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Abstract:
This article presents a study of the application of Computational Intelligence (CI)
methods to the problem of optimal surface reconstruction using triangulations and
NURBS (Non-Uniform Rational B-Splines) surface approximations on digitized point
data.
In mechanical engineering surface reconstructions are used to transform physical objects
into mathematical representations for computer aided design purposes. In order to record
the geometrical shape of the objects, tactile or optical sensors generate point sets with a
huge number of sample points. The number and distribution of these points are decisive
for the quality and computational eÆciency of the numerical surface representations.
Triangulations and NURBS are widely used in CAD/CAM-applications, because they
belong to a class of very exible discrete interpolation and approximation methods.
In order to verify the suitability of surface model independent point selection schemes and
to �nd model dependent sampling point distributions, optimal surface reconstructions
are used.

Keywords: Surface reconstruction, point selection schemes, evolutionary algorithms,
triangulation, NURBS surface approximation.

Introduction

Optical and tactile scanners are used to
record the surface of physical objects to repre-
sent their structure in a computer processable
way. The digitization of surfaces is widely used
in manufacturing processes. The applications
reach from studies of manually designed car bod-
ies over the feedback of tool and workpiece ge-
ometry changes for the machine adjustments to
�nal quality assurance purposes.

The aim of surface reconstruction is to �nd
eÆcient, exact and easy to use CAD descriptions
on the basis of discrete 3D-point data. Depend-
ing on the dimension of the surface, the digi-
tizing system and the sampling strategy, often
hundreds of thousands of three-dimensional co-
ordinate triples are sampled during one scan.
Common CAD/CAM systems have diÆculties
to process, store and manipulate the data [Chen

1994]. Depending on the mathematical model
and the desired accuracy, the number of points
is often much too high to be eÆciently process-
able.

In the following, points that are not needed
for an exact and complete description of a sur-
face will be called redundant with respect to the

surface model, otherwise relevant. The purpose
of point selection schemes is to �nd relevant
points in arbitrarily distributed or weakly struc-
tured sampling point sets in order to yield easy
to use and realistic CAD surface representations.

There exist two ways to reduce point data
sets: A generalistic approach uses selection
schemes that generate point distributions that
can be used for a large variety of surface mod-
els. The redundancy of the point set may not
be optimal regarding special surface types but
fast and good enough for practical applications.
This class of point selection schemes, called sur-
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face model independent, use heuristics that are
often motivated by linear or higher order ap-
proximation theory.

Schemes that are surface model dependent

exploit mathematical properties of the surface
models that are intended to be used for the sur-
face reconstruction purposes. Typical surface
models are piecewise linear interpolations or ap-
proximating splines. In the �eld of spline or
polynome approximation, approximation theory
[H�ammerlin 1989] gives hints for necessary sam-
pling point distributions with respect to tolera-
ble approximation errors. The advantage of this
approach lies in its ability to �nd a minimum of
relevant points. The disadvantage of this strat-
egy comes from the fact that the complete point
set has to be reconstructed as exactly as possible
before the relevant points can be selected.

In the following sections both point reduc-
tion approaches will be discussed. Due to the
fact that human designers �nally have to de-
cide weather a reconstruction is good enough
for a practical application, the results have to
be inspected optically. Here, global optimiza-
tion strategies are used to allow practical com-
parisons of smooth triangulations and best �t
NURBS surface reconstructions.

Point Selection Schemes

Generalizing Scan Line Schemes
Cord deviation �lters are widely used in post-

processing of digitized point data. These �lters
make use of the a-priori known 3D-structure of
the digitized point data. The points are ordered
according to the physical scanning process.

The cord deviation �lters use linear (some-
times higher order) one-dimensional comparison
models M and a tolerance value � � 0. All
points that �t into the space around M are de-
�ned to be redundant. Only the points that are
needed to specify M are relevant and will be
selected.

Depending on the model M and the distance

criterion (metric) d : IR3 � IR3 ! IR a family of
cord deviation �lters can be de�ned.

TheTDS (tangential distance strategy [Aretz
1992]) uses a linear model to select relevant

points. A line v 2 IR3 through the �rst p0 :=
(p0x; p0y; p0z)

T and second sample point p1 :=

(p1x; p1y; p1z)
T is used to estimate a tangent line

of the digitized surface. All points that �t into
the cylinder with radius � along v are redundant.
Only p0 and the last point p� that still �ts into
the cylinder will be selected as relevant points.
Starting with p� the scheme is iterated until ei-

ther the last point of a scan line is reached or
no more points are to be processed. The metric
d measures the minimum (orthogonal) distance
between v and each consecutive sample point

(x; y; z)T := pi. The TDS is very eÆcient re-
garding its time and space complexity (O(1)).
Because the �rst and second sampling point are
used to de�ne v, the TDS is the more measure-
ment error prone the smaller the distance be-
tween the digitized points becomes.

The following two variations of the TDS both
have one degree of freedom. Here, only p0 is
kept �x. v is the straight line between p0 and
the last point read pi; i = 1; 2; : : :. A point pi�1
joins the set of redundant elements i�. all points
pj ; j = 1; : : : ; i � 1 are within the cylinder M
along v with radius � � 0. If any point between
the p0 and pi has a distance d > �, p0 and
pi�1 are de�ned to be relevant. The algorithm
is iterated re-starting with point pi�1 as long
as the end of the scan line is not reached. The
ATDSO (Adaptive TDS with orthogonal dis-
tance) uses the orthogonal (minimum) distance
d of an arbitrary point pj from v. ATDSZ
measures the di�erence of the z-components of
v and pj . The additional space needed to store
the points p0 to pi is linearly increasing with i.
Due to the constantly varying orientation of v,
each point between p0 and pi has to be tested
with every new iteration. Let pk be the last
point for which the criterion that all points �t
into the cylinder M still holds, the algorithm
needs O(k) space and O(k2) time. The value of
k depends on the tolerance � and the curvature
of the digitized surface.

The ULREG (univariate linear regression)
increases the freedom of the orientation of v to
two dimensions. This exibility is necessary es-
pecially for noisy data. The �rst two points p0
and p1 are used to de�ne an initial v. In the UL-
REG the orientation of v is then calculated for
each consecutive point pj = (pxj; pyj; pzj)

T ; j =

2; 3; : : : of the scan line using the classical regres-
sion equations:

�x = 1
j

Pj

i=0 pxi

�z = 1
j

Pj

i=0 pzi

s2x =
1

j�1

Pj

i=0(pxi � �x)2

s2z =
1

j�1

Pj

i=0(pzi � �z)2

mxz =
1

j�1

Pj

i=0(pxi � �x)(pzi � �z) (1)

r = mxz

sxsz

v(x; z) = �z + r sz
sx
(x� �x)



If sx or sz are zero, then r is set to 1. The itera-
tion is terminated i�. (a) either the border of the
point set is reached, (b) all points are processed
or (c) the di�erence j r j �1 of the absolute
correlation coeÆcient is greater than a certain
 � 0. r describes the correlation of the sam-
ple points with the model M . Values near �1
indicate that the points analyzed diverge only
little from a straight line. These points are not
relevant and can be reduced. If the divergence
of the absolute correlation coeÆcient r from 1
becomes larger than , then the �rst and the
last point read are de�ned to be relevant. Any
other points near or on v could have been cho-
sen as well. The scheme is restarted with the
last point read and is continued until all points
are processed.
Let k be the highest di�erence of the suÆxes of
all relevant points, then the ULREG has O(k)

space and O(k2) time complexity.

Generalizing 3D Point Cloud Schemes
All strategies discussed so far make use of the

line structure of the digitized point data. The
di�erence between line and plane based schemes
can be demonstrated, when they are applied to
a surface like a half-cylinder. Let the cylinder
be digitized either (a) parallel to the main axis
and (b) orthogonal to the main axis. In case (a)
the line based strategies yield, independent from
any � > 0, only the borders of the surface. In
case (b) the number of relevant points depends
strongly on the value of �.

The following multiple schemes are based on
the idea of the univariate strategies applied to
higher dimensions. The algorithms do not de-
pend on any consecutive order of the sample
points. In the examples discussed here, tac-
tile digitized objects are used that do not have
undercuts. This restriction is necessary for the
strategies described next.

The basic idea of the 2DTDS-algorithm is to
use a box with height 2� � 0 instead of a cylin-
der like in the traditional TDS [Aretz 1992].
The algorithm discussed in this article di�ers in
many points from Aretz's original version. It
uses a recursive ood �ll algorithm [Foley 1992]
that selects all points that are "cut out of the
surface" by a box M . This model can be re-
placed by any other classi�er.
The 2DTDS marks all points to be redundant
with respect to M that (a) are not a part of the
border of the complete digitized area, (b) belong
to one surface patch that has not already been
analyzed, (c) �t exactly into the volumeM , and
(d) do not lie on the intersection line of M and
the digitized surface. Each redundant point is

marked and will not be inspected a second time.
Any border point can be used as a seed for a
new search for relevant points. The distances
are measured using normal vectors on S. The
orientation of S is given by three relevant neigh-
boring points that do not lie on a common line.
Singular points or pairs that are left during the
search and cannot be used to de�ne the plane S
are de�ned to be relevant. The algorithm scans
every surface point and is iterated as long as all
points are marked either redundant or relevant,
respectively.

The MLREG strategy (multiple linear
regression) is the multiple pendant of the uni-
variate ULREG algorithm. Instead of a straight
line that approximates a subset of points along
a scan line, a plane is used. The index struc-
ture of the underlying point set is irrelevant for
this algorithm. The sample points should not
have undercuts or 90Æ edges, because the regres-
sion measures the distance form the plane to the
sample points parallel to the z-axis.

The multiple regression of k + 1 features
Y;X1;X2; :::; Xk describes the linear functional

coherence by: y(x1; x2; ::; xk) = � +
P

k

j=1 �jxj .

Let yi; x1i; :::; xki; i = 1; :::; n be n �x realiza-
tions of n independent random variables. The
estimators for �j ; j = 1; :::; k and a can be calcu-
lated by solving the following equation system:

b1SQx1 +b2SPx1x2 + ::: +bkSPx1xk = SPx1y
b1SPx1x2 +b2SQx2 + ::: +bkSPx2xk = SPx2y

...
...

...
...

b1SPx1xk +b2SPx2xk + ::: +bkSQxk = SPxky

with
SQxj =

P
n

i=1(xji � �xj)
2

SPxjxj0 =
P

n

i=1(xji��xj)(xj0i��xj0) (2)

SPxjy =
P

n

i=1(yi � �y)(xji � �xj) for j; j0 =
1; :::; k:

a = �y � b1�x1 � :::� bk�xk:

The multiple correlation value jRj 2 [0; 1] is de-
�ned by

R2 = By;(x1;::;xk) = 1�

P
n

i=1
(yi�a�

P
n

j=1
bjxji)

2P
n

i=1
(yj��y)2

:

Values with a bar on top denote arithmetic av-
erages.
In three dimensions k equals 2 and the sam-
ple points are realizations of the features
(Y;X1;X2).

The MLREG algorithm uses a quadtree strat-
egy [Foley 1992] to �nd the points that are to



be tested against the "plane hypothesis". The
quadtree algorithm recursively divides squares
in the (x; y)-plane into four smaller squares.
Digitized points with (x; y)-coordinates that lie
within a square k form a subset Sk. A corre-
lation coeÆcient Rk is calculated for each set
Sk. As long as jRkj � 1 > , where  > 0 is
an external (tolerance) parameter, each Sk is
divided and tested recursively. If the termina-
tion criterion jRkj � 1 �  of the recursion is
reached, a (not unique) relevant point has to
be selected. Here, the center of gravity of the
points contained within a square is chosen.

Surface Model Dependent Schemes
Generalizing schemes do not depend on the

surface model that is used to represent the
object after the point selection process. If
the properties of the mathematical models are
known, points can be selected more speci�cally
from the original point cloud. This allows to
keep the approximation error within prede�ned
limits. For this approach optimal surface recon-
structions are necessary.

Using Optimized Triangulations
Triangulations belong to the most common

surface descriptions for digitized point data. A
decomposition of a polygon into triangles by
a maximal set of non-intersecting diagonals is
called a triangulation of the polygon [de Berg
1997]. Terrain triangulations are special 3D-
triangulations without undercuts. They can be
generated by adding a height component to the
vertices of 2D triangulations.

Triangulations are usually not unique. In the
context of surface reconstruction a terrain tri-
angulation is called optimal if the reconstructed
surface �ts the digitized points tightly. Optimal
tightness is reached if the total absolute curva-

ture (TAC) [van Damme 1994] of the surface is
minimal. This property can be transformed into
an optimization task. Due to the fact that a de-
terministic solution of this optimization problem
may take a lot of time or may su�er from prema-
ture stagnation in local optima, robust and glob-
ally optimizing strategies have to be used. Evo-
lutionary algorithms (EA = Evolution Strat-
egy (ES) [ Genetic Algorithm (GA) [ Evolu-
tionary Programming (EP) [ Genetic Program-
ming (GP)) [B�ack 2000] are a class of algorithms
with very promising properties. In EA a popu-
lation of possible solutions of a problem is used.
Each individual represents a point in the search
space and undergoes a set of genetic operators,
e.g. recombination and mutation, that generate
new individuals in an appropriate way. A new

generation is found by selecting the �ttest indi-
viduals using an appropriate selection scheme
(e.g. truncation selection, �tness proportional
selection, tournament selection, etc.). An EA
is iterated until an appropriate termination cri-
terion holds.

In the case of triangulations, each individual
encodes an undirected, non-intersecting graph
that interpolates all sample points. Here, initial
individuals are generated using a Delaunay tri-
angulation [de Berg 1997]. Mutation transforms
regular triangulations into slightly varied trian-
gulations by ipping single edges. An edge that
is to be swapped is determined randomly. If the
ip yields to a regular triangulation, the swap is
realized in the graph. The number of ips per
generation is adjusted by a hyperbolically de-
creasing function [Weinert 1998]. The �tness of
each individual is determined by the calculation
of the TAC of each 3D graph structure.

On the one hand optimal surface recon-
structions using triangulations give a proper
means to compare generalizing point selection
schemes. On the other hand the data calcu-
lated during optimal triangulations can be used
to �nd relevant points. These points �t more
speci�c to the surface model than the points
selected by generalizing schemes. The simple
deterministic DTPSS algorithm (Deteministic
Triangulation-based Point Selection Scheme)
selects the relevant data depending on their lo-
cal TAC value. If the largest absolute curvature
of one point is larger than 2� � �, the area
around the point roughly approximates a plane.
This point is de�ned to be redundant and will
be excluded from the set of sampling points.
More sophisticated optimal triangulation based
on point selection schemes are matter of current
research.

Optimized NURBS Approximations

NURBS surfaces (Non-Uniform Rational B-
Spline surfaces) are widely used in CAD systems
[Piegl and Tiller 1997]. These models are very
exible, smooth and intuitive. NURBS are a
superset of B�ezier polynomials and non-rational
B-splines. They are eÆcient regarding space
and time complexity and numerically stable. In-
ternational CAD interface standards like IGES
or STEP support NURBS surface descriptions.
Many objects with free form characteristics were
originally designed using NURBS, thus, utiliz-
ing these models in reverse engineering can yield
very realistic reconstructions.

NURBS surfaces are parametric tensor prod-
ucts that map the vector (u; v)T 2 IR2 to



(x; y; z)T 2 IR3. NURBS surfaces of order (p; q)
are composed of the following components:

� the control point net with n�m vertices
P = fPi;j 2 IR3; i = 1; :::; n; j = 1; :::;mg,

� the knot vector U and V , where
U = (0; : : : ; 0| {z }

p+1

; up+1; : : : ; ur�p�1; 1; : : : ; 1| {z }
p+1

)T ,

V = (0; : : : ; 0| {z }
q+1

; vq+1; : : : ; vs�q�1; 1; : : : ; 1| {z }
q+1

)T ,

and r = n+ p+1 and s = m+ q+1. The
ui and vj have an ascending or descending
order, respectively.

� the weight vector
W = fwi;j 2 IR+; i = 1; :::; n; j = 1; :::;mg.

The parametric surface function is de�ned over
the domain (u; v) 2 [0; 1] � [0; 1] and expressed
by

S(u; v) =

P
n

i=0

P
m

j=0
Ni;p(u)Nj;q(v)wi;jPi;jP

n

i=0

P
m

j=0
Ni;p(u)Nj;q(v)wi;j

. (3)

Ni;p(u) : IR ! IR are the ith basis functions of
order p for the parameter u 2 IR computed on
a knot vector (u0; :::; um)

T . The basis functions
Ni;p(u) can be de�ned recursively by

Ni;0(u) =

�
1 if ui � u � ui+1
0 otherwise

(4)

Ni;p(u) =
(u�ui)Ni;p�1(u)

ui+p�ui
+

(ui+p+1�u)Ni+1;p�1(u)
ui+p+1�ui+1

and evaluated eÆciently by e.g. the Cox - de

Boor algorithm. The parameters of the control
net vertices, knot vectors and the weight vectors
can be joined to one vector ' = (P;T;W) of the
space IR with dimension  = 4nm + (n + p +
m+ q).

The Evolution Strategy (ES) [Schwefel 1994]
is a robust global optimization method for real
valued vector spaces and, thus, it perfectly suits
the problem of discrete NURBS surface approx-
imation. It can be shown [Weinert 2000] that an
ES can �nd good surface reconstructions for sin-
gular surface patches using the sum of squared
distances as a �tness criterion.

Analogous to the DTPSS, optimal NURBS
surface reconstructions may be used as a ref-
erence model for deterministic or evolutionary
point selection. The long computation times
that are needed to �nd optimal NURBS sur-
face reconstructions (several hours depending on
the complexity of the surface) are an obstacle

for practical applications. Mathematical esti-
mations of the point density for given approx-
imation errors are often restricted to B-Splines
[H�ammerlin 1989]. Due to the fact, that there is
still no deterministic strategy that �nds optimal
NURBS approximation schemes for arbitrary
surface structures, the evolutionary NURBS sur-
face approximation may be one way to create
point selection schemes that correspond with
sentences from function approximation theory.

Here, the optimized NURBS surfaces are
used to test the inuence of the generalizing se-
lection schemes on the shape and approximation
error of the reconstructions.

Experiments and Results

In the experiments the surface of an ar-
ti�cially designed piston top with diameter
79:9mm (Figure 1) has been digitized to get
a set of 11; 314 sample points. The surface
was measured by a tactile scanning digitiz-
ing machine (Renishaw Cyclone). The pis-
ton was selected to demonstrate the behavior
of the point selection schemes on point sets
from real objects with a complex surface.

Fig. 1: Photo of the top of a piston.

A LINUX Pentium III PC with 450MHz
computed all tasks from point selection to sur-
face reconstruction. All programs are written in
C++.

The TDS, ATDSO, and the ATDSZ re-
duced the original point set depending on the
tolerance � within a maximum time of 0:03 s
(TDS) and 0:04 s (ATDSZ and ATDSO). Fig-
ure 2 shows the number of reduced points
with respect to the given tolerances � 2
[0:0001; 0:001; 0:01; 0:05; 0:1; 0:2; 0:3]. The in-
creased reduction factor of the ATDSZ and
ATDSO compared to the TDS can be seen in
the picture. ATDSZ and ATDSO usually per-
form quite similar. On the average, the ATDSO
is a little more eÆcient than the ATDSZ.
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The surfaces generated using a Delaunay
triangulation on TDS points with � � 0:01
(4; 728) have a high quality. Triangulations with
� 2 [0:1; 0:2] (2; 446 and 1; 839 points) are only
smooth enough after optimization. Larger toler-
ances yield surfaces with a visible triangle struc-
ture, although, the overall shape of the original
object can still be estimated. The quality of the
triangulations using ATDSO and ATDSZ are
compatible with the reconstructions using TDS
reduced points with the same � � 0:01 (4; 116
and 4; 227 points, respectively). Triangulations
with larger tolerances soon become very poor.
In the example the relevant points found by the
TDS variants cover the surface quite uniformly
(see Figure 3). This simpli�es the triangulation
of the object, because the optimal triangulation
of spherical shapes can be found directly by the
Delaunay algorithm. In cylindric parts long tri-
angles can be generated by optimization.

With increasing tolerance the ULREG algo-
rithm selects { like the other selection schemes
{ an exponentially decreasing number of points
from the original point set. The maximum
calculation time was 0:04 s. A comparison of
the triangulations generated by the ULREG al-
gorithm and the TDS variants on point sets
with the same number of points shows that
the qualities of the reconstructions are simu-
lar. A  � 0:001 (4; 022 points) yields smooth
Delaunay triangulations without optimization.
The application of the EA is recommended for
 � 0:0001, because steep edges become a lot
smoother after optimization. Optimized trian-
gulations are suÆciently good with  � 0:005
(2; 630 points). Higher  values yield point dis-
tributions that should not be used for smooth
surface triangulations. These sets may still be
useful for edge detection (e.g.  2 [0:01; 0:05]),
because the curvature of the surface is reected
by contour lines containing the relevant points.
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Fig. 3: Reconstructions generated by

the TDS (left, 3; 122 points) and

the 2DTDS (right, 4; 829 points).

Figure 3 illustrates di�erent point distribu-
tions generated by the conventional TDS (3; 122
points) and the 2DTDS (4; 829 points). The
parameters were selected to get reconstructions
with similar quality. The reconstructions look
similar to the rendered triangulation in Figure
4. The complex pattern of the relevant points
selected by the 2DTDS is typical for that strat-
egy. This net structure is the result of the com-
bination of the intersection lines of the approxi-
mating planes and the surface. Both optimized
surface reconstructions are comparably smooth
with TAC values of 19:17 and 25:67, respec-
tively. Although, in this example the 2DTDS
needed 1; 707 points more to reach the quality
of the TDS, the dependency of the TDS on the
scanning strategy should be the reason to prefer
the more robust 2DTDS. Starting from a De-
launay triangulation optimization helps to re-
duce the number of relevant points by 10% to
20% and to increase the smoothness in the same
time. The TAC of the 2DTDS-points was in-
creased from 76:05 (Delaunay) to 25:69 (opti-
mized) and the TAC of the TDS-points from
58:71 (Delaunay) to 19:18 (optimized). In the
example the optimization process and the ap-
plication of the 2DTDS (0:05 s) together needed
about three minutes.

The MLREG strategy generates points that
are distributed on a non-uniformly spaced grid.
Smooth reconstructions can be found after op-
timization of triangulations with  � 0:03
(� 2; 555 points, see Figure 4). Higher tol-



erances quickly lead to triangulations that ap-
proximate the shape of the original object only
very roughly. A comparison of the 2DTDS
and the MLREG using triangulation with 4; 010
and 4; 180 points, respectively, shows a much
smoother surface generated by the MLREG.
This comes from the fact, that the quadtree al-
gorithm scans the surface with recursively quar-
tered square patches. Each relevant point is the
center of gravity of a square patch that has a
correlation coeÆcient that is high enough to ap-
proximate the surface by a square plane in IR3

with a certain tolerance. The recursive structure
of the MLREG algorithm implies a high space
and time complexity. The reduction of 11; 314
points to 4; 180 points needed 10:0 s. The slow
quadtree algorithm enables the MLREG strat-
egy to select points from unordered point sets
with small errors. This makes the MLREG algo-
rithm a quite robust 3D point selection scheme
for terrain triangulations.
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Fig. 4: Point set distribution and

optimized triangulation using

2; 555 points selected by the

MLREG strategy.

The DTPSS algorithm selects points depend-
ing on the TAC values of each point of the opti-
mized triangulation. With small tolerance val-
ues � the algorithm reduces redundant points
in areas with small curvature. The procedure of
point reduction and TAC calculation using opti-
mal triangulations is repeated each time a point
is deleted from the point sets. This helps to
provide the reduction of complete sets of point
in regions where the curvature values are simi-
lar and within the � tolerance (e.g. in the case
of spheres). In the example of the piston, the
points in the large bowl shaped area (upper left
part in Figure 5) are reduced �rst. With in-
creasing tolerance the points in the area in the
lower right part in Figure 5 are reduced. Due to
the fact, that optimized triangulations are used,
smooth reconstructions can be created over a
wide range of tolerances. The necessity to have
an initial triangulation is a problem for large
point sets, because the calculation of these trian-

gulations usually needs a lot of time and space.

Fig. 5: Optimized triangulation

using DTPSS (7; 095 points).

NURBS surface reconstructions are quite ro-
bust with respect to the digitized point distri-
butions. Usually only a few percent of the com-
plete point set is really needed to yield good
NURBS surface reconstructions. This increases
the speed of the expensive optimization process
a lot. Points selected by the 2DTDS or the ML-
REG are a basis for good approximations. The
demand for a high density of points in regions
with high curvature is supported by these algo-
rithms. This also matches to statements from
approximation theory for B-Splines [H�ammerlin
1989]. Furthermore, the ability of NURBS to
use equally spaced points is supported (locally)
by the MLREG strategy, too. The exact number
of necessary points depends on the accuracy, the
curvature of the surface and the NURBS model.
The lower the dimension of the vector ', which
is used in the ES, the fewer sampling points are
needed. In the experiments the surface of the
piston was approximated with a NURBS surface
with variable weights, 8 � 8 control points and
p = q = 3 using a (50 + 200)-ES [Weinert 2000].
Using 3; 000 points, the approximation error is
0:0179. This is equivalent to an error per point
of 0:12mm on average. Increasing the number
of sample points in areas with very large curva-
ture may also yield better results, because the
algorithm tries to satisfy the locally increased
(relative) approximation error.

Fig. 6: CAD-NURBS surface

reconstruction using IGES.



Conclusions and Outlook

Scan line based and multiple point selection
schemes have been compared. The chordal de-
viation strategies ATDSO and ATDSZ perform
better than the classic TDS algorithm. All three
strategies are very fast. The univariate regres-
sion strategy ULREG has a high measurement
error robustness. This excels the ULREG as
a good smoothing �lter. The multiple strate-
gies 2DTDS and MLREG are slower than the
scan line based algorithms but generate point
distributions that are based on higher dimen-
sional models. As generalizing schemes these
point selection strategies adapt better to the sur-
faces used in reverse engineering. Surface model
depending point selection strategies need pre-
calculated optimal surface reconstructions and,
thus, they are time and space consuming. Be-
cause they are excellently adapted to the surface
model, they can give ideas to �nd good heuris-
tics for fast generalizing selection schemes. In
order to compare the results of point selection
schemes optimized triangulations and NURBS
surfaces are used. They demonstrate that ad-
equate surface models allow eÆcient and prac-
tical reconstructions that also need less sample
points. A signi�cant threshold value that char-
acterizes the relevance of a point set depending
on a given tolerance exists (see Fig. 2) but is still
not formulated explicitely. This is a challenge of
current research activities.
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