
A Parallel Approach to Elevator Optimization Based on Soft
Computing

Thomas Bartz–Beielstein∗ Sandor Markon† Mike Preuss∗

∗Universtität Dortmund
D-44221 Dortmund, Germany

{tom,preuss}@LS11.cs.uni-dortmund.de

†FUJITEC Co.Ltd. World Headquarters
28-10, Shoh 1-chome, Osaka, Japan

markon@rd.fujitec.co.jp

1 Introduction

Efficient elevator group control is a complex combinatorial optimization problem. Recent
developments in this field include the use of reinforcement learning, fuzzy logic, neural networks
and evolutionary algorithms [Mar95, CB98]. This paper summarizes the development of a
parallel approach based on evolution strategies (ES) that is capable of optimizing the neuro-
controller of an elevator group controller [SWW02]. It extends the architecture that was used
for a simplified elevator group controller simulator [MAB+01, MN02, BEM03].

Meta-heuristics might be useful as quick development techniques to create a new gener-
ation of self-adaptive elevator group control systems that can handle high maximum traffic
situations. Additionally, population based meta-heuristics such as evolution strategies can be
easily parallelized. In the following we will consider a parallel elevator supervisory group con-
trol (ESGC) system that is based on a set of neural network-driven controllers, one per elevator
shaft. These may be situated in one or several different buildings as long as communication
between controller instances is enabled.

Since the ESGC problem is very costly in terms of computation time, a related dynamical
system was introduced as simplified model: the sequential ring (S-ring) [MAB+01]. Using the
S-ring also ensures that other researchers can compare their results with the ones presented
here.

The rest of this article is organized as follows: in Sec. 2, we introduce one concrete variant of
the elevator group control problem and show its relationship to the S-ring. The parallelization
is described in Sec. 3, whereas Sec. 4 presents the experimental setup. Simulation results are
analyzed in Sec. 5. The final Section combines a summary with an outlook.
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2 The Elevator Supervisory Group Controller Problem

2.1 Problem Definition

The elevator ESGC problem subsumes the following problem: how to assign elevators to
passengers in real-time while optimizing different elevator configurations with respect to overall
service quality, traffic throughput, energy consumption etc. This problem is related to many
other stochastic traffic control problems, especially with respect to the complex behavior and
to many difficulties in analysis, design, simulation, and control [Bar86, MN02].

The ESGC problem considered here consists of a neural network (NN) controlling the
behavior of elevator cars during simulation of a predefined traffic situation. Some of the NN
connection weights can be modified, so that different weight settings and their influence on
the ESGC performance can be tested. These are subject to optimization by means of an ES.
Measuring performance of one specific weight setting by simulation automatically leads to
stochastically disturbed (noisy) fitness function values.

2.2 A Simplified ESGC Model

We propose a simplified and easily reproducible ESGC model, the ‘S-ring model’. Elevator cars
in the S-ring model have unlimited capacity, and passengers are taken, but not discharged. The
running directions of the cars are only reversed at terminal floors. All floors are indistinguish-
able: there are identical passenger arrival rates on every floor, and identical floor distances.
The cars use uniform running and stopping times, and the whole model uses discrete time
steps.

The system state at time t is given as

[s0(t), c0(t), . . . , sn−1(t), cn−1(t)] ≡ x(t) ∈ X = {0, 1}2n.

There are n sites, each with a 2-bit state (si, ci), and with periodic boundary conditions
at the ends. si is set to 1 if a server is present on the ith floor, otherwise it is set to 0. The
same applies to the ci bits: they are set to 1 if at least one customer is waiting on the ith
floor. Instead of using synchronous updating at all sites independently, one updating cycle is
decomposed into n steps as follows: The state evaluation is sequential, scanning the sites from
n− 1 to 0, then again around from n− 1 (see Fig. 1) [MAB+01, BEM03]. At each time step,
one triplet ξ ≡ (ci, si, si+1) is updated, the updating being governed by the stochastic state
transition rules, and by the policy π : X → {0, 1}. A new customer arrives on the ith floor
with probability p, and we consider m different elevator cars.

The S-ring can be used to define an optimal control problem, by equipping it with an
objective function Q (here E is the expectation operator):

Q(n, m, p, π) = E
(∑

ci

)
. (1)

Q can be read as the expected number of floors with waiting customers. For given parameters
n, m, and p, the system evolution depends only on the policy π, thus this can be written as
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Figure 1: The S-ring as an elevator system

Q = Q(π). The optimal policy is defined as

π∗ = arg min
π

Q(π). (2)

The basic optimal control problem is to find π∗ for given parameters n, m, and p.

The S-ring can be solved exactly for small problem sizes, while still exhibiting non-trivial
dynamics.

3 A Parallel Approach

The previously introduced S-ring objective function (Eq. 1) describes the quality of a policy
π for given parameters p, n, and m, thus for a fixed building and passenger arrival rate. In
a more realistic setting, an ESGC has to cope with different passenger flow levels within each
day. Furthermore, if the same ESGC is intended for use with multiple building configurations,
it might be useful to have solutions for many floor/server number combinations at hand. This
leads us to a policy table, with a p, n, and m setting as key and an optimized policy as value.

The motivation for computing such a table by means of a parallel architecture is twofold.
Considering the offline case where control policies must be optimized before they are applied,
the number of entries and thus the number of noisy optimal control problems to solve can be
quite high. This results in a vast amount of required computation time which is reduced by
parallelization.

On the other hand, a distributed optimization process may also be interpreted as a model
for a network of controllers, each of them optimizing the policy for their current traffic situation
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Figure 2: Agent-centered view of decentralized task assignment based on a policy table. Each
agent locates an empty entry, marks it as reserved, computes the associated policy optimization
task and stores the best found policy back to the table (see Sec. 3.2).

online. Controllers situated in different buildings or wings of the same building may profit
from exchanging good policies with each other if these are applicable.

3.1 Successful Genes

The parallel architecture presented in the following is independent of the ESGC problem. It
simply depends on the separability of the overall task which is the optimization of controller
policies for the different policy table entries, each of these corresponding to a basic optimal
control problem as described in Sec. 2.2. By modelling ESGC problem instances with an S-ring
model we strive for keeping computational effort low and analysis as simple as possible. In the
context of evolutionary algorithms, policies can be interpreted as successful genes that have
to be combined to make up a complete genome.

Each table entry (or gene) consists of five columns. The numbers in the first column specify
the arrival probabilities p, whereas the entries in the second and third column characterize the
properties of a building which are the number of floors n and of elevator cars m, respectively.
The policy π and the resulting objective value Q are given in column four and five.

It may be worthwhile to explore the possibility of policy exchange between different build-
ings. For identical n and m values, interchangeability is guaranteed. But even if these are
different, policies may be transferred if buildings belong to the same equivalence class. For
now, there are no concrete rules for deriving these, but we expect to get some hints from the
experimental results. However, this implies solving the problem of conversion between NN
weight configuration vectors ~x of different cardinalities.

3.2 Parallel Model of Computation

The parallel model of computation suggested here is suited for offline as well as online policy
optimization. For the latter, independent computational units are mandatory because each
of the controllers must remain fully operable even if all connections to other controllers are
lost. In this respect, any centralized communication scheme would fail. Therefore, we assume
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Figure 3: Exchange of tables between the agents. Note that each agent keeps its own and
a number of remote agents tables. The set of agents known as well as the table set is not
necessarily complete. At a regular time interval, each agent uses one of the connections
indicated by an arrow to exchange the table sets (in progress for agents 3 and 2 and agents 1
and 2 here).

that a given number of distributed agents with the ability to communicate with each other
can be employed for computing a policy table. In case of an online optimization, these may
be embedded with the controllers of a network.

Every agent starts with an empty table of size l, where only n, m, and p are set for each
entry. Additionaly, entries store a status which is one of: empty, reserved, or finished ,
all set to empty at the beginning. Then, the agents run the following algorithm (see Fig. 2):

1. determine entry i randomly
2. beginning with i, select the next empty entry
3. if no empty entry is found, select the next reserved entry, starting again with entry i
4. if no reserved entry is found, terminate
5. mark the selected entry as reserved and perform policy optimization on the associated

n, m, and p setting
6. store the best found policy and mark the selected entry as finished
7. jump to step 1.

At the same time, agents exchange their tables assynchronously by use of the Newscast
Computing scheme [JvS02]. Besides the local table, each agent also stores and communicates
copies of the most recent known tables from some of the other agents, see Fig. 3. The recipients
then use these to update the local table by importing entries marked as reserved or finished.

The suggested model of computation ensures robustness as well as scalability. The latter is
guaranteed by a fixed upper limit of stored tables and connections within each agent. Thereby,
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broadcasting is avoided at the cost of a logarithmic rather than constant update time order.
The number of employed agents is only limited by the number of table entries. As policies for
the entries remaining empty will be computed by the agents left, agent loss during runtime
generally only slows down the process. There is however an inherent drawback that comes with
decentralized task assignment: if two agents chose to work on the same task before they inform
each other that it is reserved, some work is doubled. To minimize this effect, communication
speed has to be chosen such that the average time needed to finish one task is much higher
than the one used up for sending the latest results.

3.3 Implementation

The suggested parallel model of computation has been implemented based on the DREAM
platform [ACE+02]. This is a peer-to-peer-based multiagent system primarily designed for,
but not limited to, the run of parallel evolutionary algorithms.

4 Experiments

Experimental layout has been driven by two major aims. First, we need to make sure that
using an evolution strategy for optimizing a single ESGC problem is successful so that it
provides a NN weight setting ~x resulting in a better fitness f(~x) than assigned to the default
weight setting. The latter uses 1.0 for each weight, corresponding to a controller behavior
where every waiting customer is served.

Second, we want to test the efficiency of our parallelization model. Here, we face a diffi-
culty introduced by the use of a peer-to-peer-based system: the underlying hardware is highly
inhomogeneous, as opposed to more traditional parallel architectures where processing units
reside in one physical machine or several identical machines are connected by a fast network.
Neither speed nor network latency times of the nodes building the DREAM are equal. Fur-
thermore, nodes can get temporarily disconnected or even switched off during runtime of the
experiment. Thus, speedup or efficiency measuring requires some modifications to established
definitions.

4.1 Modified Speedup Definition

A common definition [BH92] for speedup achieved by a parallel algorithm running on p pro-
cessors is:

S(p) =
Time needed with the fastest serial code on a specific parallel computer

Time needed with the parallel code using p processors on the same computer
. (3)

Efficiency, defined as the fraction of linear speedup attained, is then E(p) = S/p. As the
number of processors employed does not allow for rating the computational power available
in an inhomogeneous parallel architecture, we measure this resource by applying a Linpack
benchmark on each processing node. Thus, p in (3) can be resembled by the relative power
p̂rel according to the following definition:
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p̂rel =
∑

n p̂i

p̂single
(4)

Here, n denotes the number of nodes available, p̂i is the measured computing power of one
node, and p̂single is the measured power of the node which performed the sequential run. Note
that the problem dealt with is not optimization of one policy but of a whole policy table. The
fastest serial code solving this problem therefore simply implements a loop over all entries of the
table without any communication. As we try to determine the speedup of our parallelization
model rather than of the utilized evolutionary algorithm, speedup considerations concerning
parallel evolutionary algorithms as in [AT02] are not applicable here.

Figure 4: Fitness of optimized policies compared to the default policy fitness for 60 differ-
ent settings of p, n, and m, representing all entries of a policy table. The configurations are
orderered by the default policies quality, thus from rather simple to harder optimization prob-
lems. Note that the objective function employed here describes a minimization problem by
definition. Presented numbers are averages over 25 runs, error bars represent the standard
deviation.

4.2 ES settings

For optimization of the policy associated with each policy table entry, a (10+50) evolution
strategy with fixed number of evaluations is employed. Due to the stochastically disturbed na-
ture of our objective function, higher selection pressures seem to be counterproductive because
they tend to prefer outliers produced by noise rather than by good policies.

Each objective function evaluation requires simulating 1000 iterations of the appropriate
S-ring model. To allow for enhanced analysis possibilities, we use a slightly modified objective
function which results in counting the total number of customers waiting as opposed to the
number of floors with waiting customers. Extensive testing shows that the standard deviation
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of the noise generating process contributing to the resulting fitness is quite high, around
2.5%. Increasing the number of simulation steps lowers this level but also increases the effort
needed dramatically: for 100, 000 steps, the average inaccuracy due to noise drops down to
approximately 0.3%. We therefore chose to reevaluate the best policy found with the latter
setting while the former is used for fitness evaluation during optimization runs.

Several methods exist to increase the performance of evolution strategies on noisy objective
functions, one of which is threshold selection [MAB+01]. Another one employed here consists
of reevaluating surviving parents each generation and thus accumulating a moving average
fitness value for the long-lived individuals. Thereby, we hope to prevent extreme outliers
produced by the overlaying noise from dominating the population for too long.

4.3 Experiment layout

In order to simplify comparison of results, policy tables have been chosen such that they
contain multiples of 20 entries. The set of floor numbers n used is { 6, 8, 10, 12, 14 }, the set
of elevator car numbers m is { 2, 3, 4, 5 }. According to the desired table size, we apply one
to three arrival probabilities p from the set { 0.1, 0.2, 0.3 }.

Figure 5: Same data as in figure 4, here optimized policy fitness values are divided by the
default policy fitness value of the same configuration. This view shows the distribution of the
optimization potential easily exploited.

5 Evaluation

We now separately evaluate the quality of policy optimization by means of an evolution strategy
and the degree of parallelization for optimizing a whole policy table achieved by the model of
computation outlined in Sec. 3.
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Table 1: Optimization results for n = 10 (number of floors), subset of the results depicted in
figure 4. Values averaged from 25 runs. Columns p and m denote arrival rate and number of
elevators, respectively.

p m fitness std.dev. default fitness std.dev. fitness
default fitness gain in %

0.1 2 4.3184 0.8395 5.7441 0.0310 0.7518 24.8202
0.1 3 2.7730 0.4225 3.9795 0.0139 0.6968 30.3178
0.1 4 1.8921 0.2660 2.4791 0.0170 0.7632 23.6796
0.1 5 1.2229 0.1172 1.3916 0.0108 0.8788 12.1238
0.2 2 9.0038 1.1861 13.2834 0.0397 0.6778 32.2175
0.2 3 5.8251 1.0568 9.2437 0.0482 0.6302 36.9829
0.2 4 3.7591 0.3431 5.8183 0.0288 0.6461 35.3909
0.2 5 2.6162 0.3140 3.2956 0.0234 0.7938 20.6168
0.3 2 14.6404 3.2640 20.3561 0.0857 0.7192 28.0787
0.3 3 9.2216 1.1026 13.5584 0.0825 0.6801 31.9863
0.3 4 5.7845 0.3906 8.4397 0.0441 0.6854 31.4606
0.3 5 3.9424 0.5257 4.9908 0.0278 0.7899 21.0081

5.1 Optimization Quality

Although we allowed only 10000 objective function evaluations for each run, Fig. 4 indicates
that most of the optimized policies perform considerably better on the S-ring model than the
default (always stop) policies. Especially in situations with higher throughput per elevator
car when the default policy produces greater numbers of waiting customers, optimized policies
offer a valuable alternative. Table 1 provides numerical results for a subset of the 60 policies.

In Fig. 5, we provide an overview of the relative fitness decrease which illustrates a high
result diversity for one parameter setting as well as for configurations regarded as similarly
difficult. We believe that this points to a still unexploited optimization potential and thus
some room for improvement of the evolution strategies performance.

However, it must be stated that arrival probabilities p for all 60 configurations have been
rather low at 0.1 to 0.3. Separate test runs with higher values of p exhibited increasing loss of
optimization performance. We thus expect to find the best optimization results for medium
throughput situations.

Table 2: Speedup comparison for policy tables of size 20; averages from 10 runs.

efficiency E speedup S nodes n relative power prel runtime in s
∑

n p̂i in MFlops
1.0 1.0 1 1.0 4450.5304 59.9596

0.797 4.048 5 5.076 1099.4618 304.3315
0.491 4.827 10 9.823 922.0467 588.9555
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Table 3: Speedup comparison for policy tables of size 40; averages from 10 runs.

efficiency E speedup S nodes n relative power prel runtime in s
∑

n p̂i in MFlops
1.0 1.0 1 1.0 8659.2744 59.4248
0.8 4.716 5 5.895 1833.9098 350.3132

0.644 6.952 10 10.800 1245.5769 641.7714

Table 4: Speedup comparison for policy tables of size 60; averages from 10 runs.

efficiency E speedup S nodes relative power prel runtime in s
∑

n p̂i in MFlops
1.0 1.0 1 1.0 1.2571E+04 58.4689

0.724 5.463 5 7.547 2301.2433 441.2680
0.653 6.596 10 10.095 1905.7683 590.2685

5.2 Speedup Considerations

Unlike most other task distribution schemes, our parallelization model provides each processing
node with a full set of task results and is therefore suitable to the online case where policy
optimization is performed during controlling time without modification. On the other hand,
efficiency may be lower than can be expected for centralized schemes like server-client models.

Results for policy table sizes of 20, 40 and 60 entries are presented in tables 2, 3, and
4. The runtime column shows that computing time for a whole table has been considerably
reduced in the parallel case, leading to an efficiency up to 80% for 5 processing nodes. As the
number of nodes grows towards the number of table entries, efficiency decreases because entry
selection conflicts resulting in doubled work become more likely. It must be noted that using
bigger tables would have been desirable but also increases the runtime for the sequential run
dramatically.

6 Summary and Outlook

We introduced a parallel approach for a distributed ESGC problem. Due to the separabil-
ity of the objective function an efficient evaluation scheme could be implemented (successful
genes). Experiments performed confirm the applicability of this approach, proving efficiency
of the parallelization as well as significant quality gains due to optimization by means of an
evolutionary algorithm. The employed task distribution model is well suited to the offline
case where a policy set is fully optimized prior to its implementation and looks promising
concerning the online real-time optimization case. In future, the latter variant deserves some
more attention.

The current work can be extended by introducing car capacities, or implementing different
strategies that are working in parallel. Additionally, this methodology is transferable to other
traffic systems or, more general, other distributed control problems.
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