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Abstract. Efficient elevator group control is important for the oper-
ation of large buildings. Recent developments in this field include the
use of fuzzy logic and neural networks. This paper summarizes the de-
velopment of an evolution strategy (ES) that is capable of optimizing
the neuro-controller of an elevator group controller. It extends the re-
sults that were based on a simplified elevator group controller simulator.
A threshold selection technique is presented as a method to cope with
noisy fitness function values during the optimization run. Experimental
design techniques are used to analyze first experimental results.

1 Introduction

Elevators play an important role in today’s urban life. The elevator supervi-
sory group control (ESGC) problem is related to many other stochastic traffic
control problems, especially with respect to the complex behavior and to many
difficulties in analysis, design, simulation, and control [Bar86,MN02]. The ESGC
problem has been studied for a long time: first approaches were mainly based
on analytical approaches derived from queuing theory, in the last decades ar-
tificial intelligence techniques such as fuzzy logic (FL), neural networks (NN),
and evolutionary algorithms (EA) were introduced, whereas today hybrid tech-
niques, that combine the best methods from the different worlds, enable im-
provements. Therefore, the present era of optimization could be classified as the
era of computational intelligence (CI) methods [SWW02,BPM03]. CI techniques
might be useful as quick development techniques to create a new generation of
self-adaptive ESGC systems that can handle high maximum traffic situations.

In the following we will consider an ESGC system that is based on a neural
network to control the elevators. Some of the NN connection weights can be
modified, so that different weight settings and their influence on the ESGC
performance can be tested. Let x denote one weight configuration. We can define
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the optimal weight configuration as x∗ = arg min f(x), where the performance
measure f() to be minimized is defined later. The determination of an optimal
weight setting x∗ is difficult, since it is not trivial

1. to find an efficient strategy that modifies the weights without generating too
many infeasible solutions, and

2. to judge the performance or fitness f(x) of one ESGC configuration. The
performance of one specific weight setting x is based on simulations of spe-
cific traffic situations, which lead automatically to stochastically disturbed
(noisy) fitness function values f̃(x).

The rest of this article deals mainly with the second problem, especially
with problems related to the comparison of two noisy fitness function values.
Before we discuss a technique that might be able to improve the comparison of
stochastically disturbed values in section 3, we introduce one concrete variant
of the ESGC problem in the next section. The applicability of the comparison
technique to the ESGC problem is demonstrated in section 4, whereas section 5
gives a summary and an outlook.

2 The Elevator Supervisory Group Control Problem

In this section, we will consider the elevator supervisory group control prob-
lem [Bar86,SC99,MN02]. An elevator group controller assigns elevators to ser-
vice calls. An optimal control strategy is a precondition to minimize service
times and to maximize the elevator group capacity. Depending on current traffic
loads, several heuristics for reasonable control strategies do exist, but which in
general lead to suboptimal controllers. These heuristics have been implemented
by Fujitec, one of the world’s leading elevator manufacturers, using a fuzzy con-
trol approach. In order to improve the generalization of the resulting controllers,
Fujitec developed a neural network based controller, which is trained by use of
a set of the aforementioned fuzzy controllers, each representing control strate-
gies for different traffic situations. This leads to robust and reasonable, but not
necessarily optimal, control strategies [Mar95].

Here we will be concerned with finding optimal control strategies for des-
tination call based ESGC systems. In contrast to traditional elevators, where
customers only press a button to request up or down service and choose the
exact destination from inside the elevator car, a destination call system lets the
customer choose the desired destination at a terminal before entering the ele-
vator car. This provides more exact information to the group controller, and
allows higher efficiency by grouping of passengers into elevators according to
their destinations; but also limits the freedom of decision. Once a customer is
assigned to a car and the car number appears on the terminal, the customer
moves away from the terminal, which makes it very inconvenient to reassign his
call to another car later.

The concrete control strategy of the neural network is determined by the
network structure and neural weights. While the network structure as well as

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 1963–1974, 2003.
c©Springer-Verlag Berlin Heidelberg 2003



3

Fig. 1. The architecture of an elevator supervisory group control system [Sii97].

many of the weights are fixed, some of the weights on the output layer, which
have a major impact on the controller’s performance, are variable and there-
fore subject to optimization. Thus, an algorithm is searched for to optimize the
variable weights of the neural controller. The controller’s performance can be
computed by the help of a discrete-event based elevator group simulator. Fig.2
illustrates how the output from the simulator is visualized.

Unfortunately, the resulting response surface shows some characteristics which
makes the identification of globally optimal weights difficult if not impossible.
The topology of the fitness function can be characterized as follows:

– highly nonlinear,
– highly multi-modal,
– varying fractal dimensions depending on the position inside the search space,
– randomly disturbed due to the nondeterminism of service calls,
– dynamically changing with respect to traffic loads,
– local measures such as gradients can not be derived analytically.

Furthermore, the maximum number of fitness function evaluations is limited
to the order of magnitude 104, due to the computational effort for single simu-
lator calls. Consequently, efficient robust methods from the domain of black-box
optimization are required where evolutionary computation is one of the most
promising approaches. Therefore, we have chosen an evolution strategy to per-
form the optimization [BFM00,Bey01].

The objective function for this study is the average waiting time of all pas-
sengers served during a simulated elevator movement of two hours. Further ex-
periments will be performed in future to compare this objective function to more
complex ones, which e.g. take into account the maximum waiting time as well.
There are three main traffic patterns occurring during a day: up-peak (morning
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Fig. 2. Visualization of the output from the elevator group simulator.

rush hour), two-way (less intense, balanced traffic during the day), and down-
peak traffic (rush hour at closing time). These patterns make up the simulation
time to one third each, which forces the resulting controller to cope with different
traffic situations. As described above, the objective function values are massively
disturbed by noise, since the simulator calculates different waiting times on the
same objective variables (network weights), which stems from changing passen-
ger distributions generated by the simulator. For the comparison of different ES
parameter settings the final best individuals produced by the ES were assigned
handling capacities at 30, 35, and 40 seconds. A handling capacity of n passen-
gers per hour at 30s means that the elevator system is able to serve a maximum
of n passengers per hour without exceeding an average waiting time of 30s. These
values were created by running the simulator with altering random seeds and in-
creasing passenger loads using the network weights of the best individuals found
in each optimization run. Finally, to enable the deployment of our standard eval-
uation process, we needed a single figure to minimize. Therefore, the handling
capacities were averaged and then subtracted from 3000 pass./h. The latter value
was empirically chosen as an upper bound for the given scenario. The resulting
fitness function is shown in (9) and is called ‘inverse handling capacity’ in the
following.

3 Evolution Strategies and Threshold Selection

3.1 Experimental Noise and Evolution Strategies

In this section we discuss the problem of comparing two solutions, when the
available information (the measured data) is disturbed by noise. A bad solution
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might appear better than a good one due to the noise. Since minor differences
are unimportant in this situation, it might be useful to select only much better
values. A threshold value τ can be used to formulate the linguistic expression
‘much better’ mathematically:

x is much better (here: greater) than y ⇔ f̃(x) > f̃(y) + τ. (1)

Since comparisons play an important role in the selection process of evolutionary
algorithms, we will use the term threshold selection (TS) in the rest of this article.
TS can be generalized to many other stochastic search techniques such as particle
swarm optimizers or genetic algorithms. We will consider evolution strategies in
this article only. The goal of the ES is to find a vector x∗, for which holds:

f(x∗) ≤ f(x) ∀x ∈ D, (2)

where the vector x represents a set of (object) parameters, and D is some n-
dimensional search space. An ES individual is usually defined as the set of object
parameters x, strategy parameters s, and its fitness value f(x) [BS02].

In the following we will consider fitness function values obtained from com-
puter simulation experiments: in this case, the value of the fitness function de-
pends on the seed that is used to initialize the random stream of the simulator.
The exact fitness function value f(x) is replaced by the noisy fitness function
value f̃(x) = f(x) + ε. In the theoretical analysis we assume normal-distributed
noise, that is ε ∼ N (µ, σ2). It is crucial for any stochastic search algorithm to
decide with a certain amount of confidence whether one individual has a better
fitness function value than its competitor. This problem will be referred to as
the selection problem in the following [Rud98,AB01]. Reevaluation of the fitness
function can increase this confidence, but this simple averaging technique is not
applicable to many real-world optimization problems, i.e. if the evaluations are
too costly.

3.2 Statistical Hypothesis Testing

Threshold selection belongs to a class of statistical methods that can reduce the
number of reevaluations. It is directly connected to classical statistical hypothesis
testing [BM02].

Let x and y denote two object parameter vectors, with y being proposed as
a ’better’ (greater) one, to replace the existing x. Using statistical testing, the
selection problem can be stated as testing the null hypothesis H0 : f(x) ≤ f(y)
against the one-sided alternative hypothesis H1 : f(x) > f(y). Whether the null
hypothesis is accepted or not depends on the specification of a critical region
for the test and on the definition of an appropriate test statistic. Two kinds of
errors may occur in testing hypothesis: if the null hypothesis is rejected when
it is true, an alpha error has been made. If the null hypothesis is not rejected
when it is false, a beta error has been made. Consider a maximization problem:
the threshold rejection probability P−

τ is defined as the conditional probability,
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Fig. 3. Hypothesis testing to compare models: we are testing whether threshold selec-
tion has any significance in the model. The Normal QQ-plot, the box-plot, and the
interaction-plots lead to the conclusion that threshold selection has a significant effect.
Y denotes the fitness function values that are based on the inverse handling capacities:
smaller values are better, see (9). Threshold, population size µ and selective pressure
(offspring-parent ratio ν) are modified according to the values in Tab. 3. The function
α(t) as defined in (6) was used to determine the threshold value.
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that a worse candidate y has a better noisy fitness value than the fitness value
of candidate x by at least a threshold τ :

P−
τ := P{f(y) ≤ f(x) + τ | f(y) ≤ f(x)}, (3)

where f(x) :=
∑n

i=1 f̃(xi)/n denotes the sample average of the noisy val-
ues [BM02]. P−

τ and the alpha error are complementary probabilities:

P−
τ = 1− α. (4)

(4) reveals, how TS and hypothesis testing are connected: maximization of the
threshold rejection probability, an important task in ES based optimization, is
equivalent to the minimization of the alpha error. Therefore, we provide tech-
niques from statistical hypothesis testing to improve the behavior of ES in noisy
environments.

Our implementation of the TS method is based on the common practice in
hypothesis testing to specify a value of the probability of an alpha error, the so
called significance level of the test. In the first phase of the search process the
explorative character is enforced, whereas in the second phase the main focus
lies on the exploitive character. Thus, a technique that is similar to simulated
annealing is used to modify the significance level of the test during the search
process. In the following paragraph, we will describe the TS implementation in
detail.

3.3 Implementation Details

The TS implementation presented here is related to doing a hypothesis test to
see whether the measured difference in the expectations of the fitness function
values is significantly different from zero. The test result (either a ‘reject’ or ‘fail-
to-reject’ recommendation) determines the decision whether to reject or accept
a new individual during the selection process of an ES. In the following, we
give some recommendations for the concrete implementation. We have chosen a
parametric approach, although non-parametric approaches might be applicable
in this context too.

Let Yi1, Yi2, . . . Yin (i = 1, 2) be a sample of n independent and identically dis-
tributed (i.i.d.) measured fitness function values. The n differences Zi = Y1j−Y2j

are also i.i.d. random variables (r.v.) with sample mean Z and sample variance
S2(n). Consider the following test on means µ1 and µ2 of normal distributions:
if H0 : µ1 − µ2 ≤ 0 is tested against H1 : µ1 − µ2 > 0, we have the test statistic

t0 =
z − (µ1 − µ2)

s
√

2/n
, (5)

with sample standard deviation S (small letters denote realizations of the cor-
responding r.v.). The null hypothesis H0 : µ1 − µ2 ≤ 0 would be rejected if
t0 > t2n−2,1−α, where t0 > t2n−2,1−α is the upper α percentage point of the t
distribution with 2n− 2 degrees of freedom.

Summarizing the methods discussed so far, we recommend the following
recipe:
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1. Select an alpha value. The α error is reduced during the search process,
e.g. the function

α(t) =
√

(1− t/tmax)/2, (6)

with tmax the maximum number of iterations and t ∈ {0, tmax}, the actual
iteration number, can been used.

2. Evaluate the parent and the offspring candidate n times. To reduce the
computational effort, this sampling can be performed every k generations
only.

3. Determine the sample variance.
4. Determine the threshold value τ = t2n−2,1−α · s ·

√
2/n

5. A new individual is accepted, if its (perturbed) fitness value plus τ is smaller
than the (perturbed) fitness value of the parent.

A first analysis of threshold selection can be found in [MAB+01,BM02]. In the
following section we will present some experimental results that are based on
the introduced ideas.

4 Threshold Selection in the Context of ESGC
Optimization

4.1 Statistical experimental design

The following experiments have been set up to answer the question: how can TS
improve the optimization process if only stochastically perturbed fitness function
values (e.g. from simulation runs) can be obtained? Therefore, we simulated
alternative ES parameter configurations and examined their results. We wanted
to find out if TS has any effect on the performance of an ES, and if there are any
interactions between TS and other exogenous parameters such as population size
or selective pressure. A description of the experimental design (DoE) methods
we used is omitted here. [Kle87,LK00] give excellent introductions into design
of experiments, the applicability of DoE to evolutionary algorithms is shown
in [Bei03].

The following vector notation provides a very compact description of evolu-
tion strategies [BS02,BM02]. Consider the following parameter vector of an ES
parameter design:

pES = (µ, ν, S, nσ, τ0, τi, ρ, R1, R2, r0) , (7)

where ν := λ/µ defines the offspring-parent ratio, S ∈ {C,P} defines the se-
lection scheme resulting in a comma or plus strategy. The representation of the
selection parameter S can be generalized by introducing the parameter κ that
defines the maximum age (in generations) of an individual. If κ is set to 1, we
obtain the comma-strategy, if κ equals +∞, we model the plus-strategy. The
mixing number ρ defines the size of the parent family that is chosen from the
parent pool of size µ to create λ offsprings. We consider global intermediate GI,
global discrete GD, local intermediate LI, and local discrete LD recombination.
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R1 and R2 define the recombination operator for object resp. strategy variables,
and r0 is the random seed. This representation will be used throughout the rest
of this article and is summarized in Tab. 1. Typical settings are:

pES =
(

5, 7, 1, 1, 1/

√
2
√

D, 1/
√

2D, 5, GD, GI, 0
)

. (8)

Our experiment with the elevator group simulator involved three factors. A 23

full factorial design has been selected to compare the influence of different pop-
ulation sizes, offspring-parent ratios and selection schemes. This experimental
design leads to eight different configurations of the factors that are shown in
Tab.1. The encoding of the problem parameters is shown in Tab.2. Tab.3 dis-
plays the parameter settings that were used during the simulation runs: the
population size was set to 5 and 20, whereas the parent-offspring ratio was set
to 2 and 5. This gives four different (parent, offspring) combinations: (5,20),
(5,25), (20,40), and (20,100). Combined with two different selection schemes we
obtain 8 different run configurations. Each run configuration was repeated 10
times.

4.2 Analysis

Although a batch job processing system, that enables a parallel execution of
simulation runs, was used to run the experiments, more than a full week of
round-the-clock computing was required to perform the experiments. Finally 80
configurations have been tested (10 repeats of 8 different factor settings). The
simulated inverse handling capacities can be summarized as follows:

Min. : 850.0 1st Qu.:916.7 Median :1033.3
Mean :1003.1 3rd Qu.:1083.3 Max. :1116.7

A closer look at the influence of TS on the inverse handling capacities reveals
that ES runs with TS have a lower mean (931.2) than simulations that used a
plus selection strategy (1075.0). As introduced in section 2, the fitness function
reads (minimization task):

g(x) = 3000.0− fpES
(x), (9)

where the setting from Tab. 3 was used, fpES
is the averaged handling capacity

(pass./h), and x is a 36 dimensional vector that specifies the NN weights. The
minimum fitness function value (850.0) has been found by TS. Performing a
t-test (the null hypothesis ‘the true difference in means is not greater than 0’
that is tested against the ‘alternative hypothesis: the true difference in means is
greater than 0’) leads to the p-value smaller than 2.2e− 16.

An interaction plot plots the mean of the fitness function value for two-way
combinations of factors, e.g. population size and selective strength. Thus, it can
illustrate possible interactions between factors. Considering the interaction plots
in Fig. 3, we can conclude that the application of threshold selection improves the
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Table 1. DoE parameter for ES.

Symbol Parameter Recommended Values

µ number of parent individuals 10 . . . 100
ν = λ/µ offspring-parent ratio 1 . . . 10
nσ number of standard deviations 1 . . . D

τ0 global mutation parameter 1/
√

2
√

D

τi individual mutation parameter 1/
√

2D
κ age 1 . . .∞
ρ mixing number µ
R1 recombination operator for object

variables
{discrete}

R2 recombination operator for strategy
variables

{intermediate}

Table 2. DoE parameter for the fitness function.

Symbol Parameter Values

f fitness function, optimization problem ESGC problem, minimization, see (9)
D dimension of f 36
Nexp number of experiments for each sce-

nario
10

Ntot total number of fitness function eval-
uations

5 · 103

σ noise level unknown

Table 3. ES parameter designs.

ES ESGC-Design Model (D = 36)

Variable Low High
(−1) (+1)

µ 5 20
ν 2 5
κ +∞ Threshold Selection

The following values remain unchanged:

nσ 1

τ0 1/
√

2
√

D

τ1 1/
√

2D
ρ µ
R1 GD
R2 GI
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behavior of the evolution strategy in any case. This improvement is independent
from other parameter settings of the underlying evolution strategy. Thus, there
is no hint that the results were caused by interactions between other factors.

5 Summary and Outlook

The elevator supervisory group control problem was introduced in the first part
of this paper. Evolution strategies were characterized as efficient optimization
techniques: they can be applied to optimize the performance of an NN-based
elevator supervisory group controller. The implementation of a threshold selec-
tion operator for evolution strategies and its application to a complex real-world
optimization problem has been shown. Experimental design methods have been
used to set up the experiments and to perform the data analysis. The obtained
results gave first hints that threshold selection might be able to improve the per-
formance of evolution strategies if the fitness function values are stochastically
disturbed. The TS operator was able to improve the average passenger handling
capacities of an elevator supervisory group control problem.

Future research on the thresholding mechanism will investigate the following
topics:

– Developing an improved sampling mechanism to reduce the number of ad-
ditional fitness function evaluations.

– Introducing a self-adaptation mechanism for τ during the search process.
– Combining TS with other statistical methods, e.g. Staggge’s efficiently aver-

aging method [Sta98].
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