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Abstract. Although evolutionary algorithms (EAs) are widely used in prac-
tical optimization, their theoretical analysis is still in its infancy. Up to now
results on expected runtimes and success probabilities are limited to discrete
search spaces. In practice, however, EAs are mostly used for continuous op-
timization problems.

First results on the expected runtime of a simple, but fundamental EA min-
imizing a symmetric polynomial of degree two in R™ are presented. Namely,
the so-called (1+1) evolution strategy ((1+1)ES) minimizing the SPHERE
function is investigated. A lower bound on the expected runtime is shown
that is valid for any mutation adaptation using isotropically distributed mu-
tation vectors. Furthermore, a matching upper bound on the expected run-
time is proved when the well-known 1/5-rule is used to adapt the length
of Gauss-mutation vectors. Consequently, the 1/5-rule in combination with
Gauss-mutations indeed result in the (1+1) ES having asymptotically opti-
mal expected runtime on SPHERE.

1 Introduction

The optimization (here: minimization) of functions f: S — R for some so-called
search space S is one of the fundamental algorithmic problems. For discrete search
spaces, like {0,1}"™, we get the many problems of combinatorial optimization like
TSP, graph coloring, or vertex cover. For continuous search spaces, R™ for instance,
we get the problems of mathematical optimization (often with constraints); here
problems are defined by classes of functions (polynomials of degree d, k-times dif-
ferentiable functions, etc.). Many problem-specific algorithms have been designed
for each of the two scenarios. Furthermore, there is a theory on algorithms since
algorithms can be analyzed and compared.

If not enough resources are on-hand to design a problem-specific algorithm or the
knowledge about the problem instance is not sufficient, however, robust algorithms
like randomized search heuristics are often a good alternative. Although frequently
applied in practice by now, such heuristics have produced only little interest of the-
oreticians. The aim of this paper is to start the analysis of evolutionary algorithms
on continuous search spaces with the tools and the purpose of classical algorithm
theory.

We restrict ourselves to the simple (1+1) evolution strategy which—despite
its simpleness—has been applied with surprising success. The notion “evolution
strategy” is due to Rechenberg whose 1973 book FEwvolutionsstrategie can be seen
as one of the starting points of evolutionary computation. The rough structure of
the (1+1) ES minimizing the function f: R™ — R is given by the following infinite
loop:

Initialization
Set the current search point ¢ € R™ and the scaling factor s € R to the given
start values.



Evolution loop

1. Choose m € R™ according to the given mutation distribution.

2. Set the (scaled) mutation vector: m := s-m € R"

3. Generate the mutant: ¢ :=c+m € R"

4. The given selection rule determines (by f) whether ¢ := x or not.

A single execution of the loop is called a step of the (141)ES. Furthermore, the
mutant/the mutation is accepted iff the mutant « is selected (to become the current
search point ¢). In this case, the step is called a success. The adaptation of the
scaling factor s is controlled from outside the loop. Originally, the adaptation of the
mutation vector’s length is based on the (relative) frequency of successful steps (in a
certain number of successive steps). That is, during the optimization the value of s
is changed according to a given adaptation rule based on this frequency. Naturally,
in applications a stopping criterion is needed to ensure termination, yet this is not
the crucial aspect in our analysis. We investigate the (141) ES as an infinite process
and are interested in random variables describing properties of the search process:
Let Xy denote the first point in time, measured in the number of steps, when some
good event happens, for instance the first point in time when f(c) < b for a fixed
bound b. Then we are interested in E[X ;| —if it exists—and in P{X; < t}, the
probability that the good event happens within the first ¢ steps. In particular, we
are interested in asymptotic results with respect to the dimension of the search
space R".

The potentially most discussed function in the field of EAs for the search space
R"™ concerning their analysis is the simple, but fundamental SPHERE function de-
fined by SPHERE(x) := 22 +-- -+ 22 for x = (x1,...,2,) € R". Obviously, SPHERE
equals the Lo-norm squared, in other words, the square of the Euclidian distance
from the origin, the minimum of SPHERE. This function has a discrete counter part:
ONEMAX: {0,1}" — IN defined by ONEMAX(a) := aj + - -+ + a,,. If ONEMAKX is
maximized, the number of ones is maximized, or equivalently, the Hamming dis-
tance from the optimum (1,...,1) € {0,1}" is minimized. The discrete counter
part of the (141) ES, the so-called (1+1) evolutionary algorithm ((141) EA), was
thoroughly analyzed on ONEMAX (see Miihlenbein (1992) for an O(nlogn) bound
on the expected runtime). These results are easy to obtain, yet more sophisticated
papers on the (1+1) EA have been published: The (141) EA has been investigated
on linear functions (Droste, Jansen, and Wegener (2002)), on quadratic polynomials
(Wegener and Witt (2002)) and on monotone polynomials (Wegener (2001)). Even
the effect of recombination has been analyzed for the search space {0,1}" (Jansen
and Wegener (2002, 2001)), and the number of papers focusing on algorithmic anal-
yses is increasing.

The situation for continuous search spaces is different: Here, the vast majority
of results on EAs are of empirical nature. Only very few papers focusing on al-
gorithmic analyses have been published after the initial results from Rechenberg
who emphasizes the importance of SPHERE by stating that the minimization of
SPHERE models the minimization close to a minimum for many other functions (cf.
his 1994 book FEwvolutionsstrategie '94). Extensive and detailed investigations are
due to Beyer and can be found in his 2001 book The theory of evolution strate-
gies. From an algorithmic point of view, however, these results are not exhaustive:
Either only a model of the stochastic process is investigated such that the results
have to be verified by experiments/simulations (as typically proceeded in physics)
or simplifying assumptions in calculations are made without controlling the error
connected. Sometimes for n, the number of dimensions, the limit n — oo is taken
to get rid of “unpleasant” terms in the calculations such that the significance of
the results concerning the n-dependence is corrupted. Moreover, most results deal
with the effects of a single step and are not strong enough to obtain results on the



longtime behavior. As far as we know, no results containing a theorem on how the
adaptation of the mutation vector’s length affects the runtime of the (1+1) ES have
been published yet.

The general description of the (1+1)ES given above captures simulated an-
nealing for instance. The concrete (1+1) ES that is analyzed here on SPHERE is a
randomized hill climber, namely, the mutant « replaces the current search point ¢
iff f(x) < f(c). The distribution of the mutation vector is assumed to have the
following property.

Definition 1. For m € R" let |[m| denote its length/Ly-norm and m := m/|m)|
the normalized vector. The random mutation vector m is isotropically distributed
iff |m| is independent of m and m is uniformly distributed upon the unit hyper-
sphere U := {x € R | |x| = 1}. (That is, for u,v € U the probability density of
{m = u} equals the one of {m = v}.)

In less formal words, if a mutation is isotropic, all directions are equiprobable and
the (random) length of the mutation vector is independent of its direction. These
two assumptions (on the selection rule and the mutation vector’s distribution) are
taken for the lower bound on the expected runtime of the (141) ES on SPHERE. Con-
sequently, this result is valid for any adaptation of the length of isotropic mutation
vectors.

For the upper bound on the (expected) runtime shown here the following type
of mutation is considered which is common in practice.

Definition 2. Let m € R™ be (N1(0,1),...,N,(0,1))-distributed (each component
is independently standard normal distributed). A mutation is called Gauss-mutation
iff the mutation vector’s distribution equals the one of A -m, A € R,

In fact, Gauss-mutations are isotropically distributed (cf. Lemma 6). For the upper
bound, the length of the Gauss-mutation vectors is adjusted by an instantiation
of the well-know 1/5-rule for the adaptation of the scaling factor s (also due to
Rechenberg):

The rule that determines the scaling factor s within a run of the (1+1) ES is
called 1/5-rule iff it aims to ensure that in each step the mutant is accepted
with probability 0.2 and this is done utilizing only the (relative) frequency
of successful steps.

In Section 2 a closer look is taken at isotropic mutations and the geometric prop-
erties of SPHERE are discussed. Subsequently, these results are applied in Section 3
to obtain the probability density function of an isotropic mutation’s spatial gain (in
the search space R™) parallel to a fixed direction. In Section 4 this density function
is used to estimate the success probability of a step, and in Section 5 the expected
spatial gain in one step of the (141) ES is estimated. The main results described in
the abstract are finally obtained in Section 6. All ideas are presented in this paper,
yet some calculations are carried out in appendices. The following abbreviations
will be used for better readability.

Definition 3. A probability p(n) is exponentially small in n iff for a positive con-
stant €, p(n) = exp(—12(n®)). An event A(n) happens with overwhelming probabil-
ity (w.o.p.) with respect to n iff P{=A(n)} is exponentially small in n.

If the parameter as to which a probability is (not) exponentially small is clear from
the context naming it explicitly may be omitted.



2 Isotropic mutations and SPHERE

The special properties of isotropic mutations can be utilized to estimate a step’s
success probability, the probability that an acceptable mutant is generated in this
step. Let m € R™ be generated by an isotropic mutation, and let ¢ € R™ denote
the current search point. The independence of |m| and m is crucial to the analysis
presented here: It enables the application of the concept of “deferred decisions”
We may assume that the mutation vector’s length [ is chosen according to |m|’s
distribution first such that the candidate search point is uniformly distributed upon
the n-sphere formed by all points having distance [ from c. Let S.; C R"™ denote
this hyper-sphere and A. := {& € R" |  would replace ¢} the set of all acceptable
points. As a hypersurface area is an (n—1)-volume,

(n—1)-volume of S.; N Ac
(n—1)-volume of S,

P{c+ m is accepted | |m| =1} =

Proposition 1. Let G denote the spatial gain towards the optimum in a step of
the (1+1)ES. If the mutation vector m is isotropically distributed then E[G] =
E[E[G | |m]|]] in this step. If g := sup, E[G | |m| =[] ezists, then E[G] < g.

In general, situations can occur in which A NS C R™ may be countable or actu-
ally empty. Furthermore, even if A N S is uncountable, it may have zero (n—1)-
volume—implying zero probability of success in the step concerned.

Crucial to the argumentation on SPHERE is that due to the selection rule the
distance from the optimum is non-increasing since SPHERE(xz) < SPHERE(c) <
|z| < |c|. For r € RT the set {&# € R™ | SPHERE(x) = 7?} equals the hyper-
sphere with radius r centered at the origin and {x € R" | SPHERE(z) < 72} the
corresponding hyper-ball. Consequently, when SPHERE is minimized, A N S has a
positive (n—1)-volume iff 0 < |m| < 2|¢|, because |c| equals the distance from the
origin o = (0, ..., 0) which is the optimum of SPHERE, and A equals the n-ball with
radius |c| centered at the origin/optimum.

The n-sphere {¢’ € R" | |c/| = ||} will be called fit-
ness sphere and the n-sphere {x € R" | |z — | = |m|}
mutation sphere. Let I C R™ denote the intersection of the
two spheres. Since for all 4,5 € I, |[i —¢| = |j — ¢| and
|| = |7] (implying that the two triangles defined by <, 0, c
resp. J, 0, ¢ are congruent), I is a subset of a hyperplane P
which is orthogonal to the line segment oc. Let p € P denote the point where this
line intersects P. Then |i — p| = |j — p| for all 4,5 € I. Thus, in the flat (n—1)-
subspace P, I forms a hyper-sphere centered at p. In short, the mutation sphere’s
part lying inside the fitness sphere forms a hyper-spherical cap. Since the candidate
search point is uniformly distributed upon the mutation sphere, the success proba-
bility of the mutation considered equals the relative share (regarding hypersurface
area) of the mutation sphere lying inside the fitness sphere. Now, the interesting
question is how this ratio depends on the scaled distance from the optimum |c|/|m)|
and the number of dimensions n.

As “Pythagoras is right” in any dimension, for |¢ —p| < |c¢| and any ¢ € I,
li]2 — |p|* = |i —p|?> = |i —c|> — |e — p|?. Since |i| = |c| and |i — c| = |m), solving
c? — [pf? = [m[? — |c — p|? yields |e — p| = [m[*/(2]e]) for |m| < V|c|. Thus,
the height of the mutation sphere’s cap that is cut off by the fitness sphere equals
|m| — |c — p| = |m| — |m|?/(2|c|]) and the ratio of height to radius |m| equals
1 — |ml/(2|c|). As shown in Appendix A, in n-space, n > 3, the ratio (regarding
hypersurface area) of a hyper-spherical cap (height /) to the hyper-sphere it is cut
off (radius r) equals ¥, _s(arccos(1 — h/r))/¥,_o(m) where ¥y, (7) := [/ (sin3)*dp.
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Since the relative height of the mutation sphere’s cap equals 1—|m| /(2 |c|), the ratio
equals W, (arccos(|m|/(2|¢c]))) /¥n—2(7) in the situation above. This formula
may be directly used to estimate a step’s success probability, yet it can also be
utilized to estimate the probability that an isotropic mutation hits an arbitrarily
fixed cap of the mutation sphere.

3 Probability density of the mutation’s spatial gain

Although the spatial gain towards the optimum in a step of the (141) ES on SPHERE
is the intermediate objective, for the moment we concentrate on the random variable
G, that corresponds to the mutation’s spatial gain parallel to a fixed direction if
the random variable |m| takes the value [. Since m is isotropically distributed,
the mutation vector is uniformly distributed upon the hyper-sphere with radius .
Note that just the mutation is investigated, that is, the situation prior selection is
examined. For instance, G, equals m; if the spatial gain along the first axis is to
be calculated.

Obviously, P{G,, > g} = P{G.,, < —g¢} and P{G,, >} = 0 = P{G,, < —1}.
Let S denote the hypersurface area of an n-sphere with radius [, and C'(h) the area
of a cap that is cut off S and has height h € [0,]. For a fixed spatial gain g € [0, ],
P{G,, > g} = C(l — ¢g)/S where the cap’s pole lies on the half line defined by the
actual search point and the direction considered; the hyperplane that contains the
boundary of the cap is orthogonal to the direction and has distance g from the
current search point. Let k = n — 2 > 2 be fixed. Since h = [ — g, the formula for
the ratio C'(h)/S in (k + 2)-space yields for g := g/l € [0, 1]

Cl-g)

¥y (arccos g)
= — > = - — =7 = -~ I
P{G. < g} 1—P{Gn > g} 1 5 1 ()

Thus, Fj(x) := 1 — ¥y (arccos x) /¥y () for « € [0,1] is the probability distribution
of G,,,/1 on [0, 1]. Since Wy is continuous, the probability density of {G,,/l = g} for
g € [0,1] equals 5 (§) = F{(3),

_1 d _1 d arccos
F = )/ = L in B dg .
() AT «(arccos x) AT /0 (sin 3)* dg

Hence, the question is how the value of the integral on the right changes with z. As
sin® is continuous, let Sinj denote its antiderivative such that Sinj(0) = 0. Then

Jo "% (siny)* dy = Sing(arccos x), and thus,
d . . / / . k /
d—Slnk(arccos x) = Sing'(arccosz) - arccos’ x = (sinarccosz)” - arccos’ z .
x

Since sin arccosz = v/1 — 22 and arccos’ x = —1/+/1 — 22, finally

V1—2a22

This proves that the probability density of {G,, = g} for g € [0,!] equals

ESink(arccos x) = (1 — xQ)k/Q . _71 1. (1 _ x2)(k_1)/2,

k—1)/2 k—1)/2

Fllo/l) = g (1) (1= (0/0) " = w(m) ™ (1 (9/1)?)'

k()
in (k+42)-space. Again, this is the density of the mutation’s spatial gain parallel
to an arbitrarily fixed direction—independently of the function optimized—if |m|
takes the value [, not the one towards the optimum after selection.



4 Estimating a step’s success probability

Before we use the density function just derived to estimate the spatial gain towards
the optimum in a step of the (1+1) ES on SPHERE, we return to the success prob-
ability of a step, which has already been the subject in Section 2, and derive an
alternative formula that enables us to estimate a step’s success probability more
comfortably.

If the random variable |m| takes the value [ and distances are scaled by [~! then
d := |c| /I denotes the scaled distance from the optimum and the scaled height of
the mutation sphere’s cap cut off by the fitness sphere equals 1 —1/(2d) (cf. Section
2). Consequently, the mutation is accepted iff the mutation’s scaled spatial gain
parallel to €0 is at least 1/(2d)—Dbecause then and only then the mutation hits this
cap containing all acceptable search points.

Proposition 2. Let the (1+1)ES minimize SPHERE, and let c,m € R™, n =
k42 > 4, denote the current search point resp. the isotropically distributed mutation
vector in some step. If |m| takes the value [, the success probability of this step equals

W (m)~t- fll/(Qd) (1- mQ)(k_l)/2 dx, where Wy, (w) = [ (sinz)*dz and d = |c| /1.

With respect to the 1/5-rule, which will be used for the upper bound on the expected
runtime, one might ask which length of the mutation vector results in a step of the
(141) ES having success probability 0.2. This question can now be answered.

Lemma 1. Let the (1+1) ES minimize SPHERE, and let c,m € R™ denote the
current search point resp. the isotropically distributed mutation vector in some step.

This step’s success probability is lower bounded by a constant greater than 0 and
upper bounded by a constant smaller than 1/2 iff |m| = O(|c|//n).

Proof. That v/2r/vk +1 < Wy(r) < v2r/Vk for k > 2 can be found in Ap-
pendix B, and thus, () = O(1/Vk). Let n = k+2 > 4 and d = |c|/|m| =
lc|/O(|c|/VE) = O(VE). The spatial gain parallel to €6 (cf. G,, in Section 3) is
negative resp. positive with probability 1/2, respectively; if it is negative, a success
is precluded. With probability

1/(2d)
wm) [ A=) > () (2 (- (2 e
0

= w(m)te/VE) (1 - 61 /k) kD2
= w(m e/ Vhen = e

it is positive, but still the mutant lies outside the fitness sphere such that the
mutation is rejected. Finally, with probability

1 1/d
Wk(ﬂ—)*l/ (1 _ x2)(k71)/2dz > wk(ﬂ.)*l/ (1 _ zQ)(kfl)/ZdI
1/(2d) 1/(2d)

> W (m) N (1/d — (2d)7Y) (1= (1/d)?)k-1/2
— Wk(ﬁ)*l (Qd)*l (1 _ @(l/k))(kfl)/Q
= w(m)te/vhen = o

the mutant lies inside the fitness sphere and is accepted. a

As |m| = O(|c|/v/n) is equivalent to the mutation sphere’s cap that is cut off
by the fitness sphere having scaled height 1 — 1/(2d) = 1 — ©(1/+/n), the result
can be read as follows: An isotropic mutation m € R”™ hits a cap having height



|m| - (1 — ©(1//n)) with a probability in [a,b] C (0,1/2) for two constants a and
b which depend on the constants in the @-notation.

It is clear that a step’s success probability approaches 1/2 as |m|/|c| — 0;
the interesting question is how the success probability changes when the mutation
vector gets too long. In fact, it turns out that a mutation is rejected w.o.p. if
|m| = 2(|c| - n*~1/?) for a positive constant ¢ in the step considered.

5 Expected spatial gain in one step

As Lemma 1 implies that the length of the mutation vector would be in O(|c|/\/n)
if the 1/5-rule was able to ensure a success probability of exactly 0.2 in the step con-
sidered, the mutation’s expected spatial gain towards the optimum in this situation
is of particular interest and is estimated in the following.

Lemma 2. Let the (1+1) ES minimize SPHERE, and let c,m € R™ denote the
current search point resp. the isotropically distributed mutation vector in some step.
If i/m| = O(|c|/v/n), this step’s spatial gain is in 2(|m|//n) = Q2(|c|/n) with
probability ©(1), and thus, the expected decrease in distance to the optimum is also
in Q2(|m|/\/n) = 2(|c|/n) in this step.

Proof. The condition yields d = |¢|/|m| = /n/X with A = ©(1); d denotes the
scaled distance from the optimum. Let C' denote the mutation sphere’s cap that
is cut off by the fitness sphere. Then the scaled height of C' equals 1 — 1/(2d) =
1—-X/(2y/n) =1—-06(1/y/n), and the candidate search point belongs to this cap
with a constant probability in (0,1/2) according to Lemma 1.

Let B C C denote the cap with height 1 — 1/d = 1 — A\/y/n such that its pole
coincides with the one of C. Then each point belonging to B is at least 1/d—1/(2d) =
1/(2d) scaled distance units closer to the optimum than a point belonging to the
boundary of C'. Since the boundary of C' equals the intersection of mutation sphere
and fitness sphere, the distance to the optimum is decreased by at least 1/(2d) =
O(1/+/n) scaled distance units if the candidate search point is in B. This happens
with probability ©(1) because the scaled height of B equals 1—©(1/+/n) like the one
of C. Since a negative spatial gain is precluded, the expected decrease in distance to
the optimum is lower bounded by ©(1) - jm| - 2(1/v/n) = 2(|m|//n) = 2(|c|/n).

O

Consequently, if the 1/5-rule is capable of adjusting the mutation vector’s length
such that the success probability is close to 0.2, the distance to the optimum is
expected to decrease by an 2(1/n)-fraction. Naturally, one might ask if some other
mutation strength causes an expected spatial gain that is in w(|c|/n). In fact, we will
show that the expected spatial gain towards the optimum is in O(|¢|/n) regardless
of the adaptation of the mutation vector’s length—as long as isotropic mutations
are used. As a consequence, the 1/5-rule indeed tries to adjust the length of the
mutation vector to have optimal order ©(|c|/+/n) such that the expected spatial
gain towards the optimum has maximal order O(|c|/n).

Obviously, the spatial gain of a step equals 0 if the mutation is rejected (the
mutant is not selected) and is upper bounded by the mutation’s spatial gain parallel
to €0, otherwise. As mentioned above, when SPHERE is minimized, a mutation is
accepted iff the spatial gain of the mutation parallel to ¢o is at least |m|/(2d),
d = |c|/|m|. Using the probability density of a mutation’s spatial gain (parallel to
a fixed direction) obtain in Section 3 (F}, on page 5), the expected spatial gain of a

step is upper bounded by |m| - fll/(gd) x Fy(x) dz. Since

2\(k+1)/2
—(k+1)



! (1 — —o\(k+1)/2
E[gain] il / TV . X o .
1

= Wk(ﬂ') /(2d) Lp(ﬂ') : (k + 1)
As U (7) > V271 /\Vk + 1, finally

: m| —2y(k+1)/2

in (k + 2)-space. Therefore, E[gain] = O(|m|/\/n) even if d = |c|/|m| — oc.
Furthermore, this inequality enables the proof that the expected spatial gain is
in O(|¢|/n) for any choice of the mutation vector’s length.

Lemma 3. Let the (1+1) ES minimize SPHERE, and let ¢ € R™ denote the current
search point. If the mutation vector is generated isotropically, the expected spatial
gain towards the optimum is in O(|c|/n).

Proof. To prove this claim it must be shown that even if the mutation vector’s
length is chosen such that the expected spatial gain is maximized, this expected
gain is in O(|c|/k), k = n — 2 > 4. When distances are scaled by |m|™!, the
analogous question is which scaled distance from the optimum maximizes the ratio
of expected scaled gain to scaled distance.

Let d = |c|/|m| denote the scaled distance from the optimum. Applying the
upper bound on the expected spatial gain from above yields

1

Efscaled gain] /d < ——.(1—(2d)"2)*™"?/q.
[scaled gain] / D) ( (2d) ) /

=: wi(d)

Hence, an upper bound on E[scaled gain] /d can be derived by maximizing the
function wy. This is done in Appendix C with the result wy,(d) < wy(Vk/2) for

d > 0. Since E[scaled gain] /d < wy(d)/+/27(k+ 1) and
wi(d) < wp(VE/2) = (2/VE)-(1-1/k)*D72 = (2/VE)-0(1) = 6(1/Vk),

finally E[scaled gain] /d < O(1/Vk)/\/27(k +1) = ©(1/k). Hence, even if the the
scaled distance from the optimum d = |¢|/|m| is optimal,
|c| - |m| - E[scaled gain] |c| - E[scaled gain]

E[gain] = d - ; = |¢|-0(1/k). O

That the expected spatial gain is in O(|m|//n) and even in O(|c|/n) regardless of
the mutation vector’s length does not preclude that the spatial gain has a greater
order with a certain probability. In fact, the results obtained enable the proof that
the spatial gain is o(|m/| - n5*1/2) w. 0. p. for any positive constant e.

6 Expected gain in multiple steps / Expected runtime

As the (1+1) ES (in general) doesn’t optimize, but actually approximates SPHERE,
it is not evident what the term “runtime” means. If runtime is defined as the number
of steps necessary to halve the distance from the/an optimum, then linear runtime
aligns with linear convergence, for instance.

Obviously, the runtime depends on the mutation adaptation the (1+1) ES uses
when minimizing SPHERE; but a lower bound on the (expected) runtime does not,
as optimal mutation adaptation can be assumed. Since the expected spatial gain
in one step is maximized if the distribution of |m| is concentrated on a length



depending on the current distance |c¢|, intuition says that the following “greedy”
mutation adaptation is theoretically optimal: In each step m’s isotropic distribution
is chosen such that |m/| is concentrated at the value maximizing the expected spatial
gain in this single step.

Lemma 4. Let the (1+1) ES minimize SPHERE, and let ¢ € R™ denote the current
search point. If the mutation vector is generated isotropically, the number of steps
necessary to obtain an expected spatial gain of O(|c|) is in 2(n).

Proof. As shown in Section 5, if for a given search point y € R"™ the mutation
strength is chosen such that the expected spatial gain is maximized, it is in O(|y| /n).
Due to the symmetry and scalability properties of SPHERE, the maximal expected
spatial gain equals £-|y| /n for some £ = ©(1) which is independent of |y|. Let D, as
denote the random variable that corresponds to the distance from the optimum after
a step in which some y with |y| = r is mutated using the distribution M for the
mutation vector’s length. The results in this paper yield that for fixed radius of
the fitness sphere 7, E[D, 5] is minimal if M is concentrated at a specific length.
Consequently, argminys E[D, as] exists, and moreover, miny; E[D, ] = 7 — & -
r/n =r-(1-¢/n).

Now the situation is examined in which the total expected spatial gain of s con-
secutive steps is to be maximized. Naturally, in the last step the mutation strength
is chosen in the way that the spatial gain (in this last step) is maximized. Since the
maximal expected spatial gain is monotone in the distance from the optimum, it is
by no means obvious that being greedy in each step maximizes the total expected
spatial gain; but intuition will prove right in this case.

Let Dy_1 denote the random variable that corresponds to the distance from the
optimum after the first s — 1 steps and fs_ its density (function). Naturally, fs_1
depends on the initial distance from the optimum and the choice of the mutation
strength in the first s — 1 steps. Furthermore, let D, denote the random variable
that corresponds to the distance from the optimum after the s-th step. Since in this
last step the mutation strength is chosen in the way that the resulting expected
distance from the optimum is minimized,

E[D) - /_Oo i ED, ar] - foa(r) di

/00 r-(1=¢&/n)- feor(r)dr

— 00

(o]
(1—5/71)-/ rfso1(r)dr = (1=¢/n)-E[Ds-1]
— 00

(the third equality is due to &’s independence of 7). Consequently, E[D;] indeed takes
its minimum if E[D,_4] is minimal. Hence, to maximize the expected spatial gain in
s steps the expected spatial gain in the first s — 1 steps is to be maximized. Starting
with s = 2, by induction it follows that choosing the mutation strength in each
step such that the expected spatial gain is maximal, respectively, also maximizes
the total expected spatial gain. After s greedy steps the expected distance from the
optimum-—which is now proved minimal-—equals |¢| - (1 — £/n)® due to linearity
of expectation. Finally, (1 —¢/n)* <1 —¢ for £ € ©(1) and a constant ¢ € (0,1)
implies s = 2(n). O

This result raises the conjecture that the expected number of steps to obtain a
predefined spatial gain of ©(|c|)—for instance, to halve the distance from the
optimum—is in {2(n) even if the mutation adaptation works theoretically perfect.
This can be proved with the following modification of Wald’s equation.

Lemma 5. Let X1, X, ... denote random variables with bounded range' and T the
random variable defined by T = min{t | X; +--- + X; > g} for a given g > 0. If
E[T] exists and E[X; | T > i] <wu fori e N and u > 0, then E[T] > g/u.

1 that is, inf X; and sup X; exist for i € IN
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Proof. Obviously T' > 1, and for ¢ > 2 the condition 7" > ¢ is equivalent to X; +
-+ Xj < g for 1 <k < i. Since the X; are bounded, E[X; + --- + X 7| also exists
if E[T] exists. The proof follows the one of Wald’s equation (up to the point where
the upper bound on E[X; | T > i] is utilized rather than the original assumption
that the X; are independent and identically distributed).

g < E[Xi+- -+ X7]

= iP{T:t}~E[X1+-~+Xt\T:t]

t=1

- iP{T:t}Xt:E[Xi\T:t]

= Y ) P{T =t} EX;|T =1
t=1 i=1
since the series converges absolutely due to the boundedness of the X

- iiP{T:t}-E[Xi\T:t]

i=1 t=1

_ iiP{T:ﬂTzi}-P{Tzi}-E[Xi\T:t]

o0 (oo}

= > P{T>i}- ) P{T=t|T>i} EX,;|T =1
i=1 t=1
since t >4, T =t implies T > 1

= Y P{T>i}-Y P{T=t|T>i}-E[X;|T=tAN >4
=1 t=1
since t < ¢ implies P{T' =t |T > i} =0

- iP{TZi}-iP{T:HTzi}-E[Xi\th/\TZi]

i=1 t=1

_ iP{TZi}-E[XHTZi]

i=1

< Y P{T>i}-u
i=1

= E[T]-u O

Theorem 1. Let the (1+1) ES minimize SPHERE using isotropic mutations, and
let c € R™ denote the current search point. Independently of the mutation adaptation
used the expected number of steps necessary to to obtain a spatial gain of O(|c|) is

in 2(n).

Proof. For i > 1 let X; denote the random variable that corresponds to the spa-
tial gain towards the optimum in the i-th step. Furthermore, let 7" denote the
(random) number of steps the (1+1) ES needs to realize the postulated gain. As
SPHERE is monotone in the distance from the optimum, X; > 0, and since every
accepted mutant is at most |c| distance units away from the optimum, X; < |¢|
and E[X; | T > i] = O(|¢c|/n) according to Lemma 3. If E[T] exists, then 0 < g :=
sup, E[X; | T > i] = O(Je|/n), and consequently, E[T] > O(|c|)/g = 22(n) according
to Lemma 5.

If the series that corresponds to E[T] does not converge absolutely, one may
informally argue that “E[T] = co = £2(n)” since T is positive. O
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Moreover, it can be proved that the number of steps necessary to obtain a spatial
gain of O(|c|) is in w(n'~%) w.o.p. for any positive constant .

The lower bound on the expected runtime holds independently of the muta-
tion adaptation applied since theoretically optimal adaptation is assumed. An up-
per bound, however, crucially depends on the mutation adaptation used. Next,
a matching upper bound on the expected runtime of (1+1)ES on SPHERE using
Gauss-mutations and the following instantiation of the 1/5-rule to adapt the muta-
tion vector’s length is shown.

Every n steps the relative success frequency of the last n steps is evaluated.
If it is smaller than 0.2 the scaling factor is halved, otherwise doubled.

The following properties of Gauss-mutations are proved in Appendix D.

Lemma 6. A Gauss-mutation m € R"™ is isotropically distributed, and moreover,
I := E[|m|] ezists and P{||m| 1| >6-1} < 67%/(n—1/2).

Let mq,...,m, denote independent copies of m. Then for any constant A < 1,
two positive constants a(N\) and b(N\) exist such that for the cardinality of I := {i |
a(A) -1 < |my;| <bA) -1} w.o.p. #I > An.

As the adaptation of the scaling factor is done every n steps, the run of the
(1+1) ES is virtually partitioned into phases each of which lasts n steps such that
E[|m|] is constant in each phase. Let s; denote the scaling factor used throughout
the i-th phase and [; the corresponding expected length of the mutation vectors.
Furthermore, let r; denote the relative frequency of successful steps in the i-th
phase and d; the distance from the optimum at the beginning of this phase; hence,
d; — d;4+1 equals the spatial gain in the i-th phase. Furthermore, let p; denote the
success probability in the first step of the i-th phase. Note these simple, but crucial
facts that are due to the symmetry/scalability of SPHERE: During a phase the steps’
success probabilities are non-increasing (as the distance from the optimum is non-
increasing), and p; > p; iff d;/s; > d;/s;.

Lemma 7. Let the (1+1)ES minimize SPHERE using Gauss-mutations and the
1/5-rule defined above. If r;>0.2 and r; 11 <0.2 resp. if r; <0.2 and ;41 >0.2, then
dito = d; — 2(d;) w.o.p., that is, the distance from the optimum is reduced by a
constant fraction w. o. p. in these two phases.

Proof. Assume the opposite (assumption Al): d;yo = d; — o(d;). As Al implies
dito = O(d;y1) = O(d;) (in addition to d; 2 < d;y1 < d;), the order of distance from
the optimum does not change in the two phases. As s;11 = 2s; resp. s;11 = $;/2,
liy1 € {21;,1;/2}, in other words, E[|m|] varies only by a factor of 2 in the two
phases.

Assume that E[lm|] # ©(d;/+/n)) in the two phases (assumption A2). Then
Lemma 6 yields that w.o.p. |m| # ©(d;//n) in 0.9n steps in each of the two
phases. According to Lemma 1, the success probability is either in o(1) or lower
bounded by 1/2 — o(1) in each of these steps. By Chernoff-bounds, the probability
of at least 0.2n successful steps in the one phase and fewer than 0.2n in the other is
exponentially small either way. Thus, w.o.p. E[|m|] = ©(d;/\/n) in the two phases
such that w.o.p. —=A2.

Finally, it must be shown that E[|m|] = ©(d;/\/n) in the two phases implies that
w.o0.p. 7Al. For a search point with distance ©(d;) from the optimum the spatial
gain is in £2(d; /n) with probability ©(1) if |m| = ©(d;//n) by Lemma 2. As |m/| =
O(E[|m|]) = ©(d;//n) w.o.p. in 0.9n steps in each of the two phases according
to Lemma 6, the number of steps in each of which the spatial gain is in 2(d;/n)
is w.o.p. in ©(n) in each of the two phases by Chernoff-bounds. Consequently,
the total spatial gain is in {2(d;) w.o.p. in each of the two phases—implying that
w.o.p. —AL O
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A run of the (1+1) ES is considered as a sequence of phases; this sequence is notated
as follows: A phase in which r; < 0.2, such the scaling factor is halved, is symbolized
by “+” and “x” symbolizes a phase in which r; > 0.2, such that the scaling factor is
doubled. Specifying sequences of phases by regular expressions? over the alphabet
{x,+}, the lemma above deals with x=+ resp. +x subsequences and implies that
the (1+1) ES converges linearly w. o.p. for polynomially many phases if the corre-
sponding sequence is in {+x, x+}*. To obtain the main result, the argumentation
in the proof of Lemma 7 must be extended to subsequences < x® and x=? for b > 3.

Theorem 2. Let the (1+1) ES minimize SPHERE in R"™ using Gauss-mutations
and the 1/5-rule defined above. Let the i-th phase be the first one such that r; <0.2
and riy+1 > 0.2 or such that r; > 0.2 and r; 11 <0.2. Beginning with the i-th phase
the (1+1) ES converges linearly for any polynomial number of phases w. o.p. That
18, diyiy1 < 2= . d; w.o.p. forte poly(n) phases each of which lasts n steps.

Proof. The sequence of the phases considered begins either with x—+ or with +x.
Subsequences in {+x, x+}* are covered by Lemma 7.

First we investigate the subsequence +x° of phases for b > 3. Assume these are
the phases 7,...,7 4+ b such that the phases j + a, 2 < a < b, are not covered by
Lemma 7. Nevertheless, the proof of this lemma yields that w.o.p. [; = ©(d;/v/n)
and that this w.o.p. results in d; 1 = d; — £2(d;). We show that the conditions in
the (j+a)-th phase are w.o.p. similar to the ones in the j-th phase. Since s;,, >
sj, also lj4q > ;. Furthermore, dj;, < dj, and thus, “l; = O(d;/\/n) w.0.p.”
implies that w.o.p. lj1q = £2(dj+a/v/n). That also w.o0.p. lj1, = O(djta/V/n)
can be proved by showing that the assumption l;4, = w(djt+q./v/n) leads to an
exponentially small probability for 7,4, > 0.2 (cf. the proof of Lemma 7). Hence,
W.0.p. ljtq = O(djie/v/n) implying that w.o0.p. djtat1 = djta — 2(d;4,) (again
cf. the proof of Lemma 7).

Now the subsequence x -+’ of phases is investigated for b > 3. Again, 2 < a < b
and the first phase of the sequence is the j-th one in the run of the (141)ES. The
proof of Lemma 7 yields that w.o.p. ;41 = ©(dj+1/y/n) and that this w.o.p.
results in dj+2 = dj+1 — Q(dJJrl) If Pj+a > Pj+1, then dj+a/5j+a > derl/SjJrl
which is equivalent to ljy,/dj+q < lj+1/d;+1. In this case, the (j+a)-th phase
resembles the (j+1)-th. Namely, “l;11 = ©(dj4+1/+/n) w.o.p.” implies that w.o.p.
lita = O(djta/+/n). Furthermore, 7,4, < 0.2 implies that w.o.p. also 1, =
2(djta/+/n) (cf. the proof of Lemma 7). Consequently, if pj1q > p;41 then w.o.p.
lita = O(djta/+/n) implying that w.o0.p. djiq+1 = djta — $2(dj1a) (again cf. the
proof of Lemma 7). Finally, the (sub-) case p,+, < pjy1 is investigated. Note that
Sjta = 8j+1/2°71, and thus, pjiq < pj+1 iff djpa < d;/2°71. Altogether, either
w.0.p. the distance from the optimum is reduced by a constant fraction in the
(j+a)-th phase or in the preceding a—1 phases the distance from the optimum is
at least halved a—1 times. By an accounting-method argument, in the latter case
djta+r1 < Ad; for a constant A € (1/2,1) even if the (j+a)-th phase yields no
spatial gain. (Remember that negative spatial gain is precluded.)

Allin all, the assumption that the sequence of the ¢ € poly(n) phases considered
starts with x =+ or with +—x yields that after the tn steps d; ;11 < Ad; w.o.p. for
a constant A\ € (0,1). |

Finally, the theorem just proved together with Theorem 1 yield the bound on
the expected runtime, the expected number of steps the (1+1) ES needs to realize
a predefined reduction of the distance from the optimum in the search space.

2 For the set W of words W* denotes the Kleene closure.
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Theorem 3. Let the (1+1)ES minimize SPHERE using Gauss-mutations and the
1/5-rule described in this section. If for the initial search point a € R"™ and the
initial scaling factor s1, |a|/s1 = ©(n) then the expected number of steps to obtain
a search point ¢ such that |c| < |a|-27" for t € poly(n) is in O(t - n).

Proof. The lower bound (2(¢-n) follows immediately from Theorem 1. The assump-
tion on the starting values ensure that Iy = ©(y/n)-s1 = O(d1/\/n) (see Appendix D
for the expected length ©(y/n) of the unscaled mutation vector). In other words,
the expected length of the mutation vector has optimal order (cf. Lemma 2). In
particular, this assumption on the starting conditions imply the starting conditions
used in the proof of Theorem 2 (which have been ensured there by the assumption
that the sequence of phases starts with x+ or +x). Hence, Theorem 2 yields that
the number of phases such that the expected distance from the optimum is smaller
than |a| - 27%/2 is in O(¢). By Markov’s inequality, P{|c| < |a|-27'} > 1/2 after
these O(t) phases. If this is not the case, the distance from the optimum is not
greater than |a| such that again with probability at least 1/2, |c| < |a|- 27" after
another O(t) phases. Repeating this argument, the expected number of phases is
upper bounded by },o,27-i-O(t) = 2- O(t), and the expected number of steps
is in O(t - n). O

For different starting conditions the (expected) number of steps necessary to en-
sure the theorem’s assumptions must be estimated before the theorem can be
applied—for instance by estimating the number of steps until the scaling factor
is halved and doubled at least once, respectively. This is a rather simple task when
utilizing the results that have been presented.
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A Hypersurface area of a hyper-spherical cap

In the following, polar/spherical coordinates are used. Therefore, let r denote the
distance from the origin, « the azimuthal angle with range [0,27) and fs, ..., 3,
the remaining angles with range [0, 7]. The connection to a Cartesian orthonormal
system is the following. For some given € R" let ' denote its orthogonal projec-
tion onto the xi-ro-plane. If &’ equals the origin, o := 0, otherwise « is the angle
between (the positive half of) the z1-axis and the line segment o «’ (which lies inside
the z1-xo-plane). Furthermore, for i € {3,...,n}, §; is the angle between (the posi-
tive half of) the z;-axis and the line segment 6. As a consequence, representation
by spherical coordinates is well-defined.

Let p denote an arbitrary permutation on {3,...,n}. Fixing r in n-space, but

none of the angles defines a point set Sﬁn) forming an n-sphere with radius r;
additionally fixing (3,(,) results in an (n—1)-sphere Sﬁn_l) C ST(") having radius
rsin f,(n; fixing B,,—1) in addition to r and f,(,) results in an (n—2)-sphere
Sﬁn_z) C Sﬁ"_l) C Sﬁ") with radius 7 sin 3, sin B,(,—1), and so on (cf. Kendall
(1961)).

Thus, the hypersurface area of an n-sphere with radius r > 0 equals

- - T 27
/n_o /,Bn_l—('). ' /ﬂg_o /a:O(T sin (3, - - - sin B3 da) (rsin By, - - - sin B4 df33) - - -
oo (rsin By, dBn—1)(rdBy).

Each of the n—1 factors in parentheses corresponds (one-to-one) to one dimension of
the infinitesimal hypersurface element at the point (r, «, 33, ..., 8,), which is illus-
tratively generated by simultaneously changing all n—1 angles by da, dfs, ..., dS3,,
respectively. Re-grouping the factors, solving the a-integral ( fo% do = 27) and
defining ¥;(v) := [ (sin 8)’ df yields "' - 2 - [[!'-] W;(r) for the area of an n-
sphere with radius r.

The area of an n-dimensional spherical cap is calculated
by adjusting 3,,’s upper limit appropriately. In the figure on
the right, the interdependence between the upper limit (y) on
B3, and the height () of a spherical cap is shown (where the
sheet this figure is drawn on corresponds to the zi-z,-plane
if & = 0). In the unit circle h = 1 — cos~ for v € [0, w]. Thus,
the area of a hyper-spherical cap with radius » and height
r-(1—cosy) € [0, 2r] equals r"~1-27- (H?:lg &DZ(’/T)) Wy, o (7).

Consequently, the ratio of the hypersurface area of a hyper-spherical cap to the
hypersurface area of the hyper-sphere it is cut off equals ¥, _s(v) /¥, _2(7w) where
the angle v = arccos(1 — h/r) € [0, 7] corresponds to the cap’s height.
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B Tight bounds for ¥, (7) = [/ (sinz)* dx

By the definition of the beta function (cf. Arfken (1990)), namely

/2
Bm+1,n+1) = 2 / (cosz)?™ T (sinz)*"dx
0

/2 1 1 k+1
/ (sinz)fde = . B(7 +> .
0 2 2" 2

As B(m,n)=1T'(m)-I'(n)/ '(m+n)and I'(1/2) = /7,

i /2 1 k+1 rk
(sinz)fde = 2 (sinz)*de = Bf=, i = \/E(Qi
0 0 2 L

for ke N

2

Furthermore, using the given answer to exercise 9.60 in [Graham, Knuth, and
Patashnik (1989)], namely

L\nT /e 1oL
I'(n) \/ﬁ( 23n+27n2 910,3 215n4+0(n ),
for k > 2
2 Fﬁ+l B
Ty
k+1 rs+1) k

Altogether, for k > 2

2 T 2
”k:—:—rl < /O(sinz)kd:c = P(r) < %,

and therefore, (1) = O(1/Vk).

C Maximizing wy

The derivative of

equals

(k—1)/2 (k—1)/2—1
—1 1 1 1 k-1 1

' = —(1-—— Sl N (.
wi(2) x ( 4952) * x (2363 2 ( 4x2> )

1 1\ (k-D/2-1 N ko
- o (1- - 1- ) -
x? ( 4x2) ( 4x2) 422 )7

and consequently, if x > 0,

i~}

1 k-1 vk
!/
Since wy(x) > 0 for x > 0 and limwy(z) = 0 as © — oo, the unique extremum of
the function wy, at vk /2 is in fact a maximum.
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D Proof of Lemma 6

Claim. “A Gauss-mutation m € R" is isotropically distributed, and moreover, [ :=
E[|m|] exists and P{||m|—1|>6-1} < 672/(n—1/2).

If m4,...,m, denote independent copies of m, then for any constant A\ < 1,
two positive constants a(\) and b(\) exist such that for the cardinality of I := {i |
a(A) -1 < |m;| <bA) -1} w.o.p. #1 > An.”

Proof. Let m be (N1(0,1),..., N, (0,1))-distributed (cf. Definition 2). Then |m]| is
x-distributed (with n degrees of freedom; cf. Arfken (1990)), and hence,

elfml] = Ve SN — o,

Since |m|? is x?-distributed, E[|m|?| = n, and consequently,

_ _ _ I(n/2+1/2)\°
varml) =[] €l = -2 (KO
It can be shown that Var[|m/|] approaches 1/2 from below as n — oo, and thus,
Var[|m|] < 1/2 and E[|m|]> > (n —1/2)/2.

If for a random variable Y, E[YQ] exists and E[Y] > 0, then Chebyshev’s in-
equality yields that

Var[Y]
_ >4 P s

P{Y —E[Y]| >4 -E[Y]} < G ETIP
for any § > 0. Since E[|m|] = X - E[|m]] and Var[|m|] = A\? - Var[|m|] for A € R™,
applying this bound to |m/| yields (as [ = E[|m]])

2
Plilml—11260) < — 2 o oL
(6-X-E[lm]]) 6% (n—1/2)

Furthermore, it can be shown that @ remains (N1 (0, 1), ..., N, (0, 1))-distributed
when switching to another Cartesian coordinate system by an arbitrary orthogonal
transformation (cf. Beyer (2001)). In other words, m’s distribution is invariant with
respect to the rotation of the coordinate system; this implies the isotropy of m’s
distribution.

Finally, the situation of n iid Gauss-mutations: Since |m/| # ©(E[|m|]) only with
probability O(1/n), E[#I] = n — O(1) and Chernoff-bounds can be applied. O



