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Abstract- During the last decades, numerous heuris-
tic search methods for solving multi-objective optimiza-
tion problems have been developed. Population oriented
approaches such as evolutionary algorithms and par-
ticle swarm optimization can be distinguished into the
class of archive–based algorithms and algorithms with-
out archive. While the latter may lose the best solutions
found so far, archive based algorithms keep track of
these solutions. In this article a new particle swarm op-
timization technique, called DOPS, for multi-objective
optimization problems is proposed. DOPS integrates
well–known archiving techniques from evolutionary al-
gorithms into particle swarm optimization. Modifica-
tions and extensions of the archiving techniques are em-
pirically analyzed and several test functions are used to
illustrate the usability of the proposed approach. A sta-
tistical analysis of the obtained results is presented. The
article concludes with a discussion of the obtained re-
sults as well as ideas for further research.

1 Introduction

Evolutionary algorithms (EA) have proved very efficient
in solving multi-objective optimization (MO) problems.
In [Coe99, Deb01], surveys of the existing variants and
techniques for EAs are provided. Nearly all the considered
algorithms are able to find a good approximations of the true
Pareto front but the distribution of the obtained solutions
differs among different approaches [DAPM00, KC99].

In the last years, several new nature–inspired algorithms
have been developed [BDT99, CDG99, KE95]. Particle
swarm optimization (PSO) mimics the social behavior of
a flocks of birds in order to guide swarms of particles to-
wards the most promising regions of the search space. PSO
has proved very efficient in solving a plethora of problems
in science and engineering [Abi02, CH01, LPV02, PV02a].
However, the MO case has not been studied thoroughly,
and only a few developments are reported in the literature
[CS02, Hu02, PV02b].

This article introduces an extension of PSO for MO
problems, called DOPS. Starting from the idea of introduc-

ing elitism (archiving) into PSO, different methods of se-
lecting and deleting particles from the archive are analyzed
to generate a satisfactory approximation of the Pareto front
with evenly distributed solutions along it.

The rest of this article is organized as follows: in Sec-
tion 2, an overview over existing archiving techniques is
given, followed by a description of the basic principles of
the proposed technique. In Section 3, the implementation
details are described briefly, while in Section 4 the different
comparison methods are sketched. In Section 5, prelimi-
nary results are reported, and the paper closes with some
concluding remarks and future research directions in Sec-
tion 6.

2 Archiving Techniques

Archiving is the process of maintaining the best (non–
dominated) solutions found during the course of a MO algo-
rithm. Several archiving schemes are proposed in the liter-
ature, exhibiting different behavior and possessing different
theoretical properties [JOS01, KC03, LTZD02, RA00]. A
crucial characteristic which is often used for the classifica-
tion of the archiving schemes in categories is the size of the
archive which is used to maintain the solutions.

In simple MO problems, unbounded archives seem an
acceptable choice. In such schemes, a new vector is ac-
cepted into the archive if it is non–dominated by all solu-
tions already stored in it. All members of the archive that
are dominated by the new vector are removed. This pro-
cedure is proved to converge towards the true Pareto front
under certain assumptions [KC03].

As EA are applied in more difficult problems which
consist of a multitude of objective functions, bounding the
archive size while maintaining a satisfactory representation
of all non–dominated solutions found, becomes very impor-
tant. Moreover, archiving schemes with guaranteed conver-
gence to a set of solutions that approximates the true Pareto
front are highly desirable, although such schemes usually
involve sets of parameters whose initial configuration is crit-
ical for the algorithm’s efficiency [LTZD02]. A common
bounded archiving scheme consists of an archive with a
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bounding size. As soon as the number of solutions in the
archive reaches this bounding size, new vectors are accepted
only if they dominate some of the already stored vectors.
Thus, the archive size cannot exceed its bound. Archiving
algorithms which are similar to the aforementioned proce-
dure have been proposed and their convergence properties
have been analyzed [KC03, RA00]. However, such schemes
may not provide satisfactorily distributed solutions, leaving
some parts of the Pareto front unreachable.

The deficiencies of the bounded archiving techniques
described above may be overcome by allowing non–
dominated vectors to be replaced by new vectors which
may improve the distribution of the archive. Unfortu-
nately, the required computational burden is usually very
high for problems with more than a few objective func-
tions [KC03]. Several different techniques, such as the
adaptive grid archiving algorithm [KC03], have been re-
cently proposed with promising results. It is a common be-
lief that the development of efficient archiving techniques
is still an appealing topic and the increasing use of parallel
MO evolutionary algorithms (MOEAs) in real life applica-
tions is expected to stimulate research towards this direc-
tion [VVZL03].

In the following we will demonstrate how archiv-
ing techniques for multi-objective evolutionary algorithms
(MOEAs) can be transferred to PSO.

3 Implementation Details

3.1 Basic Concepts of KEA and particle swarm opti-
mization

The software package KEA (Kit for Evolutionary Algo-
rithms), a freely available software package for MOEAs and
related MO algorithms, was used to develop a new multi–
objective PSO algorithm, called DOPS [BBSM+03]. A
sample screen–shot is depicted in Fig. 1. KEA was devel-
oped during a one–year student project course at the Depart-
ment of Computer Science at the University of Dortmund.
This software package is under further development and has
been successfully applied in research and in complex real–
world optimization problems [MMBS03].

DOPS belongs to the class of multi–objective PSO al-
gorithms as presented in [CS02]. PSO was initially pro-
posed by Kennedy and Eberhart [KE95]. It is a popula-
tion based optimization method inspired by the behavior of
bird flocks, which employs a swarm of particles to probe
the search space. A particle of the swarm is completely de-
scribed by three main concepts: its current position in the
search space, a memory of its best previous position and an
information regarding the best position ever attained by a
topological neighborhood of it. In theglobal PSO variant,
the whole swarm is considered as the neighborhood of each

Figure 1: KEA - Kit for Evolutionary Algorithms

particle, while in thelocal variant the neighborhood usually
consists of just a few particles. Letxi(t) be the current po-
sition of thei–th particle at time–stept, vi(t) be its velocity,
pBesti be its own best previous position, and gBest be the
best position ever attained by the swarm. Then, the swarm
is manipulated according to the equations [KE01]:

vi(t + 1) = w vi(t) + c1 r1 (pBesti − xi(t))+
c2 r2 (gBest− xi(t)),

xi(t + 1) = xi(t) + vi(t + 1), (1)

wherer1, r2 are realizations of uniformly distributed ran-
dom variables in[0, 1]. The parametersc1 andc2 are called
cognitiveandsocial parameters, respectively, and they are
used to bias the particle’s search towards its own best previ-
ous position and towards the best experience of the swarm.
The parameterw is calledinertia weightand it is used to
control the trade–off between the global and the local ex-
ploration ability of the swarm.

It is not intuitively clear how gBest and pBest can be
defined in the case of a MO problem. DOPS uses a Pareto
based approach, where for the gBest and for each pBest, an
archive of fixed size containing non–dominated positions is
maintained. The procedure is described in the next section.

3.2 A New Approach

Several new techniques for the selection of gBest and the
update of an overfilled archive have been employed. Dele-
tion methods include an adaptive grid as well as a function
based technique that uses a relative distance metric, and a
randomized approach. Besides uniform and anti–clustering
selection, a new technique, which is based on the success of
a particle, is proposed.

Each particle is assigned a selection fitness value and a
deletion fitness value according to two functions,fsel and



fdel, respectively. The selection fitness function,fsel, is de-
fined as a measure of influence of each particle on the diver-
sity of the Pareto front and it has to be distinguished from
the fitness value of the objective function. The selection fit-
ness of a particle increases with its distance to its nearest
neighbor.

Each time, a gBest or pBest position is needed, an
archive member is selected through a roulette wheel se-
lection overfsel. If the number of non–dominated posi-
tions found surpasses the archive size, then a member of
the archive is chosen for deletion according to the deletion
fitness,fdel.

DOPS enables the user to choose between three different
selection functions and three different deletion functions,
that are defined in the following section.

3.3 Deletion Functions (Factor C)

Adaptive Grid (Type 0): This function uses an adaptive
grid that is resized in every generation. This extends
the grid variant presented in [CS02]. The grid sepa-
rates the objective space in so called hypercubes. The
edge length of a cube is calculated as follows:

edgelengthj =
c (maxj −minj)

swarm size
, (2)

wheremaxj andminj are the maximal and minimal
values reached by an archive member, evaluated with
thej–th objective function.

The real–valued constantc ∈ [0, 1] represents a selec-
tion pressure. The probability that two particles share
the same hyper–cube is inversely proportional to this
value (a value ofc = 0.5 was used in the following
experiments).

The deletion fitness is defined as

fdel = |H|2, (3)

where|H| is the number of particles in the same hy-
percube.fdel punishes particles that form huge parti-
cle clusters.

Distance Metric (Type 1): This function uses a distance
metric that is based on the relative distances in the
archive:

fdel =
∑
∀j 6=i

1
Dc

ij

, (4)

where,

Dij =

√√√√# objectives∑
k=1

(
xi − xj

maxi −mini

)2

. (5)

A problem may occur since the determination of all
pairwise distances has time complexity ofO(n2).

Table 1: DOPS Design Factors.
Factor Symbol Description Level

A p number of particles {20; 50}
B w inertia {0.3; 0.5}
C fdel deletion method {0; 1; 2}
D n repository size {1; 20; 50; 100; 200}
E fsel selection method {0; 1; 2}

Randomized Distance Metric (Type 2):is a randomized
variation of Type 1, that chooses only

√
n particles

for a pairwise fitness calculation.

In the following section, three different strategies to select
particles from the archive are proposed.

3.4 Selection Functions (Factor E)

Uniform Selection (Type 0): Every particle has the same
selection probability:

fsel = 1/n, (6)

wheren denotes the number of particles in the archive
(at time–stept).

Anti–Clustering Selection (Type 1): This technique is
based on the deletion probabilityfdel:

fsel = 1/fdel. (7)

The inverse offdel is used to prevent particles in huge
clusters to be chosen as gBest or pBest.

Success–Based Selection (Type 2):For each particle, the
algorithm keeps track of how often it is chosen as
gBest or pBest, and how often this choice leads to an-
other non–dominated particle (parameters ch and suc,
respectively):

fsel =
suc

1 + ch
+

∑
∀i suci

1 +
∑

∀i chi
. (8)

The idea behind this function is to reward archive
members that often lead to new non–dominated par-
ticles by favoring them in the selection process.

4 Comparisons

4.1 Methodology

To analyze the effects of the new archiving technique de-
scribed in Section 3, on the PSO’s performance, different
parameter configurations have been tested. The parameters
in Table 1 have been varied, whereas other PSO parame-
ters, such asc1 andc2, were held constant. Ten independent



simulation runs were performed for each parameter setting,
using the test functions described in Section 4.2. In MO
problems, there are two main goals to achieve: convergence
to the true Pareto front and maintenance of the solutions’
diversity in the Pareto front. Both goals have to be taken
into consideration when investigating the performance of an
algorithm. Several metrics have been proposed for the es-
timation of the closeness to the Pareto front, the degree of
diversity, or both. A set of different metrics of the first two
kinds are usually considered to investigate the performance
of an algorithm. Each of these metrics is intended to reveal
specific aspects of the algorithm’s performance properties.
Yet, for the first study of an algorithm, the first question that
needs to be addressed is whether or not the algorithm can
address both aims, and subsequently to evaluate its perfor-
mance on these aims. For this purpose, thehyper–volume
metric, which is described later in Section 4.3, was used,
because the resulting value of the simulation runs can be
easily compared.

4.2 Test Functions

Many of test functions have been proposed for testing MO
heuristic algorithms [FF96, KDZ01, Kur90]. Most of them
were developed having in mind problem features that may
pose difficulties on detecting the Pareto optimal front and
maintaining the population’s diversity in the current non–
dominated front. In this study three well–known test func-
tions have been used:τ6 [ZDT00], DTLZ-9 [KDZ01] and
Kursawe’s function [Kur90]. All functions are restricted on
a problem that consists of two,10–dimensional objective
functions.

Test Function 1 (ZDT-6): This test function is a compo-
sition of three functionsf1, g andh:

Minimize τ6(~x) = (f1(x1), f2(x)), (9)

where

f1(~x) = 1− exp(−4x1) sin6(6πx1),
f2(~x) = g(x2, . . . , xm)·

h(f1(x1), g(x2, . . . , xm)),

g(x2, . . . , xm) = 1 + 9
4

√
(
∑m

i=2 xi)
9

,

h(f1, g) = 1− (f1/g)2,

and~x = (x1, . . . , xm), m = 10, andxi ∈ [0, 1].
The density of solutions increases as we move away
from the Pareto optimal front and vice–versa. Even
more, the solutions are non–uniformly distributed
along the non–convex Pareto front (biased for solu-
tions for whichf1(x) goes up to one). Therefore, it is
hard to obtain a well–distributed non–dominated set.

Test Function 2 (DTLZ-9): This is a scalable test func-
tion with constraints. The Pareto optimal front is a
curve withf1 = f2 = · · · = fM−1, while the density
of solutions gets thinner towards the Pareto optimal
region. In [KDZ01] the parameter settingsn = 10M
has been proposed, so the number of variables,n, has
to be larger than the number of the objectives,M . In
our experiments, the settingn = 5M was selected.
The true Pareto optimal front lies on the intersection
of all (M − 1) constraints, indicating the difficulty of
solving this problem.

Minimize fj(~x) =
bjn/Mc∑

i=b(j−1)n/Mc

x0.1
i , (10)

j = 1, 2, . . . ,M ;
subject to gj(~x) = f2

M (~x) + f2
j (~x)− 1 ≥ 0,

for j = 1, 2, . . . , (M − 1);
0 ≤ xi ≤ 1,

for i = 1, 2, . . . , n.

Test Function 3 (Kursawe): In this test function, the
Pareto optimal set is non–convex as well as discon-
tinuous, and, thus, the values of the decision variables
that correspond to the true Pareto optimal solutions
are difficult to obtain:

Minimize F (f1(~x), f2(~x)), (11)

where f1(~x) =
n−1∑
i=1

−10 exp−0.2
√

x2
i +x2

i+1 ,

f2(~x) =
n∑

i=1

(|xi|0.8 + 5 sin3(xi)).

4.3 Performance Metric

A number of performance metrics have been proposed
in [Deb01, Kno02] due to the fact, that a proper compari-
son of the results of a multi–objective optimizer is a com-
plex issue. For this purpose, KEA includes several R–
metrics [HJ98], attainment surfaces [FF96] and the hyper–
volume metric (S–metric) [ZT99]. The R–metrics com-
pare two non–dominated sets on the basis of some utility
functions and determine the expected number of occasions
where the solutions of one set are better than the other. At-
tainment surfaces use a set of non–dominated solutions to
define a surface that delineates the objective space into a
dominated and a non-dominated region. The S–metric cal-
culates a hyper-volume of a multi-dimensional region en-
closed by the non-dominated set to be assessed and a refer-
ence point to measure the diversity and the convergence of
the obtained non-dominated set. Depending on the chosen



Figure 2: Interaction between particle swarm size and
repository size.D denotes the factor repository size. Higher
Y values represent better results.

reference point, two non–dominated sets can have different
relative S–metric values. In this study we use the S-metric,
according to which the closeness of the Pareto optimal front
as well as the diversity of the obtained solutions can be both
evaluated.

We give here a formulation of the S–metrics used in min-
imization problems: for a non–dominated setA of vectors
zi, i = {1, . . . , |A|}, and a reference vectorzref which is
dominated by all members ofA, the region which is domi-
nated byA and bounded byzref is defined as the set:

R(A, zref) =
⋃

i∈{1,...,|A|}

R(zi, zref), (12)

where,

R(zi, zref) = y < zref and zi < y, y ∈ Rk.

Then, the S-metric is the area defined by the setR(A, zref).
In minimization problem, negative measures shall be
avoided for all possible non–dominated sets. In [ZT99], Zit-
zler proposed a reference vector whose components are the
maximum value in each objective. In our experiments, the
reference vectorzref = (1.4, 8.6) was selected.

5 Evaluation

5.1 Questions

Our objective is to develop a robust archiving method that
improves the expected performance of a PSO. A robust

Figure 3: ZDT-6: Interaction between repository size (D)
and selection method (E).

archiving method is affected minimally by other sources of
variability such as swarm size, inertia weights or the ran-
dom seed that is used to set up the random generator. Thus,
interactions have to be considered. Therefore, statistical de-
sign of experiments techniques were used to set up an ex-
perimental design as shown in Tab. 1 [BPV02]. The parti-
cle swarm size is varied as well as the values of the inertia
weight, the repository size, and the selection and deletion
methods. This design enables the estimation of a good pa-
rameter setting of the repository size.

A classical PSO without any explicit archive keeps track
of the best value gBest only. It is considered in our con-
text as a PSO with an archive size1. Archive based PSO
maintain an archive with an archive size greater than1.

5.2 The statistical model

Since the analysis techniques used in the following rely
heavily on the assumption of normality, several tests were
performed to verify the normality assumption of the PSO
performance results. The performance of a PSO algorithm
was measured as the fitness valueY ∈ R of the S-metric
as introduced in Sec. 4.3. These tests show no evidence to
reject the assumption of a Gaussian distribution.

Thus, we are able to model a functional relationship be-
tween the expected performanceE(Y ) of the PSO algo-
rithm and its parameter values shown in Tab. 1 through a
regression model. In the following the model algebra in-
troduced by Wilkinson and Rogers will be used to describe
the regression model [WR73]. Since the S-metric described
in Sec. 4.3 was used to generate the result, a maximization



Figure 4: ZDT-6: Boxplots visualizing the influence of dif-
ferent repository sizes on the responseY . A classical PSO
has a repository size of 1, since it stores the best solution
found so far.

task is analyzed in the following.
The statistical software package R was used to analyze

the experimental results [IG96]. A stepwise selection func-
tion stepAIC , that computes Akaike’s information crite-
rion (AIC) for a fitted parametric model, was used to select
a linear model automatically. AIC is defined as twice the
difference between the number of parameters and the max-
imized log-likelihood.

5.3 Results

In the following the analysis of the ZDT-6 objective func-
tion is described. The test functions DTLZ-9 and Kursawe
were analyzed in a similar manner. Starting with the ini-
tial model Y ∼ A*B*C*D*E , the suggested final model
reads: Y ∼ A+B+C+D+E+A:B+A:C+A:D+C:E+D:E .
Since the selection on the basis of AIC is conservative, the

Table 2: ZDT-6: ANOVA

Df Sum Sq Mean Sq F value Pr(>F)
A 1 63.13 63.13 197.86 0.0000
C 2 10.01 5.01 15.69 0.0000
D 1 180.51 180.51 565.70 0.0000
E 2 2.33 1.16 3.65 0.0263
A:D 1 2.25 2.25 7.04 0.0080
D:E 2 4.58 2.29 7.18 0.0008
Residuals 1602 511.17 0.32

dropterm function was used to determine the final model
Y ∼ A+C+D+E+A:D+D:E manually. The ANOVA table
for this model is shown in Tab.2. Considering the effect of
the main factors, we can conclude that factorA (swarm size)
has a significant effect. The PSO with50 particles performs
better than the PSO with20 particles. The effect of factor
B (inertia weight) is not significant. The same results for
factorA andB were obtained from the analysis of the other
two test functions, DTLZ-9 and Kursawe.

Important for the analysis of the archiving techniques are
factors that are directly related to the archive:C, D, andE.
FactorC (deletion method) has a significant effect, methods
1 and2 are superior compared to method0. Consider factor
D (repository size) next: Increasing the repository size from
1 to 20 particles and from20 to 50 particles results in an im-
proved performance (a t-test was performed to compare the
average fitness values) of the PSO, cf. Fig. 4. Further aug-
mentations of the repository size lead to non–significant im-
provements. Thus, a repository size of50 particles seems to
be a good compromise between archiving cost and archiving
benefit. FactorE (selection method) has no significant ef-
fect and is considered in the model due to its interaction with
factor D only. This model includes interactions between
the number of particles and the repository size (interaction
A:D ) and interactions between the repository size and the
selection method (interactionD:E ). Interaction plots reveal
no conflicting interactions between the particle swarm size
and the repository size (Fig. 2), whereas the interactions be-
tween repository size and selection method need some fur-
ther analysis: Fig. 3 leads to the conclusion that selection
method0 can be recommended since: a) it shows the same
improvement as the other methods if repository sizes of1,
20, and50 particles are compared and b) it is superior to the
other methods if the repository size is increased.

It is important to mention that the results discussed so
far are not specific for the ZDT-6 test function only. The
analysis of the other two test functions reveals similar re-
sults. This can be interpreted as a strong hint that archiving
can improve the PSO performance significantly and will be
subject of further research.

6 Summary and Outlook

A new particle swarm optimization algorithm for multiple
criteria optimization problems was introduced in the first
part of this paper. The swarm method solved well–known
test problems covering difficult cases of multi–criteria opti-
mization. Experimental design techniques have been used
to set up the experiments and to perform the data analy-
sis. The obtained results gave first hints that the use of
archives in PSO for MCO problems improves their perfor-
mance. First experimental results demonstrate that moder-
ate archive sizes represent a good compromise between the



costs and benefits of archiving. Experiments analyzing the
different selection and deletion strategies will be subject of
further research.

For future research, it might be useful to transfer the
results to other test functions specially real–world applica-
tions.
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