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Abstract
The cumulative step-size adaptation (CSA) based on path length control is regarded
as a robust alternative to the standard mutative self-adaptation technique in evolution
strategies (ES), guaranteeing an almost optimal control of the mutation operator. In
this short paper it is shown that the underlying basic assumption in CSA – the per-
pendicularity of expected consecutive steps – does not necessarily guarantee optimal
progress performance for (�=�I ; � )intermediate recombinative ES.
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1 Introduction and Problem Description

The local optimization performance of evolution strategies (ES) in real-valued search
spaces RN relies heavily on the strength of the mutations used and the shape of their
distribution. In order to keep pace with the evolution process and obtain maximal
(local) performance (i.e., to obtain the greatest improvement in the next generation
step), the general mutation strength � and – considering arbitrary normally distributed
mutations – the covariance matrix C as the endogenous strategy parameters must be
adapted online during the evolution process. This adaptation process is usually real-
ized by so-called self-adaptation (SA) techniques.

The standard SA is based on the mutative step-size control paradigm (also referred
to as mutative step-size adaptation, MSA) proposed by Rechenberg and Schwefel (see
Rechenberg, 1973; Schwefel, 1981; Bäck & Schwefel, 1993; Bäck, Hammel, & Schwefel,
1997): Each individual has its own set of endogenous strategy parameters subject to
variation (mutation and recombination) and the entire genetic information is inherited
according to the individual’s fitness. That is, those strategy parameters that belong to
the fittest individuals are likely to survive. As has been shown in Beyer (1996) (see also
Beyer, 2001), this adaptation technique is able to realize optimal performance on the
sphere model in the case of the (1; � )-�SA-ES (for performance definition, see Sect. 2.1);
furthermore, this behavior is insensitive to the �-mutation rule and the learning pa-
rameter used. Unlike the (1; � )-�SA-ES, newer investigations regarding (�=�; �)-�SA
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strategies have revealed, however, a sensitive dependence of the performance on the
learning parameter (Grünz & Beyer, 1999). That is, (�=�; �)-�SA-ES exhibit optimal
performance only when the learning parameter is tuned accordingly.

During the mid-1990s an alternative adaptation strategy was proposed by Oster-
meier, Gawelczyk, and Hansen (1994, 1995), the so-called cumulative step-size adap-
tation (CSA), that promised an improved and more reliable adaptation behavior. Un-
like the mutation strength adaptation by MSA that uses one-generation fitness ranking
information only and neglects the effect of recombination,1 the CSA relies on fitness
related search space information gathered over a sequence of consecutive generations.
In CSA strategies as well as in the CMA-ES (CMA – covariance matrix adaptation, not
considered in detail here2) the length of so-called evolution paths is used to control
the variance �2 of the object parameter mutation operator (therefore it is sometimes
referred to as cumulative path length control).

The evolution path s(g) (g – generation counter) is a weighted vector sum of the
actually realized steps z(g) in the object parameter search space RN (see (L4) in Eq. (1),
below). The basic idea of cumulative path length control is explained in Hansen and
Ostermeier (1996):

“The evolution path mainly reveals information on correlations between mu-
tation steps successively selected in the generation sequence. If successively
selected mutation steps are parallel correlated (scalar product greater zero),
the evolution path will be comparatively long. If successively selected muta-
tion steps are anti-parallel correlated (scalar product less than zero), the evolu-
tion path will be comparatively short. Roughly speaking, parallel correlation
means that successive steps are going into the same direction, and thus the
same distance could be covered by fewer but longer steps. Anti-parallel cor-
relation means, that the steps cancel each other out. Both is inefficient with
respect to the single mutation step. Consequently, to make single mutation
steps most efficient, it is the best to have no correlation between the selected
mutation steps in the evolution path.”

This philosophy culminates in (Hansen & Ostermeier, 1996, p.312):

“The geometrical interpretation is, that successively selected mutation steps
should be perpendicular to each other (apart from stochastic deviations).” and
further in the:

“fundamental adaptation principle : : :: Reasonable adaptation has to reduce
the difference between the distributions of the actual evolution path and an evolution
path under random selection, : : :” and:

“: : : as substantiated by experiments, this [fundamental principle] leads to se-
lected steps being uncorrelated and adapts optimal step size precisely.”

Based on this fundamental principle an update rule for the (�=�I ; � )-ES with standard
CSA and isotropic mutations has been proposed (Hansen & Ostermeier, 1996) which

1Survival of the strategy parameter �l depends on the fitness of the lth offspring’s object parameter set
yl which is generated by a mutation with strength �l. Recombination is applied after selection. Thus, MSA
strategies cannot directly account for the effect of recombination.

2For an excellent introduction into that matter, Hansen and Ostermeier (2001) is recommended.
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can be expressed as:

8l = 1 ; : : : ; �: w
(g)
l := �(g) ~Nl(0; 1); (L1)

z(g) :=
1

�

�X
m=1

w
(g)
m;�; (L2)

y(g+1) := y(g) + z(g); (L3)

s(g+1) := (1� c)s(g) +
p
c(2� c)

p
�

�(g)
z(g); (L4)

�(g+1) := �(g) exp

�ks(g+1)k � �N
D�N

�
: (L5)

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(1)

Here, the first three lines realize the standard (�=�I ; � )-ES operations in object param-
eter space, i.e., produce � normally distributed mutations w 2 RN (L1), recombine the
� fittest mutations by a center of mass operation (L2), and update the parental state
(L3).3 The CSA is realized in the lines (L4) and (L5). In (L4), the actual evolution path
is cumulated in a weighted fashion yielding the vector s. In (L5), the length difference
of s and �N (�N is the expected value of the length �N of an N -dimensional random
vector with N (0; 1) standard normally distributed components) is used to change the
mutation strength �.4 It is claimed by the designers of the CSA rules (L4), (L5) that –
provided stationary conditions – this rule allows for an optimal control of the mutation
strength, such that the progress rate ' on the sphere becomes nearly maximal (for the
definitions, see below).

Even though the philosophy behind the “fundamental adaptation principle” is in-
tuitively appealing, the claimed optimality of the perpendicularity condition between
selected evolution steps still remained obscure. In (Hansen, 1998, p.5–7) a geometric
explanation has been offered that relates this condition to the local progress perfor-
mance of the ES. The aim of this short paper is to reconsider the arguments presented
in Hansen (1998) and to show that the underlying assumptions are only valid for strate-
gies where the selection information is not disturbed by random sources. The investi-
gations to be presented here have been triggered by empirical observations reported in
Arnold and Beyer (2000a): Where it was found that the (�=�I ; � )-ES with CSA can fail
when the fitness information is disturbed by a certain relative measuring error.

The remainder of this article is organized as follows. First, the geometric basis
of the perpendicularity condition is investigated thoroughly. Secondly, the theoretical
predictions are compared with simulations, and finally, conclusions are drawn and an
outlook is given.

2 Performance Optimality vs. Perpendicularity

2.1 Progress Rate and Optimality Condition

The local performance of ES in search space RN is usually measured by the progress
rate ' as the expected value of the one-generation distance change to the optimum. Let

3As in standard ES, y 2 R
N refers to the object parameter vector; the fitness of which is given by F =

F (y). The � offspring states are generated by ~y
(g)
l

= y(g)+w
(g)
l

. wm;� refers to the mutation that produced

the mth best offspring w.r.t. its (measured, i.e., observed) fitness value F (g)
m;�

= F (y(g) +w
(g)
m;�

).
4The cumulation time parameter c, 0 � c � 1, is usually chosen c / 1=

p
N , the damping parameter D,

D /
p
N , and �N =

p
2 �
�
N+1
2

��
�
�
N
2

�
(see Hansen & Ostermeier, 1997).
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R be the vector from the optimum point ŷ to the parental center of mass at generation
g and r the same vector at g+1 (see Fig. 1). The progress rate is defined as the expected
value ' := E[R � r], where R := kRk and r := krk. Considering the sphere model,
the fitness function F which is defined as F (y) := Q(ky � ŷk) + "y = Q(R) + "y
(Q(R) – monotonic function), an asymptotically exact (N ! 1) normalized progress
rate expression for (�=�I ; � )-ES including normally distributed fitness noise "y, with
standard deviation �" and zero mean, can be derived (for details, see Arnold & Beyer,
2001)

'� = ��2

"
c�=�;�p
��2 + ��2

"

� 1

2�

#
(2)

(c�=�;� – progress coefficient which is defined as the expectation of the average over the
first � order statistics xm:� of the x � N (0; 1) random variate, � – number of parents, �
– number of offspring) with the normalizations

'� := '
N

R
; �� := �

N

R
; ��

" := �"
N

Q0R
; Q0 =

dQ(R)

dR
; (3)

where � is the standard deviation of the mutation operator and ��

" is the normalized
standard deviation of the fitness noise source.5 As one can see, local performance of
the (�=�I ; � )-ES on the sphere model depends on the fitness model Q(R), the current
distance R to the optimum, the fitness noise, and the mutation strength �.

Given the (�=�I ; � )-ES parameters, the fitness model, and the '-measure, perfor-
mance optimality w.r.t. the mutation operator is defined as

'̂� := max
��

'�(��) with �̂� := argmax
��

'�(��): (4)

That is, we are interested in the (locally) optimal mutation strength �̂ that provides the
greatest improvement in the next generation step. The �̂� can be calculated from (2). In
the case ��

" = 0 one easily finds �̂� = �c�=�;�, however, for ��

" > 0 the optimal �� has
no simple solution, a degree three algebraic equation in ��2 must be solved instead. As
known from algebra, such equations cannot be solved by simple geometric means (i.e.,
by ruler and circles). Therefore, it is in principle excluded that a general perpendicu-
larity condition corresponds to the optimality condition (4) in the noisy case.

2.2 Perpendicularity Condition

Let us now have an alternative geometrically motivated view of performance optimal-
ity. In Fig. 1 a two-dimensional snapshot of the RN , spanned by the two parental center
of mass vectors at generation g and g + 1, R and r, respectively, is displayed. The
state change from g to g + 1 is by the vector z. Since z is generated by (L1) and (L2)
in Eq. (1), the length of z depends on �. Let � be the angle between z and direction to
the optimum �eR. Provided that � = const:, i.e., that � does not depend on �, opti-
mal performance is obtained for that �-value that yields zopt (see Fig. 1), because zopt
yields the smallest r = krk (recall, performance optimality is defined as the greatest
improvement step minimizing the r of the next generation). Since � is assumed to be
constant, by elementary geometry, optimality is equivalent to the orthogonality of zopt
and r, i.e., �̂ is alternatively determined by rTzopt = 0.6 This condition transfers to the

5Due to definition (3), ��" is basically proportional to the relative measuring error.
6A similar condition can be obtained for the CMA-ES with correlated mutations on the general quadratic

fitness model. LetC be the covariance matrix of the mutation operator, the condition reads rTC�1zopt = 0.
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Figure 1: Snapshot of the search space RN . The two-dimensional projection is spanned
by the optimum point (labeled by a flag) and the two parental center of mass states R
and r at generation g and g + 1, respectively.

expected next generation step because in the mean z(g+1) is (anti)parallel to r (due to
the symmetry of the mutations used), i.e., r = ��z(g+1) does hold (� - scalar factor).
Thus, one ends up with the perpendicularity condition z

(g)T
opt z

(g+1) = z(g)
T

z(g+1) = 0
(cf. Hansen, 1998, p.60.).

The crucial point in the derivation of the perpendicularity condition is in the
� = const: assumption. To see this, we consider the decomposition of the z vectors
according to the evolutionary progress principle (Beyer, 1997) into a gain component x
and a loss part h: z = �xeR + h. That is, we decompose z into a component �xeR
parallel to optimum direction and in a perpendicular part h. Thus, � can be calculated
as � = arc cot(x=khk). Since x and h are random variates, � is a random variate, too.
Its expected value � can be approximated by � ' arc cot(x=khk). As can be shown
by the method of stochastic differentials, this approximation is exact in the asymptotic
limit N ! 1. Since the proof is rather long and of technical interest only, we refrain
from presenting it here. Using results derived in Arnold and Beyer (2001), the expected
values of x and khk in the asymptotic limit case are

x ' �
c�=�;��

�p
��2 + ��2

"

and khk ' �

s
N

�
: (5)

Thus, we find

� ' arc cot

 r
�

N

c�=�;��
�p

��2 + ��2
"

!
; (6)

i.e., for ��

" > 0 the expected �-angle depends on the (normalized) mutation strength.
Even though Eq. (6) is exact for the asymptotic limit (N ! 1, �� < 1, ��

" < 1)
only, it also can serve as an approximation formula provided that �� and ��

" are suffi-
ciently small: Fig. 2 shows an example of the �(��) dependency. Since we have seen
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Figure 2: On the dependency of the �-angle on the normalized mutation strength ��.
In the simulation, a (4=4I ; 15)-ES on the N = 100-dimensional quadratic sphere Q = y2

with ��

" = 2 has been investigated. The data points (dots) are obtained by averaging
over 40,000 independent one-generation experiments. The curve is a plot of Eq. (6)
(c4=4;15 � 1:1616).

that the expected �-angle depends on the (normalized) mutation strength, we can now
conclude that the validity of the perpendicularity condition cannot be based on the
� = const: assumption.

2.3 Reconsidering the Perpendicularity Condition

So far we have shown that the orthogonality condition cannot be based on an � =
const: assumption. Yet it might be possible that a (local) rTzopt = 0 condition could
guarantee performance optimality. In order to check this, the scalar product rTz must
be considered explicitly. Using information from Fig. 1 one finds z = �ReR + r and
therefore rTz = �RrTeR + krk2. With krk2 = ( R� x)2 + khk2, we obtain

rTz = �Rx+ x2 + khk2 = �Rx+ kzk2: (7)

Taking the definition of the scalar product into account and neglecting deviations from
the expected values, one gets

cos� ' rTz

krk kzk =
�Rx+ x2 + khk2

krk kzk : (8)

Considering the asymptotic behavior (N ! 1) and suppressing O(1=N2) terms, the
expected � value can be expressed by means of (5) as (note krk ' R, x2 ' x2)

cos� ' ��

r
�

N

"
1

�
� c�=�;�p

��2 + ��2
"

#
: (9)

Non-trivial perpendicularity is obtained for vanishing brackets in (9). The mutation
strength ��� at which this appears is

��� =
q
�2c2�=�;� � ��2

" : (10)
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In the noise-free case, ��

" = 0, ��� = �c�=�;� = �̂� is indeed fulfilled (cf. Eq. (4)), i.e., the
perpendicularity condition guarantees performance optimality asymptotically. How-
ever, for ��

" > 0, (10) cannot maximize Eq. (2). Even more critical, (10) puts a constraint
on maximal noise level above which the CSA-ES cannot work as an optimization algo-
rithm:

CSA evolution criterion: ��

" < �c�=�;�: (11)

This is a more restrictive criterion than the ��

" < 2�c�=�;� ES evolution criterion obtained
from the progress rate formula (2). That is, although the ES algorithm (L1 – L3) in
Eq. (1) can exhibit positive progress for �c�=�;� � ��

" < 2�c�=�;� (provided that the
mutation strength is chosen appropriately), � < 90� holds independently no matter
how �� > 0 is chosen: The CSA (L4, L5) assumes mutation steps too long and reduces
�� continuously to zero. This is what has been observed in Arnold and Beyer (2000a).

2.4 Finite N-Size Effects and Simulations

The results presented so far are based on asymptotically exact expressions. As approxi-
mations forN <1 their predictive power might be of limited value. It would be useful
to have some N -dependent approximations that account for finite N -size effects. Re-
cent results in N -dependent progress rate analysis can be used for this purpose. Using
results from Arnold and Beyer (2000b) instead of (5)

x ' R

N

c�=�;��
�2p

��2 + ��2
" + ��4=2N

(12)

and

khk2 ' R2

N

��2

�

"
1� 1

N

c�=�;��
�2p

��2 + ��2
" + ��4=2N

#
; (13)

the progress rate '� can be expressed by

'� ' N

2
41�

s�
1� x

R

�2

+
khk2
R2

3
5 : (14)

Similarly, one has krk '
q
(R� x)2 + khk2 and furthermore kzk '

q
x2 + khk2 (ne-

glecting fluctuations around the mean values). These estimations can be inserted in
cos�, Eq. (8). The resulting formula is rather long, but it predicts the (static) behavior
of the CSA surprisingly well (N � 40). As an example the (4=4I ; 15)-ES on an N = 100-
dimensional quadratic sphere is presented in Fig. 3 (c4=4;15 � 1:1616).

The N -dependent � and '� formulae can be used to investigate the optimality
condition for � explicitly. By determining �̂�, Eq. (4), depending on ��

" , using (14) with
(12) and (13), numerically and inserting this �� = �̂� in the � formula (8), one obtains
the optimal �-angle for which the progress rate would be maximal given a noise level
��

" . For the (4=4I ; 15)-ES, N = 100, this �opt(��

" )-dependence is displayed in Fig. 4.
While the abrupt bending of the �opt curve at a specific (high) ��

" -value corresponds to
the violation of the CSA evolution criterion (11) in the asymptotic case, the behavior at
��

" = 0 is a finite N effect. Unlike the prediction of the asymptotic theory, governed
by (9), the N -dependent �opt curve shows that the perpendicularity condition is not
optimal for ��

" = 0. Instead, there is a strategy- and N -specific ��

" -value for which
perpendicularity implies optimality.
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Figure 3: Normalized progress rates '� and �-angles (measured in degrees) for a
(4=4I ; 15)-ES on the N = 100-dimensional quadratic sphere Q = y2. The curves are
the predictions obtained from Eqs. (8) and (14), respectively, using the N -dependent
approximations (12) and (13). The dots represent simulation results each of which was
obtained by averaging 40,000 independent one-generation experiments. The standard
deviation of these mean values is smaller than the size of the radius of the dots. The
left-hand graphs are obtained for noise-free fitness evaluations, i.e., ��

" = 0, the graphs
in the middle are for (normalized) fitness noise ��

" = 2, and the right-hand graphs are
for the case ��

" = 6. As one can see, the perpendicularity condition (� = 90�) does not
exactly correspond to the performance optimum (maximum of '�). While there is only
a small performance degradation for ��

" = 0 and ��

" = 2, the CSA must necessarily fail
for the ��

" = 6 case (i.e., �� ! 0).
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Figure 4: The expected optimal � (measured in degree) depending on the normalized
noise strength ��

" for the (4=4I ; 15)-ES, N = 100.
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3 Conclusions and Outlook

In this paper we have shown that the philosophical basis of the fundamental adaptation
principle the CMA and CSA strategies are based on, i.e., the perpendicularity condition,
does not guarantee (static) performance optimality on the sphere model as claimed in
Hansen and Ostermeier (1996). Especially in the noisy case, the perpendicularity con-
dition may lead to a wrong adaptation behavior resulting in a premature convergence.
There is experimental evidence that such behavior can occur in real CMA/CSA-ES im-
plementations (see, e.g., Arnold & Beyer, 2000a). Users should be aware of this fact
when applying such strategies.

In spite of the empirical evidence, the work presented is restricted in several as-
pects. First, it is a static analysis based on considerations on a static sphere model.
While this may be regarded as a flaw – and it is a flaw – the investigations by Os-
termeier and Hansen (see especially Hansen, 1998) use exactly the same model con-
siderations. That is, dynamical aspects were not considered in this model neither for
the ��-evolution nor for the search space dynamics, i.e., the r-evolution. Both aspects
remain to be investigated. Second, from a much broader perspective, considering per-
formance on quadratic models, as has been done here, might be too “far away” from
performance aspects in real world optimization problems. While this holds necessar-
ily for all theoretical performance investigations, the analysis presented makes a first
step toward the incorporation of irregularities real world problems are faced with, by
allowing for noisy fitness data. The usefulness of such a model becomes more clear
when considering highly rugged fitness landscapes as a result of a noise process frozen
in time. Using such a model of real world behavior might be a starting point for further
theoretical and empirical investigations.
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