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Abstract

Iterative algorithms for numerical optimization in continuous spaces typi-
cally need to adapt their step lengths in the course of the search. While some
strategies employ fixed schedules for reducing the step lengths over time,
others attempt to adapt interactively in response to either the outcome of trial
steps or to the history of the search process. Evolutionary algorithms are of
the latter kind. One of the control strategies that is commonly used in evolu-
tion strategies is the cumulative step length adaptation approach. This paper
presents a first theoretical analysis of that adaptation strategy by considering
the algorithm as a dynamical system. The analysis includes the practically
relevant case of noise interfering in the optimization process. Recommenda-
tions are made with respect to the problem of choosing appropriate popula-
tion sizes.

1 Introduction

A great number of iterative strategies have been proposed for numerically obtain-
ing solutions to optimization problems where no derivative information is avail-
able. Such problems arise for example when the objective is given implicitly by
some simulation model. Among such strategies are certain stochastic approxima-
tion approaches [15, 19], implicit filtering [12], direct pattern search [21], variants
of simulated annealing [16], and a variety of evolutionary algorithms [5]. All of
those strategies attempt to approach the optimum in a sequence of steps until some
termination criterion is satisfied. For real-valued problems with objective functions
of the form � � ��� � ��, the average length of those steps typically decreases
in the course of the search. Some strategies, such as stochastic approximation
methods, rely on fixed schedules that, under certain mild conditions, can guaran-
tee convergence in the limit of infinitely many time steps. Other strategies, such
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as evolutionary algorithms, implicit filtering, or direct pattern search, attempt to
achieve good local performance by adapting to local characteristics of the objec-
tive function.

The adaptation of step lengths can be based either on the outcome of trial steps
or on the history of the search process. Parameter control methods for evolutionary
algorithms are surveyed in [11]. One of the methods that holds particular promise
due to its ability to reliably adapt the entire mutation covariance matrix and that
has been used successfully in industrial applications (see [17, 18] and further refer-
ences in [14]) is the cumulative step length adaptation mechanism by Hansen and
Ostermeier [13, 14]. That mechanism adapts step lengths by analyzing informa-
tion from the sequence of most recently taken steps. While recommendations with
respect to the setting of some of the strategy’s parameters have been made in [14],
questions concerning the optimal choice of population sizes and the practically rel-
evant issue of robustness in the presence of noise that was raised in [9] have been
left unaddressed.

Theoretical investigations of parameter control strategies are important as they
can not only yield an improved understanding of a strategy’s strengths and limi-
tations, but they also provide guidelines for practical design decisions such as the
choice of appropriate strategy variants, the setting of strategy parameters, and the
selection of termination criteria. Due to the difficulties involved, hardly any of the
theoretical investigations of evolutionary algorithms in real-valued search spaces
consider step length adaptation mechanisms. An exception is [7], in which the
behavior of a one-parent strategy with mutative self-adaptation is studied.

A common approach to studying the properties of evolution strategies — a type
of evolutionary algorithm often employed for optimization in real-valued search
spaces — is to consider their dynamic behavior on classes of objective functions
that possess inherent symmetries that make the analysis mathematically tractable.
An overview of that approach along with a number of important results can be
found in [8]. Of course, there is no guarantee that results obtained under the as-
sumption of such symmetries bear any relevance for practical optimization prob-
lems. However, recommendations with regard to the setting of strategy parameters
that have been made on the basis of such symmetries have proven to be valuable
far beyond the simple problems that they have been derived for. Moreover, the in-
sight gained from such analyses often consists in simple scaling laws that provide
the practitioner with an intuitive idea of the influence of parameters such as the
dimensionality of the search space or the amount of noise present. Such intuition
is an invaluable resource for the task of choosing a strategy variant suitable for the
problem at hand. A comprehensive overview of both theoretical results and of ap-
plications and case studies of evolution strategies and other types of evolutionary
algorithms can be found in [6].
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The present paper presents an analysis of the behavior of an evolution strategy
with cumulative step length adaptation on a simple class of objective functions
disturbed by noise. The algorithm and the class of objective functions are described
in Sect. 2 and 3, respectively. In Sect. 4, the equations describing the dynamic
behavior of the strategy are formulated. In Sect. 5, 6, and 7, qualitative results are
obtained by making simplifications that afford a good understanding of how the
performance of the strategy scales with the search space dimensionality and how
it is affected by noise. In Sect. 8, more exact results are obtained numerically and
recommendations with regard to parameter settings are made. Section 9 concludes
with a brief summary.

2 The ����� ��-ES with Cumulative Step Length Adaptation

The ����� ��-ES is a particular type of evolution strategy that enjoys popularity
both due to its proven good performance and to its amenability to mathemati-
cal analysis. In every time step, it generates � new offspring candidate solutions
�� � ��� , � � �� 	 	 	 � �, from a population of � parents �� � ��� , 
 � �� 	 	 	 � �,
where � � �. Subsequently, the parental population is replaced by the � best of
the offspring. Generation of an offspring candidate solution �� consists in adding a
vector ��� , where �� � ��� consists of independent, standard normally distributed
components, to the centroid � �

��
��� ���� of the parental population. The arith-

metic averaging of the parents is referred to as intermediate recombination. The
standard deviation � of the components of vector ��� is referred to as the mutation
strength, vector �� as a mutation vector. The centroid of the population at the next
time step is

������ � ���� � ��������� (1)

where � is the arithmetic average of those mutation vectors that correspond to off-
spring candidate solutions that are selected to form the population of the next time
step and is referred to as the progress vector.

It is important to note that the restriction to isotropic mutations in the strategy
described above has been made only for the sake of mathematical tractability. For
the class of objective functions to be introduced in Sect. 3, this is not a serious lim-
itation. However, most applications for efficiency reasons require mutation vectors
that can be drawn from arbitrary normal distributions. In its full generality, the
cumulative step length adaptation mechanism that is described below for the case
of isotropic mutations adapts the entire mutation covariance matrix. According to
Hansen and Ostermeier [14], it can be observed that mutation covariance matrices
are adapted such that arbitrary convex quadratic objective functions are “rescaled
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into the sphere” to be introduced in Sect. 3. The insights provided by the analy-
sis presented here can thus be expected to have direct implications for the case of
general mutations and general locally convex objective functions.

Clearly, the mutation strength determines the step length of the strategy. The
cumulative step length adaptation mechanism relies on the conjecture that if the
mutation strength � is below its optimal value consecutive steps of the strategy
tend to be parallel, and if the mutation strength is too high consecutive steps tend
to be antiparallel. For optimally adapted mutation strength, the steps taken by the
evolution strategy are uncorrelated. This is instructive as several steps in one direc-
tion could better be replaced by a single, longer step, and as stepping back and forth
suggests that a smaller step length should be used. So as to be able to reliably de-
tect parallel or antiparallel correlations between successive steps, information from
a number of time steps needs to be accumulated. For that purpose, the accumulated
progress vector � is defined by ���� � � and the recursive relationship

������ � ��� 
����� �
�
�
��� 
������ (2)

where 
 is a constant determining how far back the “memory” of the accumula-
tion process reaches. The coefficient that determines the weight of the progress
vector ���� in (2) is chosen in such a way that under random selection, the com-
ponents of the accumulated progress vector are standard normally distributed after
initialization effects have faded. The mutation strength is then updated according
to

������ � ���� �	


�
��������� ��

���

�
� (3)

where � denotes a damping constant. The term � in the numerator of the argu-
ment to the exponential function is the mean squared length of the accumulated
progress vector if consecutive progress vectors are stochastically independent. If
the squared length of the accumulated progress vector is less than � the mutation
strength is decreased, if it is greater than � the mutation strength is increased. Also
note that the prescription (3) for adapting the mutation strength has been changed
slightly from the prescription in the original algorithm given by Hansen [13] in that
here, adaptation is performed on the basis of the squared length of the accumulated
progress vector rather than on its length. The difference in performance appears to
be insignificant while elegance in the formulation is gained. The constants 
 and �
are set to ��

�
� and

�
� , respectively, according to recommendations made by

Hansen [13]. The entire algorithm in pseudo code is summarized in Fig. 1.
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inputs: � a function evaluate that yields a (possibly noisy) estimate of the ob-
jective function value of a candidate solution

� a function terminate that decides when to terminate the optimization
process, possibly based on criteria such as the number of steps taken
so far, the quality of the candidate solution obtained, . . .

� a function random that returns a random vector with independent,
standard normally distributed components

� initial values for � and �


 �� ��
�
� ;

� ��
�
� ;

� �� �;

while not ����������� do �
for � � �� �� 	 	 	 � � �

�� �� ����	���;

�� �� �� ��� ;

�� �� �
����������;
�
� �� �

�

��
��� ����;

� �� �� ��;

� �� ��� 
���
�
�
��� 
��;

� �� � �	

�
������
���

�
;

�

Figure 1: Pseudo code for the ����� ��-ES with cumulative step length adaptation.
Variables in bold print are �-dimensional vectors. The notation 
�� refers to the
index of the 
th best candidate solution. That is, for maximization/minimization
tasks, ���� is that offspring candidate solution with the 
th largest/smallest value of
�� , and ���� is the corresponding mutation vector.

5



3 Progress Rate Analysis of the ����� ��-ES

Evolutionary algorithms together with the objective functions they operate on form
iterated dynamic systems. In order to be able to study the dynamics of those sys-
tems, particular classes of objective functions need to be considered. The most
commonly considered class of objective functions assumes that the quality of a
candidate solution � is determined by its distance � � ��� � �� from some tar-
get ��. That is, ���� � ���� for some monotonic function � � �� � ��. Denoting

the change in distance from the target by �
���
� � ������ � ����, progress is mea-

sured by the expected value of that quantity, the progress rate � � �
���. Due
to its spherical symmetries, this class of objective functions is referred to as the
sphere model. It serves as a model for fitness landscapes at a stage where the pop-
ulation of candidate solutions is in relatively close proximity to the target and is
most often studied in the limit of high search space dimensionality.

Noise is a common factor in real-world optimization problems. For theoret-
ical analyses it is most commonly modeled as an additive, normally distributed
term with mean zero. That is, when determining the objective function value of
a candidate solution �, it is not the true objective function value ���� that is ob-
tained but rather a measured value that is drawn from a normal distribution with
mean ����. The standard deviation of that distribution that may depend on the
distance � from the candidate solution being evaluated to the target is referred to
as the noise strength and is denoted by �	���.

Analyses of the behavior of evolution strategies on the sphere model rely on
a decomposition of vectors that is illustrated in Fig. 2. A vector � originating
at search space location � can be written as the sum of two vectors �
 and �� ,
where �
 is parallel to �� � � and �� is in the hyperplane perpendicular to that.
In the present context, � can be either a mutation vector or a progress vector. The
vectors �
 and �� are referred to as the central and lateral components of vector �,
respectively. The signed length �
 of the central component of vector � is defined
to equal ��
� if �
 points towards the target and to equal ���
� if it points away
from it.

Introducing normalized quantities

�� � �
�

�
� ��

� � ��
�

�
� and ��	 � �	

�

������
� (4)

it has been seen in [2] that in the limit of high search space dimensionality (� �
	), the expected squared length of the progress vector and the expected signed
length of its central component are

�
����� � �

�
and �
�
� �


���
��
� � ��

� (5)
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�
�

�

��

��

���

���

Figure 2: Decomposition of a vector � into central component �
 and lateral com-
ponent �� . Vector �
 is parallel to �� � �, vector �� is in the hyperplane perpen-
dicular to that. The starting and end points, � and � � �� ��, of vector �� are at
distances � and � from the target ��, respectively.

respectively, where � � ��	 ��
�. As ��	 is the standard deviation of the normalized

noise term, and as �� is the standard deviation of the normalized true objective
function values of the offspring candidate solutions, the quotient � is the noise-
to-signal ratio of the system. The coefficient 
���
� is the expected value of the
average of the � largest of a random sample of � independent, standard normally
distributed random variables and can be computed as


���
� �
�� �

��

�
�

�

�	 �

��
���

�


����������
�� �����������

where ���� denotes the cumulative distribution function of the standardized nor-
mal distribution. For given �, the coefficient 
���
� decreases monotonically with
increasing �. Finally, as shown in [2], the normalized progress rate is

�� � �
��
�� �

��
���
��
� � ��

� ���

��
	 (6)

The first summand on the right hand side of (6) is a nonnegative gain term that
is due to the central component of the progress vector while the second term is a
loss term that results from that vector’s lateral component, the direction of which
is entirely random in the plane defined by normal vector �� � �. Note that the
normalized progress rate is independent of the distance between the centroid of the
population and the target. Also note that the rate at which the target is approached
is inversely proportional to the search space dimensionality � .
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While all of those results are valid strictly only in the limit � �	, they can be
used to make qualitative predictions with regard to the behavior of the ����� ��-ES
on the sphere for finite but sufficiently large search space dimensionality, provided
that the population size � is not too large. Improved estimates for the progress
vector as well as the progress rate for moderate values of � have been derived in [1,
4]. While the simple expressions quoted here form the basis for the calculations in
Sect. 5, 6, and 7, those improved estimates will be used in Sect. 8 for numerically
determining optimal population sizes and efficiencies.

4 System Equations

The accumulated progress vector just as mutation vectors and progress vectors can
be written as the sum of its central and lateral components, �
 and �� . In analogy
to what has been introduced above for progress vectors, �
 stands for the signed
length of the central component of the accumulated progress vector. For symmetry
reasons, the direction of the lateral component of the accumulated progress vector
is random. The state of the strategy at time � is well described by the distance
between the centroid of the population and the target, the squared length of the
accumulated progress vector, the signed length of its central component, and the
normalized mutation strength. Recombination, mutation, selection, and adaptation
define a stochastic mapping of those four quantities. State variables at time step ��
� can be expressed in terms of their values at time step � as follows:

� Using (4), the distance between the centroid of the population at time step
�� � and the target is

������ � ����

�
�� ��

�
���

�

�
	 (7)

� According to (2), the squared length of the accumulated progress vector at
time step �� � is

��������� �

�

���

�
��� 
��

���
� �

�
�
��� 
��

���
�

��
	

Multiplying out it follows that

��������� � ��� 
���������

� ��� � 
�
�
�
��� 
��������� � �
��� 
��������� (8)

where �������� denotes the inner product of the two vectors.
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� The signed length of the central component of the accumulated progress
vector equals the inner product of the accumulated progress vector with a
vector of length unity pointing from the centroid of the population to the
target. Thus, using (1), (2), and (4), at time step �� � it is

�
�����

 �

�
��� 
����� �

�
�
��� 
�����

� ���� ����
�� ��������

������
	

Multiplying out it follows that

�
�����

 �

����

������



��� 
�

�
�
���

 � �����

�
��������

�

�
�
�
��� 
�

�
�
���

 � �����

�
�������

��
	 (9)

� From (3) and (4), it follows that the normalized mutation strength at time
step �� � is

������� � �����
����

������
�	


�
��������� ��

���

�
	 (10)

Equations (7), (8), (9), and (10) describe the evolution of the state variables in a
single time step. In the following sections, stationary values that are attained after
many time steps are determined.

5 Determining the Accumulated Progress Vector

For the case that the normalized noise strength ��	 is independent of the location
in search space, simple expressions can be obtained that describe the behavior of
the strategy. Note that constant normalized noise strength implies that the standard
deviation of the noise term decreases as the target is approached. This is the case for
example in connection with measurement devices that are accurate up to a certain
percentage of the quantity they measure.

Under the assumption of constant normalized noise strength the ����� ��-ES
with cumulative step length adaptation approaches a state that is stationary in that
the squared length of the accumulated progress vector, the signed length of that
vector’s central component, and the normalized mutation strength tend toward an
invariant limit distribution. The nonlinear character of the system equations (7),
(8), (9), and (10) precludes determining that distribution exactly. However, the rel-
ative amount of fluctuations of the state variables decreases with increasing search
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space dimensionality � . In a first order approximation, fluctuations of the state
variables can be ignored and it can be assumed that ���, ����, �
, and �� assume
deterministic stationary values. Replacing the squared length of the progress vector
and the signed length of its central component by their expected values given in (5)
and modeling the approach of the target by the progress rate given in (6), those
stationary values can be obtained from (8) and (9) by demanding stationarity. In
particular, for the squared length of the accumulated progress vector, this amounts

to demanding that �
���������� 	
� ������� 	

� ���� and therefore according to (8)
to requiring that

���� 	
� ��� 
������ � ��� � 
�

�
�
��� 
��



���
��
� � ��

� 
��� 
��� (11)

where �
�� � ���
 � � and the fact that �
���� � � � due to the randomness
of �� have been used.

Similarly, a stationarity condition can be formulated for the signed length of
the central component of the accumulated progress vector. In order to keep things
simple, terms in (9) the influence of which vanishes in the limit of infinite � are
disregarded. In particular, that is the case for the quotient ����������� that can
be approximated by unity in the present context. Taylor expansion of (7) shows
that the resulting error is of order 
�������. Moreover, as �
 � ���
�
�� ap-
proaches �
 as � �	, it follows that the simplified stationarity demand resulting
from (9) is

�

	
� ��� 
��
 �

�
�
��� 
�

�

���
��
� � ��

� ��

�

�
	 (12)

Solving for �
 yields

�
 �

�
�
�� � 
�




���
�

�
��

� � ��
� ��

�
���
�

�
	 (13)

Using this result in (11) it follows

���� � � �
���� 
�




�
����
��
� � ��

�
��

� � ��
� ��

�
���
�

�
(14)

for the squared length of the accumulated progress vector. While being inexact
due to the simplifications made in their derivation — both terms vanishing for
� �	 and fluctuations around the mean values have been ignored — for large � ,
(13) and (14) do provide a good basis for the understanding of the behavior of
cumulative step length adaptation on the noisy sphere.
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6 Logarithmic Adaptation Response and Target Mutation Strength

Before considering the normalized mutation strength that cumulative step length
adaptation realizes, it is instructive to first analyze the static behavior of the strat-
egy. The logarithmic adaptation response

����
� � ���

�
������

����

�
(15)

and its normalization

��
� � ��


��

�� 


are useful quantities for describing the performance of the step length adaptation
scheme. They quantify how it responds to an ill-adapted mutation strength. Posi-
tive logarithmic adaptation response indicates an increase in step length realized by
the strategy, negative adaptation response indicates a decrease. Therefore, ideally,
the logarithmic adaptation response is positive for mutation strengths that are too
small and negative for mutation strengths that are too large. The root of the loga-
rithmic adaptation response determines the target mutation strength of the strategy
as no change in step length is affected.

From (3), (14), and (15) the estimate

��
� �

�
����
��
� � ��

�
��

� � ��
� ��

�
���
�

�
� (16)

for the normalized logarithmic adaptation response of cumulative step length adap-
tation on the noisy sphere is obtained. Substituting � � ��	 ��

� and subsequent root
finding shows that the target mutation strength is

�� � �
���
�

�
��

�
��	

�
���
�

��

	 (17)

Figure 3 shows the normalized logarithmic adaptation response given by (16) as
a function of the normalized mutation strength and the normalized target muta-
tion strength given by (17) as a function of the normalized noise strength. At
least two things can be learned from the figure. First, the right hand graph shows
that for nonzero noise strength, the target mutation strength of cumulative step
length adaptation is below the mutation strength that maximizes the progress rate
of the strategy. For normalized noise strengths exceeding �
���
�, the target mu-
tation strength is zero even though positive progress rates could be achieved with
nonzero mutation strengths. Second, the left hand graph shows that in the presence
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Figure 3: Normalized logarithmic adaptation response ��� as a function of normal-
ized mutation strength �� and normalized target mutation strength �� as a function
of normalized noise strength ��	 . Note the scaling of the axes. The lines in the
left hand graph have been obtained from (16) for, from top to bottom, normalized
noise strengths ��	���
���
�� � �	�, �	�, �	�, and �	�. In the right hand graph, the
solid line corresponds to the target mutation strength given by (17), the dashed line
to the optimal mutation strength that is obtained by numerically optimizing (6).

of noise, for mutation strengths significantly below their optimal values, the log-
arithmic adaptation response and therefore the tendency towards higher mutation
strengths is very small. This is intuitively clear as cumulative step length adapta-
tion attempts to achieve that consecutive progress vectors are uncorrelated. Small
steps carry little information. In the presence of noise, that information is almost
entirely hidden and correlations between consecutive progress vectors disappear as
steps are increasingly random. The strategy thus sees no need to increase the mu-
tation strength much, even though significantly higher mutation strengths would
achieve a better noise-to-signal ratio and greater progress. This insight sheds new
light on the postulate suggested by Beyer and Deb [10] that in “flat” regions of
the search space, i.e. in regions where the objective function values appear (nearly)
constant, step length adaptation schemes should tend to systematically increase
step lengths. In the presence of noise, this advice may be especially useful as re-
gions in search space may appear to be flat due to a high noise-to-signal ratio, and
as operating at higher mutation strengths might make more reliable information
available to the strategy.

7 Determining the Mutation Strength

The target mutation strength is not the mutation strength that is actually realized by
the step length adaptation mechanism. As the distance � to the target continually
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changes, and as adaptation to the target mutation strength is not instantaneous, the
mutation strength that is actually realized is always “behind”. An estimate of that
mutation strength can be obtained by solving (10) for ��. Expanding both the
quotient ����������� � �� ���

������ and the exponential function into Taylor
series yields

������� � �����

�
� �

��
�
���

�
� 	 	 	

��
� �

��������� ��

���
� 	 	 	

�
	 (18)

For large � , the influence of those terms in the expansions that are represented
by dots in (18) vanishes. Multiplying out, replacing quantities by their expected
values, and neglecting all terms that are without relevance in the limit � � 	
yields the stationarity demand

��
	
� ��

�
� �

��

�
�
���� ��

���

�
� (19)

where �� and ���� are given by (6) and (14), respectively. Using the fact that for
the settings of 
 and � suggested by Hansen [13], i.e. 
 � ��

�
� and � �

�
� ,

the term �� � 
���
�� tends to unity as � increases, it is easily verified that (19)
can be transformed into

�
	
�

��
���
��
� � ��

� ���

��
�

�
����
��
� � ��

�
��

� � ��
� ��

�
���
�

�
	

Substituting � � ��	��
� and solving for the normalized mutation strength yields

�� � �
���
�

�
��

�
��	

�
���
�

��

(20)

for the normalized mutation strength that is realized by cumulative step length
adaptation on the noisy sphere. According to (6), the normalized progress rate
achieved with this mutation strength is

�� �

�
�� �

�
�
����
�

�
��

�
��	

�
���
�

��
�
	 (21)

Both the normalized mutation strength given by (20) and the normalized progress
rate given by (21) are shown as functions of the normalized noise strength in Fig. 4.
It can be seen that while the target mutation strength of cumulative step length
adaptation is optimal for zero noise strength and too small in the presence of noise,
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Figure 4: Normalized mutation strength �� and normalized progress rate �� as
functions of the normalized noise strength ��	 . Note the scaling of the axes. The
solid lines represent the values realized by the ����� ��-ES with cumulative step
length adaptation and have been obtained from (20) and (21). The dashed lines
represent the optimal values obtained by numerically optimizing (6).

the dynamics of the process lead to mutation strengths that are too large for normal-
ized noise strengths of up to about �	���
���
� and too small for noise strengths
above this value. For zero noise strength, the progress rate that is achieved with
cumulative step length adaptation is about 83% of the progress rate that would
be achieved with optimally adapted mutation strength. Positive progress rates are
achieved up to a normalized noise strength of

�
��
���
�.

8 Population Sizing

While sufficient for obtaining a good qualitative understanding of the performance
of cumulative step length adaptation in the presence of noise, the approximation
considered thus far is too crude for addressing the problem of determining optimal
population sizes. From the results obtained so far it appears that by increasing the
population size, the strategy can always be made to operate in the regime at the
left hand edge of the graphs in Fig. 4 and thus with maximum efficiency. However,
it has been seen in [4] that the quality of the approximation given by (5) and (6)
deteriorates with increasing population size. In that same reference and in [1],
better estimates of the squared length of the progress vector, the signed length of its
central component, and the progress rate have been derived. Using those estimates
rather than (5) and (6) and not neglecting the �-dependent terms that had been
neglected in the derivations of (12) and (20) yields a much improved approximation
for the behavior of cumulative step length adaptation. Without going into details,
we will present results from that �-dependent analysis here.
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Figure 5: Normalized mutation strength �� and normalized progress rate �� as
functions of the normalized noise strength ��	 . The crosses correspond to, from
bottom to top, measurements of a ����� ���-ES, a ����� ���-ES, and a ������� ���-
ES at search space dimensionalities � � �� ��� and � � ��� ���. The solid
lines represent the estimates for infinite search space dimensionality given by (20)
and (21) that are also depicted in Fig. 4. The dotted lines correspond to the im-
proved approximation that takes some �-dependent terms into account.
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Figure 5 compares the estimates obtained numerically with empirical measure-
ments of the normalized mutation strength and the normalized progress rate of the
����� ��-ES averaged over many time steps on noisy spheres with search space
dimensionalities � � �� and � � ���. Also shown are the predictions for infi-
nite � given by (20) and (21). While qualitatively correct, especially the estimates
from (21) can be seen to be rather inaccurate even for � as large as ���. The
accuracy of the �-dependent estimates is very good in comparison except for high
normalized noise strength. In the regime just below ��	 �

�
��
���
� the dynamics

of the ����� ��-ES with cumulative step length adaptation are dominated by fluc-
tuations that have been left unconsidered in the present analysis. However, those
inaccuracies are tolerable as it will be seen below that the ����� ��-ES optimally
uses population sizes large enough to guarantee that the region in which the inaccu-
racies occur is avoided. The quality of the predictions for the normalized progress
rate is not quite as good as for the normalized mutation strength. However, it can
also be seen that the inaccuracy of the estimate for the normalized progress rate
decreases with increasing � .

On the basis of the improved estimates thus obtained, optimal population size
parameters and efficiencies can be determined. The efficiency of a strategy is de-
fined in a way that takes not only the progress made but also the computational
costs of the optimization into account. Assuming that those costs are dominated by
the costs of evaluating the objective function and that other contributions such as
those resulting from mutation and recombination can be neglected, the efficiency is
commonly defined as the normalized progress rate per evaluation of the objective
function,

� �
��

�
	 (22)

Notice that the term � in the denominator is the number of objective function eval-
uations per time step. Optimal parameter settings can be obtained numerically by
optimizing (22).

Figure 6 shows the optimal number of offspring per time step � and the maxi-
mal efficiency �, i.e. the efficiency for optimally chosen population size parameter
settings, as functions of the normalized noise strength ��	 . Also shown are the cor-
responding values that would be obtained were the mutation strength continually
adapted to the optimal values that have been derived in [4]. It can be seen that the
efficiencies that cumulative step length adaptation is capable of realizing are —
depending on the search space dimensionality and the noise strength — between
15% and 30% below the optimal values. Quite significantly, the right hand graph
in Fig. 6 shows that cumulative step length adaptation is robust in the sense that it
fails to break down in the presence of noise at least for the range of noise strengths
considered. The loss of efficiency that incurs in the presence of noise does not
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Figure 6: Optimal number of offspring per time step � and maximal efficiency �
as functions of the normalized noise strength ��	 . The curves correspond to, from
bottom to top, search space dimensionalities � � ��, � � ���, and � � ����.
In the right hand graph, the limiting case � � 	 is included as well. The solid
curves depict the results for cumulative step length adaptation. The dotted lines
assume optimally adapted mutation strength.

differ qualitatively from that in the absence of noise.
As for the population size parameter settings, it can be seen that using cumula-

tive step length adaptation optimal population sizes are below the values computed
in [4] for optimally adapted mutation strengths. In the absence of noise, optimal
values for � are �, ��, and �� for � � ��, ���, and ����, respectively. In the pres-
ence of noise, larger values of � need to be employed in order to achieve optimal
efficiency. Overall, it can be said that the choice of a value for � is not very critical
provided that � is chosen large enough to support positive progress for the given
noise level, and that that choice becomes even less critical with increasing noise
strength. For the range of noise strengths and search space dimensionalities con-
sidered, optimal values of � are always in the range from �	��� to �	���. Further
numerical investigations show that for optimally chosen population size parame-
ters, the strategies always operate in the regime in the left hand half of the graphs
in Fig. 4, i.e. that ��	 � �
���
� for optimally chosen � and �.

9 Conclusions

What can be learned from the analyses in this paper? It has been seen that the
target mutation strength that cumulative step length adaptation seeks to realize is
optimal (at least in the limit � � 	) in the absence of noise, but generally too
small in its presence. However, the mutation strength that cumulative step length
adaptation actually realizes differs from the target mutation strength as adaptation
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is not instantaneous. The mutation strength that is realized is too large for low noise
levels, and too small for high noise levels. The performance loss as compared
to optimally adapted mutation strengths has been found to be below 20% in the
idealized model from Sect. 7 and below about 30% in the improved model from
Sect. 8. In the presence of (not too much) noise, the larger than optimal mutation
strengths have the advantage of improving the noise-to-signal ratio that the strategy
operates under.

Of particular importance to the practitioner is the problem of choosing appro-
priate settings for the population size parameters. The investigation presented in
this paper suggests that between 25% and 30% of the candidate solutions generated
should be retained to serve as the population of the next time step. As for choosing
how many candidate solutions to generate per time step, higher values buy addi-
tional robustness — i.e. the ability to proceed in the presence of higher levels of
noise — at the price of decreased efficiency. Cumulative step length adaptation
drives the mutation strength to zero if there is too much noise present. A useful
course of action is therefore to start out with a relatively small number of candidate
solutions to generate per time step, and to gradually increase that number if the
strategy is observed to stall. The choice of values for � and � has been found to be
rather uncritical.

Overall, the performance of the ����� ��-ES with cumulative step length adap-
tation is robust in that it degrades gradually with increasing noise levels. An empir-
ical evaluation of direct optimization strategies in the presence of noise in [3] has
shown that this is not necessarily true for other commonly used approaches, thus
making the evolution strategy a promising candidate for the optimization of noisy
objective functions.
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