
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

A New Framework for the Valuation of Algorithms

for Black-Box-Optimization

Stefan Droste, Thomas Jansen, and Ingo Wegener

No. CI-118/01

Technical Report ISSN 1433-3325 November 2001
Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence”, at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

A New Framework for the Valuation of
Algorithms for Black-Box Optimization

Stefan Droste1,3 Thomas Jansen2,3,4 Karsten Tinnefeld1,3 Ingo Wegener1,3

1FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund

droste|tinnefeld|wegener@ls2.cs.uni-dortmund.de
2Krasnow Institute, MSN 2A1, George Mason University,

Rock Fish Creek Lane, Fairfax, VA 22030

tjansen@gmu.edu

Abstract

Black-box optimization algorithms cannot use the specific parameters of the
problem instance, i.e., of the fitness function f . Their run time is measured as the
number of f -evaluations. This implies that the usual algorithmic complexity of a
problem cannot be used in the black-box scenario. Therefore, a new framework
for the valuation of algorithms for black-box optimization is presented allowing
the notion of the black-box complexity of a problem. For several problems upper
and lower bounds on their black-box complexity are presented. Moreover, it can
can be concluded that randomized search heuristics whose (worst-case) expected
optimization time for some problem is close to the black-box complexity of the
problem are provably efficient (in the black-box scenario). The new approach
is applied to several problems based on typical example functions and further
interesting problems. Run times of general EAs for these problems are compared
with the black-box complexity of the problem.

1 Introduction

The theory of efficient deterministic algorithms for optimization problems is well developed
(see, e.g., Cormen, Leiserson, and Rivest (1990)). The same holds for the class of efficient
randomized algorithms (see, e.g., Motwani and Raghavan (1995)). The valuation of an
algorithm is based on the expected optimization time for a worst-case input. Although
the algorithmic complexity of problems is well defined, we are not able to prove good
lower bounds on the algorithmic complexity of important problems. There are only some
Ω(n log n) lower bounds based on (algebraic) decision trees (sorting and some problems
from computational geometry) and there is a powerful complexity theory based on
the NP 6=P-hypothesis or on the RP 6=NP-hypothesis if we are interested in randomized
algorithms. All these investigations are concentrated on problem-specific algorithms.

3The author was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the
Collaborative Research Center “Computational Intelligence” (SFB 531).

4The author was supported by the German Academic Exchange Service (DAAD).

However, in many applications one is interested in robust optimization algorithms, i.e.,
algorithms applicable with good success for many different types of problems. Hence, ran-
domized search heuristics like randomized local search, tabu search, simulated annealing,
and all types of evolutionary algorithms have been designed. They are applied with good
success. It is in principle possible to analyze these search heuristics like other randomized
algorithms. However, these algorithms are not designed to support the analysis (like many
problem-specific algorithms) and their analysis often is very difficult (see, e.g., Glover and
Laguna (1993) for tabu search, Kirkpatrick, Gelatt, and Vecchi (1983) and Sasaki and
Hajek (1988) for simulated annealing, and Rabani, Rabinovich, and Sinclair (1998) and
Droste, Jansen, and Wegener (2002) for EAs). Moreover, we cannot expect that a general
search heuristic beats the best problem-specific randomized algorithm with respect to the
worst-case expected optimization time. Nevertheless, we are interested in a fair valuation
of such heuristics. For this purpose, we need a scenario where only “instance-independent”
algorithms are allowed. The idea is that the algorithm may “know” the problem but it
does not “know” the instance which has to be solved. This so-called black-box scenario and
the black-box complexity of problems are introduced in Section 2. It is discussed where
this scenario is adequate and how the black-box complexity of a problem can differ from
its algorithmic complexity. In Section 3, we present some well-known black-box optimiza-
tion algorithms including one EA which serve as typical algorithms in the later sections.
We are faced with another problem, since our focus is on EAs. There are many results
on the behavior of certain EAs on specific functions. We show in Section 4 that we have
to “embed” such functions f into classes of functions, also called problems, such that all
instances of the problem have the “same flavor” as f and such that f is an instance of the
problem. In Section 5, methods are presented how to prove lower bounds on the black-
box complexity of problems. In order to prove that the new framework is meaningful we
present several applications. Our results concern typical example functions, some function
classes, as well as two “natural” problems (Section 6). Due to space limitations we give an
overview of the results without proofs. A full version is available. In Section 7 we present
a general lower bound for the class of unimodal functions.

2 The black-box scenario

In algorithmic complexity theory (see, e.g., Garey and Johnson (1979)) one distinguishes
problems from instances of the problem. A problem like TSP (traveling salesman problem)
describes the problem, the minimization of the length of a tour. It contains free parameters
like the length of an edge. An instance of the problem is the description of concrete values
for the free parameters. A problem can also consist of a class of functions, e.g., the pseudo-
Boolean functions f : {0, 1}n → R which can be written as polynomials whose degree is
bounded by d. Then an instance is a specific function from the given class. These two
types of problems can be unified easily. An instance of TSP can be described as a function
on the set of tours which assigns to each tour its cost. Therefore, also combinatorial
optimization problems correspond to a class of functions. An optimization algorithm has
to work for all instances of a problem and it can work with the specific parameters of the
given instance. The black-box scenario differs essentially from this classical algorithmic
scenario. The algorithm still has to work for all instances of a problem – but without
knowing the specific parameters of the given instance. However, a black-box algorithm has
the possibility to collect information about the unknown parameters. This can be done by
sampling or querying, i.e., the algorithm can produce some search point x contained in the

search space S and it will obtain the value f(x). Hence, the general form of a black-box
optimization algorithm is the following one.

Algorithm 1 (general black-box algorithm).
1.) Compute w.r.t. some probability distribution x1 ∈ S. Then f(x1) is produced.

2.) In Step t compute w.r.t. some probability distribution depending on (x1, f(x1), . . . ,
xt−1, f(xt−1)) some xt ∈ S. Then f(xt) is produced.

3.) Stop if some stopping criterion is fulfilled and present a xi with best f-value as result.

In this paper we consider only finite search spaces, most often S = {0, 1}n. We analyze
black-box algorithms A without stopping criterion and we are interested in the expected
optimization time E(XA,f), where XA,f describes the first point of time t such that
xt is f -optimal. Also probability distribution, variance and other parameters of XA,f

are of interest. However, the focus here is on E(XA,f). For a problem described by the
class F of functions, the worst-case expected optimization time of A equals TA,F :=
max{E(XA,f)|f ∈ F}. The class of functions, the random variables, and TA,F implicitly
depend on the input length n and we discuss the asymptotic optimization time. In the
same way as the algorithmic complexity in the classical algorithmic complexity theory we
obtain here the notion of the black-box complexity of a problem or a class of functions.
Algorithmic complexity and black-box complexity are incomparable. In the first model
more information is given, while in the second model we only count the number of
queries, i.e., the number of search points x whose f -values are evaluated . The evaluation
itself as well as the computation of the search point are free of cost. Later we present
examples where the black-box complexity is exponential while the algorithmic complexity
is polynomial. Moreover, NP-hard optimization problems may have a polynomial black-box
complexity. The model is nevertheless in many situations fair, since black-box algorithms
most often have simple routines to produce xt and since most optimization problems have
the property that the evaluation of the f -value of a search point is easy.

The black-box scenario is adequate in the following situations. Complex technical systems
may allow the assignment of values to n free parameters. The problem is to choose
parameter values optimizing the behavior of the system. However, the specific function
f describing the quality of the machine depending on the parameter assignments may
be unknown. Nevertheless, we may know some properties of f and, therefore, we know
a class of functions containing f . Randomized search heuristics are also applied to well-
defined optimization problems. These heuristics are popular, since they are “robust”, i.e.,
they are easy to implement and often produce good results within a reasonable time.
Some of the heuristics are problem-specific like the well-known k-opting algorithm for
the TSP. These algorithms fit into our scenario. Other heuristics work on all functions
on some search space, e.g., on all functions f : {0, 1}n → R. Also these heuristics fit
into our scenario, although we cannot expect that they beat the more problem-specific
ones. Nevertheless, a comparison between the black-box complexity of a problem and the
asymptotic optimization time of a general randomized search strategy leads to a valuation
which is more fair and meaningful than the comparison between the algorithmic complexity
and the asymptotic run time.

3 Some randomized search heuristics

Here we shortly describe some simple randomized search heuristics which work with one
actual search point, i.e., the available knowledge of x1, f(x1), . . . , xt−1, f(xt−1) is reduced
to some x ∈ {x1, . . . , xt−1} and f(x). The additional knowledge is eliminated. All search

heuristics choose x1 according to the uniform distribution and x is set to x1. In the
following we describe the probability distribution how to choose the next search point
x′. The new search point x′ replaces x iff f(x′) ≥ f(x). If nothing else is mentioned, the
problem is to maximize f .

Algorithm 2 (randomized local search (RLS)). Choose i ∈ {1, . . . , n} according to
the uniform distribution. Set x′

i := 1 − xi and x′
j := xj, if j 6= i.

Algorithm 3 (randomized global search for the mutation probability p). Produce
all x′

i independently. Set x′
i := 1 − xi with probability p and x′

i := xi otherwise.

The randomized global search with p = 1/n is the standard (1 + 1) EA. For p = 1/2, x′

is chosen independently from x according to the uniform distribution. Then Algorithm 3
is called random search (RS). All algorithms RLS, (1 + 1) EA, and RS may evaluate x
more than once. We may use a dictionary storing the search points x already evaluated
together with their f -values. Then we can avoid to evaluate the same search point twice.
This leads to the algorithms RLS∗, (1 + 1) EA∗ and RS∗, respectively.

4 Problems in the black-box scenario

Typical combinatorial optimization problems are defined in such a way that they fit
directly into the scenario of black-box optimization. Another type of problems can be
obtained by considering subclasses of the class of functions f : {0, 1}n → R. Such functions
can be uniquely represented as a polynomial f(x) =

∑

B∈A

wB ·
∏

i∈B

xi with A ⊆ P({1, . . . , n})

and wB 6= 0 for all B. We call N = |A| the number of terms and d = max{|B|, B ∈ A} the
degree of the polynomial. So, the following classes of polynomials are of obvious interest.

Definition 1. Let P (n, d, N) denote the set of all polynomials on n variables where the
degree is bounded by d and the number of terms is bounded by N . For d = 1 the functions
are called linear, and let LIN denote the set of all such functions. For N = 1 the functions
are called monomials. Let MP(n, d, N) be the subclass of P (n, d,N) consisting of monotone
increasing polynomials, i.e., polynomials where wi > 0 for all i. Let MP∗(n, d, N) be
the class of monotone polynomials, i.e., polynomials obtained from polynomials f ∈
MP(n, d, N) by replacing some xi with 1 − xi.

Since randomized search heuristics often have difficulties to avoid or to leave locally but
not globally optimal search points, the class of unimodal functions is of particular interest.

Definition 2. A pseudo-Boolean function is called unimodal if only globally optimal search
points have no Hamming neighbor with a better f-value (often it is also required that f
has only one global optimum, but this is of no importance here).

Some algorithmic problems are not defined as optimization problems, e.g., the sorting
problem. Hence, there are several ways to turn these problems into an optimization
problem. We consider the fundamental sorting problem. Each measure of presortedness as
discussed in the literature on adaptive sorting algorithms (see, e.g., Petersson and Moffat
(1995)) leads to a function on the set of permutations such that the sorted sequence is
the unique optimum. We will discuss sorting as an optimization problem using the most
prominent measure of presortedness, namely the number of inversions.

Definition 3. Let x = (x1, . . . , xn) be a vector of n different numbers and let π be a
permutation on {1, . . . , n}. Then inv(π) := #{(i, j) | 1 ≤ i < j ≤ n, xπ(i) > xπ(j)}.
Sorting is the problem of minimizing inv(π).

The literature on EAs contains many results on example functions which are meant to be
typical for a class of functions. In almost all cases, these classes are not defined. The black-
box complexity of a class containing a single function is always 1, since there exists an
algorithm which chooses an f -optimal point as x1. Therefore, we have to define adequate
classes of functions containing f . Moreover, our aim is to present general ideas how to
embed functions into an appropriate class of functions.

Definition 4. 1. ONEMAX(x) := |x| := x1 + · · · + xn (number of ones or Hamming
distance to 0n).

2. BV(x) :=
∑

1≤i≤n

xi2
n−i (binary value).

3. LO(x) := max{i|x1 = · · · = xi = 1} (number of leading ones).

4. N(x) := 1, if x = 1n, and N(x) := 0 otherwise (needle in the haystack).

5. T (x) := ONEMAX(x), if x 6= 0n, and T (0n) := 2n (trap).

ONEMAX describes the Hamming distance to 0n which should be maximized. Obviously,
0n is chosen only because of its simple description. The function ONEMAXa(x) :=
(x1 ⊕ a1) + · · · + (xn ⊕ an), where ⊕ denotes EXOR, describes the function where
the distance to a ∈ {0, 1}n has to be maximized. The class of functions ONEMAX∗

contains all ONEMAXa, a ∈ {0, 1}n, and describes a black-box optimization problem
which can be considered as “the adequate generalization” of ONEMAX. The idea behind
this generalization is that in black-box optimization the roles of 0 and 1 should be
interchangeable. In general, in black-box optimization a class of functions should contain
with f also all fa, a ∈ {0, 1}n, defined by fa(x) := f(x1 ⊕ a1, . . . , xn ⊕ an). The
class MP(n, d, N) of monotone increasing polynomials is a simple class for black-box
optimization, since the algorithm starting with x1 = 1n has a complexity of 1. The class
MP∗(n, d, N) of monotone polynomials is an adequate generalization obtained in the same
way as ONEMAX∗ from ONEMAX. However, this type of generalization is not always
sufficient as the function BV shows. If we consider the class of all BVa the following
black-box algorithm has a complexity of 2 − 2−n. It starts with x1 = 0n and obtains the
information that BVa(0n) =

∑

i|ai=1

2i =
∑

1≤i≤n

ai2
i. Hence, a can be computed easily from

BVa(0n) and then we can present the optimal value x2 = a where a = (a1, . . . , an)
and ai = 1 − ai. One idea behind BV is that there is a known ordering of the bit
positions describing the importance of the position. Let b, c ∈ {0, 1}n and let i be the
most important position where bi 6= ci. The function takes the larger value for b iff bi is
the “right value” for this position. The particular function values are of no importance.
Hence, if we consider h ◦ f for a strictly increasing function h : R → R instead of f , we
consider a function with the same ordering of the function values. This preserves many
properties of the function. Let BV∗∗ be the class of all h ◦ BVa, a ∈ {0, 1}n and h : R → R

strictly increasing. (The notation with the superscript ∗∗ describes that we have applied
both considered generalization concepts. Obviously, we do not obtain more functions by
considering the functions (h ◦ BV)a.) The behavior of general randomized search heuristics
on f and fa is typically the same. This is not always true for f and h ◦ f . E.g., fitness-
proportional selection works differently on f and h ◦ f . But, fitness-proportional selection
is adequate only if we know something about the relative size of function values.

Our discussion on “the idea behind BV” was based on the assumption that the ordering
of the bit positions by their importance was known. One also may assume that this
knowledge is not given. In general, let Sn be the set of all permutations on {1, . . . , n}

and let fπ(x1, . . . , xn) := f(xπ(1), . . . , xπ(n)). Let BV∗∗∗ be the class of all h ◦ (BVπ)a, a ∈
{0, 1}n, π ∈ Sn, h : R → R strictly increasing. This third generalization concept does not
change the behavior of most general randomized search heuristics. One exception is one-
point crossover, it assumes a larger influence of neighbored variables on each other.

Remember that LIN is the class of linear functions. If f is linear, the same holds for fa,π.
Hence, LIN is closed under our first and third generalization concept. However, h ◦ f for
f linear and h : R → R strictly increasing is not necessarily linear and LIN∗∗ is a proper
superclass of LIN. Note that ONEMAX and BV are merely two special linear functions.

For LO we can consider the classes LO∗, LO∗∗, and LO∗∗∗. For LO∗ the f -value equals
the length of the correct prefix, for LO∗∗ the f -value is strictly increasing with this length,
and for LO∗∗∗ the positions are ordered in some way with respect to their importance and
the f -value is strictly increasing with the number of correct “most important” bits.

For the needle-in-the-haystack-function N it is sufficient to apply the first generalization
concept and to investigate the class N∗ of all Na such that Na(a) = 1 and Na(b) = 0 for
b 6= a. The other generalization concepts do not generalize N∗ essentially.

Considering ONEMAX∗∗ instead of ONEMAX∗ makes only a small difference. The fa-
value for ONEMAX∗ describes the Hamming distance to a, while, for ONEMAX∗∗, we
only can decide whether a search point x is closer to a than y. Since ONEMAX is a
symmetric function, ONEMAX∗∗∗ is equal to ONEMAX∗∗.

Finally, we consider the trap function T . The idea behind this function is that the f -
values give wrong hints and that this function is difficult for randomized search heuristics.
However, the function is very similar to ONEMAX. Indeed, Whitley (1997) has considered
the following variant H ′ of an arbitrary search heuristic H. If H chooses the search point
b, H ′ chooses b and b and uses for the further decisions only b and f(b). Each heuristic
which is efficient on one of the ONEMAX-classes has then an efficient variant for the
corresponding T -class. Indeed, the expected optimization time for the T -class is at most
twice the expected optimization time for the corresponding ONEMAX-class. Here our
purely syntactical generalization concepts are not sufficient and we have to consider a
semantical generalization concept. The idea behind the trap function is that the T -values
give wrong hints. However, they give hints. Having found the local but not global optimum
(which is easy for search heuristics) one can easily compute the global optimum. The “real
idea” behind the trap function is that the global optimum is somewhere while all hints lead
to the local optimum. Therefore, Tsem, the semantical generalization of the trap function,
contains all functions T a such that T a(x) := ONEMAX(x), if x 6= a and T a(a) = 2n. It
makes no big difference to consider also T ∗

sem, T ∗∗
sem, and T ∗∗∗

sem .

5 Lower bound methods for the black-box complexity of

problems

Black-box complexity is defined as the expected optimization time for a worst-case
instance. Hence, the expectation is on the algorithm’s random bits. In this situation we
can apply Yao’s minimax principle (Yao (1977), Motwani and Raghavan (1995)). It makes
it possible to investigate deterministic algorithms in order to obtain lower bounds for
randomized algorithms. Moreover, we are free to choose a probability distribution on the
instances in order to make the problem difficult.

Proposition 1. (Yao’s Minimax Principle) If a problem has a finite set of instances of
a fixed size and allows a finite set of deterministic algorithms, the minimal worst-case

instance expected optimization time is lower bounded for each probability distribution on
the inputs by the expected optimization time of an optimal deterministic algorithm.

As mentioned above, the black-box scenario has the drawback that, for certain problems, it
is too powerful, since the resources for the computation of the next query are not counted.
Thus, NP-hard optimization problems can have a polynomial black-box complexity.

Theorem 1. The black-box complexity of P (n, 2,∞) is bounded above by
(

n

2

)

+ n + 2.

For NP-hard problems we cannot expect any randomized algorithm to guarantee a
polynomial expected optimization time. The conclusion is to bound the time to compute
a query by a polynomial. Then hard problems for randomized algorithms are hard in the
black-box scenario, too. We have no other results which rely on such time bounds. All
well-known randomized search heuristics work with a space-bounded approach. In many
cases, only one search point and its f -value (and sometimes the number of f -evaluations)
are stored. EAs work with populations and the population size is usually not large. This
leads to a space-bounded black-box scenario where at most s(n) search points and their
f -values can be stored. The s(n)-space-bounded black-box complexity of a problem can be
much larger than its black-box complexity. In the case of P (n, 2,∞) we have no polynomial
upper bound on, e.g., its n-space-bounded black-box complexity. Since many randomized
search heuristics work with population size 1, the case s(n) = 1 is of particular interest.
The s(n)-space-bounded black-box complexity of a problem can be compared with the
unrestricted black-box complexity of the same problem in order to measure the value of
additional space. This can be done by competitive analysis as introduced in the theory
on online algorithms (see, e.g., Borodin and El-Yaniv (1998)). However, in this paper we
investigate only the unrestricted black-box complexity of problems.

6 Black-box complexity of different problems

In this section, we present a variety of different results within our framework. We start
with classes that are based on single example functions.

Theorem 2. 1. The black-box complexity of each class of functions F ⊆ {f : {0, 1}n →
R} is bounded above by 2n−1 + 1/2.

2. The black-box complexity of N∗ equals 2n−1 + 1/2.

3. Random search avoiding duplicates and the (1+1) EA avoiding duplicates are optimal
black-box algorithms in the needle-in-the-haystack scenario N∗.

4. The black-box complexity of Tsem equals 2n−1 + 1/2.

5. The black-box complexity of LO∗ is bounded above by n/2 + o(n) and below by
n/2 − o(n).

6. The black-box complexity of LO∗∗ is bounded above by n+1 and below by n/2− o(n).

7. The black-box complexity of LO∗∗∗ is bounded above by n log n + O(n) and below by
n/2 − o(n).

8. The black-box complexity of ONEMAX∗ is bounded below by Ω(n/ log n).

9. The black-box complexity of BV∗ equals 2 − 2−n.

10. The black-box complexity of BV∗∗ is bounded below by Ω(n/ log n).

It is not surprising that RS∗ is an optimal black-box algorithm for N∗. If we cannot
learn anything, it is good to search randomly while avoiding duplicates. The (1 + 1) EA∗

also has optimal expected optimization time. Sometimes it is claimed that EAs are bad
on needle-in-the-haystack like functions. Theorem 2 shows that an EA is even optimal
although slow. This is due to the inherent black-box complexity of N∗. Algorithms
avoiding duplicates need a large storage, for N∗ on average a storage of 2n−1 − 1/2.
The algorithms RLS (randomized local search), RS (randomized search), and the (1 + 1)
EA do not avoid duplicates and store a single search point. Results due to Garnier, Kallel,
and Schoenauer (1999) imply that RLS and RS have an expected optimization time of
2n(1 ± o(1)) and pay with a factor of approximately 2 for producing duplicates. A new
search point x′ that is equal to the current point x is called replica. RLS never produces
a replica and RS does this with the tiny probability of 2−n. The (1+1) EA produces
a replica with probability (1 − 1/n)n ≈ e−1 and thus has expected optimization time
2n(1± o(1))/(1− e−1) ≈ 3.16 · 2n(1± o(1)). Altogether, randomized search heuristics are
very efficient in the black-box scenario N∗.

All search strategies avoiding duplicates cannot use more than 2n queries. Search strategies
used in applications do not avoid duplicates because of storage restriction. Droste, Jansen,
and Wegener (2002) have shown that the expected optimization time of the (1+1) EA on
the classical trap function T is at least nn(1− o(1)) and it is at most nn for each function
f : {0, 1}n → R. Typical search heuristics need much more time than 2n in the black-box
scenario Tsem. Hence, they all are bad in this scenario while random search is optimal.
Search heuristics prefer to search close to search points with good f -values. Therefore, it
is not surprising that they fail in scenarios where this behavior is wrong.

Droste, Jansen, and Wegener (2002) have proved that the (1 + 1) EA has an expected
optimization time of Θ(n2) on LO and this result also holds for the classes LO∗, LO∗∗,
and LO∗∗∗. It is even easier to prove the same result for RLS. Both algorithms do not
direct the search by the information collected so far. This is possible for black-box search
heuristics knowing the considered class of functions. It is an open problem to decrease the
difference between the upper and the lower bound on the black-box complexity of LO∗∗∗.
We conjecture that the upper bound is asymptotically tight. However, the difficulty of an
improved lower bound is that it is not necessary to learn π for optimizing LOa,π.

We believe that the black-box complexity of ONEMAX∗ is Θ(n). Our upper and lower
bounds differ by a factor of Θ(log n). The reason is that in the lower bound we consider
decision trees of degree n + 1 while the upper bound uses with the exception of the first
query only queries allowing only two answers. We have no idea how to find queries which
separate the set of possible a into many large sets. However, the determination of the exact
asymptotic size of the black-box complexity of ONEMAX∗ remains an open problem.

Now, we consider some classes of functions. Since the optimization of polynomials of degree
2 is NP-hard, only other subclasses of the class of all polynomials are of interest for our
analysis. The class of monotone polynomials MP∗(n, d, N) (see Section 4 for the definition)
has several interesting subclasses. We consider the class M∗(n, d, 1) of so-called prefix-
monomials (x1 ⊕ a1) · · · (xk ⊕ ak), k ≤ d. Each function takes only two values. Therefore,
M∗∗(n, d, 1) is no real generalization and we define M∗∗∗(n, d, 1) as the set of all monomials
(xi(1) ⊕ a1) · · · (xi(k) ⊕ ak), 1 ≤ i(1) < · · · < i(k) ≤ n.

Theorem 3. 1. The black-box complexity of LIN∗∗ is bounded above by n + 1.

2. The black-box complexity of M∗(n, d, 1) and of M∗∗∗(n, d, 1) is of size Θ(2d).

3. The black-box complexity of MP∗(n, d, N) is bounded above by O(2d log n + n2).

Droste, Jansen, and Wegener (2002) have proved that the expected optimization time of
the (1 + 1) EA for all linear functions is O(n log n) and even Θ(n log n), if all wi 6= 0.
Their proof also works for the functions in LIN∗∗. The same bounds follow much more
easily for RLS. Our results show that the usual randomized search heuristics are at least
close to optimal on linear functions and generalizations. The (1 + 1) EA and RLS have
an expected optimization time of Θ(2dn/d) on M∗(n, d, 1) (Wegener (2001) based on the
results of Garnier, Kallel, and Schoenauer (1999)). These algorithms waste the factor
Θ(n/d), since the expected time before a step changes one of the essential bits equals
Θ(n/d). It is easy to show that the expected optimization time of the (1 + 1) EA with a
mutation probability of 1/d also equals Θ(2d) on M∗∗∗(n, d, 1). Hence, simple randomized
search heuristics are asymptotically optimal on arbitrary monomials. Wegener (2001) has
proved that the expected optimization time of the (1+1) EA on MP∗(n, d, N) is bounded
above by O(2d · n

d
·N). It is conjectured that this bound can be improved to O(2d · n

d
·log n

d
),

since overlapping monomials should support the optimization. In particular, the number
of terms N should not have a large influence. This can be proved for the black-box
complexity. The upper bound of O(2d log n+n2) for MP∗(n, d,N) can perhaps be improved
by considering overlapping monomials more carefully.

Sorting is the best-investigated algorithmic problem. Its algorithmic complexity equals
Θ(n log n). Here we consider sorting as the problem of minimizing inv(π). Our main
motivation is our interest in the black-box complexity of the fundamental sorting problem.
Scharnow (2001) has described a variant of the (1 + 1) EA working on permutations.
This EA minimizes the number of inversions in an expected number of O(n2 log n) steps.
Finally, we mention the well-known shortest-s-t-path problem in order to show that a
fundamental problem with a small algorithmic complexity, namely O(n2), can lead to a
difficult problem in the black-box scenario. Each instance is described by a distance matrix
d(i, j), 1 ≤ i < j ≤ n, where d(i, j) ≥ 0 describes the length of the edge (i, j). The value
d(i, j) = ∞ indicates that this edge does not exist. The search space consists of all paths
from s to t. The cost of such a p is the sum of all d(i, j) where the edge (i, j) lies on p.

Theorem 4. 1. The black-box complexity of minimizing the number of inversions is
bounded above by n + 1 and bounded below by n/2 − o(n).

2. The black-box complexity of the shortest-s-t-path problem is bounded below by
Ω((n − 2)!) = 2Ω(n log n).

7 Unimodal functions

Unimodal functions (see Definition 2) are those functions which can be optimized by local
search algorithms with probability 1. In our case, the local neighborhood of a ∈ {0, 1}n

consists of its n Hamming neighbors. It is not difficult to describe unimodal functions where
all (randomized) local search algorithms need an exponential expected optimization time
(Horn, Goldberg, and Deb (1994)). Some of these functions are easy for EAs (Rudolph
(1997)). Droste, Jansen, and Wegener (1998) have proved for a unimodal function defined
by Rudolph (1997) that the expected optimization time of mutation-based EAs grows
exponentially. Here we investigate the black-box complexity of the class of unimodal
functions. Llewellyn, Tovey, and Trick (1989) have proved that this class has an exponential
complexity for deterministic black-box algorithms. We apply Yao’s minimax principle to
generalize this result to randomized black-box algorithms.

First, we choose a probability distribution on the set of unimodal functions f : {0, 1}n → R.

A random path R starts at 1n and has a length of l(n) := 2n1−ε

, ε > 0 a constant. The

successor of a point on the path is chosen randomly among all its Hamming neighbors. We
observe that R = (p0, . . . , pl) is typically not a simple path. The corresponding random
path function RP is defined as follows:

RP(x) :=

{

ONEMAX(x) − n if x 6= pi for all i

i if x = pi and x 6= pj for all j > i.

For x on R let i be the largest index such that x = pi. This implies RP(x) = RP(pi) <
RP (pi+1). Each point x outside R has a Hamming neighbor y with more ones and in any
case RP(x) <RP(y). Hence, RP is unimodal with a unique global maximum at pl. In the
following, we investigate deterministic black-box algorithms against RP which describes a
probability distribution on the set of all unimodal pseudo-Boolean functions.

The random path R has with high probability some cycles. However, we believe that there
are no long cycles. Moreover, we even believe that H(pi, pj) is large if j − i is not small.
After having left p∗ and having walked for a while the path is almost always far from p∗.

Lemma 1. For each β > 0 there exists some α = α(β) > 0 such that the probability that
H(pi, pi+j) ≤ αn for some i and some j ≥ βn is bounded above by 2−Ω(n).

Proof. Since 0 ≤ i ≤ i + j ≤ 2n1−ε

and because of symmetry, it is sufficient to prove the
lemma for i = 0 and some fixed j ≥ βn. Let Ht denote the Hamming distance between
p0 = 1n and pt. We prove Prob(Hj ≤ α · n) = 2−Ω(n) for some constant α depending on
β, only. Obviously, Prob(Ht+1 = Ht + 1) = 1−Ht/n holds for each t, since the Hamming
distance is increased by 1, iff one of the n − Ht bits that do not differ from p0 is flipped.

We set γ := min{j/n, 1/10} and remark that γ is bounded below by a positive constant.
We divide the j first steps of the path construction into phases of length γ ·n. If j/(γn) /∈ N,
the first phase is shorter. Note, that the final phase has the length γ · n due to the choice
of γ. We prove that at the end of this final phase Ht is bounded below by (γ/5) · n with
probability 1 − 2−Ω(n). Then, setting α := min{β/5, 1/50} completes the proof.

First, assume that at the beginning of the final phase we have Ht ≥ 2γ · n. Then, at the
end of the phase the Hamming distance is bounded below by γ · n with probability 1.

Now, assume that at the beginning of the final phase we have Ht < 2γ · n. Obviously, we
have Ht < 3γ · n during the whole phase. Thus, the probability to increase the Hamming
distance in one step is bounded below by 1 − (3γ · n)/n ≥ 7/10. By Chernoff bounds the
probability to have less than (3/5)γ · n such increasements in the γ · n steps of this phase
is bounded above by e−Ω(n). Thereby, at the end of the final phase we have Hamming
distance at least (3/5)γ · n − (2/5)γ · n = (γ/5) · n with probability 1 − 2−Ω(n).

Until now we have investigated the random path R of length l(n) = 2n1−ε

. However,
an adversary may save the loops by always looking for the Hamming neighbor with the
largest RP-value. Hence, we investigate the so-called true path T which chooses always
the Hamming neighbor with the largest RP-value. The following is a direct consequence.

Corollary 1. The probability that the length of T is smaller than l(n)/n or that some
point x has more than (1 − α(1))n Hamming neighbors on R is bounded above by 2−Ω(n).

In order to investigate black-box algorithms which try to optimize RP, we make the
situation for the algorithm easier. First, RP(1n) and all points x on R with RP(x) <RP(1n)
and their RP-values are given to the algorithm. Later, the knowledge of the algorithm
is described by N , the set of points that do not lie not on R, and j, implying that
the algorithm knows p0, . . . , pj and RP(pi) ≤ RP(pj) = j for all i ≤ j. Based on this

information the algorithm chooses a query point x∗. Let y be the nth successor of pj on
T . The algorithm may stop its search if x∗ is optimal or RP(x∗) > RP (y). Otherwise,
the knowledge of the algorithm is updated as follows. In any case, j is replaced by RP(y).
If x∗ does not lie on R, x∗ is added to N . Lower bounds on the expected stopping time
of black-box algorithms are obviously also lower bounds on their expected optimization
time on RP. The following theorem implies that all (typically informal) statements in
the literature that unimodal functions are easy for randomized search heuristics are not
correct in a strong sense.

Theorem 5. Each randomized black-box search heuristic has on the class of unimodal

pseudo-Boolean functions a worst-case expected optimization time of at least 2n1−δ

, δ > 0.

Moreover, the worst-case success probability after 2n1−δ

steps is bounded above by 2−Ω(n).

Proof. It is sufficient to prove that in the scenario discussed above the black-box algorithm
wins only with a probability of 2−Ω(n) before j is so large that pj belongs to the n last

points of T . This gives a lower bound of (2n1−δ

− n)/n2 steps. However, since δ > 0 can
be chosen arbitrarily, this proves the theorem. Altogether, it is sufficient to prove that the
success probability of the black-box algorithm within each step is bounded by 2−Ω(n).

We start with the simplest situation where N = ∅ and j = 0. Lemma 1 implies that a
query x∗ where H(1n, x∗) ≤ α(1)n has a success probability of 2−Ω(n). We still have to
consider a query x∗ where H(1n, x∗) > α(1)n. In order to reach x∗ on R after t ≥ n steps
we have H(1n, x∗) specified positions which have flipped for an odd number of times while
the other n−H(1n, x∗) specified positions have flipped for an even number of times. This
has a probability of 2−Ω(n). In the same way as Lemma 1 it can be proved that even the
probability of reaching after t ≥ n steps a point with a Hamming distance of at most α(1)n
to x∗ is bounded above by 2−Ω(n). This will be important when we know more. Then, all
the points in N and all the points x on R such that RP(x) < j will not lie on the part of R
starting at pj . Let Mfar be the subset of these points x with H(y, x) > α(1)n and Mclose the
set of the remaining points. Lemma 1 and the discussion above prove that |Mclose| ≤ n with
a probability of 1−2−Ω(n). First, we assume that we only know that the points in Mfar are
forbidden. We can investigate a random path starting at xj . Let p(x∗) be the probability
that this path reaches x∗ after t steps where t ∈ {n, . . . , l(n)} and let E be the event that
this path does not reach any point in Mfar. Then Prob(x∗|E) = Prob(x∗ ∧E)/Prob(E) ≤
Prob(x∗)/Prob(E) ≤ Prob(x∗)/(1 − 2−Ω(n)) = Prob(x∗)(1 + 2−Ω(n)). Hence, the success
probability of any query has been increased only by a factor of 1+2−Ω(n) by our knowledge
that the points in Mfar are forbidden. Hence, the probability of each query is still 2−Ω(n).
In a last step we have to take into account the at most n forbidden points in Mclose. We
investigate the first n/2 steps on R starting from pj . Applying Lemma 1 for β = 1/2
we are after these n/2 steps with an overwhelming probability at a distance of at least
α(1/2)n from each of the forbidden points. Hence, we can afterwards repeat our above
argument, since now all forbidden points are far, if far means now a Hamming distance of
at least α(1/2)n. This still implies a success probability of each query of 2−Ω(n).

8 Conclusion

The classical complexity theory contains (relative) results on the hardness of problems with
respect to deterministic and randomized problem-specific algorithms. General randomized
search heuristics not working with the specific parameters of a problem instance have to
solve a somewhat more difficult problem. Black-box complexity is more adequate in this
scenario. This concept and adequate problem classes have been introduced and many

upper and lower bounds on their black-box complexity presented. Some simple results
show that search heuristics like the (1 + 1) EA are almost optimal on needle-in the-
haystack functions (although slow), but they are inefficient on trap functions. For this
class of functions one has to reveal the real idea behind the classical trap function in
order to find the right class of functions. Often, Yao’s minimax principle leads to good
lower bounds. However, in scenarios where queries may have infinitely many answers, one
has to show that the information “really” contained in the answer is finite, before Yao’s
minimax principle can be applied. Perhaps the most interesting bounds concern the class
of monotone polynomials of bounded degree, where the upper and lower bounds almost
match, and the class of unimodal functions, where it is proved that no randomized search
heuristic can optimize these functions in subexponential expected time.

References

A. Borodin and R. El-Yaniv (1998). Online Computation and Competitive Analysis.
Cambridge University Press.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest (1990). Introduction to Algorithms. MIT
Press.

S. Droste, T. Jansen, and I. Wegener (1998). On the optimization of unimodal functions
with the (1+1) evolutionary algorithm. In Parallel Problem Solving from Nature (PPSN
V), LNCS 1498, 47–56.

S. Droste, T. Jansen, and I. Wegener (2002). On the analysis of the (1 + 1) evolutionary
algorithm. To appear in: Theoretical Computer Science.

M. R. Garey and D. S. Johnson (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman.

J. Garnier, L. Kallel, and M. Schoenauer (1999). Rigorous hitting times for binary
mutations. Evolutionary Computation 7, 173–203.

F. Glover and M. Laguna (1993). Tabu search. In C. R. Reeves (Ed.), Modern Heuristic
Techniques for Combinatorial Problems, 75–150. Blackwell Oxford.

J. Horn, D. E. Goldberg, and K. Deb (1994). Long path problems. In Y. Davidor, H.-P.
Schwefel, and R. Männer (Eds.), Parallel Problem Solving From Nature (PPSN III),
LNCS 866, Berin, Germany, 149–158. Springer.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi (1983). Optimization by simulated
annealing. Science 220, 671–680.

D. C. Llewellyn, C. Tovey, and M. Trick (1989). Local optimization on graphs. Discrete
Applied Mathematics 23, 157–178.

R. Motwani and P. Raghavan (1995). Randomized Algorithms. Cambridge University
Press.

O. Petersson and A. Moffat (1995). A framework for adaptive sorting. Discrete Applied
Mathematics 59, 153–179.

Y. Rabani, Y. Rabinovich, and A. Sinclair (1998). A computational view of population
genetics. Random Structures and Algorithms 12, 314–330.

G. Rudolph (1997). How mutation and selection solve long-path problems in polynomial
expected time. Evolutionary Computation 4, 195–205.

G. Sasaki and B. Hajek (1988). The time complexity of maximum matching by simulated
annealing. Journal of the ACM 35, 387–403.

J. Scharnow (2001). Evolutionäre Algorithmen für Sortierprobleme. Master’s thesis, Univ.
Dortmund, Dortmund, Germany. In preparation.

I. Wegener (2001). Theoretical aspects of evolutionary algorithms. In 28th International
Colloquium of Automata, Languages and Programming (ICALP 2001), LNCS 2076,
64–78.

D. L. Whitley (1997). Permutations. In T. Bäck, D. B. Fogel, and Z. Michalewicz (Eds.),
Handbook of Evolutionary Computation, C1.4:1–8. Institute of Physics Publishing.

A. C. Yao (1977). Probabilistic computations: Towards a unified measure of complexity.
In Proceedings of the 17. Annual IEEE Symposium on the Foundations of Computer
Science (FOCS ’77), 222–227.

