithm community have ignored them for a long
time. Indeed, these RSHs were considered as the black sheeps in
the algorithm community. There were several reasons for this. RSHs
were often claimed to be the best algorithm for a problem which
was wrong because of very clever problem-specific algorithms. Argu-
ments supporting in particular EAs were based on biology and not
on a run time analysis. So there were many “soft” arguments and
the two communities were using different languages. The approach
to analyze RSHs like all other algorithms is a bridge between the
two communities and both of them have started to use this bridge.

In this overview, we try to describe this approach. First, it is
important to discuss the scenarios where we recommend RSHs in
their pure form. This is necessary to avoid many common misunder-
standings, see Section 2. In Section 3, we present the general form
of a black-box algorithm and discuss some types of SA and EA. As
already described, we propose the run time analysis of RSHs. In
Section 4, we discuss what we expect from such an approach and
compare this approach with the other theoretical results on RSHs.
In Section 5, we describe the tool-box for the analysis of RSHs and,
in Section 6, we present some results in order to show that we can
realize our goals – at least in some cases. In the classical scenario,
design and analysis of algorithms is accompanied by complexity the-
ory showing the limits of the algorithmic efforts. In Section 7, we
argue that an information-restricted scenario, namely the scenario
of black-box algorithms, can be used to prove some limits of RSHs.
Since the available information is limited, these limits can be proved
without complexity theoretical hypotheses like NP �= P. We finish
with some conclusions.

2 Scenarios for the Application of Randomized

Search Heuristics

The first fact we have to accept is that no algorithmic tool will be
the best for all problems. We should not expect that some RSH will
beat quicksort or Dijkstra’s shortest path algorithm. Besides these
obvious examples there are many problems where the algorithm com-
munity has developed very efficient algorithms. The following state-
ment seems to be true in almost all situations. If a problem has
a structure which is understood by the algorithm community and if
this community has made some effort in designing algorithms for the
problem, then an RSH in its pure form will be worse with respect to
its run time and/or the quality of its results. Many people working
on RSHs do not agree with this statement. This is due to a misun-
derstanding. The statement argues about RSHs in their pure form.
If they have problem-specific components, they can be competitive
but then they are already hybrid algorithms combining ideas from
RSHs with problem-specific ideas. If such hybrid algorithms are pos-
sible, one should consider them as alternative. For hybrid algorithms,
it is difficult to estimate whether the general idea of an RSH or a
problem-specific module is the essential part.

The question is whether there are scenarios where one should
apply RSHs in their pure form. We think of two such scenarios.

In many projects, optimization problems are subproblems and a
good algorithm has to be presented in short time. If no expert has
considered the problem before and if there are no experts in algo-
rithm design in the project and if there is not enough time and/or
money to ask a group of experts, then an RSH can be a good choice.
In real applications, the small amount of knowledge about the prob-
lem, should be used. RSHs have turned out to be a robust tool which
for many problems leads to satisfactory results. In this scenario, we
expect that better algorithms exist but are not available. In many
applications, there is no knowledge about the problem. As an exam-
ple, think of the engineering problem to “optimize some machinery”.
The engineer can choose the values of certain free parameters and
each choice “realizes a machine”. There exists a function f : M → R

where f(x) is the quality of the machine x ∈ M. Because of the
complexity of the application, the function f is not known and f(x)

has to be estimated by an experiment or its simulation with a com-
puter. Here, a problem-specific approach is impossible and RSHs are
a good choice.

Summarizing, there are scenarios where RSHs are applied in (al-
most) pure form. Whenever possible, one should apply all available
problem-specific knowledge.

3 How Randomized Search Heuristics Work

We consider the maximization of some function f : S → R where S is
a finite (discrete) search space. The main difference between an RSH
and a problem-specific algorithm is the following. The RSH does not
assume knowledge about f. It may sample some information about
f by choosing search points x ∈ S and evaluating f(x). Therefore,
we may think of a black box containing f and the algorithm not
knowing f can use the black box in order to get the answer f(x) to
the query x. Hence, the general form of a black-box algorithm can
be described as follows.

The general black-box algorithm (BBA)

The initial information I0 is the empty sequence. In the tth step,
based on It−1 = ((x1, f(x1)), . . . , (xt−1, f(xt−1))), the algorithm com-
putes a probability distribution pt on S, chooses xt according to pt,
and uses the black box to obtain f(xt). If a stopping criterion is
fulfilled, the search is stopped and a search point xi with maximal
f -value is presented as result.

All known RSHs fit into this framework. Most often, they are even
more specialized. The information It is considered as (unordered)
multiset and not all the information is kept in the storage. There is
a bound s(n) on the number of pairs (x, f(x)) which can be stored
and in order to store the new pair (xt, f(xt)) one has to throw away
another one. This is called an s(n)-BBA. RLS and SA work with
s(n) = 1 and, for EAs, s(n) usually is not very large.

If s(n) = 1, we need a search operator which produces a new
search point x′ depending on the current search point x and its f -
value. Then we need a selection procedure which decides whether x′

replaces x. RLS and SA restrict the search to a small neighborhood of
x. SA allows that worse search points replace better ones. The special
variant called Metropolis algorithms accepts x′ with a probability of
exp(−(f(x) − f(x′))/T) for some fixed parameter T ≥ 0, called the
temperature, if f(x′) < f(x), and it accepts x′, if f(x′) ≥ f(x). SA
varies T using a so-called cooling schedule. This schedule depends
on t and we have to store the point of time besides the search point.
EAs prefer more global search operators. A so-called mutation step
on S = {0, 1}n flips each bit independently with a probability pn,
its typical calue is 1/n. Because of this global search operator EAs
can decide to accept always the best search points (the so-called plus
strategy). The s(n) search points kept in the storage are called popu-
lation and it is typical to produce more than one search point before
selecting those which survive. These phases are called generations.
There are many selection procedures that we do not have to discuss
in detail. If the population size is larger than 1, we also need a selec-
tion procedure to select those search points (called individuals) that
are the objects of mutation. Finally, larger populations allow search
operators depending on more than one individual. Search operators
working on one individual are called mutation and search operators
working on at least two (in most cases exactly two) individuals are
called crossover or recombination. This leads to many free param-
eters of an EA and all the parameters can be changed over time
(dynamic EAs for a fixed schedule and adaptive EAs otherwise). In
the most general form of self-adaptive EAs, the free parameters are
added to the search points (leading to a larger search space) and
are changed by mutation and recombination. The class of pure EAs
is already large and there is the freedom of adding problem-specific
modules.

4 Arguments for the Analysis of the Expected

Optimization Time

Do we need a theory of RSHs? They are heuristics – so let us try
them! There is a common belief that a theory would improve the un-
derstanding of RSHs and, therefore, the choice of the parameters and
the application of RSHs. Theory is contained in all the monographs

on RSHs. The question is what type of theory is the right choice.
The following discussion presents the different types of theoretical
approaches (with an emphasis on EA theory) and some personal
criticism in order to motivate our approach.

In general, we investigate a class of functions or, equivalently,
a problem consisting of a class of instances. Many RSHs are quite
complex but even simple variants like the Metropolis algorithm or a
mutation-based EA with population size 1 have a complex behavior
for most problems. People in classical algorithm theory design an
algorithm with the aim that the algorithm is efficient and the aim
that they are able to prove this. Here, the algorithm realizes a gen-
eral search strategy which does not support its analysis. Thus, the
analysis of RSHs has to overcome different obstacles than classical
algorithm analysis.

This has led many researchers to simplify the situation by analyz-
ing a so-called model of the algorithm. Afterwards, experiments “ver-
ify” the quality of the model. This procedure is common in physics.
There, a model of “nature” is necessary since “reality” cannot be de-
scribed accurately. An algorithm and, therefore, an RSH is nothing
from nature but an abstract device made by humans. It is specified
exactly and, ignoring computer failures, we can analyze the “true
algorithm” and a model is not necessary. An analysis of the algo-
rithm can give precise results (at least in principle) and this makes
a verification superfluous. Moreover, the dimension of our “world”,
namely the search space, is not limited. Experiments can tell us only
something about those problem dimensions n that we can handle
now. A theoretical analysis can give theorems for all n.

In order to handle large populations, people have studied the
model of infinite populations (described by probability vectors) which
are easier to handle. There are only few papers investigating the er-
ror of this model with respect to a restricted population size and
time (Rabani, Rabinovich, and Sinclair (1998) and Ollivier (2003)).

An RSH is a stochastic process and one can study the dynamics
of this process. Such results are often on a high technical level but
the results are hard to interpret if we are interested in the process
as an optimization algorithm.

There are also many papers analyzing quite precisely the result of
one step of the algorithm. How much do we improve the best known

f -value? How close (in distance in the search space) do we approach
an optimal search point? The complete knowledge of the one-step
behavior is (in principle) enough to derive the complete knowledge
of the global behavior of the process. However, this derivation is the
hard step. As known from classical algorithm analysis, we should
be happy to understand the asymptotic behavior of algorithms and,
for this, it is not necessary to have a precise understanding of the
one-step behavior. Well-known concepts as schema theory or build-
ing block hypothesis have led people to wrong conjectures about
algorithms.

Finally, there are many papers proving the convergence of RSHs
to the optimum. Without an estimate of the speed of convergence,
these results are of limited interest – at least in finite search spaces.
Convergence is guaranteed easily if we store the best search point
ever seen. Then an enumeration of the search space suffices as well
as a mutation operator giving a positive probability to reach every
search point.

Our approach is to analyze an RSH as any other randomized al-
gorithm. The only difference is that an RSH cannot know whether
it has found an optimal search point. In most applications, the stop-
ping criterion is not a big problem. Therefore, we investigate an
RSH as an infinite stochastic process (without stopping criterion)
and analyze random variables of interest.

A typical example is the random variable describing the first
point of time where an optimal search point is passed to the black
box. Its expected value is called the expected run time or optimiza-
tion time of the algorithm. In order to analyze restart techniques,
it is also interesting to analyze the success probability, namely the
probability of the event that the run time is bounded by some given
time bound. We have to be careful since we only count the number
of search points and, therefore, the number of f -evaluations, and
not the effort to compute the search points. For most RSHs, this is a
good measure. If one applies time-consuming procedures to compute
search points, one has to analyze also these resources.

5 Tools for the Analysis of Randomized Search

Heuristics

As in classical algorithm analysis, one has to develop a good intu-
ition how the given RSH works for the considered problem. Then
one can describe ”typical runs” of the RSH. They are approaching
the optimum by realizing sequentially certain subgoals. One tries to
estimate the run time for reaching subgoal i assuming that subgoal
i−1 has been realized. This can lead to a time bound ti(n) for Phase
i. The aim is to estimate the error probability εi(n) that Phase i is
not finished within ti(n) steps. The sum of all εi(n) is an upper
bound on the probability that the run is not typical, e. g., that it
takes longer than the sum of all ti(n). Obviously, the last subgoal
has to be the goal to find an optimal search point. Often it is possible
to obtain exponentially small εi(n) implying that even polynomially
many subgoals lead to an exponentially small error probability. (See
Jansen and Wegener (2001) for a typical application of this method.)

A related proof technique is to define an f -based partition
(A1, . . . , Am) of the search space, i. e. x ∈ Ai, y ∈ Aj , and j > i
imply f(x) < f(y) in the case of maximization and Am contains
exactly the optimal search points. Then one has to estimate the ex-
pected time ti(n) of finding a search point in some Aj, j > i, given
that a search point in Ai is known. Here we have to assume that we
never forget the best of the search points ever seen.

As already mentioned, the stochastic process P describing an
RSH can be quite complex. A simple and powerful idea (which typ-
ically is difficult to realize) is to construct a stochastic process P ′

which is provably slower than P but easier to analyze than P . In
order to obtain good bounds, P ′ should not be ”much slower” than
P . The notion slower can be defined as follows. A random variable
X is called not larger than X ′ if Prob(X ≤ b) ≥ Prob(X ′ ≤ b) for
all b. The process P is not faster than P ′ if the random variable
T describing a good event for P is not larger than the correspond-
ing random variable T ′ for P ′. (See Wegener and Witt (2003) for a
typical application of this method.)

Finally, it is not always the right choice to measure the progress
of the RSH with respect to the given function f (often called fitness
function) but with respect to some pseudo-fitness function g known

in classical algorithm design as potential function. Note that the
algorithm still works on f and g is only used in the analysis of the
algorithm. (See Droste, Jansen, and Wegener (2002) for a typical
application of this method.)

During all the calculations, one needs technical tools from prob-
ability theory, among them all the famous tail inequalities (due to
Markoff, Tschebyscheff, Chernoff, or Hoeffding). Other tools are the
coupon collector’s theorem or results on the gambler’s ruin problem.

Finally, we mention a special technique called delay sequence ar-
guments. This technique has been introduced by Ranade (1991) for
routing problems and has been applied only once for RSHs (Dietzfel-
binger, Naudts, van Hoyweghen, and Wegener (2002)). The idea is
the following. If we expect that a stochastic process is finished in time
t(n) with large probability, we look for an event which has to happen
if the stochastic process is delayed, i. e., if it runs for more than t(n)
steps. Then we estimate the probability of the chosen event. Despite
of the simplicity of the general idea, this method has been proven to
be quite powerful.

Most RSHs apply in each step the same techniques of search and
selection. This implies that the same experiment is applied quite
often. The experiments are influenced by the available information
It but in many aspects these experiments are independent or almost
independent. Because of the large number of experiments during a
search or a subphase of a search, many interesting random variables
are highly concentrated around their expected values. This simplifies
the analysis and can lead to sharp estimates.

6 The Analysis of Randomized Search

Heuristics on Selected Problems

The analysis of the expected optimization time of RSHs is far behind
the analysis of classical algorithms. One reason is that the number
of researchers in this area is still much smaller and that they have
started to work on this subject much later. It will take several years
until the research on the analysis of RSHs can reach the status of
classical algorithm analysis. Nevertheless, it is not possible to give
here an overview of all the results obtained so far. We discuss some

results to motivate the reader to take a closer look to the original
papers and this section has a focus on results obtained in our research
group.

In order to build a bridge between the RSH community gather-
ing in conferences like GECCO, PPSN, CEC, and FOGA and the
classical algorithm community gathering in conferences like STOC,
FOCS, ICALP, STACS, SODA, and ESA, we have tried to work on
topics of the following kind:

– solving open problems on RSHs discussed in the RSH community,
– analyzing RSHs on functions which are considered as typical in

the RSH community,
– analyzing RSHs on classes of functions described by structural

properties, and
– analyzing RSHs on well-known problems of combinatorial opti-

mization.

Concerning EAs, the American school (Holland (1975), Gold-
berg (1989), Fogel (1995)) proposed GAs where crossover is the
most important search operator and the European school (Rechen-
berg (1994), Schwefel (1995)) proposed ESs merely based on mu-
tation. Concerning combinatorial optimization, several results have
shown that mutation is essential. What about crossover? Even after
30 years of debates there was no example known where all mutation-
based EAs have a super-polynomial optimization time while a generic
GA works in expected polynomial time. Jansen and Wegener (2002),
the conference version appeared 1999, were the first to present such
a result. The considered function is quite simple but the analysis
is complicated. Crossover can be useful only between two quite dif-
ferent search points. Selection prefers good search points which can
decrease the diversity of the population. The GA which has been an-
alyzed does not use special modules to preserve the diversity and one
has to prove that the population nevertheless is diverse enough. This
paper proves a trade-off of super-polynomial versus polynomial. This
has been improved in a later paper (Jansen and Wegener (2001)) to
exponential versus polynomial. This is due to the definition of an
artificial function which supports the analysis of the GA.

In this survey article, it does not make sense to introduce func-
tions that have been discussed intensively in the RSH community.

Each pseudo-boolean function f : {0, 1}n → R can be described
uniquely as a polynomial

f(x) =
∑

A⊆{1,...,n}
wA

∏

i∈A

xi

Its degree is the maximal |A| where wA �= 0. We can consider func-
tions with bounded degree. Degree-1 functions, also called linear
functions, were investigated in many papers. In particular, the ex-
pected run time of the (1+1) EA (population size 1, mutations flip-
ping the bits independently with probability 1/n, replacing x by x′

if f(x′) ≥ f(x) in the case of maximization) was of interest. Droste,
Jansen, and Wegener (2002) have proved that the expected run time
is always O(n log n) and Ω(n log n) if Ω(nε), ε > 0, weights are non-
zero. The proof applied the techniques of potential functions and the
investigation of slower stochastic processes.

The maximization of degree-2 or quadratic polynomials is NP-
hard. Wegener and Witt (2002) have investigated RSHs on certain
quadratic functions. They have proved that restart techniques can
decrease the expected optimization time from exponential to poly-
nomial and they have presented a quadratic polynomial where all
mutation-based EAs are slow. Moreover, they have investigated the
case of monotone quadratic polynomials. A polynomial is called
monotone if it can be represented with non-negative weights af-
ter replacing some xi by 1 − xi. This allows that the polynomial
is monotone increasing with respect to some variables and mono-
tone decreasing with respect to the other variables. Wegener and
Witt (2003) have generalized this approach to degree-d polynomials.
For RLS and the (1+1) EA with a small probability of flipping bits
they have proved an upper bound of O(2d · (n/d) · log(n/d)) which
is optimal since there is a corresponding lower bound for the sum of
all xid+1 · · ·x(i+1)d, 0 ≤ i ≤ �n/d�−1. The proof of the upper bound
is mainly based on the investigation of slower stochastic processes.

Finally, there is some recent progress in the analysis of EAs on
combinatorial optimization problems. Many earlier results consider
RLS and some results consider SA. Scharnow, Tinnefeld, and We-
gener (2002) have shown that the complexity of the problem depends
on the choice of the corresponding fitness function. The sorting prob-
lem is the best investigated computer science problem. It can be

considered as the problem of minimizing the unsortedness. There
are many measures of unsortedness known from the design of adap-
tive sorting algorithms. E. g., we count the number of inversions,
i. e., of pairs of objects in incorrect order or we count the number
of runs or, equivalently, the number of adjacent pairs of objects in
incorrect order. A variant of the (1+1) EA working on the search
space of all permutations can sort in expected time O(n2 log n) using
the number of inversions (and several other measures of unsorted-
ness) but it needs exponential time using the number of runs. The
same effect has been shown in the same paper for the single-source-
shortest-paths problem. The search points are directed trees rooted
at the source and, therefore, containing paths to all other vertices. If
the fitness is described by the sum of the lengths of the paths from
the source to all other vertices, each black-box search heuristic needs
exponential time while time O(n3) is enough on the average if the
fitness is described by the vector containing all the path lengths.

The (1+1) EA is surprisingly efficient for the minimum spanning
tree problem (Neumann and Wegener (2003)). For graphs on n ver-
tices and m edges and edge weights bounded by wmax, the expected
run time is bounded by O(m2(log n + log wmax)).

The maximum matching problem is more difficult for RSHs.
There are example graphs where SA (Sasaki and Hajek (1988)) and
the (1+1) EA (Giel and Wegener (2003)) need expected exponential
time. In the latter paper it is shown that the (1+1) EA is efficient on
certain simple graphs. More important is the following result. The
(1+1) EA is a PRAS (polynomial-time randomized approximation
scheme), i. e., an approximation ratio of 1 + ε can be obtained in
expected polynomial time where the degree of the polynomial de-
pends on 1/ε. Due to the examples mentioned above this is the best
possible result. The true aim of search heuristics is to come close to
the optimum, exact optimization is not necessary.

7 Black-Box Complexity – The Complexity

Theoretical Background

The general BBA works in an information-restricted scenario. This
allows the proof of lower bounds which hold for any type of BBA.

This theory based on Yao’s minimax principle (Yao (1977)) has been
developed and applied by Droste, Jansen, and Wegener (2003). A
randomized BBA is nothing but a probability distribution on the set
of deterministic BBAs. This is obvious although it can be difficult to
describe this probability distribution explicitly if a randomized BBA
is given. For a deterministic BBA storing the whole history it does
not make sense to repeat a query asked earlier. For a finite search
space, the number of such deterministic BBAs is finite. In many
cases, also the set of problem instances of dimension n is finite.

In such a situation, Yao’s minimax principle states that we obtain
a lower bound on the expected optimization time of each randomized
BBA by choosing a probability distribution on the set of problem
instances and proving a lower bound on the average optimization
time of each deterministic BBA where the average is taken with
respect to the random problem instance. The key idea is to consider
algorithm design as a zero-sum game between the algorithm designer
and the adversary choosing the problem instance. The algorithm
designer has to pay 1 Euro for each query. Then Yao’s minimax
principle is a corollary to the minimax theorem for two-person zero-
sum games.

Applying this theory leads to several interesting results. It is
not too hard to prove that randomized BBAs need Ω(2d + n/ log n)
queries on the class of monotone d-degree polynomials proving that
RLS and the considered variant of (1+1) EA are close to optimal
for these functions. Also, the exponential lower bound for the single-
source-shortest-paths problem follows from this theory.

Many people have stated that EAs are particularly efficient on
unimodal functions f : {0, 1}n → R. Such functions have a unique
global optimum and no further local optimum with respect to the
neighborhood of Hamming distance 1. We investigate unimodal func-
tions f : {0, 1}n → {0, . . . , b} with a bounded image set. The upper
bound for EAs is the trivial bound O(nb) which also can be real-
ized by deterministic local search. This bound indeed is not far from
optimal. In a different framework, Aldous (1983) has investigated
one-to-one unimodal functions and has proved that their black-box
complexity is 2n/2 up to polynomial factors. In applications, the case
of limited b is more interesting. Droste, Jansen, and Wegener (2003)
have proven a lower bound of Ω(b/ log2 b) if 2n ≤ b = 2o(n).

Sometimes, upper bounds on the black-box complexity are sur-
prisingly small. This happens if the algorithm uses much time to
evaluate the information contained in It. This can lead to polynomi-
ally many queries for NP-equivalent problems. These algorithms use
exponential time to evaluate the information. If we restrict this time
to polynomial, lower bounds are based on hypotheses like NP�=P. It
is an open problem to prove in such cases exponential lower bounds
for s(n)-BBAs and small s(n).

Conclusions

Applications in many areas have proved that RSHs are useful in
many situations. A theory on RSHs in the style of the theory on
problem-specific algorithms will improve the understanding of RSHs
and will give hints how to choose the free parameters depending on
the problem structure. Moreover, RSHs will be included in lectures
on efficient algorithms only if such a theory is available. It has been
shown that such a theory is possible and that first results of such a
theory have been obtained.

References

1. Aldous, D. (1983). Minimization algorithms and random walk on the d-cube. The
Annals of Probability 11, 403–413.

2. Dietzfelbinger, M., Naudts, B., van Hoyweghen, C., and Wegener, I. (2002). The
analysis of a recombinative hill-climber on H-IFF. Accepted for publication in
IEEE–Trans. on Evolutionary Computation.

3. Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of the (1+1) evo-
lutionary algorithm. Theoretical Computer Science 276, 51–81.

4. Droste, S., Jansen, T., and Wegener, I. (2003). Upper and lower bounds for ran-
domized search heuristics in black-box optimization. Accepted for publication in
Theory of Computing Systems.

5. Fogel, D. B. (1995). Evolutionary Computation: Toward a New Philosophy of Ma-
chine Intelligence. IEEE Press, Piscataway, NJ.

6. Garey, M. R. and Johnson, D. B. (1979). Computers and Intractability. A Guide
to the Theory of NP-Completeness. W. H. Freeman.

7. Giel, O. and Wegener, I., (2003). Evolutionary algorithms and the maximum
matching problem. Proc. of 20th Symp. on Theoretical Aspects of Computer Sci-
ence (STACS), LNCS 2607, 415–426.

8. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, MA.

9. Hochbaum, D. (ed.) (1997). Approximation Algorithms for NP-Hard Problems.
PWS Publishing Company, Boston.

10. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Univ. of Michi-
gan, MI.

11. Jansen, T. and Wegener, I. (2001). Real royal road functions – where crossover is
provably essential. Proc. of the Genetic and Evolutionary Computation Conference
(GECCO ’2001). Morgan Kaufmann, San Mateo, CA, 375–382.

12. Jansen, T. and Wegener, I. (2002). The analysis of evolutionary algorithms – a
proof that crossover really can help. Algorithmica 34, 47–66.

13. Neumann, F. and Wegener, I. (2003). Randomized local search, evolutionary algo-
rithms, and the minimum spanning tree problem. Submitted for publication.

14. Ollivier, Y. (2003). Rate of convergence of crossover operators. Random Structures
and Algorithms 23, 58–72.

15. Rabani, Y. Rabinovich, Y., and Sinclair, A. (1998). A computational view of pop-
ulation genetics. Random Structures and Algorithms 12, 314–330.

16. Ranade, A. G. (1991). How to emulate shared memory. Journal of Computer and
System Sciences 42, 307–326.

17. Rechenberg, I. (1994). Evolutionsstrategie ’94. Frommann-Holzboog, Stuttgart.
18. Sasaki, G. H. and Hajek, B. (1988). The time complexity of maximum matching

by simulated annealing. Journal of the ACM 35, 387–403.
19. Scharnow, J., Tinnefeld, K., and Wegener, I. (2002). Fitness landscapes based

on sorting and shortest paths problems. Proc. of 7th Conf. on Parallel Problem
Solving from Nature (PPSN-VII), LNCS 2439, 54–63.

20. Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Wiley, New York.
21. Spielman, D. A. and Teng, S.-H. (2001). Smoothed analysis of algorithms: why the

simplex algorithm usually takes polynomial time. Proc. of 33rd ACM Symp. on
Theory of Computing (STOC), 296–305.

22. Wegener, I. and Witt, C. (2002). On the analysis of a simple evolutionary algorithm
on quadratic pseudo-boolean functions. Accepted for publication in Journal of
Discrete Algorithms.

23. Wegener, I. and Witt, C. (2003). On the optimization of monotone polynomials by
simple randomized search heuristics. Accepted for publication in Combinatorics,
Probability and Computing.

24. Yao, A. C. (1977). Probabilistic computations: Towards a unified measure of com-
plexity. Proc. of 17th IEEE Symp. on Foundations of Computer Science (FOCS),
222–227.

