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Abstract

While noise is a phenomenon present in many real-world optimization problems, the

understanding of its potential e�ects on the performance of evolutionary algorithms is

still incomplete. This paper investigates the e�ects of noise for the in�nite-dimensional

quadratic sphere and a (1+1)-ES with isotropic normal mutations. It is shown that over-

valuation as a result of failure to reevaluate parental �tness leads to both reduced success

probabilities and improved performance. Implications for mutation strength adaptation

rules are discussed and optimal resampling rates are computed.
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1 Introduction

Noise is present in many real-world optimization problems. It can stem from sources as

di�erent as measurement limitations, stochastic simulation procedures, and user input. It

is important to understand and predict the e�ects of noise so as to be able to come to

conclusions regarding good parameter settings of optimization algorithms and to compare

the performance of di�erent strategies.

A number of results regarding the in
uence of noise on the performance of evolutionary op-

timization algorithms have been published. In the realm of genetic algorithms, Fitzpatrick and

Grefenstette [8] present empirical results and derive recommendations regarding resampling

and population sizing. Miller and Goldberg [10] consider the �tness dynamics of the OneMax

function and introduce a population sizing model which includes �tness noise. Rattray and

Shapiro [13] investigate �nite sampling size e�ects. Angeline [1] has studied the e�ects of

noise on self-adaptive evolutionary programming. In the realm of evolution strategies, theo-

retical results regarding single-parent strategies have been published by Beyer [3, 6, 7] and by

Rechenberg [15]. Some empirical results involving multi-parent strategies have been reported,

among others, by Rechenberg [15] and by Nissen and Propach [11]. Arnold [2] and Beyer [7]

both o�er more extensive overviews of this research and pointers to related publications.

The focus of the present paper is on the local performance of (1 + 1)-evolution strategies

(ES) operating in real-valued search spaces. The central question is what e�ects can occur if

noisy �tness values can survive for more than a single generation. The references the most

closely related are [3] and [15]. In the former, Beyer presents an analysis of the e�ects of noise

on the local performance of (1+; �)-ES in spherically symmetric �tness environments. In the

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46902639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


latter, Rechenberg extends these results to a wider class of quadratic �tness functions. In both

cases, the investigated algorithms di�er from the one analyzed in what follows in that a noisy

�tness value cannot persist for more than a single generation. For comma-strategies, this

is a simple consequence of the fact that an individual cannot survive for more than a single

generation. For plus-strategies, the analysis of Beyer presupposes that the �tness of the parent

individual is reevaluated in every generation. However, as reevaluation of the parental �tness

increases the computational costs it is likely not to be part of many ES implementations.

While this di�erence may at �rst appear minor, its e�ects on the performance of ES are

considerable. The results presented in what follows show that failure to reevaluate the parental

�tness leads to systematic overvaluation and in turn to reduced success probabilities and long

periods of stagnation. However, comparing the local performance of the two strategies, it

will turn out that reevaluating the parent not only increases the computational costs per

generation, but also that the strategy which does not reevaluate the parent achieves a greater

expected �tness gain per generation and prevents the deterioration of the quality of the

solution for high noise strengths. On the downside, it has to be noted that failure to reevaluate

the parental �tness can render a commonly employed success probability based mutation

strength adaptation rule useless in the presence of noise.

This paper is organized as follows. Section 2 describes the (1+1)-ES with isotropic normal

mutations and outlines the �tness environment for which the algorithm's performance is to be

analyzed. Section 3 introduces the degree of overvaluation as a variable of critical in
uence

on the performance of the ES. In Section 4, success probability and expected �tness gain are

computed and the performance in case of optimally adjusted mutation strength is analyzed.

The bene�cial in
uence of resampling is addressed and the problem of mutation strength

adaptation is discussed. Section 5 concludes with a summary and suggestions for future

work.

2 Algorithm and Fitness Environment

Many of the problems considered in theoretical studies of ES are single-criterion optimization

problems in IRn, where typically n is large. In that case, without loss of generality it can be

assumed that the task at hand is minimization of a �tness function f : IRn ! IR. Note that

high values of f correspond to low �tness and vice versa. Section 2.1 introduces the (1+1)-ES

algorithm with isotropic normal mutations. Section 2.2 outlines the �tness environment for

which the performance of the algorithm is analyzed in the succeeding sections.

2.1 The Algorithm

Using a (1 + 1)-ES, a parent with parameter space location y 2 IR
n generates o�spring at

location y + z that replaces the parent in the next generation if and only if it is superior

in terms of �tness. Using isotropic normal mutations, mutation vector z is a random vector

consisting of n independent normally distributed components with mean 0 and variance �2.

That is, z has probability density

pz(z) =
1�p
2��

�n exp

�
�1

2

zTz

�
2

�
:

The standard deviation � of the components of the mutation vector is referred to as the

mutation strength.
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As the decision whether an o�spring survives is made solely on the basis of how its �tness

compares with that of its parent, the �tness advantage

qy(z) = f(y)� f(y+ z)

is an important quantity to consider. For �xed parent, the �tness advantage is a scalar random

variate with a probability density pqy that can in some simple cases be given explicitly. In

particular, in some �tness environments the distribution of qy tends to normality as n tends

to in�nity. Beyer [4] has presented an approximation for pqy for arbitrary quadratic �tness

functions which is based on Gram-Charlier expansions of probability distributions.

In Section 4, the expected �tness advantage after selection is used as measure for the local

performance of the algorithm. Frequently, local performance is measured in parameter space

rather than in �tness space. The corresponding performance measure is usually referred to as

the progress rate. Technically, in many of the investigated environments that has the advan-

tage that the tendency to normality of the o�spring distribution is stronger, yielding better

approximations for �nite n. However, for the �tness environment introduced in Section 2.2

and using appropriate normalizations, in the limit n ! 1 the corresponding performance

measures agree exactly.

In what follows it is assumed that there is noise involved in the process of the evaluation

of the �tness function. This form of noise has therefore been termed �tness noise. Loosely

speaking, �tness noise deceives the selection mechanism. An individual at parameter space

location x has an ideal �tness f(x) and a perceived �tness which may di�er from its ideal

�tness. As a consequence, it is possible that an o�spring that is superior in terms of ideal

�tness is discarded instead of being selected to replace the parent if its perceived �tness

compares unfavorably with that of the parent. Conversely, an o�spring that is inferior in

terms of ideal �tness may be selected to replace the parent due to a higher perceived �tness.

Fitness noise is commonly modeled by means of an additive, normally distributed random

term with mean zero. That is, in a noisy environment, evaluation of the �tness function at

parameter space location x yields perceived �tness f(x) + ��(x)N , where N is a standard

normally distributed random variable. Quite naturally, ��(x) is referred to as the noise

strength.

With selection based on perceived �tness rather than on ideal �tness, a parent with

a perceived �tness that is much higher than its ideal �tness is likely to persist for many

generations. Conversely, an o�spring with a perceived �tness that is lower than its ideal

�tness is likely not to be accepted at all even though its ideal �tness may compare favorably

with that of its parent. As a consequence, after several iterations of the mutation-selection

mechanism, the perceived �tness of the parent is likely to be higher than its ideal �tness.

The discrepancy between ideal �tness and perceived �tness of the parent is in what follows

referred to as the degree of overvaluation �. Likewise, the discrepancy between ideal �tness

and perceived �tness of an o�spring is denoted by �. Due to the assumption of a normally

distributed noise term with mean 0 and variance �2� (x), the probability distribution of the

degree of overvaluation of an o�spring at parameter space location x is normal with mean 0

and variance �2� (x). The degree of overvaluation of the parent cannot as easily be given as it is

a result of the repeated application of the mutation-selection mechanism. An approximation

of its probability distribution in the simple environment to be described in Section 2.2 will

be derived in Section 3.1.
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Figure 1: Decomposition of a mutation vector z into two vectors zA and zB . Vector zA is

parallel to ŷ� y, vector zB is in the plane perpendicular to that.

2.2 The Fitness Environment

Computing the expected �tness gain or the degree of overvaluation is a hopeless task for all

but the most simple �tness functions. In ES theory, a repertoire of �tness functions simple

enough to be amenable to mathematical analysis while still interesting enough to yield non-

trivial results has been established. The most commonplace of these �tness functions is the

quadratic sphere

f(y) =

nX
i=1

(ŷi � yi)2 (1)

which simply maps vectors y = (y1; : : : ; yn)
T in IRn to the square of their Euclidean distance

to the optimum at location ŷ = (ŷ1; : : : ; ŷn)
T. By formally letting the parameter space

dimension n tend to in�nity, assuming a particular dependence of the noise strength on

parameter space location, and introducing appropriate normalizations as de�ned below, a

number of simplifying conditions hold true. While admittedly being very simple, this �tness

environment allows for a partially analytical treatment of the behavior of the (1 + 1)-ES

and therefore contributes to its better understanding. In fact, systematic overvaluation is

a phenomenon resulting from the failure to reevaluate the parental �tness, and it can be

expected that qualitatively similar e�ects can be observed in other �tness environments as

well as for other strategies if noisy �tness values can survive for more than a single generation.

Following an idea put forward in both [3] and [15], a mutation vector z can be written as the

sum of two vectors zA and zB , where zA is parallel to ŷ�y and zB is in the plane perpendicular

to that. Figure 1 illustrates this decomposition. Due to the isotropy of mutations, it can

without loss of generality be assumed that zA = (z1; 0; : : : ; 0)
T and zB = (0; z2; : : : ; zn)

T,

where the zi are independent normally distributed random variables with mean 0 and variance

�
2.

Denoting the distance of parent and o�spring to the location of the optimum by R and r,

respectively, and using elementary geometry, from Figure 1 it can be seen that

r
2 = (R� z1)

2 + kzBk2

= R
2 � 2Rz1 + z

2
1 + kzBk2:
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The distribution of z1 is normal with mean 0 and variance �2. As kzBk2=�2 is the sum of

squares of n � 1 independent standard normally distributed random variables, it is �2
n�1-

distributed and thus has mean n � 1 and variance 2(n � 1). For n ! 1, kzBk2 therefore

converges to n�2. Furthermore, z21 can be neglected compared to kzBk2. Consequently, the
�tness advantage of the o�spring in the limit n!1 is

qR = R
2 � r

2

= �n�2 + 2Rz1:

Note that the index y indicating the parameter space location of the parent has been replaced

by the parental distance to the optimum R as the exact location is irrelevant due to the

spherical symmetry of the �tness function and the isotropy of mutations.

Obviously, qR is normally distributed with mean �n�2 and variance 4�2R2. Introducing

normalized mutation strength

�
� = �

n

R

; (2)

the normalized �tness advantage of an o�spring

q
� = qR

n

2R2

is a normally distributed random variable with mean Eq� = ���2=2 and variance D2
q�

= �
�2

and therefore with probability density

pq�(x) =
1p

2�Dq�

exp

 
�1

2

�
x�Eq�

Dq�

�2
!
: (3)

Note that as the distribution of q� is independent of the parental distance to the optimum, it

has been possible to drop the index R. Assuming the existence of a mechanism that ensures

that the normalized mutation strength �
� is constant, the distribution of q� is therefore

constant throughout the optimization process. The problem of mutation strength adaptation

is discussed in Section 4.4.3.

To preserve the homogeneity in the presence of noise, it is assumed that the noise strength

scales with �tness such that the normalized noise strength

�
�
� = ��

n

2R2

is constant throughout the parameter space. For �nite normalized mutation strength and

n!1, (R2� r2)=2R2 equals q�=n and therefore tends to zero. Therefore, it can be assumed

that the noise strength �� at the location of an o�spring is the same as that at the location of

its parent. This fact signi�cantly simpli�es the theoretical analysis of the progress behavior.

Letting S2 and s2 denote the perceived �tness of parent and o�spring, respectively, the

o�spring is accepted if and only if s2 < S
2. For the present environment, the degrees of

overvaluation of parent and o�spring are � = R
2�S2 and � = r

2�s2, respectively. Introducing
normalizations

�� = �
n

2R2
and �

� = �

n

2R2
;
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it follows that the degree of normalized overvaluation of the o�spring is normally distributed

with mean 0 and variance ���
2 and thus with probability density

p��(x) =
1p
2����

exp

 
�1

2

�
x

�
�
�

�2
!
: (4)

Note that like the probability density of q�, that of �� is independent of the location in

parameter space.

3 Overvaluation

Due to the homogeneity of the environment, the probability distributions of the normalized

�tness advantage and of the degree of normalized overvaluation of an o�spring are constant

throughout the optimization process. The distribution of the degree of normalized overval-

uation of the parent converges to a stable limit distribution. It is the goal of Section 3.1

to �nd an approximation for this distribution. In Section 3.2, several issues related to that

distribution are discussed.

3.1 Obtaining the Distribution

An approximation to the limit distribution of the degree of normalized overvaluation �� can

be obtained by an approach that has previously been employed by Beyer [5] to approximate

the population distribution for a (�; �)-ES. The approach consists in expressing the unknown

distribution in terms of its Gram-Charlier expansion with initially unknown cumulants. Then,

the resulting cumulants of the distribution after application of the mutation and selection

operators are computed. Finally, self-consistency conditions are imposed by demanding that

the cumulants that de�ne the shape of the distribution do not change from one generation

to the next. In principle, any degree of accuracy can be achieved by considering suÆciently

many terms in the expansion. In practice, for the problem of determining the distribution of

the degree of normalized overvaluation, neglecting all but the �rst two cumulants will turn

out to yield good results already. E�ectively, this amounts to using a normal approximation

for the limit distribution of ��.

Under the normal approximation, at time t, where t is suÆciently large for the distribution

to have converged, the degree of overvaluation �� has probability density

p��(x) =
1p

2�D��
exp

 
�1

2

�
x�E��

D��

�2!
; (5)

where mean E�� and standard deviation D�� of the distribution remain to be determined.

Let P
(acc)

��j��(yjx) denote the chance of an o�spring with degree of normalized overvaluation

�
� = y being accepted given a parent with degree of normalized overvaluation �� = x. Using

the fact that q� is normally distributed with mean Eq� and variance D2
q�
, this probability can

6



be computed as

P

(acc)

��j��(yjx) = Prob[s2 < S
2]

= Prob[r2 � � < R
2 � �]

= Prob[x� y < q
�]

= �

�
y � x+Eq�

Dq�

�
; (6)

where � stands for the probability distribution function of the standard normal distribution.

At time t+1, the degree of normalized overvaluation ��+ equals �� if the o�spring has been

rejected, and it equals �� if the o�spring has been accepted. Thus, the degree of normalized

overvaluation at time t + 1 is in the interval [x; x + dx] if either the degree of normalized

overvaluation of the o�spring is in that interval and the o�spring is accepted, or if the degree

of normalized overvaluation of the parent is in that interval and the o�spring is rejected.

Therefore, the probability density of ��+ can be given by the Chapman-Kolmogorov equation

of the system as

p��+
(x) =

Z 1

�1
p��(y)p��(x)P

(acc)

��j��(xjy)dy +
Z 1

�1
p��(x)p��(y)

h
1� P

(acc)

��j��(yjx)
i
dy: (7)

Probability densities p�� and p�� are given by Equations (5) and (4), respectively. Finally,

self-consistency demands that

E
�
��+
�
=

Z 1

�1
xp��

+
(x)dx = E�� (8)

and

D2
�
��+
�
=

Z 1

�1
x
2
p��+

(x)dx�
�
E
�
��+
��2

= D
2
�� : (9)

Equations (8) and (9) form a system of two non-linear equations that need to be solved for

the two unknowns E�� and D
2
�� .

Computation of the probability density p��
+
and of the mean and variance of ��+ is cum-

bersome but straightforward. Detailed derivations of the results can be found in Appen-

dices C.2, C.3, and C.4. Letting �(k) denote the kth derivative with respect to E�� of

�

�
E�� ;D

2
��

�
= �

0
@ E�� �Eq�q

D
2
q�
+ �

�
�
2 +D

2
��

1
A
; (10)

then, introducing symbols g1 and g2 for future reference, mean and variance of ��+ are ac-

cording to Equations (40) and (41)

E
�
��+
�
= E���

(0)
�
E�� ;D

2
��

�
+
�
�
�
�

2 +D
2
��

�
�
(1)
�
E�� ;D

2
��

�
(11)

= g1

�
E�� ;D

2
��

�
and

D2
�
��+
�
=
�
�
�
�

2 �D
2
��

��
1� @g1

@E��

�
+ g1

�
E�� ;D

2
��

� �
E�� � g1

�
E�� ;D

2
��

��
+D

2
�� ; (12)

= g2

�
E�� ; D

2
��

�
;
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Figure 2: Mean E1 of the degree of normalized overvaluation as a function of normalized

mutation strength �
�
for the in�nite-dimensional quadratic sphere. The solid curves display,

from top to bottom, the results of numerical root �nding of Equation (15) for normalized

noise strengths �
�
� = 2:0, 1:6, 1:2, 0:8, 0:4, and 0:0. The crosses represent data measured in

experiments described in Appendix A. The dashed lines indicate the limit values for high

normalized mutation strength derived in Section 3.2.1.
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Figure 3: Variance D2
1 of the degree of normalized overvaluation as a function of normalized

mutation strength �
�
for the in�nite-dimensional quadratic sphere. The curves display, from

top to bottom, the results from Equation (14) for normalized noise strengths �
�
� = 2:0, 1:6,

1:2, 0:8, 0:4, and 0:0. The crosses represent data measured in experiments described in

Appendix A.
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respectively. Partial derivatives of � are computed in Appendix C.1.

Equations (11) and (12) form a two-dimensional iterated map describing the change from

one generation to the next of the macroscopic parameters E�� and D
2
�� determining the

distribution of the degree of normalized overvaluation. After suÆciently many generations,

convergence to a �xed point (E1;D
2
1) can be observed. To �nd the �xed point, inserting

Equation (12) into Equation (9) while making use of Equation (8) yields condition

�
�
�
�

2 �D
2
1

� 
1� @g1

@E��

����
(E1;D2

1
)

!
= 0 (13)

Clearly, Equation (13) is satis�ed for

D
2
1 = �

�
�

2
: (14)

Figure 3 shows a good agreement between Equation (14) and computer experiments described

in Appendix A. Inserting Equation (11) into Equation (8) and using Equation (14), the other

condition reads

�
(1)
�
E1; �

�
�

2
�
=

E1

2���
2

h
1� �(0)

�
E1; �

�
�

2
�i
: (15)

The result of numerical root �nding for E1 is displayed in Figure 2. Again, a good agreement

between theory and experiments can be observed.

3.2 Limit Behavior, Stability, and Convergence Rates

This section discusses several issues related to the limit distribution of the degree of normalized

overvaluation found in the previous section. In particular, Section 3.2.1 analyzes the behavior

of the mean degree of normalized overvaluation in the limit of very large normalized mutation

strength. In Section 3.2.2, the stability of the limit distribution is investigated. Finally, in

Section 3.2.3 the rate of convergence with which the limit distribution is approached is studied.

3.2.1 Limit behavior

For the in�nite-dimensional quadratic sphere and �nite normalized noise strength �
�
� , the

expected degree of normalized overvaluation E1 approaches a �nite constant value as the

normalized mutation strength �
� approaches in�nity. The limit value can be computed by

applying de l'Hôspital's rule and using the identities listed in Appendix C.1 in combination

with lim��!1 @E1=@�
� = 0 to obtain

lim
��!1

�
(1)
�
E1;D

2
1
�

1� �
(0) (E1;D2

1)

= lim
��!1

�
�
(2)
�
E1;D

2
1
�
+ �

(3)
�
E1;D

2
1
�

�
(1) (E1;D2

1) + �
(2) (E1;D2

1)

= lim
��!1

�
�2
=2� �

�2
=4

�
�2 � �

�2
=2

=
1

2
:
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Figure 4: Eigenvalues �1 and �2 of the Jacobian in Equation (17) as functions of the normalized

mutation strength �
�
for the in�nite-dimensional quadratic sphere. The curves display, from

top to bottom, the results for noise strengths �
�
� = 2:0, 1:6, 1:2, 0:8, 0:4, and 0:0.

Thus, from Equation (15) it follows

lim
��!1

E1 = �
�
�

2
: (16)

These limit values are shown as dashed lines in Figure 2.

3.2.2 Stability

Section 3.1 has shown the existence of a �xed point (E1; D
2
1) of the iterated map (g1; g2)

given by Equations (11) and (12). The stability of this �xed point can be shown by linearizing

the system at the location of the �xed point and showing that the resulting map is volume-

contracting. For that purpose, the eigenvalues �1 and �2 of the Jacobian matrix

M =

0
BB@

@g1

@E��

@g1

@D
2
��

@g2

@E��

@g2

@D
2
��

1
CCA
��������
(E1;D2

1
)

(17)

have to be shown to be less than 1:0 in absolute value. For an introduction to stability theory

of iterated maps see [9]. Computation of the eigenvalues is carried out in Appendix C.5. The

results are displayed in Figure 4.

It can be observed that the eigenvalues of the system are indeed less than 1:0 in absolute

value for any normalized mutation strength ��, 0 < �
�
< 1. Furthermore, they are always

real, showing that the approach of the �xed point does not involve oscillatory behavior. Both

eigenvalues tend to 1:0 for both �� ! 0 and �� !1. Thus, for very small and for very large

normalized mutation strengths the �xed point is almost neutral. A reason for that behavior

will become obvious in the discussion of success probabilities in Section 4.1.

3.2.3 Convergence rates

While the behavior of the degree of normalized overvaluation after long time spans has been

investigated in the previous sections, nothing has been said regarding the amount of time

required to arrive at behavior which is statistically indistinguishable from that limit behavior.

Numerical experiments indicate that that time can be very long especially for small normalized
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mutation strengths. For �� = 0 and ��� 6= 0, at time t, E�� is the maximum of t independent,

normally distributed random variables with mean 0 and variance ���
2. Thus, the time behavior

of E�� is governed by order statistics. Using a bound derived by Beyer [6], p.76, the asymptotic

behavior of the mean degree of normalized overvaluation is

E��(t) = O
�p

log t
�
:

Thus, for �� = 0, the growth of the mean degree of normalized overvaluation is sublogarith-

mic. A very slow approach of the limit distribution can also be observed for small, non-zero

normalized mutation strength.

However, it is also true that the initial approach of the �xed point is rather fast in the

range of mutation strengths which will in Section 4 be seen to be the range of interest. At

time step 0, the degree of normalized overvaluation is normally distributed with mean 0 and

variance ���
2. Unless the mutation strength is chosen very high, a considerable portion of

the expected �nal overvaluation builds up within the �rst few generations already. Thus, it

can be expected that the e�ects of overvaluation become observable rather early during the

evolution. This is especially true if the initial normalized mutation strength is chosen to be

rather small and if it increases over time.

4 Performance

This section discusses the performance of the (1+1)-ES. In Section 4.1 the success probability

is introduced, o�ering an explanation for the observations regarding the stability of the �xed

point made in the previous section. In Section 4.2 the normalized �tness gain is computed,

and in Section 4.3 optimal parameter settings are obtained. Section 4.4 discusses the value

of overvaluation, the bene�ts of resampling, and problem of adapting the mutation strength.

4.1 Success Probabilities

The success probability Psucc is the probability with which a parent is replaced by an o�spring.

It can be computed from the conditional probability P
(acc)

��j�� de�ned in Section 3.1 as

Psucc =

Z 1

�1
p��(x)

Z 1

�1
p��(y)P

(acc)

��j��(yjx)dydx: (18)

Evaluation of the integrals is once again straightforward and is carried out in Appendix C.6.

According to Equation (43), the success probability reads

Psucc = 1� �(0)
�
E�� ;D

2
��

�
: (19)

It is depicted in Figure 5 for the in�nite-dimensional quadratic sphere in the limit case

(E1; D
2
1). Again, a good agreement between theory and experiments can be observed.

The reciprocal quantity 1=Psucc of the success probability is the average number of time

steps that a parent survives. As for non-zero noise strength the success probability approaches

zero both for small and for large normalized mutation strengths, long periods of stagnation

can be observed for such parameter settings. This explains the approximate neutrality of the

�xed point observed in Section 3.2.2.

11



0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8
��

Psucc

Figure 5: Success probability Psucc as a function of normalized mutation strength �
�
for

the in�nite-dimensional quadratic sphere. The solid curves display, from top to bottom, the

results from Equation (19) for noise strengths ��� = 0:0, 0:4, 0:8, 1:2, 1:6, and 2:0. The crosses

represent data measured in experiments described in Appendix A. The dashed curves display

the corresponding results from [3] for a strategy which reevaluates the �tness of the parent at

every time step. Note that for the latter strategy the noise strength increases from bottom

to top.

Comparing the dependence of the success probability on the normalized mutation strength,

qualitative di�erences between the (1 + 1)-ES with and without reevaluation of the parental

�tness can be observed. Results arrived at by Beyer [3] for a (1 + 1)-ES with reevaluation

are included in Figure 5 for reference. Alternatively, the same results can be arrived at from

Equation (19) with E�� = 0 as reevaluating the parental �tness yields a degree of normalized

overvaluation which is normal with mean 0 and variance ���
2 due to the nature of �tness noise.

In general, with reevaluation, increasing the noise strength increases the success prob-

ability; without reevaluation, it decreases it. The di�erence between the two strategies is

particularly pronounced for small normalized mutation strength. While with reevaluation

the chance of accepting an o�spring is close to 0:5, that chance is close to 0:0 | except in

the absence of noise | if the parental �tness is not reevaluated. With reevaluation of the

parental �tness, for ��� !1 and �nite ��, the strategy performs a random walk in parameter

space. Without reevaluation, the evolution simply stagnates.

4.2 Fitness Gain

As a progress measure, let the normalized �tness gain q
�
+ of a generation equal zero if the

o�spring is rejected, and let it equal the normalized �tness advantage of the o�spring if it is

accepted. The expected normalized �tness gain is then

E [q�+] =
Z 1

�1
p��(x)

Z 1

�1
ypq�(y)P

(acc)

q�j��(yjx)dydx; (20)

where, using the fact that �� is normally distributed with mean 0 and variance ���
2, the

probability of accepting an o�spring with a normalized �tness advantage q� = y given a

12
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Figure 6: Expected normalized �tness gain E [q�+] as a function of normalized mutation

strength �
�
for the in�nite-dimensional quadratic sphere. The solid curves display, from

top to bottom, the results for normalized noise strengths �
�
� = 0:0, 0:4, 0:8, 1:2, 1:6, and 2:0.

The crosses represent data measured in experiments described in Appendix A. The dashed

lines represent the corresponding results from [3] for a strategy reevaluating the parental

�tness at every time step.

parent with degree of normalized overvaluation �� = x is

P

(acc)

q�j��(yjx) = Prob(s2 < S
2)

= Prob(r2 � � < R
2 � �)

= Prob(x� y < �
�)

= �

�
y � x

�
�
�

�
: (21)

Solving the integrals in Equation (20) is straightforward. The computations are carried out

in Appendix C.7. According to Equation (44), the result reads

E [q�+] = Eq�

h
1� �(0)

�
E�� ;D

2
��

�i
+D

2
q��

(1)
�
E�� ;D

2
��

�
: (22)

It is depicted in Figure 6 for the in�nite-dimensional quadratic sphere in the limit case

(E1; D
2
1). Again, a good agreement between theory and experiments can be observed.

Comparing the dependence of the expected normalized �tness gain on the normalized mu-

tation strength, qualitative di�erences between the (1 +1)-ES with and without reevaluation

of the parental �tness can be observed. Results arrived at by Beyer [3] for a (1 + 1)-ES with

reevaluation are included in Figure 6 for reference. The same results can be obtained from

Equation (22) with E�� = 0 as explained in Section 4.1.

With reevaluation of the parental �tness, the expected normalized �tness gain is negative

for a wide range of mutation strengths if the normalized noise strength exceeds a value of

about 1:0. For ��� greater than about 1:4, the expected normalized �tness gain is negative

except for very high normalized mutation strengths. Without reevaluation on the other hand,

the expected normalized �tness gain is non-negative for any normalized mutation strength.

13
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Figure 7: Success probability Psucc and expected normalized �tness gain E [q�+] in the case of

optimally chosen normalized mutation strength as functions of normalized noise strength �
�
�

for the in�nite-dimensional quadratic sphere. The solid and the dashed curves display the

results for the strategies without and with reevaluation of the parental �tness, respectively.

4.3 Optimal Parameter Settings

The performance of the (1 + 1)-ES for optimally chosen normalized mutation strength, i.e.

for the normalized mutation strength that maximizes the expected normalized �tness gain,

is of particular interest. It can be obtained by computing the derivative of the expected

normalized �tness gain with respect to �� and �nding a root thereof.

Figure 7 displays the success probability and the �tness gain for optimally chosen normal-

ized mutation strength for both the strategies with and without reevaluation of the parental

�tness. The right graph shows that the strategy without reevaluation is never inferior, but is

clearly superior to that with reevaluation for high noise strengths. In that case, the strategy

with reevaluation requires very high mutation strengths to e�ectively reduce the success prob-

ability to zero so as to avoid negative expected normalized �tness gain. The strategy without

reevaluation on the other hand is still capable of producing measurable positive normalized

�tness gain. Considering eÆciency, i.e. expected �tness gain per evaluation of the �tness

function, the strategy without reevaluation fares even better as it requires only one �tness

evaluation per time step, as compared to the two required for the strategy with reevaluation.

4.4 Discussion

This section discusses the bene�ts of a positive degree of normalized overvaluation, the use

of resampling to improve eÆciency, and the problem of adapting the mutation strength.

4.4.1 Overvaluation revisited

The previous section has shown that a (1 + 1)-ES which does not reevaluate the parental

�tness locally outperforms one which does on the noisy in�nite-dimensional quadratic sphere.

Failure to reevaluate the parental �tness has been seen to lead to systematic overvaluation.

For zero mutation strength, it has been shown that the degree of normalized overvaluation

grows sublogarithmically with time. For non-zero mutation strength, from time to time a

gain in ideal �tness acts to reduce the degree of normalized overvaluation, which in turn

approaches a stable limit distribution.

The reason for the improved performance of the strategy without reevaluation are the re-

duced success probabilities that are a consequence of systematic overvaluation of the parental
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�tness. A small gain in perceived �tness is often due to noise rather than to a gain in ideal

�tness. Positive overvaluation raises the bar for an o�spring to be accepted, preventing the

strategy from making steps purely due to noise that are likely to lead it away from the location

of the optimum.

However, positive overvaluation also leads to the rejection of o�spring which are superior in

terms of ideal �tness and which would be accepted if no overvaluation were present. Clearly,

both zero overvaluation and in�nite overvaluation are less than optimal. It is interesting

to ask what degree of normalized overvaluation would be optimal if it could be selected

deliberately instead of being a result of the interplay between mutation and selection. As,

using Equation (22),

@E
�
q
�
+

�
@E��

= �
�2
�
1

2
�
(1) + �

(2)

�
;

optimal E�� necessarily requires �(1)=2 + �
(2) = 0 and therefore, using the identities listed

in Appendix C.1, E�� = �
�
�

2. This value agrees exactly with the degree of normalized over-

valuation that is obtained for �� !1. For �nite normalized mutation strength however, as

can be seen from Figure 2, the expected degree of normalized overvaluation that results from

the interplay between mutation and selection is higher than optimal. Therefore, occasional

reevaluation of the parental �tness may be preferable to both no reevaluation at all and to

reevaluation in every generation. How frequently the parental �tness should be reevaluated

depends on the accuracy with which the mutation strength can be adapted.

4.4.2 Resampling

Naturally, resampling can be employed as a way of reducing the noise strength. Averaging

over k independent evaluations of the �tness function at any one parameter space location

e�ectively reduces the noise strength to ��=

p
k, albeit at the cost of a k-fold increase in

computational costs even if the overhead resulting from averaging is ignored. Let the expected

�tness gain per �tness function evaluation in case of optimally adjusted mutation strength

and k-times sampling be denoted as �k. That is, de�ne

�k(�
�
� ) =

1

k

max
��2IR+

�
E [q�+]

��
��
�
=
p
k

�
:

Then for any given normalized noise strength ��� there is a k = kopt which maximizes �k(�
�
� ).

Table 1 lists the values of kopt for a range of normalized noise strengths for a strategy which

does not reevaluate parental �tness.

kopt 1 2 3 4 5 6 7 8 9 10

�
�
� 1:44 1:90 2:26 2:57 2:85 3:10 3:33 3:55 3:75 3:94

Table 1: Optimal number kopt of �tness evaluations per o�spring. The values in the lower row

indicate the normalized noise strength up to which the number of �tness function evaluations

in the upper row is preferable to the next higher number.
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4.4.3 Mutation strength adaptation

As pointed out in Section 2, the analysis of the preceding sections relies on the constancy of

the normalized mutation strength ��. Due to the nature of the normalization in Equation (2)

and the fact that the distance R to the location of the optimum changes, a mechanism for

the adaptation of the mutation strength � is required.

In (1 + 1)-ES, mutation strength adaptation mechanisms are commonly based on the

measuring of success probabilities. The mutation strength adaptation mechanism proposed

in the seminal book by Rechenberg [14] relies on the observation that for the �tness functions

investigated, the success probabilities in case of optimally adjusted mutation strength are

in a range of values centered at about one �fth, and that generally increasing the mutation

strength reduces the success probability and vice versa. Thus, Rechenberg's recommendation

is to monitor success probabilities by averaging over a number of generations, and to increase

the mutation strength if the observed estimate of the success probability exceeds 0:2 and to

decrease the mutation strength if the success probability is below 0:2. Schwefel [16], p.112,

suggests the following implementation of that rule:

After every n mutations, check how many successes have occurred over the pre-

ceding 10n mutations. If this number is less than 2n, multiply the step lengths

by the factor 0:85; divide them by 0:85 if more than 2n successes occurred.

It has to be noted that originally, this rule has been suggested only for the noise-free

case. However, as shown by Beyer [3] and also as plausible from the left graph in Figure 7

in combination with Figure 5, the rule is useful for the noisy, in�nite-dimensional quadratic

sphere as well if the normalized noise strength does not exceed a value of about 1:2 and if

the parental �tness is reevaluated in every generation. However, the �gures also suggest that

it is not suitable for strategies that do not reevaluate parental �tness except for relatively

moderate normalized noise strengths. For normalized noise strengths exceeding about 0:47, a

success probability of 0:2 is not achieved for any mutation strength. Even worse, it is not true

that decreasing the mutation strength always increases the success probability and vice versa.

As a result, after a number of mutation strength adaptations, the mutation strength will be

so small that the normalized mutation strength is in the regime to the left of the maximum

in Figure 5. Further reductions of the mutation strength act to further reduce the success

probability and therefore lead in turn to a further reduction of the mutation strength. After

a while, the decay of the normalized mutation strength becomes essentially exponential.

Figure 8 illustrates that this e�ect is not merely academic but that it is observable also in

�nite-dimensional search spaces and on relatively short time scales. It shows results from two

typical runs of a (1+1)-ES using a mutation strength adaptation mechanism that di�ers from

that suggested by Schwefel only in that an estimate of the success probability is obtained by

averaging over n generations rather than over 10n. The change has been made so as to be able

to adapt the mutation strength earlier during the evolution and is rather insigni�cant for the

performance of the algorithm. The objective function is a quadratic sphere with parameter

space dimension n = 40. The strategy does not reevaluate the parental �tness. Experiments

have been conducted with normalized noise strengths ��� = 0:4 and ��� = 0:8. For ��� = 0:4,

the mutation strength adaptation rule works reasonably well and maintains a normalized

mutation strength which ensures continued progress. For ��� = 0:8 however, the normalized

mutation strength tends to zero after a number of mutation strength adaptations. After time

step 500, in only two time steps a positive gain of ideal �tness is achieved. The right hand
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Figure 8: Results of two typical runs of a (1+1)-ES with mutation strength adaptation based

on success probabilities. Normalized noise strengths are �
�
� = 0:4 and �

�
� = 0:8, respectively.

The left graph shows the development of the normalized mutation strength �
�
over time t, the

right graph that of the degree of normalized overvaluation ��. In the left graph, the upper

curve corresponds to the lower normalized noise strength, in the right graph the lower one.

graph in Figure 8 shows that overvaluation which has been identi�ed as the underlying reason

for the stagnation is indeed present as expected. While the limit state is not reached within

2000 generations, overvaluation already has a signi�cant impact on the performance of the

strategy.

To summarize, great care has to be taken if a success probability based mutation strength

adaptation rule is used in a noisy environment if noisy �tness values can survive for more

than a single generation. The presence of systematic overvaluation can lead to the violation

of the assumptions on which rules such as the one quoted above rest. Of course averaging

over a number of samples can always be used so as to reduce the noise strength enough to

make success probability based rules work, but neither is it easy to determine whether a

particular resampling rate is suÆcient, nor make the computational costs involved this choice

very appealing. While overvaluation has been shown to have the potential to have bene�cial

e�ects for the local performance of the (1 + 1)-ES, reevaluation of the parental �tness may

be necessary to make success probability based mutation strength adaptation viable.

5 Conclusion

In this paper, the performance of a (1 + 1)-ES with isotropic normal mutations and without

reevaluation of the parental �tness has been investigated for the in�nite-dimensional quadratic

sphere and additive Gaussian noise. The algorithm has been shown to exhibit a behavior

qualitatively di�erent from that of previously analyzed strategies which rely on reevaluation of

the parental �tness in every generation. Overvaluation has been identi�ed as the source of the

observed di�erences, and it has been shown that while overvaluation can lead to long periods of

stagnation, it can also be bene�cial for the performance of the (1 +1)-ES in the environment

that has been studied. In particular, it can prevent the ES from a deterioration of the

quality of the solution due to noise. However, it has also been pointed out that overvaluation

can render commonly used success probability based mutation strength adaptation schemes

useless.

Possible future work includes exploring possibilities of devising mutation strength adap-

tation algorithms which work in the presence of overvaluation. An investigation of the degree
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of overvaluation and its in
uence on the performance of a (1 + 1)-ES for �nite-dimensional

quadratic spheres and for other �tness functions, such as the ridge which has in the absence

of noise been studied by Oyman et al. [12], are of interest. The latter �tness function does

not require the dynamic adaptation of the mutation strength. Finally, modi�cations to the

algorithm which lead to an average degree of normalized overvaluation which is closer to its

optimal value are worth being investigated.
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Appendix

Part A of this appendix describes the computer experiments that have been used to verify the

results obtained in Sections 3 and 4. Part B introduces some mathematical basics and results

useful for the understanding of the method employed for approximating the distribution of the

degree of normalized overvaluation in Section 3. Also introduced are some identities useful for

the solution of the integrals that have been omitted in the text and are contained in Part C

of this appendix.

A Running Computer Experiments

The computer experiments the results of which have been used in Sections 3 and 4 to verify

the obtained results consist of 109 one-generation experiments for each combination of �xed

�
� and ��� values examined. For that purpose, the degree of normalized overvaluation �� is

initialized by generating a random sample from a normal distribution with mean E�� and

varianceD2
�� , where E�� andD

2
�� are determined from Equations (15) and (14). Then, in each

of the 109 generations, normalized �tness advantage q� and degree of normalized overvaluation

of an o�spring �� are generated by randomly sampling from normal distributions with mean

Eq� and variance D
2
q� and mean 0 and variance ���

2, respectively. If �� < q
�+��, the o�spring

is accepted and �� is replaced by ��. Otherwise, �� remains unchanged. Mean and variance of

the degree of normalized overvaluation, the success probability, and the expected normalized

�tness gain are obtained by averaging over all but the �rst 40,000 generations.

As noted in Section 4.1, for ��� 6= 0 success probabilities can be very small for large and

in particular for small normalized mutation strengths. As a consequence, for such parameter

settings stagnation times can be very long compared with the number of one-generation

experiments performed, and averaging does not yield good estimates for the mean and variance

of the degree of normalized overvaluation. Such unsatisfactory results have been omitted from

Figures 2 and 3.

B Some Mathematical Basics

Sections B.1 and B.2 introduce some basics from probability theory and Hermite polynomials

as a preparation for the treatment of Gram-Charlier expansions in Section B.3. A more

extensive account of the matter can be found in [17]. Section B.4 lists and proves some

integral identities that are useful in Part C of this appendix.

B.1 Cumulants of Probability Distributions

Like moments, cumulants are descriptive constants that can be useful for measuring the

properties of and, in certain circumstances, for specifying probability distributions. The

cumulant generating function  of a probability distribution with density p(x) is de�ned as

 (t) = log

�Z 1

�1
p(x)eitxdx

�
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and equals thus the logarithm of the characteristic function. If  (t) can be expanded into a

power series in t as

 (t) =

1X
k=1

dk 

dtk

����
t=0

(it)k

k!
;

then the kth cumulant �k of the distribution is equal to the coeÆcient of tk=k! in the expansion.

That is,

�k =
1

i
k

dk 

dtk

����
t=0

It can be shown that the �rst cumulant of a probability distribution is equal to its mean,

and that the second cumulant is equal to its variance. The third and fourth cumulants are

measures for the skewness and kurtosis of the distribution, respectively. The cumulants of

a distribution can also be computed from its moments as detailed in [17]. The cumulant

generating function of the standard normal distribution is

 (t) = it� 1

2
t
2
:

All cumulants �k with k � 3 equal zero.

Cumulants possess transformation properties that make them an attractive choice for

many purposes. All cumulants but the �rst are invariant under a change of origin. If the

variate values are multiplied by a constant c, the kth cumulant �k is multiplied by ck. The

kth cumulant of a sum of independent random variables is the sum of the kth cumulants of

its components.

B.2 Hermite Polynomials

Hermite polynomials occur naturally in connection with successive derivatives of the proba-

bility density function of the standard normal distribution and are de�ned by the identity

�
� d

dx

�k
1p
2�

e�
1

2
x2 = Hek(x)

1p
2�

e�
1

2
x2

:

Explicit calculation shows that the �rst �ve Hermite polynomials are

He0(x) = 1

He1(x) = x

He2(x) = x
2 � 1

He3(x) = x
3 � 3x

He4(x) = x
4 � 6x2 + 3:

Generally, the kth Hermite polynomial Hek(x) is of degree k in x and the coeÆcient of xk is

unity. Furthermore, it can be shown that for k � 1 the identities

d

dx
Hek(x) = kHek�1(x) (23)
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and

Hek+1(x) = xHek(x)� kHek�1(x) (24)

hold. Moreover, the orthogonality property

1p
2�

Z 1

�1
Hek(x)Hel(x)e

� 1

2
x
2

dx = Æklk!; (25)

where Ækl denotes the Kronecker delta, is valid for any k; l � 0.

B.3 Gram-Charlier Expansions

Gram-Charlier expansions seek to represent a given density function as a series in the deriva-

tives of the normal density function. The approach relies on the expectation that if two

distributions have a certain number of cumulants in common, they will bear some resem-

blance to each other. If cumulants up to order k are identical it is often the case that as k

tends to in�nity the distributions approach each other. Thus, the hope is that by equating

the lower moments of two distributions they can be brought to approximate equality.

For the sake of notational simplicity, it is assumed that the random variable the density

of which is to be approximated is standardized. A random variable can be standardized by

means of a linear transformation. The transformation properties of cumulants are outlined in

Section B.1. Supposing that the density function p(x) can be expanded formally in a series

of derivatives of the standard normal density as

p(x) =
1p
2�

1X
k=0

ckHek(x)e
� 1

2
x2

; (26)

the coeÆcients ck can be identi�ed by means of multiplying the series with Hek(x), integrating

from �1 to1, and using Equation (25). Inserting the results in Equation (26), the beginning

of the series reads

p(x) =
1p
2�

e�
1

2
x
2

�
1 +

�3

3!
He3(x) +

�4

4!
He4(x) +

�5

5!
He5(x) +

�6 + 10�23
6!

He6(x) + : : :

�
:

The cumulants of the series equal the cumulants �k of the original probability distribution.

Uniform convergence of the series can be shown under certain general conditions. For example,

if p(x) has a continuous derivative such thatZ 1

�1

�
dp

dx

�2

e
1

2
x2dx

converges, convergence of the series is assured. For details see [17].

In practical applications, usually only a �nite number of terms in Equation (26) can be

considered. The important question is not whether an in�nite series can represent a density

function, but whether a �nite number of terms can serve as a satisfactory approximation.

While this is often the case, it has to be kept in mind that the sum of a �nite number of

terms may give negative values, and that the sum may behave irregularly in the sense that the

sum of k terms may give a worse �t than the sum of k � 1 terms. The �nite series approach

is useful only in cases of moderate skewness of the distribution, and it is of little use if it is

the tails of the distribution that are of interest.
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B.4 Some Integral Identities

For any non-negative integer k, the following three identities hold:

1.

1p
2�

Z
Hek(x)e

� 1

2
x
2

dx =

8><
>:

�(x) if k = 0

� 1p
2�

Hek�1(x)e
� 1

2
x
2

if k > 0
(27)

2.

1p
2�

Z 1

�1
Hek(x)e

� 1

2
x2 exp

 
�1

2

�
x�E

D

�2
!
dx

=
D

(1 +D
2)(k+1)=2

Hek

�
E

(1 +D
2)1=2

�
exp

�
�1

2

E
2

1 +D
2

�
(28)

3.

1p
2�

Z 1

�1
Hek(x)e

� 1

2
x2�

�
x�E

D

�
dx

=

8>>><
>>>:

1� �

�
E

(1 +D
2)1=2

�
if k = 0

1p
2�

1

(1 +D
2)k=2

Hek�1

�
E

(1 +D
2)1=2

�
exp

�
�1

2

E
2

1 +D
2

�
if k > 0

(29)

B.4.1 Proof of the �rst identity

To prove Equation (27) it is suÆcient to show that the derivative with respect to x of the

right hand side equals Hek(x) exp(�x2=2)=
p
2�. For k = 0 and k = 1, this is immediately

clear. For k > 1,

d

dx

�
� 1p

2�
Hek�1(x)e

� 1

2
x2

�
= � 1p

2�
[(k � 1)Hek�2(x)� xHek�1(x)] e

� 1

2
x2

=
1p
2�

Hek(x)e
� 1

2
x
2

;

where Equations (23) and (24) have been used in the �rst and in the second step, respectively.

B.4.2 Proof of the second identity

Proof of Equation (28) is by induction. By means of quadratic completion,

x
2 +

�
x�E

D

�2

=
x
2(1 +D

2)� 2Ex+E
2

D
2

=
x
2 � 2Ex=(1 +D

2) +E
2
=(1 +D

2)2

D
2
=(1 +D

2)
+
E
2
=(1 +D

2)�E
2
=(1 +D

2)2

D
2
=(1 +D

2)

=

�
x�E=(1 +D

2)

D=(1 +D
2)1=2

�2

+
E
2

1 +D
2
: (30)
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Let Ak and Bk denote the left and right hand sides of Equation (28), respectively. Then, for

k = 0,

A0 =
1p
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where in the �rst step Equation (30) and in the second step the substitution y = (x�E=(1+
D

2))=(D=(1 +D
2)1=2) have been used.

Similarly, for k = 1,
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where again in the �rst step Equation (30) and in the second step the substitution y =

(x�E=(1 +D
2))=(D=(1 +D

2)1=2) have been used.

Given its validity for k�1 and k, where k > 1, the validity of Equation (28) for k+1, can

be shown by computing the derivatives of Ak and Bk with respect to E. Using straightforward

calculations, the derivative of the left hand side can be computed as
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D
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where in the second step Equation (24) has been used.
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Similarly, the derivative of the right hand side can be computed as

d
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where in the �rst step Equation (23) has been used.

From the validity of Equation (28) for k it follows equality of the derivatives. That is,

dAk=dE = dBk=dE, and from Equations (31) and (32) it follows

Ak+1 = EAk � kAk�1 +
D

2
k

1 +D
2
Bk�1 �

D
2
E

1 +D
2
Bk

=
E

1 +D
2
Bk �
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= Bk+1;

where in the �rst step the identities Ak�1 = Bk�1 and Ak = Bk have been used. The �nal

step is an immediate consequence of Equation (24).

B.4.3 Proof of the third identity

Equation (29) can now easily be proven by integrating both sides of Equation (28) with

respect to E. Let as above Ak and Bk denote the left and right hand sides of Equation (28),

and let Ck and Dk denote the left and right hand sides of Equation (29), respectively. Then,

for the integral of the left hand side of Equation (28), it follows
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where in the �nal step Equation (27) has been used. For the integral of the right hand side

it followsZ
BkdE =

D

(1 +D
2)(k+1)=2
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; (34)

where in the �rst step Equation (27) has been used.

From the validity of Equation (28) it follows equality of the integrals, i.e.
R
AkdE =R

BkdE. Therefore, from Equations (33) and (34) it follows Equation (29).

C Evaluation of the Integrals

This section is organized as follows. Section C.1 lists and proves two useful identities which

make it possible to state the results to be derived much more concisely. In Section C.2 the

probability density of ��+ is obtained. Then, in Sections C.3 and C.4, the mean and variance

of ��+ are computed. Sections C.6, C.5, and C.7 contain derivations of the eigenvalues of the

Jacobian, the success probability, and the expected �tness gain, respectively.

C.1 Partial Derivatives of �

De�ning
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0
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as in Equation (10) and writing E as an abbreviation for Eq��E�� and D as an abbreviation
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q
D

2
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�
�
2 +D

2
�� , the kth derivative, k > 0, of � with respect to E�� is
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Hek�1

�
E

D

�
exp

 
�1

2

�
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!
: (35)

The identity can easily be shown by induction. Straightforward calculation shows validity of

Equation (35) for k = 1. To infer its validity for k + 1 from its validity for k, it is easily
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veri�ed that
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where Equations (23) and (24) have been used in the second and third steps, respectively.

Straightforward calculation also shows that

@�

@D
2
��

=
1

2
�
(2)
: (36)

As a simple corollary,
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Furthermore, for the steady state straightforward calculations show that
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where the relationships Eq� = ���2=2, Dq� = �
�2, and D

2
1 = �

�
�

2 which are valid for the

in�nite-dimensional quadratic sphere have been used.

C.2 Computation of the Probability Density p��
+

The probability density of ��+ is given by Equation (7). Using Equations (5), (4), and (6),

for the �rst integral therein it followsZ 1
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where in the second step the substitution z = (y � E��)=D�� and in the third step Equa-

tion (29) have been used.
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For the second integral in Equation (7) it follows analogouslyZ 1
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where in the second step the substitution z = y=�
�
� and in the third step Equation (29) have

been used.

Putting together the results it follows
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for the probability density of ��+.

C.3 Computation of the Mean of ��+

With the probability density p��
+
expressed as the sum of two terms as in Equation (39),

computation of the mean
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;
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where in the �rst step the substitution y = x=�
�
� and in the second step Equations (29)

and (35) have been used.

Analogously, evaluation of the second integral yields
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where in the �rst step the substitution y = (x � E��)=D�� and in the second step Equa-

tions (29), (10), and (35) have been used.

Altogether, it follows
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for the mean of ��+.

C.4 Computation of the Variance of ��+

With the probability density p��
+
expressed as the sum of two terms as in Equation (39),

computation of the variance
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involves the evaluation of two integrals. Evaluating the �rst of these yields
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where substitution y = x=�
�
� has been used in the �rst step and Equation (29) in the second.

Analogously, evaluation of the second integral yields
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where the substitution y = (x�E��)=D�� has been used in the �rst step and Equation (29)

in the second.
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Altogether, making use of Equations (35) and (40), it follows
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for the variance of ��+.

C.5 Determination of the Eigenvalues of the Jacobian

With g1 and g2 given by Equations (11) and (12), respectively, the entries of the Jacobian

de�ned in Equation (17) are
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where Equations (35), (36), (37), (14), and (15) have been used. It follows
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for the eigenvalues of (mij).
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C.6 Determination of the Success Probability

The success probability Psucc is given by Equation (18). Reversing the order of the integra-

tions,
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Using Equations (4), (5), and (6), it follows for the inner integral
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where the substitution z = (x�E��)=D�� has been used in the second step and Equation (29)

in the third. Therefore,
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where the substitution z = y=�
�
� has been used in the �rst step and Equation (29) in the

second.

C.7 Determination of the Expected Fitness Gain

The expected �tness gain is given by Equation (20). Reversing the order of the integrations,

E
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Using Equations (5) and (21), it follows for the inner integral
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where in the second step the substitution z = (x � E��)=D�� and in the third step Equa-

tion (29) have been used. Therefore,
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0
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3
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+
D

2
q�

p
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q
D

2
q�
+ �

�
�
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2
��

exp

0
@�1

2

0
@ Eq� �E��q

D
2
q�
+ �

�
�
2 +D

2
��

1
A

21
A

= Eq�

�
1� �

(0)
�
+D

2
q��

(1)
; (44)

where in the �rst step substitution z = (y�E��)=D�� and in the second step Equations (28)

and (29) have been used.
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