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Abstract

It is well-known that evolutionary algorithms succeed to optimize
some functions efficiently and fail for others. Therefore, one would like
to classify fitness functions as more or less hard to optimize for evolu-
tionary algorithms. The aim of this paper is to clarify limitations and
possibilities for classifications of fitness functions from a theoretical
point of view. We distinguish two different types of classifications, de-
scriptive and analytical ones. We shortly discuss three widely known
approaches, namely the NK-model, epistasis variance, and fitness dis-
tance correlation. Furthermore, we consider another recent measure,
bit-wise epistasis introduced by Fonlupt, Robilliard, and Preux (1998).
We discuss shortcomings and counter-examples for all four measures
and use this to motivate a discussion of possibilities and limitations of
classifications of fitness functions in a broader context. and find out
its shortcomings.

1 Introduction

Evolutionary algorithms are general search heuristics that can be used for
global optimization. They are typically applied when there is not much
knowledge about the objective function and there is no time for intense in-
vestigation of the problem. This is due to the circumstance that evolutionary
algorithms are relatively simple to implement and that they are thought to
be robust. Robustness means that evolutionary algorithms show above aver-
age performance on almost any objective function whereas more specialized
optimization tools are superior on the class of objective functions they are
designed for but inferior on the whole lot of the other functions. This pop-
ular point of view is visualized in a well-known figure in Goldberg’s famous
book on genetic algorithms (Goldberg 1989) and can be found implicitly and
explicitly in many papers.

On the other hand, it is quite well-known, that averaged over all differ-
ent fitness functions, all optimization algorithms (including a pure random
walk) perform equal if one uses the number of different function evaluations
as performance measure (Wolpert and Macready 1997). It is not useful to
argue that taking only the different function evaluations into account is not
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appropriate for evolutionary algorithms. Using a dictionary, it can easily be
achieved that no point in the search space is actually sampled twice. Further-
more, sampling any point more often than once obviously cannot improve the
performance of an algorithm.

In spite of the correctness of this “no-free-lunch theorem“ (Wolpert and
Macready 1997) the result is not too interesting. It is easy to see, that
averaging over all different fitness functions does not match the situation
of black-box optimization in practice. It can even be shown that in more
realistic optimization scenarios there can be no such thing as a no-free-lunch
theorem (Droste, Jansen, and Wegener 1999).

We conclude that the classification of objective functions in order to deter-
mine whether they can be successfully optimized by (certain) evolutionary
algorithms is both, practically relevant and theoretically justified. Before
objective functions are optimized by evolutionary algorithms there usually
is some mapping to a fitness function. We omit this step that is subject
to research of itself and directly consider the optimization of fitness func-
tions. In order to simplify the task we restrict ourselves to fitness functions
f : {0, 1}n → R. We know that the optimization of functions g : R

n → R

may lead to different techniques. Already the analysis of evolutionary algo-
rithms heavily depends on the chosen representation, whether it is discrete
or continuous, see e. g. Rudolph’s analyses of evolution strategies (Rudolph
1997). But in concrete implementations on digital computers real numbers
are (in most cases implicitly)mapped to bit strings. Thus, we do not consider
our simplification to be a fundamental restriction.

We distinguish two different types of classifications, namely descriptive
and analytical ones. A descriptive classification defines a class of fitness
functions with some common property. It can be considered to be helpful
in our context if this property can be related to the difficulty of optimizing
these functions. Note, that it may be a hard problem to decide whether a
given fitness function belongs to the defined class.

An analytical classification is a kind of algorithm that takes a fitness
function as input and yields some kind of classifying attribute as output.
Typically, the output is some number, but more complex attributes may and
are also be used.

Maybe the best kind of analytical classification one could like to have is
the following. Assume we have a set of optimization algorithms {A1, . . . , An}.
Then we look for a classification algorithm that takes a fitness function as in-
put and computes the index i of the optimal algorithm Ai for f . By applying
first the classification algorithm and then the optimization algorithm Ai we
wand to reduce the time needed to optimize f . The no-free-lunch theorem
rules out that such a classification is possible for all fitness functions. In fact,
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the best that can be achieved is an improvement on a proper subclass of all
functions. Thus, it is a necessary element of such an analytical classification,
that the class of functions it works well for is defined. We see the need for a
combination of analytical and descriptive classifications here.

The problem of classification of fitness functions has already been sub-
ject to intense research, probably most often in the context of GA-hardness.
Among the most prominent hardness measures are epistasis variance (Davi-
dor 1991) and fitness distance correlation (Jones and Forrest 1995). An
overview is given by Naudts (1998). Another approach can be seen in the
NK-model (Kauffman 1993), though introduced in another context and for
other reasons. We cannot hope to solve the multitude of open problems that
are still unsolved. We thus intend to clarify and enrich the field by providing
another perspective of the problem.

In Section 2 we describe three well-known classifications and one more
recent one. In Subsection 2.1 we discuss the NK-model, a descriptive clas-
sification, which is of special interest to us. We give a very brief overview of
epistasis variance and fitness distance correlation in Subsection 2.2 and Sub-
section 2.3, respectively. Both are analytical classifications. In Subsection 2.4
we consider another quite recent approach to the classification of fitness func-
tions, namely bit-wise epistasis (Fonlupt, Robilliard, and Preux 1998), which
is an analytical classification, too. We present arguments why bit-wise epis-
tasis is not an appropriate measurement for the hardness of functions with
respect to function optimization by means of evolutionary algorithms. Then
we try to gain a broader perspective and look for fundamental restrictions
and possible directions of research in the field of fitness function classification
in Section 3. Finally, Section 4 summarizes and gives perspectives.

2 Four Different Classifications

In this section we discuss four different classifications, one descriptive and
three analytical ones. We give serious reasons why the classifications are
of limited use, only, and may be considered as not too helpful in practice.
This section is intended to clarify the common problems of classifications and
leads the way to a more constructive discussion in the following section.

2.1 The NK-model

As a first example of a classification of fitness functions we consider the
NK-model introduced by Kauffman (1993) (see Altenberg (1997b) for an
overview). Originally, it defines a kind of probabilistic class of fitness func-
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tions from {0, 1}N (where N is n in our notation) to [0, 1], with tune-
ably “ruggedness” or “epistasis”, i. e. interaction between different bits. We
present a version of the NK-model (and turn to the notation nk-model),
that fits better within the context of classification.

Definition 1. A fitness function f : {0, 1}n → R belongs to the class of nk
functions, where k ∈ {0, . . . , n− 1}, if there are n functions g1 : {0, 1}k+1 →
R, . . . , gn : {0, 1}k+1 → R, and n sets I1 = {i1,1, . . . , i1,k}, . . . , In =
{in,1, . . . , in,k}, such that

f(x) = g1

(
x1, xi1,1 , . . . , xi1,k

)
+ · · ·+ gn

(
xn, xin,1, . . . , xin,k

)
for all x = x1x2 · · · xn ∈ {0, 1}n. The fitness function f is called adjacent nk
function, if additionally I1 = {2, 3, . . . , 1+k mod n}, . . . , In = {1, 2, . . . , k}
holds.

Obviously, the nk-model defines a partition of the class of all fitness
functions into sets Sk of functions that are nk functions but not n(k − 1)
functions. The idea is, that the parameter k defines the degree of interaction
between different bits that is allowed. For k = 0 no interaction is permitted.
Such functions are called bit-wise separable (or linear) and can be optimized
easily by many algorithms (see e. g. Droste, Jansen, and Wegener (1998c)
for the expected running time of a simple evolutionary algorithm on the
class of linear functions). Furthermore, for k = n − 1 difficult functions like
the class of “needle in a haystack” functions (that is {fa|a ∈ {0, 1}n} with
fa(a) = 1 and fa(x) = 0 for x �= a) are included, that require exponential
computational effort for all optimization algorithms.

But the classes with intermediate k cause some problems. For the mo-
ment, we leave the field of evolutionary algorithms and take a look at the
nk-model from a complexity theoretical point of view. Then we look for
upper resp. lower bounds on the computational effort that is sufficient resp.
needed to optimize a nk function. It is easy to see that even for k = 2 opti-
mizing such a function is NP-hard (Thompson and Wright 1996). In fact, it
can be reduced to the NP-hard MAX-2-SAT problem (for an introduction see
Garey and Johnson (1979)). For k = 1 a polynomial algorithm can be found
(Thompson and Wright 1996). Things change dramatically, if we consider
adjacent nk functions. In this case, using a dynamic programming approach
(see Cormen, Leiserson, and Rivest (1990) for an introduction) leads to an
optimization algorithm with running time O (2kn

)
, which is polynomial for

k = O (logn) (Weinberger 1996).
For evolutionary algorithms no results are proven for general k. Experi-

ments show little difference for the two cases of the adjacent nk functions as
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well as the ones with arbitrary neighborhood (Kauffman 1993). Weinberger
(1996) computes the correlation between pairs of fitness in the two different
versions of the nk-model and finds only little difference, too.

As general nk functions are NP-hard for k ≥ 2, there is no hope that
they are appropriate for partitioning the class of all fitness functions accord-
ing to their difficulty for evolutionary algorithms. For adjacent nk functions
things may be different. But as empirical experiences suggest that for evolu-
tionary algorithms there is little difference between the two models, we may
speculate that adjacent nk-models do not deliver a useful partition, either.
Furthermore, a recent paper of Naudts and Kallel (1999) demonstrates in
an empirical way that already the class of adjacent n1 functions contains
functions that can be of extremely different difficulty to a (standard) genetic
algorithm.

2.2 Epistasis variance

Epistasis variance is introduced by Davidor (1991) as a simple statistic for
measuring the hardness of a function. It gives a measure of the amount of
nonlinearity that can be found. It is formally given by

ε =

√√√√√√2−n
∑

x∈{0,1}n


f(x)− 21−n

n∑
i=1

∑
y∈{0,1}n
yi=xi

f(y) +
n − 1

2n

∑
y∈{0,1}n

f(y)




2

(Naudts, Suys, and Verschoren 1997) and is obviously an analytical classifi-
cation. Note, that the computation of the exact value takes Ω (2n) steps in
general. Naudts, Suys, and Verschoren define a normalized epistasis value
and remark that the maximal value is obtained by so called “camel func-
tions”. These functions are constant for all points in the search space except
for one point s and its bitwise complement s, which are the global maxima.
Obviously, these functions are almost as hard to optimize as the “needle in a
haystack” functions discussed above. Let as consider the instance of Camel
with s = 0, the all zero bit string (so the complement is 1, the all one string),
and the two different function values 0 and 1. Then we have∑

y∈{0,1}n

Camel(y) = 2,

and for all x ∈ {0, 1}n

∑
y∈{0,1}n

yi=xi

Camel(y) =

{
1 if x ∈ {0, 1},
2 otherwise.
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This leads to

εCamel =

((
2

(
1−

(
n

(
1

2n−1
− 1

2n−1

)
+

1

2n−1

))2

+(2n − 2)

(
0−

(
n

(
2

2n−1
− 1

2n−1

)
+

1

2n−1

))2
)

2−n

)1/2

=

√√√√(2

(
1− 1

2n−1

)2

+ (2n − 2)

(
−n + 1

2n−1

)2
)

2−n

for the epistasis variance of Camel. We do not care about the size of this
value here, but compare it with the epistasis variance of another function
denoted as Camel. In particular consider the instance of Camel with
Camel(0) = Camel(1) = 0 and Camel(x) = 1 for x /∈ {0, 1}. Obvi-
ously, Camel is extremely simple to maximize for any reasonable algorithm.
But we have ∑

y∈{0,1}n

Camel(y) = 2n − 2

and for all x ∈ {0, 1}n

∑
y∈{0,1}n
yi=xi

Camel(y) =

{
2n−1 − 1 if x ∈ {0, 1},
2n−1 − 2 otherwise,

leading to

εCamel =

((
2

(
0−

(
n

(
1− 1

2n−1
− 1 +

1

2n−1

)
+ 1− 1

2n−1

))2

+(2n − 2)

(
1−

(
n

(
1− 2

2n−1
− 1 +

1

2n−1

)

+1− 1

2n−1

))2
)

2−n

)1/2

=

√√√√(2

(
1− 1

2n−1

)2

+ (2n − 2)

(
n + 1

2n−1

)2
)

2−n

We conclude, that epistasis variance may associate exactly the same value
to extremely simple and extremely difficult functions.
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2.3 Fitness distance correlation

Fitness distance correlation is introduced by Jones and Forrest (1995) as an
alternative analytical measure of search difficulty. It is based on the idea of a
“fitness landscape” where the points in the search space together with their
fitness form a kind of landscape in the following sense: there is a weighted
neighborhood relationship defined in the search space and we interpret each
point’s fitness as its height (Jones 1995). We assume that we are maximizing,
so one is looking for a point with maximal height. To establish a meaning-
ful relationship between the optimization problem at hand and the fitness
landscape, it is necessary that the neighborhood relationship depends on the
algorithm used. However, often simply Hamming distance is employed for
the definition of the fitness landscape.

Fitness distance correlation measures the extent to which high fitness
values correlate with small distance to a global optimum. If F = {f1, . . . , fk}
is the set of fitness values and D = {d1, . . . , dk} the corresponding distances
to the nearest global optimum, let f denote the mean of F , d the mean of D
over all x ∈ {0, 1}n. Let sF and sD denote the standard deviation of F and
D. Let cFD with

cFD = k−1

k∑
i=1

(
fi − f

) (
di − d

)
be the covariance of F and D. Then, the fitness distance correlation r is
formally defined as

r =
cFD

sF · sD
.

Again, the computational effort for the computation of the exact value
is Ω (2n). Though it is reported by Jones and Forrest (1995) that fitness
distance correlation correctly classifies the hardness of many functions, it is
well-known that there are counterexamples. Altenberg (1997a) constructs a
function that is easy to optimize but shows no relationship between Hamming
distance from the global optimum and fitness. Quick, Rayward-Smith, and
Smith (1998) present a class of functions with the same property and the
advantage to be well-structured and thus understandable. Formally, the
ridge function is defined by

Ridge(x) =

{
n + 1 + ||x||1 if ∃i ∈ {0, 1, . . . , n} : x = 1i0n−i,
n − ||x||1 otherwise,

where ||x||1 denotes the number of ones in x and 1i0n−i is the bit string of
length n with first i consecutive ones followed by n − i consecutive zeros.
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The global optimum of Ridge is 1, the all one string, where we have
Ridge(1) = 2n + 1. But for all 2n string except for the n + 1 strings of
the form 1i0n−i higher fitness values are correlated with fewer ones in the
string. Thus, as fitness distance correlation averages over all 2n strings, the
correlation is very small indicating a very difficult function. Nevertheless,
Ridge is fairly easy to optimize. We consider a simple hill climber to see
that. Obviously, the all zero string 0 is easy to find. Then, a path of length
n that can be easily followed leads to the global optimum: there is always
exactly one string with Hamming distance 1 to the current string x that has
better function value than x. Any reasonable hill climber finds this string in
O (n) steps. So, after O (n2) steps the global optimum is reached.

2.4 Bit-wise epistasis

Another quite recent attempt of a classification of fitness functions is the
introduction of bit-wise epistasis as measurement of the problem difficulty
by Fonlupt, Robilliard, and Preux (1998). The basis of this measurement is
the epistasis, i. e. the interaction between different bits, like for nk-models.
Like epistasis it is an analytical classification.

Definition 2. The bit-wise epistasis is defined for a bit i, where 1 ≤ i ≤ n,
and a fitness function f : {0, 1}n → R. Let Σi ⊆ {0, 1, ∗}n be the set of all
schemata, such that for all x = b1b2 · · · bn ∈ Σi we have bi = ∗ and bj ∈ {0, 1}
for j �= i. Obviously, we have |Σi| = 2n−1. For x ∈ Σi we define x0 ∈ {0, 1}n

as the bit string that is obtained by replacing the “ ∗” at the i-th position in
x by a 0. Analogously x1 is defined as x with a 1 at the i-th position. Then,
bit-wise epistasis σ2

i for bit i is given by

σ2
i := 21−n

∑
x∈Σi

(
21−n

(∑
y∈Σi

f (y0)− f (y1)

)
− (f (x0)− f (x1))

)2

.

We present two classes of functions and one special function that we use
to exemplify the inherent problems of this new difficulty measure. The first
class of functions {fa : {0, 1}n → R | a ∈ {0, 1}n} consists of the already
mentioned “needle in a haystack” functions with fa(a) = 1 and fa(x) = 0 for
x �= a. The second class of functions {gk : {0, 1}n → R | k ∈ N} is defined
by gk(x) := k ·∏n

i=1 xi and is simply a variant of f11···1. Finally, the function
LeadingOnes : {0, 1}n → R is defined by

LeadingOnes(x) :=
n∑

i=1

i∏
j=1

xj
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and simply counts the number of leading ones in x.
The computation of the precise bit-wise epistasis for an objective function

f is extremely computationally expensive, in general. All 2n function values
of f have to be known for that. It follows, that in practice one has to use an
estimation of the bit-wise epistasis that is based on a polynomially bounded
number of function evaluations. Before we discuss this difficulty in some
more detail we consider the bit-wise epistasis of fa to demonstrate that even
the knowledge of the exact bit-wise epistasis is not necessarily too helpful
when one wants to determine a global optimum.

Due to the definition of fa the exact values of the bit-wise epistasis can
be easily determined. For all i with 1 ≤ i ≤ n we have

σ2
i =

1

2n−1

∑
x∈Σi

(
fa (x1)− 1

2n−1

)2

=
1

2n−1
− 1

22n−2
.

We recognize, that the values σ2
i are equal for all i and do not depend on

a so that no information about the global optimum a can be won from the
exact values of the bit-wise epistasis.

For gk the bit-wise epistasis σ2
i can be determined analogously. We have

σ2
i =

1

2n−1

∑
x∈Σi

(
gk (x1)− 1

2n−1

)2

=
(2n−1 − 1) · k2

23n−3
+

1− 2n + 22n−2

22n−2
.

Obviously, all σ2
i grow with k. Since k may take any value in N, the bit-wise

epistasis may grow arbitrarily large.
For practical purposes the bit-wise epistasis is computed by choosing for

each position i a polynomial number p(n) of schemata from Σi. There is
only one schema x ∈ Σi that yields the all one string for x1. Therefore, with
probability ρ = (1 − 2−(n−1))n·p(n) the estimated bit-wise epistasis is 0 for
each i. Obviously, we have limn→∞ ρ = 1, so with gk we have functions for
which almost surely the difference between the estimated bit-wise epistasis
and the exact values can be arbitrarily large.

The functions fa and gk have in common that they are all very difficult to
optimize. The expected number of function evaluations before the optimum
is found is exponential for fa; the same holds for a generalized version of gk

where the bit string with optimal function value k is not the same for all
functions. So, one may want to argue that for more practical, i. e. less hard
functions the bit-wise epistasis may well be a valuable measure of problem
difficulty and—what is more important—may be a valuable tool to speed up
optimization. Fonlupt, Robilliard, and Preux (1998) suggest that bits with
higher bit-wise epistasis are mutated with a higher probability than bits with
lower bit-wise epistasis.
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We consider the bit-wise epistasis of LeadingOnes, which is not hard
to compute, to investigate this idea. We consider σ2

i and distinguish two
cases concerning the bit strings in x ∈ Σi. If there is at least one zero
in x, let j be the position of the leftmost zero in x. If j < i holds, we
have LeadingOnes(x0) − LeadingOnes(x1) = 0. If j > i holds, we have
LeadingOnes(x0)−LeadingOnes(x1) = (i−1)−(j−1) = i−j. In the sec-
ond case, x does not contain any zero at all and we have LeadingOnes(x0)−
LeadingOnes(x1) = (i − 1) − n. This leads us directly to

σ2
i =

1

2n−1

∑
x∈Σi

(
1

2n−1

(
i − 1− n +

n∑
j=i+1

2n−j(i − j)

)

− (LeadingOnes(x0)− LeadingOnes(x1))

)2

= 21−n


(21−n

(
i − 1− n +

n∑
j=i+1

2n−j (i− j)

)
− (i− 1− n)

)2

+
n∑

k=i+1

2n−k

(
21−n

(
i− 1− n +

n∑
j=i+1

2n−j(i − j)

)
− i + k

)2

 .

For i = n we get

σ2
n = 2−n+1

(
2−n+1 − 1

)2
= O (2−n

)
.

For i = 1 a lengthy by straightforward calculation shows that

σ2
1 = 2 + 2−n+1 − n2−n+2 − 2−2n+2 = Ω(1)

holds. Fonlupt, Robilliard, and Preux (1998) suggest that the mutation
probabilities of the single bits are chosen proportionally to the bit-wise epis-
tasis. For LeadingOnes this implies that the last bit gets an exponen-
tially small mutation probability, immediately implying exponentially large
expected running times. We like to mention that LeadingOnes is in fact
quite easy to optimize. Rudolph (1997) proves that the well-known (1 + 1)
evolutionary algorithm optimizes it in expected time O (n2); indeed the ex-
pected running time of this simple EA is Θ (n2) (Droste, Jansen, and Wegener
1998b). But even increasing the mutation probability for the leading bits in
a less dramatic way is apparently not too clever an idea. It implies that the
probability for a successful mutation is decreased so that overall the expected
running time is increased.

We see that bit-wise epistasis is a measurement for the difficulty of ob-
jective functions that is at least problematic. Namely we proved
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(1) that knowing the exact values of the bit-wise epistasis may be of no
help at all for finding an optimum,

(2) that the estimates that have to be used in practice may be arbitrarily
bad with high probability, and

(3) that even an heuristic use of bit-wise epistasis for adjusting mutation
probabilities may be of no help.

It is not excluded that in practice bit-wise epistasis may turn out to be a
helpful tool in some cases. But it is definitely not the ultimate answer to the
question how the difficulty of objective functions can be measured and more
sound arguments in favor of its usefulness have still to be found.

3 Limits and Perspectives of Fitness Func-

tion Classification

The previous section, in particular the work of Fonlupt, Robilliard, and Preux
(1998) can be seen as a motivation for this section. They present a new way
to measure the difficulty of a function with respect to optimization by evo-
lutionary algorithms. As we have shown in the previous section, there are
serious reasons to doubt the usefulness of this measure. The same holds
for the other measures considered. They all may deliver wrong predictions.
Obviously, it is not sensible to continue presenting new ways of function clas-
sifications while leaving the task of proving that the presented classifications
are inappropriate in some way to other researchers. Therefore, we try to clar-
ify the task of classifying functions and gain a hopefully helpful perspective
from a theoretical point of view.

In the context of optimization with evolutionary algorithms usually the
underlying optimization scenario is that of black-box optimization. It there-
fore seems reasonable to perform the task of classification of fitness functions
in a black-box scenario, too. In this case there is no hope to find a measure,
that allows us to distinguish between very simple and very difficult functions
with polynomially bounded computational effort and acceptable probability
in all cases. In order to distinguish between a constant function and a “nee-
dle in a haystack” function fa one has to sample the point a. But, if, for
a polynomial p, at most p(n) points in the search space are sampled, the
probability of finding a is

1− (1− 2−n
)p(n) ≤ 2p(n)

2n
= 2−Ω(n) ,
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so with probability 1 − 2−Ω(n) we fail to distinguish fa, which is hard to
optimize, from a trivially optimized constant function.

As Heckendorn and Whitley (1999) point out, things may change, if we
assume that the fitness function is given as a mathematical expression, e. g., a
polynomial. But it is obvious that the optimization of polynomials of degree
2 is NP-hard (as MAX-2-SAT can be coded that way). Furthermore, for
a simple EA, Droste, Jansen, and Wegener (1998a) prove in a more direct
way that already polynomials of degree 2 can be very hard to optimize.
Therefore, the question remains unanswered how from the representation of
a fitness function as mathematical expression a useful classification can be
extracted.

One may ask whether concentrating on concrete, maybe simplified, al-
gorithms enables us to find a helpful classification of the set of all fitness
functions with respect to this chosen algorithm. Though this cannot in gen-
eral be ruled out, there are well-known examples that make a success of this
approach for interesting algorithms unlikely. Local search is a well-known,
simple general search heuristic, that is e. g. employed in simulated annealing
(Kirkpatrick, Gelatt, and Vecchi 1983). We consider only such local search
heuristics and optimization problems, that it is easy to decide whether a
local optimum is reached. It is a natural question to ask which local opti-
mum will be reached by the considered local search heuristic if started in
some given point in the search space. It is known that answering this ques-
tion is NP-hard (Johnson, Papadimitriou, and Yannakakis 1988), in fact it is
PSPACE-complete (Papadimitriou, Schäffer, and Yannakakis 1990). We see,
that even for local search deciding whether the global optimum is reached at
all can be PSPACE-complete. Doing this for some evolutionary algorithm is
probably too ambitious.

We recognize that solving the problem of classifying fitness functions in
a black-box scenario is not possible when restricted to measurements with
polynomially bounded computational effort. Furthermore, there are good
reasons to believe that restricting the interest to some specific evolutionary
algorithm does not simplify this task significantly. So, we are left with the
question what can be achieved at all. We try to characterize three different
ways, where fruitful research seems possible.

We know that in practice it is not possible to distinguish between a con-
stant and a “needle in a haystack” function. This is due to their extreme
“closeness”, i. e. the two functions differ at only one point in the search space.
If two functions differ at substantially more points, then there is a not too
small probability to distinguish between them by random sampling. This ap-
proach has similarities to learning theory, we refer to an article on property
testing by Goldreich, Goldwasser, and Ron (1998) for an introduction and
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interesting examples. It is an important open question how property testing
can be related to the classification of fitness functions. What is needed are
sets of fitness functions, such that two functions of different sets are in a
well-defined sense far from each other, and that all functions of one set are
of similar difficulty with respect to optimization by evolutionary algorithms.
An interesting approach that can be seen as a kind of classification in this
sense is presented by Garnier and Kallel (1999). There, estimates are given
for the number of random starting points for local search that are needed
in order to find all local maxima of a given function. For certain classes of
functions tight estimates are derived. But furthermore, the practically more
relevant inverse situation is investigated, too. For an unknown function the
number of local optima is estimated by the application of random sampling,
local search, and the confidence level is estimated using a statistical test. We
remark that the problem of guaranteeing a reasonable running time is left
open as the running time of the local search is not bounded.

Another approach is the identification of more or less natural classes
of fitness functions that have similar difficulty. This means constructing
a purely descriptive classification. If functions from such a class can be
expected to occur in practice, this approach leads to valuable knowledge.
We mention linear functions as a successful example (Droste, Jansen, and
Wegener 1998c). As a negative example we mention unimodal functions, that
can be of highly differing difficulty (Droste, Jansen, and Wegener 1998b).

The third possible way in which one may hope to gain a deeper under-
standing of evolutionary algorithms is the perhaps least ambitious one. It is
the analysis of concrete, maybe simplified, evolutionary algorithms on con-
crete fitness functions. There are many examples for this kind of research,
we name (Droste, Jansen, and Wegener 1998c; Garnier, Kallel, and Schoe-
nauer 1999; Rudolph 1997) as examples. Though it may seem that such an
approach is quite far away from the classification of fitness functions, this
is not necessarily the case. An in-depth analysis of a concrete evolutionary
algorithm provides us with insights in the principle working of the different
search operators evolutionary algorithms employ. Finding good examples,
functions that paradigmatically show successes and failures of an EA, can
enable us to formulate more general circumstances under which such algo-
rithms will succeed or fail. Proven results may serve as a more solid ground
for an understanding of when and why evolutionary algorithms should be
applied. And this is what is the aim of the classification of fitness functions,
after all.
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4 Conclusions

It is clear by now that there are serious limitations to what can be achieved by
a classification of fitness function. An efficient, overall improving and perfect
classification scheme cannot exist. Nevertheless, there are partial successes
in the field and we speculate that more is possible.

We summarize what we learned by reviewing four existing classifications.
There are two different ways to approach the problem of classification of fit-
ness functions, a descriptive and an analytical one. Though there are funda-
mental differences between the two approaches, there are strong connections
between them. A descriptive classification is a valuable piece of knowledge,
since it tells us what functions share common properties that are relevant to
the task of optimization. In order to become practically relevant, a method
is needed that allows us to find out whether a given function belongs to the
defined class. We see that a kind of analytical classification is needed, that
allows to efficiently determine whether a given function belongs to a specific
class.

On the other hand, an analytical classification alone cannot be a useful
tool in all situations. Either it needs exponential running time to classify
some functions or wrong predictions will be drawn. In Section 2 we discussed
examples that prove that all the analytical classifications we considered can
lead to wrong predictions even when given exponential time. Of course, all
example functions used are purely artificial and may be seen as “pathological
cases”. But as long as an analytical classification is not accompanied by a
definition of the classes of functions, i. e., a descriptive classification, such
“pathological” examples are allowed.
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