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Abstract

This paper presents the N-dependent analysis of the (1; �) Evolution Strategy (ES) with isotropic mutations at the ridge functions
including the special cases sharp and parabolic ridge. The new approach presented allows for the prediction of the dynamics in ridge direction
as well as in radial direction. The central quantities are the corresponding progress rates which are determined in terms of analytical
expressions. Its predictive quality is evaluated by ES simulations and the steady state behavior is discussed in detail.
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I. Introduction

Up until now, the theoretical analysis of the performance of Evolution Strategies (ES) with Gaussian mutations has

been concentrated mainly on the sphere model test functions [1], [2], [3], [4]. Even though the results obtained provide

valuable insight into the working of ES algorithms [5], there is still a need for considering further model classes in order

to acquire to a deeper understanding of why and how these algorithms really work. Especially when self-adaptation is

considered, the sphere model does not cover all essential aspects of the local evolution process. That is, such algorithms

can even locally exhibit qualitatively di�erent behavior on test functions which cannot be well approximated by the

sphere model. Such a class of simple test functions has been empirically investigated by Herdy [6]: the so-called

\parabolic ridge" and the \sharp ridge" (see also [7]).

The ridge models may be regarded as extensions of the sphere model breaking its total rotational symmetry in one

dimension of the parameter space (for de�nitions, see below). One might expect that such a small change in the

functional structure does not have a severe in
uence on the performance of the ES. However, the change is of such a

kind that each level set of the �tness landscape is an open success domain, and the ridge axis direction appears as a

progress direction in which the population can evolve inde�nitely.

From the technical point of view, the ridge function class is the one that should be considered after the sphere model.

In the latter, all N dimensions can be lumped together, thus, opening up the possibility for a one-dimensional description

of the ES-dynamics. The logically next step is therefore to consider models whose dynamics must be described by two

state variables in the parameter space (search space). While this appears logically cogent, a �rst paper on this topic

dates back to 1998 [8]. In that paper, Oyman et al. developed a simple local geometrical model in order to calculate the

expected progress, the progress rate ', in ridge direction for the (1; �)-ES given the state of the parent. However, this

ad hoc approach lacks in some aspects. First, it does not provide any information on the approximation error made.

The in
uence of the parameter space dimension N remained obscure. Second, as a more severe aspect, this model is

not able to address the problem of the radial dynamics, i.e. the evolution of the parental distance r to the ridge axis.

The analysis of the dynamics of r2 for the special case \parabolic ridge" succeeded thereafter in a paper by Oyman et

al. [9]. And a thorough analysis of the parabolic ridge for N !1 and di�erent ES versions has been done by Oyman

[10]. Still there remains the treatment of the radial dynamics for general ridge functions.

This paper provides an approach for calculating the radial as well as the longitudinal (ridge direction) dynamics for

(1; �)-ES on general ridge functions, thus, closing the still open gap. The paper is organized as follows.

Section II de�nes the general rotated ridge function class and its transformation to the normal form. In a third

subsection the melioration process on the ridge is discussed and the connection to optimization will be established.

Subsection II-D gives a short description of the ES algorithm. And in the last subsection the local performance measures

are introduced.

Section III is devoted to the progress rate 'x in ridge direction and Section IV to the progress rate 'r toward

the ridge axis. Both sections are of technical nature. First, the integral representations for 'x and 'r, respectively,

will be derived. Unfortunately, these integrals are not tractable. Therefore, analytical expressions based on normal

approximations and linearization techniques must be calculated. The applicability of the approximations used will be

shown for some examples by comparison with experiments in Section IV-C.
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The dynamical aspects and the steady state behavior of the (1; �)-ES will be discussed in Section V. In the �rst part

the predictions regarding the dynamics are compared with real ES runs. The most important observation will be the

appearance of a steady state behavior keeping the population at a certain (expected) distance r1 to the ridge axis. This

r1 distance will be investigated further and the transient time for its appearance will be estimated. Finally, the steady

state progress rate will be investigated and compared with experiments.

The closing section will give a short outlook at what should be done next.

II. Ridge functions, the (1; �)-ES, and progress measures

A. The ridge function family - general de�nition

The ridge functions FR(y) have been introduced in order to evaluate the optimization performance of self-adaptive

ESs on the problem

FR(y)! Max; FR 2 R1 ; y 2 RN (1)

in N -dimensional real-valued search spaces. One feasible de�nition of FR is given by

FR(y) = v
T
y � d

�q
[(vTy)v � y]

2

��
; (2)

with

v
T
v = 1: (3)

Here, y is the object parameter vector y 2 R
N and v de�nes the so-called ridge direction in which the population is

expected to move. The exponent � determines the degree of the ridge function. The case � = 2 leads to the so-called

parabolic ridge, whereas � = 1 is known as the sharp ridge. The parameter d � 0 in
uences the problem di�culty

given �xed � and N . Larger d values usually lead to worse performance (see below). For the limit case d ! 0, FR
degenerates to a linear �tness landscape, also known as hyperplane, whereas the opposite limit d!1 yields something

reminiscent of an (N � 1)-dimensional sphere model. Figure 1 shows two examples of (2) displayed as iso�tness plots in

two dimensions.
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Fig. 1. Curves of constant �tness values (iso�tness lines) of the FR function (2). The ridge axes are indicated by the bold, dashed lines and

the v vectors by arrows. Left picture: sharp ridge (� = 1) with N = 2, v = (1=
p
2; 1=

p
2)

T
, and d = 4. Right picture: parabolic ridge

(� = 2) with N = 2, v = (2=
p
5; 1=

p
5)

T
, and d = 4.

B. Transformation to the normal form

Generally, the performance of the ES depends on the direction of v. However, in this paper the investigation will

be restricted to ES variants which ful�ll the isotropy condition. That is, their performance does not change under

linear coordinate transformations. Therefore, the analysis to be presented can be performed on the \normal form" of

ridge functions. The normal form is obtained by a coordinate rotation turning the ridge axis v into the direction of a

coordinate axis x1. This can be accomplished by the linear orthonormal transformation

y = x1v +

NX
i=2

xiwi = (v;w2; : : : ;wN ) � (x1; x2; : : : ; xN )T (4)



with

8i � 2 : v
T
wi = 0 (5)

and

8i � 2 : w
T

i wj = �ij : (6)

This can be easily proven by inserting (4) into (2) taking (3), (4), and (5) into account

FR(y) = FR(y(x)) = ~FR(x)

~FR(x) = v
Tx1v +

NX
i=2

xiv
T
wi � d

2
64
vuut" 

vTx1v +

NX
i=2

xivTwi

!
v � x1v �

NX
i=2

xiwi

#2375
�

= x1 � d

2
64
vuut"(x1 + 0)v � x1v �

NX
i=2

xiwi

#2375
�

= x1 � d

2
64
vuut NX

i=2

xiwi

!2
3
75
�

= x1 � d

2
4
vuut NX

i=2

NX
j=2

xixjwiwj

3
5
�

= x1 � d

2
4
vuut NX

i=2

x2
i

3
5
�

(7)

Thus, the ridge function takes the simple form

~FR = x1 � dr� (8)

with

r =

vuut NX
i=2

x2
i
: (9)

By considering the transformation (4) it becomes clear that x1 measures the coordinate value on the ridge axis v and

the xi (2 � i � N) are perpendicular components. Therefore, r, as given by (9), measures the distance to the ridge axis.

C. Melioration on the ridge

Formula (8) allows for an interesting interpretation of (1) as noticed by Oyman [10, p.33]: Enlarging ~FR(x) comprises

two subgoals:
a) Minimizing the distance r to the ridge axis

b) Enlarging x1
As we will see later on, both subgoals are somewhat con
icting in ESs using isotropic mutations. As a result one observes

a performance limit for � � 2, even though the success domain is an unbounded subset of RN .1

One word of caution should be added here concerning the optimization goal (1). Due to (8), the \optimum" of ~FR
lies in the in�nity. Therefore, the goal (1) is somewhat ill-posed. There are two possibilities to resolve this \problem:"
(a) The �tness functions (2) and (8) may be regarded as models describing situations far away from the optimum. It is

the goal to locally improve the �tness (melioration). Therefore, there is no need to refer to the optimum.

(b) The ill-posed problem is resolved by regularization.
While (a) is the standard way of thinking about performance in ES theory, (b) considers (8) as the result of a limit

process using a regularization parameter c

~FR(x) = lim
c!0

F�(x; c): (10)

1There exists an additional performance limit caused by the self-adaptation not considered here.



One possible choice of F� is

F�(x; c) := x1 � cx21 � d

 
NX
i=2

x2i

!�=2

; c � 0: (11)

Its maximum is at

x1 = x̂1 =
1

2c
xi = x̂i = 0 (i = 2; : : : ; N): (12)

Thus, one has 8i = 2; : : : ; N : x̂i = 0 and as c ! 0 ) x̂1 ! 1. We will come back to this when considering the

performance de�nitions.

D. The (1; �)-ES with isotropic mutations

In this paper it is assumed that the reader is familiar with the standard ES notations and algorithms. For an overview

of this issue, the paper [11] is recommended. The ES algorithm to be considered here can also be found in [4]. It

is displayed in Figure 2 in its self-adaptive version. However, in the analysis and the ES experiments, the learning

parameter � is �xed at � = 0 (the analysis for � 6= 0 will still remain as a challenge for the future). With � = 0, the

Procedure (1; �)-ES; line #

Begin 1

g := 0; 2

initialize (y(g); �(g)) 3

Repeat 4

For l := 1 To � Do Begin 5

~�l := �(g) � exp(�N (0; 1)); 6

zl := ~�l � (N (0; 1); : : : ;N (0; 1))T ; 7

~yl := y
(g) + zl; 8

Fl := F (~yl) 9

End; 10

lp := selection1;�(F1; F2; : : : ; F�); 11

�(g+1) := ~�lp ; 12

y
(g+1) := ~ylp ; 13

g := g + 1; 14

Until stop-criterion 15

End 16

Fig. 2. Algorithm of the (1; �)-ES with self-adaptation. The learning parameter � is usually choosen as � / 1=
p
N (e.g. � = c1;�=

p
N , see

[4]). However, in this paper self-adaptation is switched o� by setting � = 0.
Note, each N (0; 1) represents an independent sample from an N (0; 1) normally distributed random number generator. The selection

operator in line 11 returns the index of the ~y individual with the greatest �tness value.

mutation strengths ~�l =: � stay constant throughout the ES run. That is, the mutations z produced in line 7 of Figure 2

have components which are N (0; �2) distributed. Therefore, the density function of a single component of the mutation

vector reads

pz(z) =
1p
2��

e�
1
2 (

z

�
)
2

: (13)

E. How to evaluate the performance { local progress measures

E.1 General remarks

Generally, one can di�erentiate between global and local performance measures. While the global measures evaluate

the performance of the algorithm for a long time period, e.g. the number of function evaluations needed to get into a

certain vicinity of the optimum, the local measures evaluate the change of the state from generation g to g + 1. Both

measures are more or less strongly connected to each other, however, in a one-way direction. The local measures are very

often the microscopic basis on which the evolutionary dynamics is established. Thus, global performance is a byproduct

of the evolutionary dynamics.



Local performance can be measured in the �tness space as well as in the search space. The expected (average

population) �tness change per generation is called the quality gain Q. If performance is evaluated in the search space,

one speaks of progress rates '. The emphasis is here on progress; this notion is much more general than \convergence

rates". In this paper progress rates will be considered only. These rates build the microscopic basis of the performance

analysis. Note, the quality gain Q cannot be used for such an analysis because in general the underlying evolutionary

dynamics cannot be reconstructed from the one-dimensional Q information:

Considering the evolution of a parent yP in (1; �)-ES requires its description in the N -dimensional state space, i.e.

yP 2 R
N . Depending on symmetries in the �tness function F (y), components of the state vector yP can be lumped

together. In the extreme case of the sphere model one has �tness functions Fs of the type Fs(y) = fs(kŷ � yk), i.e.
fs depends only on the Euclidean distance R of the state vector y to the optimum. Provided that the ES obeys the

symmetry condition,2 the state of the (1; �)-ES is fully determined by the parental R, as long as one is interested in the

evolution dynamics of the residual distance to the optimum. As to the ridge function class, due to (8) and (9), the state

description reduces to a two-dimensional vector (x1; r)
T
. Thus, one has to deal with two dynamical equations, one for

the progress in x1 direction and one for the residual dynamics of r. That means that there are two progress measures

'x and 'r, the �rst measuring the progress in ridge direction and the latter the approach to the ridge axis. Unlike the

sphere model where ' can be reconstructed from the quality gain Q under certain conditions, the one-dimensional Q

cannot be used to reconstruct the two-dimensional progress vector ('x; 'r)
T
. This is the deeper reason why progress

rate vectors must be considered.

E.2 Measuring the progress 'x in ridge direction

In order to de�ne the longitudinal progress, let us assume that the (1; �)-ES is in the (parental) state (x(g); r(g)) (writing

x instead of x1). Its transition to the next (parental) state (x(g+1); r(g+1)) is described by the conditional transition

density p(x; rjx(g); r(g)). The progress in x-direction i.e. the ridge direction, is then de�ned as the (conditional) expected

distance change in this direction

'x := E
h
x(g+1) � x(g)jx(g); r(g)

i
: (14)

Thus, 'x can be expressed as

'x =

Z 1

�1

Z 1

0

(x � x(g))p(x; rjx(g); r(g))drdx: (15)

Introducing the marginal density p1;�

p1;�(xjx(g); r(g)) =
Z 1

0

p(x; rjx(g); r(g))dr (16)

and considering the translation invariance of x(g+1) � x(g) in the ridge function (8) one ends up with3

'x =

Z 1

�1
zp1;�(zjr(g))dz: (17)

The \jr(g)" in the density p1;� indicates that { apart from the strategy parameters � and � (not displayed here) { 'x
still depends on the distance of the parent to the ridge axis.

Equation (14) may be regarded as the de�nition of the progress in x1 direction. However, alternatively it can be

obtained from the general progress rate de�nition which measures the parental (Euclidean) distance change to the

optimum x̂

' := E
h
kx̂� x

(g)k � kx̂� x
(g+1)k

���x(g)i (18)

To this end ~FR(x) must be regarded as a limiting function of F�(x; c) given by (11). With (12) and (9) one obtains

(substituting x = x1)

'(c) = E

�q
(x̂ � x(g))

2
+ (r(g))

2 �
q
(x̂� x(g+1))

2
+ (r(g+1))

2

�
(19)

2Symmetry of the ES algorithm means that there is no preference on search directions neither explicitly nor implicitly built into the
algorithm. For example, the (�; �)-ES and the (�=�I ; �)-ES (with intermediate multiparent recombination) are symmetrical, whereas the
(�=�D ; �)-ES (with dominant recombination) is not symmetrical.
3Here, z := x� x(g) has been written in order to simplify the notations.



Since we are interested in the case c ! 0, it follow x̂ ! 1; r̂ = 0 and, provided that x(g) � 1, r(g) � 1, the square

roots can be expanded into Taylor series leading to

'(c) = E

2
4(x̂� x(g))

vuut1 +
(r(g))

2

(x̂� x(g))
2
� (x̂� x(g+1))

vuut1 +
(r(g+1))

2

(x̂� x(g+1))
2

3
5

'(c) = E

"
(x̂� x(g))

 
1 +

1

2

(r(g))
2

(x̂� x(g))
2
+ : : :

!
� (x̂� x(g+1))

 
1 +

1

2

(r(g+1))
2

(x̂� x(g+1))
2
+ : : :

!#

'(c) = E

"
x(g+1) � x(g) +

1

2

 
(r(g))

2

x̂� x(g)
� (r(g+1))

2

x̂� x(g+1)

!
+ : : :

#
(20)

Provided that the expected value exists, then taking the limit c ! 0, one �nally obtains with (12) '(c)
c!0
��! 'x, i.e.

Equation (14). As one can see, from this point of view, 'x is also the progress rate in the classical sense.

E.3 Measuring the progress 'r toward the ridge axis

This progress rate (the radial progress) is similar to that de�ned for the sphere model. It measures the expected

distance change to the ridge axis

'r := E
h
r(g) � r(g+1)jx(g); r(g)

i
: (21)

Given the state (x(g); r(g)) and the transition density p(x; rjx(g); r(g)) already introduced in Section II-E.2, 'r can be

expressed as

'r =

Z 1

�1

Z 1

0

(r(g) � r)p(x; rjx(g) ; r(g))drdx: (22)

Similarly to (16) the marginal density is introduced as

p1;�(rjx(g); r(g)) =
Z 1

�1
p(x; rjx(g); r(g))dx (23)

Due to the x1 translation property of ~FR, p1;� does not depend on x(g), therefore one obtains

'r = r(g) �
Z 1

0

rp1;�(rjr(g))dr: (24)

Rewriting (21) as

E
h
r(g+1)jr(g)

i
= r(g) � 'r(r

(g)) =

Z 1

0

rp1;�(rjr(g))dr; (25)

one sees that the r-dynamics does not depend on x, whereas from (14) and (17) it follows that

E
h
x(g+1)jx(g); r(g)

i
= x(g) + 'x(r

(g)) = x(g) +

Z 1

�1
xp1;�(xjr(g))dr; (26)

i.e. the x-dynamics is controlled by the r-dynamics.

III. On the calculation of the longitudinal progress 'x

This section is organized as follows. First, the general 'x-integral for the (1; �)-ES will be derived. In this integral

the conditional density p(Qjz) and the cumulative distribution function P (Q) of the mutation-induced quality change

Q are needed. These functions will be derived as normal approximations allowing for an analytical treatment of the

progress rate integral.



A. Local quality function and the 'x integral

For (1; �)-strategies it su�ces to consider one generation step. Let us assume for notational simplicity that the ES is

in the state (x(g); R) with R = r(g). The �tness of this state is given by (8) and (9). After application of the mutations

zl on x one obtains � new states ~xl = x
(g) + zl resulting in � new x values and � new r values. The �tness of those

states is given by (8)

F (x(g) + zl) = x(g) + zl � d � (rl)�: (27)

Here, x(g) := x
(g)
1 and z := z1 has been written to simplify the notations. Note, zl refers to the z1 coordinate of the lth

mutation vector zl. The local quality change

Q := F (x(g) + z)� F (x(g)) (28)

for an arbitrary mutation becomes

Q = z � d(r� �R�); (29)

i.e. it is independent of the parental x value. An o�spring state ~x survives the (1; �) selection if its Q(~y) value is the

best one, i.e. the largest (maximization considered) out of the � o�spring Q-values. The state r and the mutation

component z leading to this best o�spring will be denoted by r1;� and z1;�, respectively. They are random variates

whose density functions p1;�(z) and p1;�(r) have already been introduced in the integrals (17) and (25), respectively. It

is important to realize that these random variates are not usual order statistics known from the literature (e.g. [12])

which are expressed by the symbol \Qm:�" with the meaning

Q1:� � Q2:� � � � � � Q�:�: (30)

Looking at (29) it becomes clear that (30) does not imply Qm:� ) zm:�. Therefore the standard techniques of order

statistics cannot be applied to determine p1;�(z). Instead the technique of induced order statistics, coined in [13], must

be applied. The derivation of p1;�(z) will be explained in detail now.

In order to determine p1;�(z) one has to recall that according to (29) the best Q value, i.e. Q�:� is obtained by a

mutation z whose x1 component z is a sample from the N (0; �2) distribution with density pz(z) given by Eq. (13). If

one considers a single trial, say the �rst one (out of �), the probability of having this trial in an in�nitesimal interval

dz around z and accept it as the best trial is pz(z)dz �Pa(z). Here, Pa(z) is the acceptance probability. Since there

are � independent trials, there are � independent and mutually excluding possibilities of being the best. Therefore, the

probability p1;�(z)dz becomes

p1;�(z)dz = �pz(z)Pa(z)dz: (31)

The acceptance probability Pa(z) is determined as follows. Given a �xed state z, the local quality Q (29) depends also

on the random variate r. That is, Q is a random variate conditional to z. The probability of a single trial of having

quality values in an interval dQ around Q is given by p(Qjz)dQ. In order to have Q accepted as the best trial out of �

trials, the remaining (��1) Q values must be smaller (maximization considered here). For a single trial this occurs with

probability P (Q); where P (Q) is the cumulative distribution function of the (nonconditional) random variate Q. Since

there are (� � 1) independent trials, the probability of being smaller than the Q generated by the �rst trial becomes

[P (Q)]
��1

. Thus one gets

p(Qjz)dQ[P (Q)]��1
(32)

for the acceptance probability of a z state producing a quality value in an interval dQ around Q. The random variate

Q itself has the support Q 2 [�1; z + dR�], because of (29) and r 2 [0;1]. Therefore, one obtains the acceptance

probability Pa(z) by integration of (32)

Pa(z) =

Z Q=z+dR�

Q=�1
p(Qjz)[P (Q)]��1

dQ; (33)

and with (31), it follows

p1;�(zjR) = �pz(z)

Z Q=z+dR�

Q=�1
p(Qjz)[P (Q)]��1

dQ: (34)

Here, it has been indicated that p1;�(z) still depends on the parental state R := r(g).



The progress rate 'x can be expressed now by the integral (17)

'x = �

Z
z=1

z=�1
zpz(z)

Z
Q=z+dR�

Q=�1
p(Qjz)[P (Q)]��1

dQdz: (35)

After changing the order of integration, one alternatively obtains

'x = �

Z Q=1

Q=�1
[P (Q)]

��1

Z z=1

z=Q�d�R�

zpz(z)p(Qjz)dzdQ: (36)

This integral will be used for the 'x calculation. However, while pz(z) is given by (13), the conditional density p(Qjz)
and the cumulative distribution P (Q) remain still to be determined.

B. Normal approximation of P (Q)

In order to keep (36) tractable, P (Q) must be approximated by a normal ansatz. Such an approximation should be

performed in such a way that:

(a) the �rst moments of the random variate Q are preserved and

(b) the approximation is asymptotically, i.e. for N !1, exact.

According to (29), the random variate Q depends on the two random variates z and r. For z one has pz(z), given by

Eq.(13), however, for r there is no analytical p(r). The asymptotically exact normal approximation already derived in

[2, p.387, Eq.(22)] will be used

p(r) =
1p
2�~�

exp

2
4�1

2

 
r �

p
R2 + �2(N � 1)

~�

!2
3
5 with ~� = �

s
R2 + �2(N � 1)=2

R2 + �2(N � 1)
: (37)

In order to get a normal approximation for p(Q), the dependency of r in the Q expression (29) must be linear. Apart

from the case � = 1, which is linear by de�nition, the � 6= 1 cases are to be handled by Taylor expansion breaking o�

after the linear r term

Q(r) = Q(R+ (r �R))

= z � d[R+ (r �R)]
�
+ dR�

= z � dR� � d�R��1(r �R)� � � �+ dR�

= z � d�R��1r + d�R� � : : : : (38)

This expansion is still exact for the case � = 1. Its application to cases � 6= 1 relies on the smallness assumption of

(r �R) compared to R. This may not always be ful�lled, however, for the steady state case it is (see below).

Due to the linearity of (38), Q appears normally distributed as sum of two normally distributed random variates.

Considering (37) and (13), its expectation Q := E[Q] is therefore

Q = �d�R��1E[r] + d�R� = d�R��1
�
R�

p
R2 + �2(N � 1)

�
(39)

and its standard deviation �Q := D[Q] =
p
D2[z] + D2[d�R��1r]

�Q =
p
�2 + (d�R��1)2~�2: (40)

Thus, one obtains for the cumulative distribution P (Q)

P (Q) = �

�
Q�Q

�Q

�
= �

 
Q+ d�R��1(

p
R2 + �2(N � 1)�R)p

�2 + (d�R��1)2~�2

!
(41)

with �(x) as the distribution function of the standard normal distribution

�(x) :=
1p
2�

Z x

�1
e�

1
2
t
2

dt: (42)



C. Normal approximation of p(Qjz)
The determination of the conditional density p(Qjz) is accomplished by the same technique as has been used for P (Q).

The only di�erence is that one has now to deal with conditional expectations. Starting from the linear approximation

(38) keeping z �xed (because this is the condition), one easily �nds with (37)

E[Qjz] = z � d�R��1E[r] + d�R� (43)

and with (39) and Qjz := E[Qjz]

Qjz = z +Q = z + d�R��1(R �
p
R2 + �2(N � 1)): (44)

For the conditional standard deviation �Qjz := D[Qjz] one obtains from (38), (37), and (40), taking D[z] = 0 into

account,

�Qjz = d�R��1~� =
q
�2
Q
� �2: (45)

Therefore, the normal approximation of p(Qjz) reads

p(Qjz) =
1p

2��Qjz
exp

2
4�1

2

 
Q�Qjz

�Qjz

!2
3
5 =

1
p
2�
q
�2
Q
� �2

exp

2
64�1

2

0
@Q�Q� zq

�2
Q
� �2

1
A

2
3
75 ; (46)

p(Qjz) =
1p

2�d�R��1~�
exp

2
4�1

2

 
Q+ d�R��1(

p
R2 + �2(N � 1)�R)� z

d�R��1~�

!2
3
5 : (47)

D. Calculation of the 'x-integral

Starting point is Eq.(36). In order to simplify the integration, the lower integration limit z = Q � dR� in (36) is

extended to z = �1. The inner integral reads then

Ix(Q) =

Z 1

�1
zpz(z)p(Qjz)dz (48)

and 'x becomes

'x = �

Z 1

Q=�1
[P (Q)]

��1
Ix(Q)dQ: (49)

The extension of the lower integration limit in (48) is justi�ed by the fact that most of the probability mass of the random

variable z is concentrated in the interval z 2 [�3�; 3�] (Gaussian distribution (13)). The location of the maximum of

p(Qjz) with respect to z (consider the exponent (47)), denoted by ẑ, ful�lls the condition ẑ > Q� dR�. Furthermore,

almost the entire area de�ned by the integrand in (48) is located for z > Q� dR�. Therefore, the error which is made

by extending the lower limit to z = �1 is of small order and can be neglected. Actually, it vanishes for N ! 1.

Estimating this error for small N is di�cult and depends also on the normal approximation used in order to get (47)

and (41). In any case, results obtained by (48), (49) should be compared with simulation experiments (see below).

The calculation of Ix(Q) starts with (46) and (13) inserted in (48)

Ix(Q) =
1p
2��

1p
2��Qjz

Z 1

�1
ze�

1
2 (

z

�
)
2

exp

"
�1

2

�
Q�Q� z

�Qjz

�2
#
dz: (50)

After the substitution t = z=�, dz = �dt, one gets

Ix(Q) =
�p

2��Qjz

1p
2�

Z 1

�1
te�

1
2
t
2

exp

"
�1

2

�
� �

�Qjz
t+

Q�Q

�Qjz

�2
#
dt: (51)

With the integral formula (for its derivation, see e.g. [13, p.322])

1p
2�

Z 1

�1
te�

1
2
t
2

e�
1
2
(at+b)2dt =

�ab�p
1 + a2

�3 exp
�
�1

2

�
b2

1 + a2

��
; (52)



one obtains with (45)

Ix(Q) =
1p
2�

�2

�3
Q

(Q�Q) exp

"
�1

2

�
Q�Q

�Q

�2
#
: (53)

After inserting (53) into (49) and taking (41) into account, one gets

'x =
�p
2�

�2

�3
Q

Z 1

�1
(Q�Q) exp

"
�1

2

�
Q�Q

�Q

�2
# �

�

�
Q�Q

�Q

����1

dQ; (54)

and with the substitution x = (Q�Q)=�Q, dx = dQ=�Q, it follows

'x =
�2

�Q
�p
2�

Z 1

�1
xe�

1
2
x
2

[�(x)]
��1

dx: (55)

Since the integral in (55) is the well known progress coe�cient c1;� (see e.g. [2, p.385])

c1;� :=
�p
2�

Z 1

�1
xe�

1
2
x
2

[�(x)]
��1

dx; (56)

the progress rate along the ridge axis becomes

'x =
�2c1;�

�Q
(57)

and by back-substitution, taking (40) and (37) into account, the �nal 'x formula reads

'x =
�c1;�q

1 + (d�R��1)
2R2+�2(N�1)=2

R2+�2(N�1)

: (58)

As one can see, the progress along the ridge axis depends on the parental distance R to the ridge axis. Therefore, knowing

the R = r(g) dynamics is necessary for the calculation of 'x. This will be done in Section IV. The approximation quality

of the asymptotically exact progress rate formula (58) will be investigated together with the 'r results in Section V.

IV. On the calculation of the radial progress 'r

Most of the considerations to be made are similar to those of Section III. First, the progress rate integral 'r for the

(1; �)-ES will be derived and a normal approximation for the conditional density p(Qjr) will be provided. Second, the
integrations are performed yielding 'r. In the third subsection, the results are compared with experiments.

A. The 'r integral

According to (21), (24), and (25) the conditional expectation E[r(g+1)jr(g)] must be calculated in order to obtain

'r. This conditional expectation, de�ned by the integral (25), requires the determination of the density p1;�(r). This

function is the density of the random variate r = r1;�, i.e., the r-variate belonging to that trial (out of � trials) that

produced the largest Q value by Eq. (29). Again, we have to consider an induced order statistics. That is, the same

considerations made in Subsection III-A in order to derive p1;�(z) can be applied to p1;�(r). Therefore, the derivation

will be sketched by reference to the respective equations in Subsection III-A.

The probability p1;�(r)dr reads, similarly to (31),

p1;�(r)dr = �p(r)Pa(r)dr: (59)

Here, p(r) is given by (37) and Pa(r) is the acceptance probability that a trial producing this r value appears as the best,

i.e. its Q value is larger than the Q values of the remaining (�� 1) trials. Given a (�xed) r, the acceptance probability

for Q values in an in�nitesimal interval dQ around Q reads similarly to (32): p(Qjr)dQ[P (Q)]��1
. The acceptance

probability is obtained by integration over all possible Q values. Unlike the Pa(z) case, where Q 2 [�1; z + dR�] was

found, here one has Q 2 [�1;1]. This is so, because of Eq. (29) given a �xed r (condition!), Q depends on the random

variate z which has as an N (0; �2) normal variate the support z 2 [�1;1]. Thus, one obtains instead of (33)

Pa(r) =

Z Q=1

Q=�1
p(Qjr)[P (Q)]��1dQ (60)



and with (59)

p1;�(r) = �p(r)

Z
Q=1

Q=�1
p(Qjr)[P (Q)]��1

dQ: (61)

Inserting (61) into (24) and exchanging the order of integrations, the 'r integral reads (writing R = r(g))

'r = R� �

Z Q=1

Q=�1
[P (Q)]

��1

Z r=1

r=0

rp(r)p(Qjr)drdQ: (62)

The calculation of (62) requires the determination of the conditional density p(Qjr) (P (Q) and p(r) have already

been determined). Looking at (29), one sees that given a �xed r (condition), Q depends on the random variable z

which is according to (13) N (0; �2) distributed. Thus, Q is N (�d(r� �R�); �2) distributed. Unfortunately, using this

(exact) distribution would lead to an intractable r-integral in (62). Therefore, the linear approximation (38) must be

used resulting in

p(Qjr) = 1p
2��

exp

2
4�1

2

 
Q�Qjr

�

!2
3
5 =

1p
2��

exp

"
�1

2

�
Q+ d�R��1(r �R)

�

�2
#

(63)

with the conditional expectation

Qjr = d�R��1(R� r): (64)

B. Calculation of the 'r integral

The �rst step in calculating (62) concerns the inner integral denoted by Ir(Q)

Ir(Q) :=

Z r=1

r=0

rp(r)p(Qjr)dr: (65)

With (37) and (63), one gets

Ir(Q) =
1p
2��

1p
2�~�

Z 1

r=0

r exp

2
4�1

2

 
r �

p
R2 + �2(N � 1)

~�

!2
3
5 exp

"
�1

2

�
Q+ d�R��1(r �R)

�

�2
#
dr: (66)

By the substitution t = (r �
p
R2 + �2(N � 1))=~�, i.e. dt = dr=~� and r = ~�t+

p
R2 + �2(N � 1), one obtains

Ir(Q) =
1p
2��

1p
2�

Z t=1

t=�
p
R2+�2(N�1)=~�

�
~�t+

p
R2 + �2(N � 1)

�
e�

1
2
t
2

� exp

2
4�1

2

 
~�d�R��1

�
t+

Q+ d�R��1(
p
R2 + �2(N � 1)�R)

�

!2
3
5 dt: (67)

Since exp(�t2=2) is concentrated around t = 0 and the lower integration limit tl = �
p
R2 + �2(N � 1)=~� � �

p
N � 1,

this limit can be extended to �1 as N !1. With (39) one obtains

Ir(Q) =
1p
2��

1p
2�

Z
t=1

t=�1

�
~�t+

p
R2 + �2(N � 1)

�
e�

1
2
t
2

exp

"
�1

2

�
~�d�R��1

�
t+

Q�Q

�

�2
#
dt: (68)

With the help of the integral formula (52) and

1p
2�

Z 1

�1
e�

1
2
t
2

e�
1
2
(at+b)2dt =

1p
1 + a2

exp

�
�1

2

�
b2

1 + a2

��
; (69)

which can be easily proven by completing the square in the exponent, one obtains

Ir(Q) = �
~�2d�R��1

p
2��3

Q

(Q�Q) exp

"
�1

2

�
Q�Q

�Q

�2
#
+

R2 + �2(N � 1)p
2��Q

exp

"
�1

2

�
Q�Q

�Q

�2
#
: (70)



Now, the solution (70) to the inner integral (65) of (62) can be inserted in (62) taking (41) into account

'r = R� �p
2��Q

Z
Q=1

Q=�1

�
�

�
Q�Q

�Q

����1p
R2 + �2(N � 1) exp

"
�1

2

�
Q�Q

�Q

�2
#
dQ

+
~�2d�R��1

�3
Q

�p
2�

Z
Q=1

Q=�1
(Q�Q) exp

"
�1

2

�
Q�Q

�Q

�2
# �

�

�
Q�Q

�Q

����1

dQ: (71)

As a �nal step, the substitution x := (Q�Q)=�Q is performed

'r = R �
p
R2 + �2(N � 1)

�p
2�

Z
x=1

x=�1
e�

1
2
x
2

[�(x)]
��1

dx +
~�2d�R��1

�Q

�p
2�

Z
x=1

x=�1
xe�

1
2
x
2

[�(x)]
��1

dx: (72)

The integrand in the �rst integral of (72) can be simpli�ed, because of (42) d
dx
[�(x)]

�
= �p

2�
e�

1
2
x
2

[�(x)]
��1

. The second

integral is matched by (56). Thus, one gets

'r = R�
p
R2 + �2(N � 1) +

~�2d�R��1

�Q
c1;�: (73)

Taking the ~� de�nition (37) and the �Q de�nition (40) into account, one �nally obtains

'r = R�
p
R2 + �2(N � 1) + d�R��1R

2 + �2(N � 1)=2

R2 + �2(N � 1)

�c1;�q
1 + (d�R��1)

2R2+�2(N�1)=2

R2+�2(N�1)

: (74)

Interestingly, (74) can be simpli�ed by considering (58), 'r becomes

'r = R�
p
R2 + �2(N � 1) + d�R��1R

2 + �2(N � 1)=2

R2 + �2(N � 1)
'x(R): (75)

C. Comparison with experiments

For comparison purposes similarly to the sphere model a normalization is introduced

�� = �
N � 1

R
; '� = '

N � 1

R
; q = d�R��1: (76)

The only di�erence is in the additional parameter q. One obtains from (74)

'�r = (N � 1)

2
41�

s
1 +

��2

N � 1

3
5+ q

1 + �
�2

2(N�1)

1 + ��2

N�1

��c1;�q
1 + q2

1+��2=2(N�1)

1+��2=(N�1)

: (77)

As one can see, the (N � 1)-dimensional sphere model [2, p.385] is obtained as a limit case

(N � 1)-D sphere case: q !1: (78)

By choosing q = d�R��1, the dependency of 'r on �, d, and R is reduced to a single parameter q. However, this q

contains R implicitly. Therefore, q must be taken into account when '�(��)-plots are generated. That is, from (76) one

�nds

R = ��1

r
q

d�
) � =

��

N � 1
��1

r
q

d�
for � 6= 1: (79)

For the � = 1 case, (76) simpli�es to q = d and R can be chosen arbitrarily, leading to � = ��R=(N � 1).

For the experimental veri�cation of the predictions made by (58) and (64), so-called \one-generation-experiments"

have been performed. That is, given a �xed initial (parental) state, the (1; �)-ES is performed for only one generation.

The resulting state change in x-direction and the radial state change are recorded and then averaged over G independent

\one-generation-experiments."

Figure 3 shows simulation results of the (1; 10)-ES for q = 0:2. The experiments were done using the sharp ridge, i.e.

� = 1, with d = 0:2 (leading to q = 0:2), and an initial distance r(0) to the ridge axis of R = 5 has been chosen. Di�erent
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parameter space dimensions N = 30, 100, and 1; 000 have been tested. The number of one-generation-experiments were

G = 500; 000 (for N = 30), G = 300; 000 (for N = 100), and G = 200; 000 (for N = 1; 000). As one can see, apart from

some small deviations for '�r at small N and ��, the theory predicts the outcome of the experiments well.

Results of similar experiments for the parabolic ridge, i.e. � = 2, with d = 0:05 and q = 2 (leading to R = 20) are

presented in Figure 4 and for the cubic ridge, i.e. � = 3, with d = 0:01 and q = 3 (leading to R = 10) are in Figure 5.

In both cases the experimental conditions were G = 100; 000 (for N = 30), G = 50; 000 (for N = 100), and G = 30; 000

(for N = 1; 000). It is obvious that the prediction quality of '�r and especially of '�x is not so good as for the sharp

ridge case in Figure 3. This does not come as a big surprise, because the theory was mainly developed for the � = 1

case. The cases � 6= 1 were treated by the linear Taylor approximation (38). Therefore, one has to expect deviations

in the case of �
p
N � 1 values which are comparable with the parental R value. By de�nition (76) this corresponds to

large �� values. Reversely, one can expect good approximation quality for su�ciently small ��. Indeed, this is observed
in the left pictures of Figure 4 and 5. Furthermore, one notices that at the (second) root of '�r the '�x value is well

predicted. This is an observation of certain importance, because this point corresponds to the steady state behavior of

the ES to be discussed in Section V-B.

V. Mean value dynamics and steady state behavior

In this section, some dynamical aspects of the evolution process of (1; �)-ES on the ridge function class will be

discussed. For this purpose, let us recall the equations which describe the mean value dynamics of the r and x value

evolution. After that, the steady state behavior of these equations will be investigated. The resulting formulae will be

compared with simulations and some aspects of the long term dynamics will be discussed.

A. Mean value dynamics

As to the r-dynamics, the mean value evolution from g to g+1 is given by Eq. (25) and (74) (substituting R back to

r(g)

E[r(g+1)jr(g)] =
q
(r(g))

2
+ �2(N � 1)� d�(r(g))

��1
"(r(g))

�c1;�r
1 +

�
d�(r(g))

��1
�2
"(r(g))

(80)



with

"(r(g)) :=
(r(g))

2
+ �2(N � 1)=2

(r(g))
2
+ �2(N � 1)

; "(r(g)) 2 [
1

2
; 1]: (81)

The x dynamics is obtained from (26) and (58)

E[x(g+1)jx(g); r(g)] = x(g) +
�c1;�r

1 +
�
d�(r(g))

��1
�2
"(r(g))

: (82)

It is important to realize that the expectations in (80) and (82) are conditional to the state (x; r) at time g. Since x(g)

and r(g) themselves are random variates, the expectations are also random variates. In order to obtain the mean value

dynamics, one has to calculate the expectation with respect to the state (x(g); r(g)). Given the density functions at g,

i.e. p(g)(x(g)) and p(g)(r(g)) the mean values, symbolized by a bar over the variables, read

r(g) :=

Z r=1

r=0

rp(g)(r)dr (83)

and

x(g) :=

Z
x=1

x=�1
xp(g)(x)dx: (84)

In order to obtain the mean value at time g + 1, the conditional expectations (80) and (82), respectively, are to be

averaged over the state densities at time g

r(g+1) =

Z
r
(g)=1

r(g)=0

E[r(g+1)jr(g)]p(g)(r(g))dr(g) (85)

and similarly

x(g+1) =

Z
x
(g)=1

x(g)=�1

Z
r
(g)=1

r(g)=0

E[x(g+1)jx(g); r(g)]p(g)(r(g))p(g)(x(g))dr(g)dx(g): (86)

If one inserts (80) into (85), one sees that an exact calculation of the mean values will almost always be excluded. Even

when one uses normal approximations for p(g)(r) and p(g)(x) which can be calculated from (61) and (34), respectively,

the integrals over the root terms in (80) and (82) are not tractable. The usual way to overcome this situation is to expand

the r(g) expressions in (80) and (82) in a Taylor series at the parental mean value r(g). Thus, (85) and (86) become

series over the central moments
�
r(g) � r(g)

�k
which can be calculated similarly as the �rst order moment (compare

Eq. (21), (22), and (62))

�
r(g) � r(g)

�k
=

Z 1

r=0

(r � r)
k
p1;�(r)dr: (87)

Even though this approach is tractable, it appears that for most of the questions of interest, series expansion up to the

linear term (i.e. k = 1) su�ces. Therefore, only the mean value dynamics in linear approximation will be considered.

That is, (85) and (86) are obtained through replacement of r(g) by r(g) (note, the linear term vanishes because of k = 1

in (87).) By this procedure, one gets from (85) with (80)

r(g+1) =

r�
r(g)
�2

+ �2(N � 1)� d�
�
r(g)
���1

"(r(g))
�c1;�r

1 +
�
d�(r(g))

��1
�2
"(r(g))

+ : : : (88)

and from (86) with (82)

x(g+1) = x(g) +
�c1;�r

1 +
�
d�(r(g))

��1
�2
"(r(g))

+ : : : : (89)



The system (88), (89) describes the mean value evolution of the (1; �)-ES on the ridge functions. A closer look at

these equations reveals that the x dynamics, i.e. the longitudinal progress, is controlled by the r dynamics, i.e. the

evolution of the residual distance of the parent to the ridge axis. However, this depencency is one-way, the r evolution

does not depend on x. Even though this simpli�es the dynamical equations, a closed analytical solution is excluded.

Only special cases can be treated analytically (see below). However, a numerical treatment of the system (88), (89) can

be easily done and the results can be compared with real ES runs.

Figures 6, 7, and 8 show example runs of (1; 10)-ES with �xed mutation strength and di�erent values of �, d, and

N . All experiments were initialized at the state x(0) = 0, i.e., one has r(0) = 0 and x(0) = 0. The plots are the result
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Fig. 6. On the mean value dynamics of the residual distance to the ridge axis, left picture, denoted by r(g), and the distance traveled
in longitudinal (ridge) direction, right picture, denoted by x(g). The theoretical predictions obtained from (88), (89) by numerical
iteration and displayed as a continuous curve are almost completly covered by the experimental results displayed as small dots. The ridge
parameters are N = 30, d = 0:1 and the (1; 10)-ES used � = 0:2 as mutation strength. The top curves are for the sharp ridge, � = 1, the
middle for the parabolic and the lower curves are for the � = 3 ridge.
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Fig. 7. Mean value dynamics of a (1; 10)-ES with � = 0:05 on ridge functions with N = 100 and d = 0:1. The upper curves are for � = 1
(sharp ridge), the middle curves are for � = 2 (parabolic ridge), and the lower curves are for � = 3. For further explanations, see Figure 6.

of 500 independent ES runs averaged in order to smooth the data points (displayed by dots). The left pictures display

the r dynamics and the right ones the x dynamics. As the most striking characteristic of the r dynamics, one observes

\saturation" behavior: The expected value of the distance to the ridge axis approaches a steady state value r1, i.e.

r1 := lim
g!1

r(g): (90)

The consequences for the x dynamics can immediately be read from Eq. (89): The expected value of x experiences a

constant change from g to g + 1

x(g+1) = x(g) + 'x(r1) (91)

leading to a linear increase in x direction

steady state: x(g) = x(g0) + (g � g0)�'x(r1): (92)
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Fig. 8. Mean value dynamics of a (1; 10)-ES with � = 0:01 on ridge functions with N = 100 and d = 1:0. The upper curves are for � = 3, the
middle curves are for � = 2 (parabolic ridge), and the lower curves are for � = 1 (sharp ridge). For further explanations, see Figure 6.

While this dynamical behavior is exact for g0 !1, the curves in Figures 6{8 show that the vicinity of the steady state

is usually reached after a relatively small number of generations gt (so-called transient time). Unfortunately, there is no

easy way to derive analytical expressions for the transient time gt for arbitrary values of �. However, as we will see in

the next subsection, this time scales with N .

B. Steady state behavior

B.1 On the expected distance to the ridge axis

The steady state behavior occurs after a certain transient time gt in the case of ES operating with constant mutation

strength �. Its main characteristic is the appearance of a constant expected value r1 of the distance of the population

(and its parent, respectively) to the ridge axis. That is, one has for the

steady state: rg+1 = rg = r1 , 'r = 0; (93)

leading with (88) to the nonlinear equation

0 =
p
r21 + �2(N � 1)� r1 � d�r��1

1 "(r1)
�c1;�q

1 + (d�r��1
1 )2"(r1)

: (94)

Figure 9 shows r1 plots depending on d for di�erent �, N , and � obtained by numerical techniques (analytical expressions

can only be derived in some special cases, see below). From these double-logarithmic plots one can infer that there are
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Fig. 9. On the dependence of the steady state distance to the ridge axis on the ridge parameter d for di�erent values of �, �, and N . The
curves have been obtained by numerically solving Eq. (94) for r1. The upper curves are for � = 1, the middle ones for � = 2, and the
lower one for � = 3. The dotted lines are the corresponding d ! 0 asymptotics and the dashed lines indicate the d ! 1 asymptotics.
Left picture: (1; 10)-ES with N = 30, � = 0:2; middle picture: N = 100, � = 0:05; right picture: N = 100, � = 0:01.

two di�erent r1 asymptotics. The d!1 case results in a constant (d-independent) r1 value, whereas the d! 0 case

can be described by a power law. In the following, the r1 asymptotics will be derived.

Let us consider the d ! 1 case �rst. If one considers the ridge functions (2), (8), the in
uence of the d parameter

becomes clear. It controls the nonlinearity of the ridge. Large d values make the ridge more sphere-like (given �xed �,

�, and N). That is, one can expect a behavior similar to an (N � 1)-dimensional sphere. Recall, given a �xed mutation



strength �, one expects for the (1; �)-ES a residual radius R1 [1, p.186].

R1 =
�(N � 1)

2c1;�
: (95)

This result can also be obtained for r1 on the ridge functions. By multiplying the third expression in (94) with
1=d

1=d
and

taking the limit d!1, one obtains for (94)

d!1 : 0 =
p
r21 + �2(N � 1)� r1 � �c1;�

p
"(r1): (96)

Under the condition r1 � �
p
N � 1, i.e. �

p
N � 1=r1 ! 0, one �nds for (81)

�
p
N � 1=r1 ! 0 ) "(r1)! 1 (97)

and the square root can be expanded in a Taylor series leading to

p
r21 + �2(N � 1)� r1 = r1

s
1 +

�2(N � 1)

r21
� r1 =

�2(N � 1)

2r1
+ : : : : (98)

Substituting the results (98) in (96) and resolving for r1 gives �nally (considering (95))

d!1 : r1 =
�(N � 1)

2c1;�
= R1: (99)

The asymptotic r1 value does not depend on d. This is in agreement with the numerical results displayed in Figure 9

as horizontal dashed lines.

The d ! 0 asymptotic concerns the case where the nonlinear term in the ridge function (2), (8) appears as a

\disturbance" on a hyperplane �tness landscape. Therefore, one can expect a more \hyperplane-like" behavior, e.g.

r1 � R1 ) R1

r1
! 0. That is, again one can assume (98) and the validity of "(r1)! 1, leading with (94) to

1

r1

�(N � 1)

2c1;�
=

R1
r1

=
d�r��1

1q
1 + (d�r��1

1 )2
: (100)

The right hand side can only take values between 0 and 1. From (99) we know that 1 corresponds to d!1. Therefore,

d! 0 might correspond to zero. Furthermore, assuming d�r��1
1 � 1 leads to R1=r1 ! d�r��1

1 in (100), i.e.

d! 0 ^ d�r��1
1 � 1 :

�(N � 1)

2c1;�
= d�r�1; (101)

and consequently r1 = �

p
R1=d� with R1 = �(N � 1)=2c1;�. It is important to realize here that this asymptotic

behavior for d! 0 still depends on �, because d�r��1
1 � 1 must be ful�lled. Inserting the r1 formula in the condition

d�r��1
1 � 1 leads to R1 � (d�)�1=(��1) or alternatively d� 1=�R��1

1 . Thus, one �nally gets

or
d� 1

�R
��1
1

� � 2c1;�

(N�1)
��1
p
d�

9=
; : r1 =

�

r
R1
d�

; with R1 =
�(N � 1)

2c1;�
: (102)

As one can see, this asymptotic holds for su�ciently small d (given a �xed �) and for su�ciently small mutation strengths

� (given �xed d), respectively.4 Taking the logarithm in (102), one obtains log r1 = 1
�
log R1

�
� 1

�
log d. That is, the

logarithm of r1 is a linear decreasing function of the logarithm of d. Its slope is 1=�. In Figure 9, these asymptotic

curves are indicated by dotted lines.

While there is no analytical solution to (94) in general, the case � = 1 can be treated under the condition "(r1)! 1

and the case � = 2 by additionally taking (98) into account. For the sharp ridge one gets from (94) with "(r1) = 1

� = 1 :
p
r21 + �2(N � 1) = r1 +

d�c1;�p
1 + d2

: (103)

4Conversely, Eq. (99) is also valid for constant d < 1 and su�ciently large �, as can be easily veri�ed by considering the asymptotic
behavior of (100) for d = const:, � !1.



After squaring this equation and resolving for r1 one obtains using the de�nition of R1 (95)

� = 1 : r1 = R1

r
1 +

1

d2

 
1� d2

1 + d2

c21;�

N � 1

!
: (104)

Since usually c21;� � N does hold, the second term in the parentheses can be neglected.

As to the parabolic ridge (� = 2), one starts from (94) with "(r1) = 1 and (98) and substitutes (95) yielding

� = 2 : 2dR1 =
(2dr1)2p
1 + (2dr1)2

: (105)

Using the substitutions y := (2dr1)2 and a := 2dR1 leads to the quadratic equation y2 � a2y � a2 = 0. Its formal

(positive) root reads

y = a2

 
1

2
+

1

2

r
1 +

4

a2

!
: (106)

After back-substitution one gets

� = 2 : r1 = R1

vuut1

2
+

1

2

s
1 +

1

(dR1)2
: (107)

The case � = 3 leads to a third order equation, its analytical solution is omitted here. Generally, the cases � 6= 1, 2, 3

must be handled by numerical root �nding techniques.

B.2 On the transient time behavior

The dynamical process of reaching the r1 value is described by Eq. (88). Again, its analytical solution is excluded.

However, for the � = 1 case one can approximately calculate the number of generations g needed to reach a certain

vicinity �r1 of the steady state. Furthermore, it will be possible to provide a lower bound for the general case.

In order to calculate the number of generations needed to reach a certain r = �r1, Eq. (88) is approximated by a

di�erential equation such that r(g+1) � r(g) = dr
dg

+ : : : . Assuming "(r) = 1 and using the approximation (98), one thus

obtains (neglecting higher order terms)

dr

dg
=

�2(N � 1)

2r
� d�c1;�p

1 + d2
=:

a

r
� b: (108)

Its integration is easily carried out by separationZ rg

r0

r

a� br
dr =

Z gr

g0

gdg: (109)

Introducing the relative deviation of rg = r(g) and r0 = r(0) from the steady state r1 by �g and �0, respectively

rg = �gr1 and r0 = �0r1; (110)

one gets from (109)

gr � g0 =
h
�r

b
� a

b2
ln(a� br)

i����gr1
�0r1

: (111)

Substituting a and b by the expressions from (108) and taking (104) in terms of r1 =
�(N�1)

2c1;�

q
1 + 1

d2
into account

(second term in (104) is neglected, because c21;� � (N � 1) can be assumed), one �nally obtains

� = 1 : gr � g0 =
N � 1

2c21;�

�
1 +

1

d2

��
�(�g � �0)� ln

�
1� �g

1� �0

��
: (112)

This formula predicts the number of generations well, as one can verify by explicit numerical calculation for the experi-

mental settings in Figures 6{8 (� = 1, �0 = 0, c1;10 = 1:53388). Since �g and �0 are constants with respect to N , the



number of generations needed to reach a certain vicinity of r1 scales linearly in N . That is, the transient time gt is of

O(N).

As to the cases � 6= 1, no satisfactory approximation formula has been found up until now. However, one can easily

show that there is a lower bound on the transient time gt being of order N . To this end, we consider the di�erence

equation (88) again. Writing r instead of r(g), one successively obtains

r(g+1) � r =
p
r2 + �2(N � 1)� r � d�r��1"(r)

�c1;�p
1 + (d�r��1)2"(r)

(113)

�
p
r2 + �2(N � 1)� r � �2(N � 1)

2r

r(g+1) � r(g) � �2(N � 1)

2r(g)
: (114)

This di�erence inequality can be satis�ed by

r(g) = �
p
N � 1

p
g: (115)

To see this, insert (115) in r(g+1) � r(g)

r(g+1) � r(g) = �
p
N � 1(

p
g + 1�pg) (116)

and take
p
g + 1�pg = pg

�q
1 + 1

g
� 1
�
� pg

�
1 + 1

2g
� 1
�
= 1

2
p
g
into account

r(g+1) � r(g) � �
p
N � 1

2

1p
g
=

�2(N � 1)

2r(g)
: (117)

Actually, (115) is also the continuous time solution to the di�erential equation corresponding to (114). Therefore,

Eq. (115) represents an upper bound on r(g) for initial r = r0 < r1. This solution increases with a
p
g law. Since

r1 <1 and (114), the graph of (115) must be above the real r dynamics. That is, equating (115) with �r1 yields the

number of generations gt to reach the �r1 value by the
p
g dynamics starting from r(0) = 0

gt =
�2r21

�2(N � 1)
� �2R2

1
�2(N � 1)

=
N � 1

4c21;�
�2: (118)

Since the (115) dynamics represents an upper bound on r, (118) represents a lower bound on the transient time gt. As

one can see, this lower bound on the transient time scales with N .

Unfortunately, up to now no � and d dependent upper bound has been derived on the transient time gt. Looking at

Figures 6{8, one can conjecture that the � = 1 case might serve as a bound for the � > 1 case. If this were correct,

Eq. (112) could be applied to securely estimate the transient time gt.

B.3 The steady state progress

Reaching the vicinity of the steady state after g0 generations, the longitudinal progress (in ridge direction) is governed

by Eq. (92). Analytical expressions for the progress rate 'x(r1) are therefore of certain interest.

Because r1 � R1 (that follows immediately from (100)), the "(r) in the 'x(r) expression (58) can be assumed to be

1 (for N � 1). This leads to the steady state progress rate formula

'ss =
�c1;�q

1 + (d�r��1
1 )2

; (119)

a very simple formula already obtained by Oyman et al. [8] using a di�erent approach based on a local geometrical

model (see also [14]). Because r1 � R1, inserting r1 = R1 in (119) provides an upper bound on the steady state

progress rate

'ss �
�c1;�s

1 +

�
d�
�
�(N�1)

2c1;�

���1
�2 : (120)



One might expect that this formula can also be used as an analytical expression for the real 'ss value. Unfortunately,

a comparison with (119) using r1 obtained by numerical solution of (100) reveals considerable deviations (up to 50%).

However, (120) can be used as a guide to �nd a '-�-normalization. As �rst noticed in [8], the normalization

� > 1 : '� := d
1

��1 (N � 1)'; �� := d
1

��1 (N � 1)�

� = 1 : '� := '; �� := �

�
(121)

simpli�es (120) to

� > 1 : '� � ��c1;�r
1 + �2

�
��

2c1;�

�2(��1)
: (122)

That is, one might conjecture that by the application of (121) the in
uence of d and N on the normalized progress rate

could be removed (� 6= 1). This would reduce the numerical calculation of '(�) curves to just one curve for a given

� 6= 1 and �.5 The bene�t of such a normalization becomes clear when discussing the x dynamics described by (92).

Applying (121) to (92) gives

x(g) = x(g0) +
'�(��)

d
1

��1 (N � 1)
(g � g0): (123)

Conversely, one can calculate the number of generations G := g� g0 needed to travel a distance D := x(g) � x(g0) along

the ridge direction. Resolving (123) for G := g � g0, one obtains

G =
d

1
��1 (N � 1)

'�(��)
D: (124)

The in
uence of d and N can be directly assessed in (124), provided that '�(��) 6= f(d;N). The validity of this

conjecture will be shown in the Appendix. At this point, the special cases � = 1 and � = 2 will be presented. The

� = 1 case (sharp ridge) is a special one, because in the steady state, the progress rate does not depend on r1 (NB,

this is asymptotically correct, i.e. for N � 1, see Eq. (58) and take "(r1)! 1 into account)

� = 1 : '� =
��c1;�p
1 + d2

: (125)

For the parabolic ridge, i.e. � = 2, one �nds with (119), (107), (95), and (124)

� = 2 : '� =
��c1;�vuut1 +

(��)2

2c2
1;�

 
1 +

r
1 +

4c2
1;�

(��)2

! : (126)

Other cases than � = 1 and � = 2 can be obtained numerically. Figure 10 shows such '�(��) curves for � = 1, 1:6,

2, 3, and 4. The dots represent data points obtained by real ES runs using a (1; 10)-ES. As one can see, even for the

N = 30 case and � 6= 1 (left picture), there is a very good agreement between theory and experiment. This can be

explained by means of Figures 3{5: The steady state corresponds to the '�
r
values for which '�

r
(��0) = 0. Looking at the

related '�
x
values reveals that the operating point is in a region of the '�

x
values for which the approximations developed

are of good predictive quality. If ��0 were signi�cantly larger, as one would expect for recombinative ES for example,

'�(��) would not have such a high predictive quality.

Figure 10 shows also the in
uence of � on the shape of the '�(��) curves. While the � = 1 case shows a linearly

increasing function of ��, the parabolic ridge case (� = 2) exhibits a saturation behavior for �� ! 1, �rst discovered

in [15]. From (126) one easily obtains '�
�
�!1
���! c21;�. Obviously, the cases 1 < � < 2 lie inbetween. As to the mutation

strength, in order to have high performance, � can be chosen arbitrarily large. However, this does not hold for � > 2.

In those cases there exists an optimal �� = �̂� which maximizes the steady state progress rate. The existence of such a

performance maximum can be easily inferred from (122) by showing that for �� !1 the right hand side of (122) goes

to zero, provided that � > 2. Since '�(0) = 0 and '�(��) > 0 (0 < �� < 1), there must be a ' maximum (at least

one). Unfortunately, an analytical expression for the optimal �� or '� value cannot be derived.

5One could even go a step further and de�ne the normalization '� := '�=c2
1;�

, �� := ��=c1;�. By this, the in
uence of � would be removed.
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Fig. 10. On the steady state progress rate (longitudinal progress) of a (1; 10)-ES working with isotropic Gaussian mutations with strength
� which is kept constant during the ES run. The normalization (121) has been used. The curves are the prediction from the theory
using (58) with an R obtained from (74) by numerically solving 'r(R) = 0. The dots are from real ES runs. Each dot corresponds to

one ES experiment with a �xed mutation strength �. The ES was initialized at x(0) = O. After 5; 000 generations, progress data were
collected and averaged over a number of G generations (left picture: N = 30, G = 500; 000; right picture: N = 100, G = 100; 000). The
d parameters chosen are d = 0:2 (for � = 1 and � = 1:6), d = 0:05 (for � = 2), d = 0:01 (for � = 3), and d = 0:1 (for � = 4).

VI. Outlook

This paper has provided anN -dependent analysis of the (1; �)-ES with constant mutation strength (no self-adaptation)

on the ridge functions. Unlike the analysis in [14], [9], a simpli�ed but even more accurate approach has been found

that also allows for a treatment of the radial dynamics for di�erent �. The predictions of this approach as to the

steady state behavior of the ES, which is reached after O(N) ES generations, are very accurate. Therefore, they can

serve as performance reference when comparing this (1; �)-ES with algorithms using self-adaptation.6 Self-adaptation

is necessary in real-world applications and even in the case of the ridge family when � is unknown. Actually, the ridge

function class is a good test bed for investigations and evaluations of self-adaptation. As noticed by Herdy already in

1992, standard self-adaptation can fail on the sharp ridge: The mutation strength goes down to zero even though it

should increase or at least stay constant.

As to the ridge functions, especially to the sharp ridge, it seems that the self-adaptation mechanism rather rewards

the short term goal (reduction of the residual distance r) than the long term goal (increasing x along the ridge axis).

As long as d is not small enough, self-adaptation is deceived by the short term goal. While this behavior is not fully

understood up to now, because of lack of a respective self-adaptation theory, this paper makes a �rst step toward a deeper

understanding of those evolutionary processes. And it predicts the � values that should be expected if self-adaptation

worked optimally.

Besides the analysis of (1; �)-�-self-adaptation on the ridge function class, which should be a research task for the

future, the analysis of (�; �)-ES and recombination, e.g. the (�=�; �)-ES, must be considered further. A �rst step in

this direction has been made by Oyman et al. for the parabolic ridge. These results will be presented in a forthcoming

paper.
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Appendix: On the independence of '�(��) on d and N

In order to prove the correctness of the assumption that for � > 1 the normalization (121) yields a function '�(��) 6=
f(d;N) (within the framework of approximations used), one has to show that by applying (121) the square root in (119)

as a function of �� does not depend on d and N . To this end, the right hand side of (100) is multiplied by R��1
1 =R��1

1
and the substitution

y = r21=R2
1 (127)

is introduced. This leads to

1
p
y
=

d�(
p
y)��1q

R
�2(��1)
1 + (d�)2y��1

: (128)

6Note, self-adaptation in the algorithm of Figure 2 can be switched on by choosing � 6= 0.



By multiplication one gets the nonlinear equation

0 = y� � y��1 � 1

(d�R��1
1 )2

: (129)

Back-substitution of R1 = �(N � 1)=2c1;� and using � = ��=d
1

��1 (N � 1) yields

0 = y� � y��1 � (2c1;�)
2(��1)

�2(��)2(��1)
6= f(d;N) ) y 6= f(d;N): (130)

Therefore, one has 1=
p
y = R1=r1 6= f(d;N) and with (100)

d�r��1
1q

1 + (d�r��1
1 )2

6= f(d;N) ) d�r��1
1 6= f(d;N): (131)

Since d�r��1
1 { as a function of �� { does not depend on d andN , the ' formula obtained from (119) by the normalization

(121) must also have this property

'�(��) 6= f(d;N): (132)
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