
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

On the Expected Runtime and the Success
Probability of Evolutionary Algorithms

Ingo Wegener

No. CI-98/00

Technical Report ISSN 1433-3325 September 2000

Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence”, at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46902656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ON THE EXPECTED RUNTIME AND THE
SUCCESS PROBABILITY OF

EVOLUTIONARY ALGORITHMS

Ingo Wegener�

FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund, Germany
wegener@ls2.cs.uni-dortmund.de

Abstract. Evolutionary algorithms are randomized search heuristics
whose general variants have been successfully applied in black box opti-
mization. In this scenario the function f to be optimized is not known
in advance and knowledge on f can be obtained only by sampling search
points a revealing the value of f(a). In order to analyze the behavior of
different variants of evolutionary algorithms on certain functions f , the
expected runtime until some optimal search point is sampled and the
success probability, i.e., the probability that an optimal search point is
among the first sampled points, are of particular interest. Here a simple
method for the analysis is discussed and applied to several functions. For
specific situations more involved techniques are necessary. Two such re-
sults are presented. First, it is shown that the most simple evolutionary
algorithm optimizes each pseudo-boolean linear function in an expected
time of O(n logn). Second, an example is shown where crossover de-
creases the expected runtime from superpolynomial to polynomial.

1 INTRODUCTION

Evolutionary algorithm is the generic term for a class of randomized search
heuristics. These search heuristics are investigated and applied since the mid-six-
ties and more intensively since the mid-eighties (Fogel (1985), Goldberg (1989),
Holland (1975), Rechenberg (1994), or Schwefel (1995)). Despite many successes
in applications people working in the area of efficient algorithms (including graph
theoretic methods) have ignored evolutionary algorithms. The main reasons for
this are the following ones. Many papers on evolutionary algorithms are quite
imprecise and claim too general results which then are not proved rigorously.
In particular, general evolutionary algorithms are mixed with hybrid algorithms
for special problems which use ideas from efficient algorithms for the considered
problem. Finally, an analysis of search heuristics for the most often considered
problems is often too difficult. One of the few successful approaches is the anal-
ysis of the Metropolis algorithm for the graph bisection problem by Jerrum and
Sorkin (1998). In order to understand the complicated stochastic process behind
� This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of

the Collaborative Research Center ”Computational Intelligence” (531).

evolutionary algorithms and related search heuristics like simulated annealing,
Rabani, Rabinovich, and Sinclair (1998) and Rabinovich, Sinclair, and Wigder-
son (1992) have investigated isolated features of these algorithms. These results
are fundamental for a well-founded theory but they do not contain any results
on the behavior of evolutionary algorithms when applied to certain specific func-
tions. These papers have been ignored in the community working on evolutionary
algorithms.

We strongly believe that the analysis of randomized search heuristics is an
interesting area which should be part of the area of efficient algorithms.

In order to distinguish general evolutionary algorithms from specialized ones,
we introduce and discuss in Section 2 the scenario of black box optimization.
In Section 3, we present those variants of evolutionary algorithms which are in-
vestigated in this paper. In Section 4, we discuss a general and simple method
to analyze the behavior of evolutionary algorithms on certain functions. This
method leads in surprisingly many situations to quite precise results. In order to
prove that a variant of evolutionary algorithms may have a specific property, it is
useful to look for example functions where this method of analysis works. How-
ever, this method has a limited power. For specific problems one has to develop
specific tools which hopefully will turn out to be useful in further situations. In
Section 5, we prove that the simplest evolutionary algorithm is efficient on all
pseudo-boolean linear functions and, in Section 6, it is proved that crossover,
although unnecessary for many problems, can decrease the expected runtime of
an evolutionary algorithm from superpolynomial to polynomial.

2 RANDOMIZED SEARCH HEURISTICS IN BLACK
BOX OPTIMIZATION

The scenario in the area of efficient algorithms is the following one. We are
concerned with a specific and well-defined optimization problem. The structure
behind this problem is investigated and this leads to a specialized algorithm
which then is analyzed and implemented.

However, there are situations where this scenario is not adequate. If a problem
does not belong to the class of problems investigated in textbooks or scientific
papers, people may not have the time, skills or other resources to develop a
specialized algorithm. Moreover, the functions f to be optimized may not be
given in a clearly structured way. In order to optimize a technical system it may
be the only possibility to perform or simulate an experiment to evaluate f on a
specific input a. In these situations one needs randomized search heuristics with
a good behavior on typical problems.

Such situations are captured by the scenario of black box optimization. The
problem is to maximize an unknown function f : S → R. Here we only consider
pseudo-boolean functions f : {0, 1}n → R. The algorithm can choose the first
or more generally the t-th search point based only on the current knowledge
namely the t− 1 first search points together with their f -values.

This scenario has some unusual features. The randomized search strategy is
not developed for a specific function. Hence, there will be no strategy which is
superior to all the other ones. The aim is to develop a strategy with a good
behavior on many problems, in particular, those problems expected to be con-
sidered in applications.

Moreover, it should be obvious that algorithms designed for a special class
of functions should be better than a search heuristic for black box optimization
when applied to the same class of functions. Since black box optimization is a
typical scenario in applications, the design and analysis of randomized search
heuristics is well motivated. The results reveal some knowledge on the type of
problems where the given heuristic has good properties.

In black box optimization, the algorithm does not “know” if the best point
ever seen is optimal. Hence, a stopping criterion is applied. After the algorithm
has been stopped, the best of the sampled search points is presented as a so-
lution. We abstract from this problem and consider search heuristics as infinite
stochastic processes. We are interested in the random variable TA,f describing
for the algorithm A and the function f the first point of time when an optimal
input is sampled. The expected runtime RA,f of A for f is the expected value
of TA,f . Another important parameter is the success probability SA,f,t that A
applied to f has sampled an optimal input within the first t steps. It is possible
that RA,f increases exponentially while the success probability for a polynomial
number of steps is not too small (constant or 1/poly(n)). Then a multistart
variant of A is efficient for f .

3 SOME VARIANTS OF EVOLUTIONARY
ALGORITHMS

The most simple variant of an evolutionary algorithm is the so-called (1+1)EA
working with a population size of 1 and, therefore, without crossover.

The first search point x is chosen randomly in {0, 1}n. This search point x
is also the actual one. Later, a new search point x′ is obtained from the actual
one by mutation, i.e., the bits x′i are considered independently and x′i differs
from xi with the mutation probability pm(n). The default value of pm(n) equals
1/n ensuring that the expected number of flipping bits equals 1. The new point
x′ becomes the actual one iff f(x′) ≥ f(x). Otherwise, x remains actual. The
notation (1+1) describes that we select among one parent and one child. It will
turn out that pm(n) = 1/n often is a good choice but sometimes other values are
better. There are methods to find a good value of pm(n) during the search process
(Bäck (1993, 1998)). However, a quite simple dynamic version called dynamic
(1+1)EA turns out to have some good features (Jansen and Wegener (2000)).
The first mutation step uses the parameter pm(n) = 1/n. Before each new step
pm(n) gets doubled and a value larger than 1/2 is replaced immediately by 1/n.
This leads to phases of approximately logn steps where for each meaningful
mutation probability p one step uses a mutation probability which is close to p.

The analysis of evolutionary algorithms without crossover is much easier than
the analysis in the presence of the crossover operator. Although many people
have claimed that crossover is a useful operator, Jansen and Wegener (1999)
were the first to prove this for some well-chosen function (see Section 6). They
work with a population size of n, i.e., the algorithm stores n search points and
their f -values. The first n search points are chosen randomly and independently.
With probability pc(n), the algorithm chooses randomly and independently two
parents x′ and x′′ from the current population. Uniform crossover leads to a
random child z where the bits zi are chosen independently and zi = x′i if x

′
i = x

′′
i .

Otherwise, zi = x′i with probability 1/2 and zi = x′′i otherwise. Then y is the
result of mutation with parameter 1/n applied to z. With probability 1− pc(n),
y is the result of mutation with parameter 1/n applied to a random parent from
the current population. Let x be a random element of those elements of the
current population which have the smallest f -value. The new element y replaces
x iff f(y) ≥ f(x) and y is not a replication of (one of) its parent(s).

4 A SIMPLE METHOD FOR THE ANALYSIS
OF MUTATION BASED EVOLUTIONARY
ALGORITHMS AND SOME APPLICATIONS

Let A,B ⊆ {0, 1}n. Then A <f B if f(x) <f (y) for all x ∈ A and y ∈ B. Let
A1, . . . , Ap be a partition of the search space {0, 1}n such that A1 <f A2 <f

. . . <f Ap and Ap is the set of all optimal search points.
For x ∈ Ai let s(x) be the probability that mutation changes x into some

y ∈ Aj where j > i. and let s(i) = min{s(x)|x ∈ Ai}. The expected time to
leave Ai has an upper bound of r(i) = 1/s(i). Hence, the expected runtime of
the (1+1)EA on f is bounded above by the sum of all r(i), 1 ≤ i ≤ p− 1. The
bound can be improved by taking into account the probabilities π(i) that the first
search point lies in Ai. It is essential to choose a “good” partition of {0, 1}n. The
number of sets should not be too large but, nevertheless, the probabilities s(i)
should not be too small. More involved applications of this technique consider
also the probabilities that the search may omit some sets of the partition by
jumping from Ai to Ai+d for some d ≥ 2.

We look for an upper bound on the success probability Sf,t of the (1+1)EA
which implies a lower bound of (1− Sf,t) · t on the expected runtime. We have
no success within t steps if

• we start with a search point in A1 ∪ · · · ∪Ai,
• no jump from some Aj to Aj+d ∪ · · · ∪Ap takes place,
• and less than (p− i)/(d− 1) times a change of the A-set takes place.

Hence, we have to prove that long jumps have a very small probability and
that s∗(i) = max{s(x)|x ∈ Ai} is small. (It is easy to generalize the upper and
lower bound technique to other mutation based evolutionary algorithms.)

In the following, we analyze the (1+1)EA on several functions. A function
f : {0, 1}n → R is called unimodal if each non-optimal search point x has a
neighbor y (H(x, y) = 1 for the Hamming distance H) such that f(y) > f(x).

Theorem 1. Let f : {0, 1}n → R be unimodal and let I(f) be the size of the
set image(f) = {f(x)|x ∈ {0, 1}n}. The expected runtime of the (1+1)EA is
bounded above by e · n · (I(f)− 1).

Proof. We partition {0, 1}n into the sets of inputs with the same f -value. Be-
cause of the unimodality of f there is for each non-optimal x a mutation changing
one bit of x and leading to an improvement. Hence, s(x) ≥ 1

n (1− 1
n)

n−1 ≥ 1
e·n

and r(i) ≤ e · n for all non-optimal A-sets. ✷

The function LOn (LEADING ONES) counts the length of the longest prefix
of x consisting of ones only. LOn is unimodal and I(LOn) = n + 1. The upper
bound of Theorem 1 for LOn equals e · n2.

Theorem 2. The expected runtime of the (1+1)EA on LOn equals Θ(n2).

Sketch of Proof. (Droste, Jansen, and Wegener (2000)).
With a probability of at least 1 − 1

n the initial search point has at most logn
leading ones. The probability that the f -value is increased during one step equals
1/n, since one specific bit has to flip. The suffix of the actual point x behind the
prefix 1i0 is a random string. Hence, the f -value increases in a successful step
with probability (1/2)j by j+1. The result follows by an appropriate application
of Chernoff bounds (Hagerup and Rüb (1989)). ✷

A function f : {0, 1}n → R is called linear if f(x) = w1x1+· · ·+wnxn for some
weights. The linear function ONEMAXn is defined by w1 = · · · = wn = 1 and
the linear function BVn (BINARY VALUE) by wi = 2n−i. All linear functions
are unimodal. The following results have been proved by Mühlenbein (1992),
Rudolph (1997b), and Droste, Jansen, and Wegener (1998).

Theorem 3. The expected runtime of the (1+1)EA on a linear function f where
wi = 0 for all i is bounded below by Ω(n logn). It is bounded above for all linear
functions by O(n2) and by O(n logn) for ONEMAXn.

Sketch of Proof. The lower bound follows by an application of the coupon
collector’s theorem (see Motwani and Raghaven (1995)). For the general upper
bound we assume w.l.o.g. w1 ≥ · · · ≥ wn ≥ 0. Let Ai = {x|w1 + · · · + wi−1 ≤
f(x) < w1 + · · ·+wi}, 1 ≤ i ≤ n+1. Then s(i) ≥ 1

e·n for i ≤ n. For ONEMAXn

even s(i) ≥ n+1−i
e·n , since inputs from Ai have n + 1− i neighbors with a larger

function value. ✷

In Section 5, an upper bound of O(n logn) on the expected runtime of the
(1+1)EA for an arbitrary linear function is established. The simple method
used in this section seems to be too weak for this purpose. Unimodality is a
natural property of many functions. Hence, people have looked for unimodal
functions where the (1+1)EA needs exponential time. Such a function has to take
exponentially many different function values and it has to be unlikely that one
jumps over many possible function values. Long path functions (Horn, Goldberg,

and Deb (1994)) have the property that there is a path (Hamming distance
between a point and its successor equals one) of exponential length where the
value of the function increases along the path. The values of points not on the
path lead the (1+1)EA to the source of the path. Rudolph (1997a) has described
explicitly paths which additionally have the property that for each i ≤ n1/2

and each point x on the path there is at most one successor on the path whose
Hamming distance to x equals i. Rudolph (1997a) has applied Theorem 1 to this
function. Droste, Jansen, and Wegener (2000) have obtained an asymptotically
matching lower bound. They have proved that the (1+1)EA meets the path
with probability at least 1/2 in the first half of the path and that with high
probability it needs Ω(d) improvement steps if its distance to the terminal of
the path equals d.

Theorem 4. There are explicitly defined unimodal functions where the expected
runtime of the (1+1)EA grows exponentially. The success probability for some
exponentially increasing time bound is exponentially small.

The method also works for the dynamic (1+1)EA. If the mutation probability
1/n is good, we expect not to loose more than a factor of O(logn).

Theorem 5. The expected runtime of the dynamic (1+1)EA is bounded by

• O(n(logn)I(f)) for unimodal functions,
• Θ(n2 log n) for LOn,
• O(n2 log n) for all linear functions,
• O(n log2 n) for ONEMAXn.

We omit the proofs due to Jansen and Wegener (2000). They also have shown
that the dynamic (1+1)EA can be very useful. We explain their results not in
detail. They have defined a function PJn (path and jump) with the following
features. There is an island I of optimal points (all vectors with logn ones and
only zeros at the first 2 logn positions), a path P of length n/4 from 1n/403n/4

to 0n consisting of all 1i0n−i, and a bridge B of all x with n/4 ones. Outside
I ∪ P ∪ B the function PJn is defined such that one efficiently finds the bridge
but not the island or the path. The PJ-value on the bridge increases with the
number of ones among the first n/4 positions. Hence, we look for 1n/403n/4, the
source of P . For this purpose, mutation probabilities of size 1/n are good. The
same holds on the path from 1n/403n/4 to 0n. It is very unlikely to find the island
before having reached 0n. Then a jump to a point in Hamming distance logn is
necessary and mutation probabilities of size (logn)/n are good.

Theorem 6. Let pm(n) = α(n) ln n
n . If α(n) → ∞ or α(n) → 0 for n → ∞,

the probability that the (1 + 1)EA on PJn needs a superpolynomial number
of steps converges to 1. If α(n) = c, the expected runtime is O(n2+c ln−1 n +
nc−log c−log ln 2) which is O(n2.361) for c = 1/(4 ln 2). The expected runtime of
the dynamic (1 + 1)EA on PJn is O(n2 log n) and the success probability is
1− e−Ω(n) if t ≥ dn3 log n for some constant d.

Until now we have seen examples where steps with bad values of pm(n) have
neither positive nor negative effects. However, there are examples where bad
values of pm(n) lead to a disaster. There is a function PWTn (path with a trap)
with a path P of polynomial length and a trap T . PWTn takes its optimal value
at the end of P , the value is increasing along the path but the values in T are
second best. All values outside P ∪ T are smaller and are defined in such a way
that it is very likely that P ∪T is reached at the beginning of P . For pm(n) = 1/n
it is very likely that we follow the path to the optimum without reaching the
trap which is too far away (distance approximately logn). Using the dynamic
(1 + 1) EA there are steps with mutation probabilities close to (logn)/n. Since
the trap is large enough it is likely to reach the trap. The probability to return
to the path is reduced to a jump to the unique optimum which is quite unlikely.

5 THE (1+1)EA ON LINEAR FUNCTIONS

Theorem 7. The expected runtime of the (1 + 1)EA on a linear function is
O(n logn).

Sketch of Proof. (Droste, Jansen, and Wegener (1998, 2000)).
We have to improve the simple O(n2) bound of Theorem 3. W.l.o.g. w1 ≥ w2 ≥
. . . ≥ wn > 0. It is possible that the Hamming distance from the unique optimum
1n increases during the application of the (1 + 1)EA. E.g., for BVn 10n−1 is
better than 01n−1. The following technical trick is well-known from the analysis
of efficient algorithms. The (1 + 1)EA works on some linear function f but
we investigate its behavior w.r.t. to some other function, a so-called potential
function.

It has turned out that one linear function can serve as a potential function
for all linear functions, namely the linear function valn with the weights w1 =
· · · = wn/2 = 2 and wn/2+1 = · · · = wn = 1. Obviously, I(valn) = (3/2)n + 1.
we are investigating the (1 + 1)EA working on f . A step is called successful if
it changes the actual point. Let t(x) be the random number of successful steps
until the (1+1)EA on f starting at x samples for the first time a point x′ where
valn(x′) > valn(x). The main step is the proof that E(t(x)) ≤ c for a constant c
which does not depend on x. Since valn is close enough to ONEMAXn, this result
implies the upper bound of O(n logn) on the expected runtime by bounding the
expected number of unsuccessful steps similarly as in the proof of Theorem 3 for
ONEMAXn.

The claim E(t(x)) ≤ c is hard to prove. Let x ∈ {0, 1}n and let x′ be
the random point produced by the (1 + 1)EA on f by a successful step. Let
S be the random set of all i where xi = 0 and x′i = 1. Then S = ∅ and
DS(x) = val(x′)−val(x) describes for some fixed set S the random gain w.r.t. val.
The random variable DS(x) is difficult to analyze. Therefore, a random variable
D∗

S(x) taking integer values is defined such that D∗
S(x) ≤ 1 and Prob(D∗

S(x) ≤
r) ≥ Prob(DS(x) ≤ r) for all r. Then the existence of a constant d > 0 (which
neither depends on x nor on S) such that E(D∗

S(x)) > d is proved. These

steps need an involved case inspection. Finally, a slight generalization of Wald’s
identity is proved to obtain the result. ✷

This result indicates the difficulty of obtaining tight results on the expected run-
time of simple variants of evolutionary algorithms on simple functions. However,
typical tools used for the analysis of randomized algorithms have to be applied
also for the analysis of evolutionary algorithms.

6 THE HARD CASE – EVOLUTIONARY
ALGORITHMS WITH CROSSOVER

Evolutionary algorithms without crossover are much easier to analyze than those
with crossover. Crossover is defined for two points. The success of crossover
depends in the case of uniform crossover on the number and the position of those
bits where the parents differ. For many functions, among them many of those
discussed in this paper, crossover seems to be unable to improve evolutionary
algorithms. Jansen and Wegener (1999) were the first to prove for a specific
function the usefulness of crossover. Let JUMPm,n(x) = ||x||1 = x1 + · · · + xn

if 0 ≤ ||x||1 ≤ n − m or ||x||1 = n and let JUMPm,n(x) = −||x||1 otherwise.
The set of x where JUMPm,n(x) < 0 is called the hole. We are only interested
in the case m = O(logn). A random population of polynomial size contains
with overwhelming probability no optimal point and no point in the hole . If the
selection procedure rejects points in the hole and if we only use mutation, an
evolutionary algorithm needs with overwhelming probability Ω(nm−ε) steps for
the optimization of JUMPm,n (ε > 0 constant).

Theorem 8. Let A be the evolutionary algorithm with crossover described in
Section 3 and let pc(n) = 1/(n logn).

a) Let m be a constant and f = JUMPm,n. Then
• SA,f,t = 1−Ω(n−k) if t ≥ ckn2 log n for some constant ck,
• SA,f,t = 1− e−Ω(n) if t ≥ cn3 for some constant c, and
• RA,f = O(n2 log n).

b) Let m = O(logn) and f = JUMPm,n. Then
• SA,f,t = 1− e−Ω(nδ) if t ≥ c(n3 + n2(log5 n+ 22m)) = poly(n) for some

constants δ > 0 and c, and
• RA,f = O(n log3 n(n log2 n+ 22m)) = poly(n).

Sketch of Proof. (Jansen and Wegener (1999)).
With overwhelming probability, the evolutionary algorithm produces within
O(n2 log n) steps a population of search points where each search point con-
tains n−m or n ones. This can be proved by a generalization of the solution to
the coupons collector’s problem. Crossover is not necessary for this but it also
does not cause difficulties.

Either we have found the optimum or we have a population of individuals
with n − m ones. This property does not change in the future. Let us assume

(incorrectly) that the individuals are random and independent strings with n−m
ones. If we choose two of them randomly, it is very likely that they have no
common position with a zero. Then crossover creates with probability 2−2m the
optimal vector 1n and mutation does not destroy this string with probability
(1− 1

n)
n ≈ e−1.

The problem is that crossover and also mutation have the tendency to create
positively correlated individuals. If all members of the population are equal (or
each pair of individuals has many common zeros), crossover cannot destroy these
zeros and this job again has to be done by mutation. Hence, we need crossover for
a quick jump over the hole but crossover decreases the diversity in the population.
This is the reason why we assume that pc(n) is very small. (It is conjectured
that the theorem also holds for constant values of pc(n) but we cannot prove
this.)

Now a tedious analysis is necessary to ensure that with overwhelming prob-
ability we have a population whose diversity is large enough. More precisely, it
is proved that for a long period of time the following statement is true for each
bit position i. The number of individuals with a zero at position i is bounded
above by 1

2mn. This property implies that, with probability at least 1/2, two
individuals chosen randomly from the current population have no common zero.
Since pc(n) is small enough, we may assume during these calculations that, if
crossover does not create an optimal individual, it only has bad effects. ✷

References

1. Bäck, T. (1993). Optimal mutation rates in genetic search. 5. Int. Conf. on Genetic
Algorithms (ICGA), 2-8.

2. Bäck, T. (1998). An overview of parameter control methods by self-adaptation in
evolutionary algorithms. Fundamenta Informaticae 34, 1-15.

3. Droste, S., Jansen, T., and Wegener, I. (1998). A rigorous complexity analysis of
the (1 + 1) evolutionary algorithm for linear functions with boolean inputs. ICEC
’98, 499-504.

4. Droste, S., Jansen, T., and Wegener, I. (2000). On the analysis of the (1 + 1)
evolutionary algorithm. Submitted: Theoretical Computer Science.

5. Fogel, D. B. (1995). Evolutionary Computation: Toward a New Philosophy of Ma-
chine Intelligence. IEEE Press.

6. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison Wesley.

7. Hagerup, T. and Rüb, C. (1989). A guided tour of Chernoff bounds. Information
Processing Letters 33, 305-308.

8. Holland, J. H. (1975). Adaption in Natural and Artificial Systems. Univ. of Michi-
gan.

9. Horn, J., Goldberg, D. E., and Deb, K. (1994). Long path problems. 3. Int. Conf.
on Parallel Problem Solving from Nature (PPSN), LNCS 866, 149-158.

10. Jansen, T. and Wegener, I. (1999). On the analysis of evolutionary algorithms – a
proof that crossover really can help. ESA ’99, LNCS 1643, 184-193.

11. Jansen, T. and Wegener, I. (2000). On the choice of the mutation probability for
the (1 + 1) EA. Submitted: PPSN 2000.

12. Jerrum, T. and Sorkin, G. B. (1998). The Metropolis algorithm for graph bisection.
Discrete Applied Mathematics 82, 155-175.

13. Motwani, R. and Raghavan, P. (1995). Randomized Algorithms. Cambridge Univ.
Press.

14. Mühlenbein, H. (1992). How genetic algorithms really work. I. Mutation and hill-
climbing. 2. Int. Conf. on Parallel Problem Solving from Nature (PPSN), 15-25.

15. Rabani, Y., Rabinovich, Y., and Sinclair, A. (1998). A computational view of
population genetics. Random Structures and Algorithms 12, 314-334.

16. Rabinovich, Y., Sinclair, A., and Widgerson, A. (1992). Quadratical dynamical
systems. 33. FOCS, 304-313.

17. Rechenberg, I. (1994). Evolutionsstrategie ’94. Frommann-Holzboog, Stuttgart.
18. Rudolph, G. (1997a). How mutations and selection solve long path problems in

polynomial expected time. Evolutionary Computation 4, 195-205.
19. Rudolph, G. (1997b). Convergence Properties of Evolutionary Algorithms. Ph.D.

Thesis. Dr. Kovač, Hamburg.
20. Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Wiley.

