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Parallelizing is a straightforward approach to reduce the total compu-

tation time of evolutionary algorithms. Finding an appropriate com-

munication network within spatially structured populations for im-

proving convergence speed and convergence probability is a diÆcult

task. A new method that uses a dynamic communication scheme in

an evolution strategy will be compared with conventional static and

dynamic approaches. The communication structure is based on a so-

called di�usion model approach. The links between adjacent individu-

als are dynamically chosen according to deterministic or probabilistic

rules. Due to self-organization e�ects, eÆcient and stable communi-

cation structures are established that perform robust and fast on a

multimodal test function.

1. Introduction

Evolutionary algorithms are numerical optimization algorithms that

are inspired by the principle of biological evolution. A population of

individuals represents possible solutions of an optimization problem.

This set of solutions is continuously varied by genetic operators like re-

combination, mutation and selection. An iterative application of these

operators leads to an adaptation of the individuals in an environment

that is unknown a priori. The proper adjustment of the process pa-

rameters and the tuning of the interplay of the operators are essential

for a successful deployment of evolutionary algorithms.

The biological principle of evolution is inherently parallel. In na-

ture genetic interaction and selection of the �ttest individuals happen

asynchronously. Something similar to specialization of individuals can

be observed if spatial or temporal separation becomes part of the evo-

lutionary model. In nature separation and interaction of individuals

are permanent selforganizing processes that allow the perpetuation of



a high genetic variety for preventing the species to become extinct.

Accordingly to these observations, the analyses of evolutionary algo-

rithms with parallel evolving and dynamicly interacting populations

are in the focus of the experiments described here.

2. Parallel Evolutionary Algorithms

The term 'evolutionary algorithm' (EA) is a superordinate concept of

Genetic Algorithms (GA), Evolutionary Programming (EP), Genetic

Programming (GP) and Evolution Strategies (ES). EA is a class of

direct and randomly driven optimization algorithms that belongs to

a more universal set of methods subsumed under the label Compu-

tational Intelligence (CI) [Bezdek94], which also comprises the �elds

of fuzzy logic and neural networks. These techniques are subsymbolic

(numeric) and excel by their adaptability, fault tolerance, and a high

processing speed when applied to complex problems. CI methods are

often inherently parallel. Here, parallelization does not only help to

increase the performance of these strategies. The usage of structure

and the distributed processing of data introduces a new quality to

these systems. In this article the focus will lie on parallel evolutionary

algorithms.

2.1 Static Population Structures

Parallel evolutionary algorithms with static population structures can

be grouped as follows [Sprave99]:

Panmictic model: the population is not explicitely structured. Every

individual can interact genetically with each other.

Multipopulation models:

{ Migration model: a population consists of separated subpopula-

tions. Each subpopulation has a panmictic structure. A limited

amount of individuals can migrate between the subpopulations

on predetermined pathes. The data is moved and not copied

between the populations.

{ Pollination model: this model is similar to the migration model

but the data is copied and not moved.

Neighborhood models:

{ Metric neighborhood model: the individuals of one common pop-

ulation are structured according to their spatial relations. Inter-

actions between individuals happen only between elements that

are neighbors, i.e. they have the same distance relation.

{ Relational neighborhood model: this model is similar to the

metric neighborhood model, except that neighboring individu-

als share a more general relation than just a spatial distance.
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Multipopulation models In this context the terms `island model'

and `stepping stone model' are often used. Island models are multi-

population models where data can migrate between any subpopulation

[Hal30]. Stepping stone models follow a more restricted communica-

tion scheme, i.e. the subpopulations are arranged on a ring [Kim53] or

a torus or a grid [Mar70].

Theoretic investigations show that island models may behave panmic-

tic when the migration rate reaches a certain level. This threshold

does not depend on the population size, but depends on the number

of islands and the migration rate between the islands. It can be shown

that the speed of convergence and the convergence probability can be

increased when very small migration rates are used (e. g. one migrant

per generation). On multimodal problems like Rastrigin's function

f(x) =
P30

i=1(x
2
i �50 cos(2�xi)) multipopulation models show a higher

convergence probability than panmictic strategies. Other multipopula-

tion strategies like Cohoon's approach of punctuated equilibria [Coh87]

or Rechenbergs nested evolution strategies [Rech94, Rud00] also show,

that structured populations have advantages compared to panmictic

approaches.

Neighborhood models Neighborhood models are sometimes also

called `di�usion models'. Due to their typically used grid structure,

data spreads slowly through the population. Genes that have a good

�tness are transfered from neighbor to neighbor and, thus, `infect' the

population by a di�usion process.

Gorges-Schleuter [Gor89, Gor91] and Sprave [Spr99] introduced algo-

rithms that were also implemented on parallel computer hardware.

They show, that a di�usion model applied to complex problems { like

the travelling salesman problem { can have a higher convergence prob-

ability than panmictic EA. Di�usion models are not only interesting

because they are robust. They also show complex dynamics and can

be scaled easily on parallel computers by assigning subgrid structures

of di�erent sizes to each processor.

2.2 Dynamic Population Structures

Halpern [Hal99] introduced an evolutionary algorithm with a dy-

namic population structure. It is based on a structurally dynamic cel-

lular automaton. Here, one individual is assigned to one corresponding

cell of the cellular automaton. Starting with N cells, the initial connec-

tions of the cells are random but isolated individuals are not allowed.

During the initialization phase, each individual is assigned a vector

with randomly chosen real valued numbers. During the optimization

process, the connectivity of the cells is changed according to determin-

istic rules that depend on the �tness of the individuals. A prede�ned
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percentage of connections to cells with comparatively bad �tness values

are deleted. The same time a list of next-nearest neighbors is created

and a certain percentage of new connections to the best individuals

in that list is established. A next-nearest neighborhood relation char-

acterizes two individuals that are interconnected with each other over

a common neighbor. During the evolutionary phase, each individual

mates by intermediate recombination with a randomly chosen partner

within its local neighborhood. During this step N=2 new elements are

generated that undergo { with a certain prede�ned probability { mu-

tation by adding or subtracting small random increments. The set of

N=2 o�spring replaces the N=2 least �t elements of the general popu-
lation. The surviving o�spring are placed randomly on the grid sites

to replace the least �t individuals. The algorithm is iterated as long

as a termination criterion does not hold.

The approach of Halpern has many similarities with an Evolution

Strategy running on a di�usion model. Great di�erences can be seen

in the way mutation, recombination and population replacement after

selection is used. Like in Genetic Algorithms an explicit step size adap-

tation is not used. The mutation rate is kept at a prede�ned �xed level

and the step sizes are limited to small intervals.

3. An Alternative Evolution Strategies with Dynamic Neighborhood

Structures

The paragon for the alternative parallel optimization algorithm dis-

cussed next is the Evolution Strategy, as introduced by Rechenberg

[Rech94] and Schwefel [Sch95]. The algorithm has the following scheme:

- t := 0

- de�ne initial population P 0

- de�ne initial neighborhood structure L0

- calculate matrix of next-nearest neighbors M0

while termination condition not valid do

t := t+ 1

for 8 individuals Ii 2 I do
- specify new neighborhood relations for each Ii by
application of the neighborhood rule (new Lt

i)

- specify new next-nearest neighbors of Ii (new M t
i )

for 8 � o�spring do

- select a mating partner for recombination Ir from
the neighborhood of Ii

- recombine � o�spring from the parents Ii and Ir
- mutate the � o�spring (object variables and step sizes)

- evaluate � o�spring by application of f
- select the best individual from the � o�spring

to replace individual Ii of population P t+1
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During the initalization phase a start population P 0 and a adja-

cency matrix L0 is used. L0i characterizes the local neighborhood of

individual i = 1; : : : ; N . Typically the neighbors are chosen from a set

of randomly selected individuals. The size of the set 
uctuates around

a predetermined average value. Hence, the case of isolated individu-

als or isolated subgraphs is allowed. The matrix M t of next-nearest

neighbors at iteration t � 0 can always be calculated from the current

adjacency matrix Lt.

The main loop of the optimization algorithm consists of two parts:

In the �rst phase the neighborhood structure (Lt) is altered depending

on the user-de�ned rules for the neighborhood dynamics. Any con-

nections between neighbors may be deleted or established during that

step. In the second phase the genetic operators of an evolution strategy,

namely recombination and mutation, are applied to each individual �
times in order to generate a local o�spring population. The mating

partners are chosen from the individuals` local neighborhood Ir . The

best o�spring solution is selected to replace the original individual Ii.
Both phases of the algorithm are repeated as long as the termination

criterion does not hold. In the algorithm two di�erent neighborhood

dynamics have been used:

Halpern's Deterministic Neighborhood Rule: The determinis-

tic rules used to adapt the neighborhood structures follow the scheme

of Halpern [Halp99]. The formation of the neighborhood depends di-

rectly on the �tness of the neighbors. Two types of rules are used:

Decoupling rule:

Each individual has a list of its neighbors that is sorted by �tness

values. The connections to a certain percentage of least �t neighbors

are detached. This number is determined by a parameter �.

Coupling rule:

Simultanously to the generation of the list of neighbors used in the de-

coupling rule, a list of next-nearest neighbors is generated. According

to this list, a percentage ! of new connections to the best next-nearest

neighbors are established.

The �tness of each individual in
uences the structural development

of its neighborhood: connections to individuals with a high �tness are

preferred, hence, the number of their neighbors increases over time. In-

dividuals that are least �t become more and more isolated. The rules

allow that elements may become completely disconnected. The struc-

ture of the rules implies that once an individual is isolated this state is

permanent. However, isolated individuals still share their contribution

in the optimization process, because on our algorithm they still realize

a (1; �)-ES search.
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Probabilistic Neighborhood Structure Adaptation Rule: Ac-

cording to the philosophy of CI, a system should adapt itself automati-

cally to a problem. The coupling and decoupling rules introduced here

take care of the fact that an individual should always have a certain

number of neighbors. Furthermore, according to the evolutionary step

size adaptation scheme, genetic interactions between individuals that

proved to be good should have an e�ect on the next generations. Oth-

erwise the interaction should be changed. Due to the discrete character

of the connections the following rules have been introduced:

Decoupling rule:

A connection to a neighbor is detached, if the recombination with that

neighbor yielded an o�spring that has a worse �tness than the �tness of

the best o�spring individual generated at that site during the current

generation.

Coupling rule:

If the number of connections of an individual falls below a certain

threshold �, � new connections to randomly chosen individuals of the

population are established.

Although isolated individuals cannot occur, isolated subpopulations

are still possible. These isolations are not permanent (with high prob-

ability), because connections to any member of the population can be

established during the coupling phase.

Communication Scheme The cellular population structure allows

the storage of the data in a decentralized manner. The genetic code, the

�tness, and the neighborhood structure is assigned to each individual.

Communication happens directly between the individuals according to

their local neighborhood scheme. A central master unit that controls

the exchange of the data does not exist. Hence, the power of parallel

communication can be used extensively. Although this scheme allows

to implement an asynchronous evolutionary algorithm, a synchronized

generation scheme has been used. Earlier analyses have shown [Meh94,

Meh00] that asynchronous communication schemes imply complex dy-

namics to the evolutionary process that is not easy to control and a

comparison with standard ES can become quite diÆcult.

Technically the individuals are gathered on single processor nodes.

This allows to scale the number of individuals per processor according

to the complexity of the problem and the performance of the computer.

The changes in the communication structure during one generation cy-

cle are transferred via broadcast functions that are especially designed

for eÆcient communication.

Technical Details The software has been implemented on a parallel

computer SGI Origin 2000 with 16 R10000 processors using a shared
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memory concept. The use of MPI (Message Passing Toolkit) [Pac97]

o�ers the opportunity to run the code also on workstations clusters

under LINUX or Solaris OS. The program has been implemented in

C++.

4. Experiments

In order to characterize the e�ect of di�erent parallelization schemes,

four evolutionary approaches have been tested:

standard ES (static, panmictic)

parallel ES with total interconnectivity (static, panmictic)

parallel ES using Halpern's communication scheme

(dynamic, non-panmictic)

parallel ES using the adaptive communication scheme

(dynamic, non-panmictic)

The standard ES, which was exhaustively tested by Sprave [Spr99b],

was used as a reference strategy. A direct comparison of the parallel

approaches with a standard ES is not possible, because the genetic

operators of the parallel and the standard strategy di�er. However, in

order to get an impression of the behavior of the parallel strategies, the

results of the standard ES are cited. In order to compare a standard

ES with its parallel counterpart, a virtually panmictic population has

been modeled by a parallel ES using total interconnectivity between

all individuals.

All strategies have been applied to a 30-dimensional sphere model

f(x) =

30X

i=1

x2i (1)

and to the 10-dimensional Rastrigin's function

f(x) = 100 +

10X

i=1

(x2i � 10 � cos(2 � � � xi)) : (2)

The sphere model is a simple test function for which the behavior

of a standard ES is well known. Rastrigin's function is a highly multi-

modal function that represents a big challenge for many optimization

strategies. The global minimum of both functions is zero. A discussion

of the application of a standard ES to these functions can be found in

[Sch95].

The settings of the parameters used for the strategies were moti-

vated by recommendations of Kursawe [Kur99] who empirically found

optimal parameters for a standard ES applied to the problems above

based on extensive numerical experiments.
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parameter settings

number of generations 200
number of individuals 100

number of o�spring per

individual

5 (sphere model)

2 (Rastrigin)

problem dimension
30 (sphere model)

10 (Rastrigin)

number of step sizes
1 (sphere model)

n (Rastrigin)

initial object variables
[-2.0, ..., 2.0] (sphere model)

[-5.0, ..., 5.0] (Rastrigin)
initial sigma values 0.01
recombination type

(object variables)
intermedite

recombination type

(step sizes)
discrete

�0
0.1826 (sphere model)

0.2236 (Rastrigin)

�i
not used (sphere model)

0.3976 (Rastrigin)
initial neighborhood structure random

initial average number of neigh-

bors of an individual

5

Table 1. Parameters for the structurally dynamic evolutions strategies

Each experiment has been repeated �ve times using the same pa-

rameter settings to get an impression of the variance of the results.

5. Results

Analyses of the Static ES Variants Figure 1 illustrates the be-

havior of a standard (100; 500)-ES and a parallel ES with a total in-

terconnection communication scheme. Both strategies are panmictic

and do not use a dynamic neighborhood structure. The di�erence lies

in the genetic operators. The parallel algorithm produces within each

local environment �ve o�spring elements per individual and replaces

the solution of the speci�c site by the best solution found in the local

o�spring population.

Both strategies show the typical linear (logarithmically scaled) con-

vergence behavior of an evolution strategy when applied to a sphere

model. The step sizes follow the progression of the �tness. In this case

this indicates a correct automatic step size adaptation.

The convergence velocity of the parallel ES is a little bit smaller than
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Figure 1. Comparison of a standard ES and an ES with a total interconnection

scheme (applied to the sphere model).

the velocity of the standard ES. This is due to the local selection scheme

of the parallel algorithm. However, qualitatively both strategies behave

quite similar. One can state that the basic neighborhood structure used

for the parallel algorithms does not in
uence the basic behavior of the

optimization process.

Analyses of the Dynamic ES Variants The dynamics of the evo-

lutionary algorithm on self-organizing dynamic lattices [Hal99] can be

controlled by speci�c model parameters. The deterministic rules of

Halpern are in
uenced by the coupling parameter � and the decoupling

parameter !. The probabilistic strategy is controlled by the threshold

values � and �. In the following experiments the behavior of the strate-
gies is discussed.

a.) Dynamic ES using Halpern's neighborhood rules

Figure 2 illustrates the typical progression of the number of neigh-

bors during the evolutionary optimization process for � = 0:4 and

! = 0:4. Depending on the de�nition of � and ! and the population

size �, the number of direct neighbors � and next-nearest neighbors �

stabilizes after an initial oscillation phase to the manually estimated

values � = ���

�+!
and � = !��

�+!
, respectively.

Due to the e�ect of isolation, the total number of neighbors and
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Figure 2. Number of direct neighbors and next-nearest neighbors (Halpern's

rules, Rastrigin's function).
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Figure 3. Fitness and step sizes of the dynamic ES with Halpern's neighbor-

hood rules (applied to Rastrigin's function).

next-nearest neighbors decreases over time. This e�ect is the more

prominent the larger � becomes relative to �. Once an individual

is isolated, it cannot establish new connections to other individuals.
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Hence, the total number of contacts within the population decreases

over time.

Figure 3 shows the typical convergence behavior of the dynamic

evolution strategy using Halpern's rules when applied to Rastrigin's

function. Although the �tness function is quite complex, the optimiza-

tion process shows no phases of stagnation. The convergence speed of

this parallel evolutionary algorithm when applied to the sphere model

is, of course, much higher. Nevertheless, the algorithm shows nearly

linear convergence on both �tness functions.

The application of the dynamic ES with Halpern`s neighborhood

rules to Rastrigin's function shows the highest convergence velocity

with the parameter settings � = 0:4 and ! = 0:4. A high coupling

value ! speeds up the initial stabilization process of the connectivity

of the population. A stable average connectivity rate is an important

precondition for a stable progression of the optimization process.

The analysis of the neighborhood structure shows that isolated sub-

populations having more than one individual did not appear. This was

true for both �tness functions.

b.) Dynamic ES using Probabilistic Neighborhood Rules

The following experiments illustrate the dynamics of the connectiv-

ity of the population and the convergence behavior of the dynamic ES

with probabilistic neighborhood rules.
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Figure 4. Number of direct neighbors and next-nearest neighbors.

Figure 4 shows the dynamics of the connectivity in the population
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of the dynamic ES when applied to Rastrigin's function. Here, the

parameter setting � = 20 and � = 20 are used. In the beginning,

like in Halpern's scheme, an initial stabilizing phase appears. After

this period, a constant and non-decreasing number of connections in

the population is established. This is due to the theshold value �
that prevents the phenomenon of isolation. The average number of

neighbors of an individual can be estimated by � = 2�+�

2
.

The analyses of di�erent parameter settings yielded that � = 20

and � = 20 is a good choice. Smaller values reduced the convergence

velocity of the algorithm, because the necessary genetic diversity that

depends on the number of neighbors cannot be established. High pa-

rameter settings yielded neighborhood structures that more and more

resemble completely interconnected populations that cannot use syn-

ergetic e�ects due to temporal genetic separation.
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Figure 5. Number of direct neighbors using an probabilistic scheme.

Figure 5 shows the progress of the number of neighbors of one ran-

domly selected individual during the optimization process. The typ-

ical degeneration and re-establishing phases of the connectivities can

be seen. On the average, the number of connections in the population

is nearly constant (see �gure 4).

The convergence behavior of the dynamic ES with probabilistic

neighborhood rules applied to Rastrigin's function is shown in Figure

6. The continuous reduction of the step sizes indicates that the step

size are adapted in the typical way of an ES. The continuous decrease

of the �tness values is a hint for a robust optimization process.
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Figure 7. Comparison of the parallel ES variants.

Comparison of the ES Variants In order to compare the conver-

gence velocity of the ES variants, a standard (100; 500)-ES, a parallel

ES using a total interconnection communication scheme, and the two

dynamic and parallel ES with either Halpern's or probabilistic neigh-
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borhood adaptation rules were used. The parameter settings of the

previously discussed experiments were applied.

The parallel ES with Halpern's neighborhood rule shows the best

convergence velocity when applied to Rastrigin's function (see �g. ref�g-

7). An additional advantage of the algorithm lies in its processing speed

because the �tness functions can be evaluated in parallel. A disadvan-

tage of Halpern's rules is its tendency to generate isolated individuals,

that prevents the exploitation of the full synergetic e�ect of parallel-

sim. It should be noted, that the algorithm discussed here only uses

Halpern's neighborhood rules while the genetic operators are taken

from the standard ES.

The dynamic ES with the probabilistic neighborhood adaption rules

showed a convercence velocity that is similar to the algorithm with

totally interconnected populations.
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Figure 8. Dynamic multipopulation ES with probabilistic communication.

An interesting improvement of the convergence probability for Rast-

rigin's function can be reached when the ES with probabilistic commu-

nication is modi�ed in a way that temporarily isolated subpopulations

(clusters) can appear. Therefore, the parameter settings � = 1 and

� = 1 are used. The extremely low number of connections yields sub-

populations that are isolated for certain time periods. The probabilis-

tic connection scheme allows to interconnect any individual with each

other. Hence, a sort of dynamic stepping stone model with changing

subpopulation structures is generated. An additional damping factor,

that \freezes" the communication structure for a period of 
 genera-
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tions, reduces the \turbolences" induced by communication and, hence,

increases the possibility to evolve good local solutions, that can be ex-

changed with the neighbors. This improves the genetic diversity and

therefore the convergence probability but it also hampers the conver-

gence velocity. Especially for diÆcult multimodal functions a robust

optimization may be more necessary than a fast but `greedy' strategy.

The behavior of the parallel dynamic multipopulation strategy with

probabilistic communication scheme is shown in Figure 8.

Speed Up The main goal in parallelizing an algorithm is to improve

its performance. This means for evolutionary algorithms to speed up

the optimization process by parallel execution of the genetic operators

and/or the �tness function. Synergetic e�ects gained by parallelizing

often allow an additional improvement of the robustness and the con-

vergence probability of the optimization process.
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Figure 9. Relative speed up and relative eÆciency.

The parallel ES has been implemented on a parallel computer ar-

chitecture with 16 processors. Therefore, the speed up of the dynamic

parallel ES variants can be measured quantitatively.

The execution time of a parallel program is the length of the time

interval from the start of the �rst process to the end of the last process

[Bur97]. The relative speed up s(p) is the quotient of the time t1 needed
by one processor to execute the parallel program to time tp needed by

p processors, i. e. s(p) = t1=tp. The relative eÆciency e(p) is the

quotient of the relative speed up s(p) and the number of processors

p. This quotient e(p) = s(p)=p expresses the e�ective gain of the
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parallelization. In order to keep the experimental conditions constant,

each experiment was run with 1, 2, 4, 8, 16 processors using constant

population sizes (i.e., 208 individuals were used for one processor or

104 individuals each for two processors, and so forth).

Figure 9 shows that an increasing number of nodes yields a sub-

linear relative speed up. The relative eÆciency decreases because the

ammount of communication becomes worse the more processors are

used. Comparing the speed up and the e�ectiveness allows the conclu-

sion that there exists a certain number of processors that marks a limit

of eÆciency (not reached here) gained by using additional processors.

6. Conclusions and Outlook

In this article two parallel implementations of Evolution Strategies

using dynamic communication structures have been discussed. Both

approaches use the standard genetic operators from conventional ES.

This allows to utilize the bene�t of automatic step size adaptation via

mutation and recombination. The basic population structure is a di�u-

sion model. Motivated by the ideas of Halpern [Hal99], self-organized

dynamic lattices are used. Following either deterministic or proba-

bilistic rules, each individual is able to connect or disconnect in its

environment. Both rules use subpopulations of neighbors around each

individual to produce o�spring. The best individuals of the o�spring

population are selected to replace the parent individual. Connection

and disconnection depend on the �tness of the neighbors or the �tness

gain of the connection after reproduction, respectively. The determin-

istic rules tend to reduce the connections over time while the proba-

bilistic rules re-establish new connections in order prevent isolation.

Compared with a reference model of a parallel ES with totally intercon-

nected individuals, the parallel ES with deterministic communication

rules has a much higher convergence velocity. This may be due to the

fact that in the deterministic model connections to individuals with

low �tness values are deleted and, hence, the probability to meet bet-

ter individuals for recombinations is higher than in the panmictic case.

The probabilistic re-establishing of the connections leads to a stable

number of neighbors but does not consider the �tness of new neigh-

bors. This yields a convergence velocity that is similar to the reference

model.

Using a parallel ES with probabilistic communication rules that do not

destroy links between individuals for some generations and that allow

temporarily isolated subpopulations yielded a quite slow strategy with

a { compared to the other strategies { surpassing convergence proba-

bility.

The application of a parallel computer with 16 processors allowed a

signi�cant speed-up of the ES. The experimental measured increase of

16



speed-up per processor follows a curve with positive but slowly decreas-

ing derivatives. The amount of communication between the processors

limits the gain from parallelization. The synergetic e�ects in parallel

ES play a more important role. This is expressed by an increase of the

convergence probability and a little higher convergence velocity of the

parallel optimization algorithms when applied to multimodal problems.

The experience from the experiments discussed here will be used for

practical applications in the �eld of evolutionary surface reconstruction

[Meh00]. First tests already show very promizing results.
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