
On the Analysis of
Self-Adaptive Evolutionary Algorithms

Hans-Georg Beyer Kalyanmoy Deb
Systems Analysis Group Kanpur Genetic Algorithms Laboratory (KanGAL)

Department of Computer Science XI Department of Mechanical Engineering

University of Dortmund Indian Institute of Technology Kanpur
44221 Dortmund, Germany Kanpur, PIN 208 016, India

beyer@zappa.cs.uni-dortmund.de deb@iitk.ac.in

Technical Report No. CI-69/99
May 1999

Department of Computer Science/XI
University of Dortmund

44221 Dortmund, Germany

Abstract

Due to the
exibility in adapting to di�erent �tness landscapes, self-adaptive evolutionary algorithms (SA-EAs) have
been gaining popularity in the recent past. In this paper, we postulate the properties that SA-EA operators should have for
successful applications. Speci�cally, population mean and variance of a number of SA-EA operators, such as various real-
parameter crossover operators and self-adaptive evolution strategies, are calculated for this purpose. In every case, simulation
results are shown to verify the theoretical calculations. The postulations and population variance calculations explain why
self-adaptiveGAs and ESs have shown similar performance in the past and also suggest appropriate strategy parameter values
which must be chosen while applying and comparing di�erent SA-EAs.

Keywords

Self-adaptation, Population mean, Population variance, Evolution strategies, Genetic algorithms, Simulated binary
crossover, Blend crossover operator, Fuzzy recombination operator

I. Introduction

Among the evolutionary algorithms (EAs), explicit studies on self-adaptation have been made only with
evolution strategies (ESs) [1] and evolutionary programming (EP) [2]. Self-adaptive evolutionary algorithms
(SA-EAs) use operators which are adaptive in some sense|either the strategy parameters controlling the
extent of search are evolved [1] or are updated based on statistics gathered from past generations [3]. Since
the operators are
exible, they have been shown to adapt to a variety of �tness landscapes better than EAs
which do not use speci�c self-adaptive operators. For example, when a population is located in the basin
of attraction of an optimum, SA-EAs have been shown to converge to the optimum exponentially quickly.
They have also been shown to adapt to changing �tness landscapes, that is, self-adaptive EAs have been
found to quickly get out of the current optimum and proceed towards the new optimum, as and when the
�tness landscape changes. If initialized away from the optimum, SA-EAs have also shown to diversify its

population exponentially faster to reach near the optimum.
Recently, the self-adaptive feature of a number of real-parameter GAs is also demonstrated on similar

�tness landscapes [4], [5], [6]. Unlike evolving or calculating the strategy parameters, these GAs use
crossover operators which create children solutions proportional to the di�erence in parent solutions. Since
children population is controlled indirectly by the spread of parent population, convergence, divergence, or
adapting to changing �tness landscapes are possible to achieve. These crossover operators create one or
two children solutions according to a probability distribution over two or more parent solutions. The most
popular approach has been to use a uniform probability distribution (Blend crossover (BLX) suggested
in [7]) around a region bracketing the parent solutions. There exists at least three di�erent approaches
where a non-uniform probability distribution has been suggested. Of them, the simulated binary crossover
(SBX) uses a bimodal probability distribution with its mode at the parent solutions [8]. This is similar
to fuzzy recombination operator (FR) which also uses a bimodal distribution, but the distribution around
each parent is always triangular [6]. Ono and Kobayashi [9] suggested a unimodal normally distributed
crossover (UNDX) operator which uses an ellipsoidal probability distribution around three parents to create
a child solution.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46902629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The authors [10] and Kita [5] have shown earlier that SBX and UNDX operators can provide real-
parameter GAs self-adaptive power similar to that of self-adaptive ESs on a number of problems. The
former study by the authors has drawn a connection between the working principle of real-parameter GAs
with SBX and isotropic self-adaptive ESs. GAs with SBX uses a probability distribution which is controlled
adaptively in proportion to the di�erence in parent solutions, whereas a self-adaptive ES uses a probability
distribution of similar nature but is controlled by explicit mutation strength parameters which are also
evolved along with decision variables. Although this connection was not made any more rigorous, it was
felt that there exists a much deeper connection between the working of real-parameter GAs with SBX and
other similar crossover operators and self-adaptive ESs. In this paper, we attempt to make the connection
between their workings more rigorous by calculating the mean and variance of resulting children population
from that of the parent population. We support our arguments by performing simulations on a number of
test problems.
In the remainder of the paper, we present some postulates on the behavior of self-adaptive EAs on a

number of �tness landscapes. Thereafter, we compute the properties of three crossover operators (BLX,
SBX, and FR) and self-adaptive ESs. Theoretical calculations of their behaviors are veri�ed with simulation
results. Although the implementation of these EAs are di�erent, the analysis shows that underlying working
principle of them are very similar, if appropriate characteristic parameters are chosen for each operator.

II. Some Postulates on the Behavior of Self-Adaptive Evolutionary Algorithms

In the discussions here, we consider an evolutionary algorithm having two major operators|reproduction
and variation (in the usual EAs, this refers to recombination and mutation operators). In our argument, the
sequence of their operations is not important. Under the reproduction operation, a population of � solutions
is expected to loose some not-so-good solutions, only to make duplicates of some good solutions. Although
it may not be true in general for any arbitrary �tness landscape and for any reproduction operator, this
process of deleting some solutions and making duplicates of some other solutions have an e�ect of reducing
the variance of population. That is, the variance of population in the search space after the reproduction
operation is, in most situations, smaller than that before the reproduction operation. This is particularly
true for unimodal or linear �tness landscapes. For multi-modal �tness landscapes, this may not be true
always, particularly when the solutions near the population mean are bad solutions. Although the variance
may increase in these cases after the reproduction operation, it is important to note that the maximum
spread1 of the population does not increase due to the reproduction operation. This is because no new
solution is created in the reproduction operation.
Based on this observation on reproduction operation, we now postulate some desired properties of vari-

ation operators.

A. Postulates on population mean

The purpose of a variation operator is to use the parent population formed after the reproduction
operation to create a children population. Although it is not absolutely necessary, most GA variation
operators do not use any �tness information, instead partial information between a pair of parents are
exchanged. It is argued in the literature [11] that the purpose of the reproduction operation is to exploit

the search space by emphasizing good solutions and the purpose of the variation operator is to explore the
search space. If both operators use �tness information, there may be too much emphasis of exploitation
and resulting GAs may have properties of premature convergence. Since an ideal variation operator may
not use the �tness information, we may postulate the following:
Proposition 1: Under a variation operator, the expected population mean should remain unchanged.
Standard crossover operators used in binary-coded GAs preserve this property. We shall prove it for the

single-point crossover operator on a pair of parent strings representing a discrete search space. Let us say
a and b are two parent Boolean vectors in f0; 1g`. Let us also assume that the crossing over takes place at
the k-th site. The mean of the parents is given by:

�x =

`�1X
i=0

2i (ai + bi) =2: (1)

After crossover, the decoded value of the children solutions y1 and y2 are as follows:

y1 =

kX
i=0

2iai +

`�1X
i=k+1

2ibi; (2)

1The maximum distance between any two solutions.

y2 =

kX
i=0

2ibi +

`�1X
i=k+1

2iai: (3)

The mean of children solutions is �y = 0:5(y1+y2). Substituting y1 and y2 terms from above two equations,
one observes that �y = �x. Thus, the mean of a pair of parent solutions after the single-point crossover is
the same as the mean of resulting pair of children solutions. It is also obvious that the above property
is true for multi-point crossover and uniform crossover operators. Avoiding the sampling issue of a �nite
population, it can also be argued that the expected population mean of a parent population is the same
as the expected population mean of the children population.
Standard mutation operators in EAs do not use �tness information, instead use a zero-mean probability

distribution to create a mutated child. Thus, the expected population mean is not expected to change
under a standard mutation operator.
The proposition also makes sense intuitively. Since the variation operator, in general, does not use �tness

information, there is no reason for it to shift the parent population mean in any direction in the search
space. It is the task of the reproduction operator to lead the population in an appropriate direction in
the search space. The best the variation operator can do is to keep the population mean invariant, but
increase or reduce the spread (or variance) of the resulting population. In the following subsection, we
describe postulates for increasing or decreasing population variance under a variation operator.

B. Postulates on population variance

It is argued earlier that depending on the �tness landscape and the position of the parent population,
the population variance may decrease or increase after the reproduction operation. Thus, to avoid any
premature convergence or stagnation, the population after variation operation must adjust its variance
accordingly, so as to keep the overall population variance to be of reasonable value from generation to
generation. Particularly, if the reproduction operator reduces the variance of population, the variation
operator must increase the variance of population, and vice versa. In the following, we consider postulates
for a few �tness landscapes.
1. Flat �tness landscapes:
Proposition 2: The expected population variance �2[y] should exponentially increase2 with generation num-
ber g.
For the de�nition of �2[y], see Section III-B, Eq. (22). Although not totally obvious, the intention here is
leave the region of constancy as fast as possible, simply because there is no selection preference for any part
of the search space. We would like to mention that this postulation is di�erent from that in Ostermeier
[12, p. 18], who suggests a zero drift in a similar situation.
2. Linear �tness landscapes (hyperplane):
Proposition 3: The expected population variance �2[y] should exponentially increase with g.
Here, the reason is clear. Linear �tness landscapes divide the search space into two subspaces separated
by a hyperplane. Considering isotropic (Gaussian) mutations, on average each second mutation (starting
from a parental point) yields an improvement independent of the mutation strength used. However, the
larger the mutations the larger the expected improvement. Therefore, the mutation strength and the
population variance, respectively, should increase over the generations. The same argument can be made
for a recombination operator. Instead of the above postulate on population variance, one can postulate

that the distance traveled into the optimum direction by the parents should increase exponentially in order
to reach near the optimum quickly.
3. Unimodal �tness landscapes:
If the parent population brackets the optimum, a controlled reduction in population variance by the
variation operator is desired. Whereas, if the parent population lies in one side of the optimum, the situation
is similar to that in the linear �tness landscape and the variation operator should increase the population
variance in order to reach near the optimum quickly. In an arbitrary problem, the latter is more common
and therefore it is better to use a variation operator which increases the population variance. It may be
worthwhile to mention here that a popular bracketing algorithm in the classical optimization explicitly
uses a strategy of approaching exponentially faster towards the optimum [13] in unimodal problems.
4. Multi-modal �tness landscapes:
The increase or decrease of population variance should largely depend on the �tness landscape and place-
ment of the parent population. We argue that even in these cases, a generic strategy would be to use

2Exponential increase may regarded as a strong form of SA. As a weak variant one might postulate expected monotonous
increase.

a variation operator which increases the population variance and then introduce an adequate selection
pressure by the reproduction operator to exploit the children population. We believe that this strategy has
a better global perspective than using variation operators which would reduce the population variance.
5. Moving target problems (time dependent optimum) and rapidly changing �tness landscapes:
In both cases it may be of importance to increase the mutation strength/population variance after a period
of shrinking. Therefore, the algorithms should have the ability to increase the variance. A simple way to
ensure such a behavior is to implement a certain bias toward an increase of the population variance.
It is important to note that the above postulations should locally hold for each coordinate direction

independently. That is, although the overall �tness function may not be
at with respect to all coordinate
directions but is selectively neutral with respect to some coordinate directions, the postulation for the
at
�tness landscape case should hold for those coordinate directions:

8 � 2 [��l; �u] : f(y1; : : : ; yk; : : : ; yN) = f(y1; : : : ; yk + �; : : : ; yN) (4)

or which are linearly separable (the linear �tness landscape case):

8 � 2 [��l; �u] : f(y1; : : : ; �yk; : : : ; yN) = f(y1; : : : ; yk; : : : ; yN) + �fk: (5)

The postulations should also hold for each arbitrary direction v (kvk = 1) in the search space. For example,
the postulation for the
at �tness landscape should locally hold (with respect to a given parental state y)
for each direction v obeying

8 � 2 [��l; �u] : f(y + �v) = f(y)) v
Trf = 0 (6)

and for the linear �tness landscape

8 � 2 [��l; �u] : f(y + �v) = f(y) + �fv = f(y) + �vTrf: (7)

Note that Eq. (6) can be regarded as a special case of (7).

C. Behavior of SA-EAs on standard test �tness landscapes

Before we begin analysis of the real-parameter crossover operators, we would like to mention a number
of test �tness landscapes where self-adaptive EAs have been largely applied.
1. A SA-EA should yield linear convergence order on sphere models, that is, one expects linearly falling
curves of the logarithm of the residual distance of the population mean to the optimum (in the search
space) with the number of generations, or mathematically

R(g) = R(0) exp(�ag); (8)

where a is the rate of decrease of logR. This is what has been observed in self-adaptive ESs (For example,
see [14]) and it seems reasonable to demand a similar behavior for other SA-EAs in unbounded search
spaces. The e�ciency of a SA-EA depends on how large the exponent a is. On sphere �tness function,
there exist theoretical estimates of the parameter a for di�erent self-adaptive ESs [15].
2. A SA-EA is expected to yield a linear divergence order on ridge models, where the optimum lies at
in�nity along a ridge axis. It has been shown experimentally that if the ridge axis coincides with a
coordinate axis, a linear order of the following type:

r(g) = r(0) exp(ag); (9)

where r(g) is a measure of distance traveled along the ridge axis by the population from a �xed point on
the ridge at generation g. is possible to achieve with SA-EAs [10], whereas if the ridge axis is any arbitrary
non-coordinate direction, a constant order is observed:

r(g) = r(0) + ag; (10)

It is to be mentioned here that the performance behavior (10) violates our Proposition 3 postulated for
functions obeying Eq. (7). It is an open question whether there exist SA-EAs that use parental population
information only (that is, no further history), but exhibit an exponential behavior such like Eq. (9).
3. Besides these two extreme cases of convergence and divergence properties that a SA-EA should exhibit,
they should also be able to adapt to a number of di�erent landscapes [14], [10]:

Elliptic landscapes: Unlike in the sphere model, the emphasis of each coordinate direction is unequal in
the �tness function. In these functions, a SA-EA is also expected to exhibit a linear order convergence.
Time-varying �tness landscapes: The �tness function changes when an EA population has converged suf-
�ciently near the current optimum. This also tests a SA-EA's ability to �nd the optimum even when the
initialization is done away from the optimum.
Fitness landscapes with non-zero correlations among variables: This tests an SA-EA's ability to adapt to
�tness landscapes which are not linearly separable as functions of decision variables. Because of the non-
zero correlations among the variables, a linear order convergence towards the optimummay be harder, but
is desirable from a SA-EA. To this class of functions, the rotated versions of the elliptic landscapes and of
the ridge functions belong.
Multi-modal �tness landscapes: A SA-EA should be able to avoid local optima and converge to the global
optimum. After an initial transient of �nding the global optimum, a linear order convergence is expected
with a SA-EA.
Although the above are a few �tness landscapes where SA-EAs have been popularly tested, there may

exist other landscapes which would test di�erent adapting abilities of a SA-EA. We recognize the need of
a more thorough study on test �tness landscape development for SA-EA, but we do not belabor it here.
Instead, we focus our attention to analyze variation operators of a number of EAs and suggest when will
each exhibit adequate self-adaptive properties. Because of the relative ease of doing the calculations, we
�rst analyze the operators for
at �tness landscapes and later discuss or analyze the operators for linear
and uni-modal �tness landscapes.

III. Analysis of Crossover Operators for Real-coded GAs in flat fitness landscapes

In this section, we analyze a number of crossover operators used in real-coded GAs. Speci�cally, the
mean and variance of the children population are derived from the known distribution parameters of the
parent population. These calculations will build up the basis for the determination of the dynamic behavior
of the GAs considered. The theoretical predictions will be compared with simulations thereafter.

A. Recombination operators of a special type

Recombination in GAs is mainly inspired by the crossing over observed in nature. The standard procedure
of recombination takes two parents and generates two o�spring3. Since o�spring are produced in pairs, we
have �=2 pairs (that is, � even is assumed) those individuals will be numbered by 1 and 2 and by an index
counter k running from 1 to �=2.
The recombination operator proposed by Deb and Agrawal [8], called simulated binary crossover (SBX),

is de�ned as: �
y1;k :=

1
2
[(1 � �k)x1;k + (1 + �k)x2;k]

y2;k :=
1
2
[(1 + �k)x1;k + (1 � �k)x2;k] :

(11)

Here, x1;k and x2;k are independent samples from the parental population and �k is a sample from a
random number generator having the density

p(�) :=

�
1
2
(� + 1)�� ; if 0 � � � 1

1
2
(� + 1) 1

��+2
; if � > 1:

(12)

This distribution can easily be obtained froma uniformu(0; 1) random number source by the transformation

SBX : �(u) :=

(
(2u)

1
�+1 ; if u(0; 1) � 1

2

[2(1� u)]�
1

�+1 ; if u(0; 1) > 1
2
:

(13)

Note, the analysis to be performed is not restricted to the distribution (12). In addition we will inves-
tigate the BLX operator of Eshelman and Scha�er [7] and the so-called \fuzzy recombination" by Voigt,
M�uhlenbein, and Cvetkovi�c [6].
First, BLX is considered. By using the transformation

� = 2� � 1 (14)

3From the algorithmic point of view, one might also consider operators producing only one child, as usual in Evolutions
Strategies (see Section V).

applied to Eq. (11), one obtains�
y1;k := (1 � �k) x1;k + �k x2;k
y2;k := �k x1;k + (1� �k) x2;k

(15)

Now, choosing � uniformly from [��; 1 + �], we arrive at Eshelman's and Scha�er's [7] blend crossover
BLX-�

BLX-� : � := u[��; 1 + �]: (16)

The FR operator (fuzzy recombination) proposed by Voigt et al. [6] is similar to the SBX de�ned by
(12) in the sense that it puts emphasize on the parental states: The probability density of the o�spring
yi is maximal at the parental xi. That is, the density of � in (11) has its maximum at � = 1. The only
di�erence between SBX and FR is in the shape of p(�). The shape of FR is just a triangle giving rise to
call this recombination type \fuzzy". Using random numbers � obeying the triangular distribution density
p4(�)

p4(�) :=

�
� + 1; if �1 � � < 0
1� �; if 0 � � � 1;

(17)

the � value to be used in (11) is obtained by the transformation

\Fuzzy" recombination (FR) : � = 1 + 2�d: (18)

Here, d is a strategy parameter similar to � in (16). It determines how far o�spring can be located from the
parents. The random number � with triangle distribution (17) can be obtained by the standard method of
inversion, or more easily, as the sum of two independent uniformly distributed random numbers u(0; 1)

� := u1 + u2 � 1: (19)

It is important to mention here that the above crossover operators can be considered as a hybrid of a
(�=2; �)-ES type `intermediate' crossover operator followed by a perturbation operator { very similar to a
mutation operator { whose variance depends on the di�erence in the parent solutions. This is obvious if
we rewrite the �rst equation of (11) as follows:

y1;k := (x1;k + x2;k)=2 + �k(x2;k � x1;k)=2: (20)

The distribution of the perturbation operator takes the shape of the distribution of �. For SBX and
FR, this distribution has a non-zero mean and a mode (maximum) at � = 1, whereas for BLX, this
distribution has a zero mean but is uniform within a certain interval. We argue that a variation operator
which either uses directly the di�erence in parent solutions or uses an explicit evolution of a strategy
parameter controlling the spread of children solutions (as in self-adaptive ESs) is essential for the resulting
EA to exhibit self-adaptation. For optimum performance, it is then a matter of choosing the appropriate
characteristic parameter of the underlying variation operator.

B. De�nition of the variance measure

The crossover operator picks two individuals (considering only one component from the vectors) from
the parental generation (g) and produces two o�spring for generation (g+1). For notational simplicity, let
us denote an individual component by x := x(g) and the o�spring by y := x(g+1). The population variance
of the o�spring is de�ned as [16]

Varfyg :=
1

�

�X
m=1

(ym � hyi)2: (21)

Here the subscript m is the individual counter running from one to the population size � and hyi is the
average (center of mass) individual. It is the aim of this section to calculate the expected value of Varfyg,
that is,

�2[y] := E[Varfyg] = Varfyg; NB: E[z] � z; (22)

depending on the expected parental population variance, denoted by �2[x] which is by de�nition

�2[x] := E[(x� x)2] = x2 � x2: (23)

C. Calculation of the population average hyi

The population average is given by

hyi :=
1

�

�X
m=1

ym: (24)

Since the crossover operator produces two o�spring by (11) one can re-arrange (24) to

hyi :=
1

�

�=2X
k=1

(y1;k + y2;k): (25)

If one inserts (11) into (25) one easily obtains

hyi :=
1

�

�=2X
k=1

(x1;k + x2;k) =
1

�

�X
m=1

xm: (26)

Here it was taken into account that the x1;k, x2;k are independent samples from the parental population
and the xm is just a renumbering of the individuals. Thus, the crossover operator preserves the population
mean of the parental population. As discussed earlier, this behavior is considered as a desired property of
crossover operators. Note, according to (11), for crossover operators (that is, producing two individuals)
this also holds for each o�spring pair produced independent of the distribution of the random variate �
used. However, this does not necessarily hold for the expectation of a single o�spring. In the latter case,
it depends on the p(�) density.

D. Calculation of the population variance

Starting from de�nition (21) one can alternatively write

Varfyg :=
1

�

�X
m=1

(ym � hyi)2 =
1

�

�=2X
k=1

�
(y1;k � hyi)

2 + (y2;k � hyi)2
�
: (27)

As one can see, taking (11) and (26) into account, the Varfyg consists of a sum over xi;kxj;l products. Since
the �nal goal is to calculate �2[y], the expected value is to be determined. This transfers to the calculation
of the expected values of xi;kxj;l. Since the sampling process copies the individuals at random from the
parental pool to the crossover operator, all xi;k are independent and identically distributed. Therefore one
has

xi;kxj;l :=

�
x2; if i = k = j = l
x2; otherwise

(28)

where x and x2 are the �rst and second order moments, respectively, of the parental population distribution.
It is now the aim to re-arrange (27) in such a way that products xi;kxj;l which i = k = j = l are separated
from the rest. To this end we consider the kth sum terms in (27). Using Eq. (11) and (26) one gets

y1;k � hyi =

�
1

2
�
�k
2

�
x1;k +

�
1

2
+
�k
2

�
x2;k �

1

�

�=2X
l=1

(x1;l + x2;l)

=

�
1

2
�

1

�
�
�k
2

�
x1;k +

�
1

2
�

1

�
+
�k
2

�
x2;k �

1

�

�=2X
l6=k

(x1;l + x2;l) (29)

and

y2;k � hyi =

�
1

2
�

1

�
+
�k
2

�
x1;k +

�
1

2
�

1

�
�
�k
2

�
x2;k �

1

�

�=2X
l6=k

(x1;l + x2;l): (30)

Taking the square yields

(y1;k � hyi)2 =

�
1

2
�

1

�
�
�k
2

�2

x21;k +

�
1

2
�

1

�
+
�k
2

�2

x22;k +
1

�2

0
@�=2X

l6=k

(x1;l + x2;l)

1
A

2

+2

"�
1

2
�

1

�

�2

�
�2k
4

#
x1;kx2;k � 2

�
1

2
�

1

�
�
�k

2

�
x1;k

1

�

�=2X
l6=k

(x1;l + x2;l)

�2

�
1

2
�

1

�
+
�k

2

�
x2;k

1

�

�=2X
l6=k

(x1;l + x2;l) (31)

and

(y2;k � hyi)2 =

�
1

2
�

1

�
+
�k

2

�2

x21;k +

�
1

2
�

1

�
�
�k

2

�2

x22;k +
1

�2

0
@�=2X

l6=k

(x1;l + x2;l)

1
A

2

+2

"�
1

2
�

1

�

�2

�
�2k
4

#
x1;kx2;k � 2

�
1

2
�

1

�
+
�k
2

�
x1;k

1

�

�=2X
l6=k

(x1;l + x2;l)

�2

�
1

2
�

1

�
�
�k

2

�
x2;k

1

�

�=2X
l6=k

(x1;l + x2;l): (32)

Putting (31) and (32) together, one obtains

(y1;k � hyi)2 + (y2;k � hyi)
2

= 2

"�
1

2
�

1

�

�2

+
�2k
4

#
(x21;k + x22;k) +

2

�2

0
@�=2X

l6=k

(x1;l + x2;l)

1
A

2

+4

"�
1

2
�

1

�

�2

�
�2k
4

#
x1;kx2;k � 4

�
1

2
�

1

�

�
x1;k

1

�

�=2X
l6=k

(x1;l + x2;l)

�4

�
1

2
�

1

�

�
x2;k

1

�

�=2X
l 6=k

(x1;l + x2;l) (33)

In order to proceed, we calculate the (� � �)2 term in the second line of (33)

0
@�=2X

l6=k

(x1;l + x2;l)

1
A

2

=

�=2X
l 6=k

�=2X
m6=k

(x1;l + x2;l)(x1;m + x2;m)

=

�=2X
l 6=k

�=2X
m6=k

x1;lx1;m + x1;lx2;m + x2;lx1;m + x2;lx2;m

=

�=2X
l 6=k

�=2X
m6=k

(x1;lx1;m + x2;lx2;m) +

�=2X
l6=k

�=2X
m 6=k

x1;lx2;m +

�=2X
l6=k

�=2X
m6=k

x1;mx2;l

=

�=2X
l 6=k

�=2X
m6=k

(x1;lx1;m + x2;lx2;m) + 2

�=2X
l6=k

�=2X
m6=k

x1;lx2;m

=

�=2X
l 6=k

(x21;l + x22;l) +

�=2X
l6=k

�=2X
m 6=l

(x1;lx1;m + x2;lx2;m) + 2

�=2X
l 6=k

�=2X
m6=k

x1;lx2;m: (34)

Inserting this into (33) gives

(y1;k � hyi)
2 + (y2;k � hyi)2

= 2

"�
1

2
�

1

�

�2

+
�2k
4

#
(x21;k + x22;k) +

2

�2

�=2X
l 6=k

(x21;l + x22;l)

+4

"�
1

2
�

1

�

�2

�
�2k
4

#
x1;kx2;k � 4

�
1

2
�

1

�

�
1

�

�=2X
l6=k

(x1;kx1;l + x1;kx2;l + x2;kx1;l + x2;kx2;l)

+
2

�2

�=2X
l 6=k

�=2X
m 6=l

(x1;lx1;m + x2;lx2;m) +
4

�2

�=2X
l6=k

�=2X
m 6=k

x1;lx2;m: (35)

In order to calculate (22), the expectation of the bracket in (27) must be determined. Using (35) and (28)
one obtains

E
�
(y1;k � hyi)2 + (y2;k � hyi)

2
�

=

"
4

�
1

2
�

1

�

�2

+ �2k

#
x2 +

4

�2
x2

�=2X
l6=k

1

+

"
4

�
1

2
�

1

�

�2

� �2k

#
x2 � 4

�
1

2
�

1

�

�
1

�
x2

�=2X
l6=k

(1 + 1 + 1 + 1)

+
2

�2
x2

�=2X
l6=k

�=2X
m 6=l

(1 + 1) +
4

�2
x2

�=2X
l 6=k

�=2X
m6=k

1: (36)

Collecting all x2 and x2 terms yields a remarkably simple result

E
�
(y1;k � hyi)

2 + (y2;k � hyi)2
�

=

"
�2k + 4

�
1

2
�

1

�

�2

+
��
2
� 1
� 4

�2

#
x2

�

"
�2k � 4

�
1

2
�

1

�

�2

+ 16

�
1

2
�

1

�

�
1

�

��
2
� 1
�
�

4

�2

��
2
� 1
���

2
� 2
�
�

4

�2

��
2
� 1
�2#

x2

=

�
1�

2

�
+ �2k

��
x2 � x2

�
: (37)

After back-substitution in (22) taking (27) into account one obtains

�2[y] =
1

�

�=2X
k=1

E
�
(y1;k � hyi)

2 + (y2;k � hyi)
2
�

=
1

�

�=2X
k=1

�
1�

2

�
+ �2k

��
x2 � x2

�

=
1

�

�

2

�
1�

2

�
+ �2k

��
x2 � x2

�
: (38)

Since the �k are samples from the same distribution, we write �2k = �2; furthermore (23) is taken into
account. Thus, we �nally arrive at the evolution equation of the expected population variance

�2 (g+1) =
1

2

�
1�

2

�
+ �2

�
�2 (g): (39)

Its solution by recurrence leads to the equation of expected variance dynamics

�2[y](g) = �2[y](0)

1

2
�

1

�
+
�2

2

!g

; (40)

that is, one observes an exponential change of the population variance. Collapsing or exploding of the
population is thus determined by � and �2. The latter will be determined for some typical crossover
operators below.

E. Typical Crossover Operators

The evolution equation (38) contains the �2 which depends on the random number distribution used.
By de�nition, we have

�2 =

Z
�2p(�)d�: (41)

For SBX and BLX the standard way of generating � is via transformation from the uniform variate
u = u(0; 1) one can alternatively write

�2 =

Z u=1

u=0

(�(u))2du: (42)

As to FR, Eq. (17) has to be used in order to calculate �2

�2 =

Z �=1

�=�1

(�(�))2p4(�)d�: (43)

E.1 SBX-�

The SBX uses a random number distribution according to (13). The calculation of the second moment
�2 is straightforward. Using (42) one has with (13)

�2 =

Z u=1=2

u=0

(2u)
2

�+1 du+

Z u=1

u=1=2

[2(1� u)]�
2

�+1 du: (44)

After substitution s := 2u and t := 2(1� u) for the �rst and the second integral, respectively, one ends up
with the following equation for � 6= 1:

�2 =
1

2

"
1

1 + 2
�+1

s(1+
2

�+1)

#1
0

+
1

2

"
1

1� 2
�+1

t(1�
2

�+1)

#1
0

(45)

which gives for � > 1

�2 =
1

2

�
� + 1

� + 1 + 2
+

� + 1

� + 1� 2

�
; (46)

and �nally

�2 =
(� + 1)2

(� + 3)(� � 1)
: (47)

The case � � 1 is not covered by the above equation. From Eq. (45), one immediately obtains �2 ! 1,
that is, the second moment does not exist. In practice, however, the evolution of variance is restricted by
the �nite number representation of a computer.
Eq. (47) leads with (40) to the variance dynamics of the SBX operator for � > 1

�2[y](g) = �2[y](0)
�
1 +

2

(� + 3)(� � 1)
�

1

�

�g
: (48)

As one can see, depending on the choice of �, the expected population can increase or contract for a given
population size �. Eq. (48) can also be used to determine the minimal population size given a �xed �.
Since variance increase is the desired behavior (see Proposition 2 in Section II-B), the terms in the large

parenthesis of (48) must be greater than 1. Therefore, one obtains by simple calculation

population size: � >
1

2
(� + 3)(� � 1): (49)

E.2 BLX-�

Starting from Eq. (41) taking (16), that is, p(�) = 1=(1 + 2�), and (14) into account, one obtains the
integral

�2 =
1

1+ 2�

Z �=1+�

�=��

(2� � 1)2d�

=
1

1+ 2�

Z �=1+�

�=��

(4�2 � 4� + 1)d�

=
1

1+ 2�

�
4

3
�3 � 2�2 + �

�1+�
��

: (50)

After some simple calculations one gets the result

�2 =
1

3
(2�+ 1)2: (51)

Thus we get with (39) the evolution equation

�2[y](g) = �2[y](0)
�
1 +

1

3
(2�2 + 2�� 1)�

1

�

�g
: (52)

Again, the contraction/expansion of the population depends on the choice of �. E.g., � = 0 (BLX-0.0)
leads immediately to a contracting population, no matter how � is chosen.
In [7] Eshelman and Scha�er suggested to use � = 1=2 (BLX-0.5) because: \Only when � = 0:5 does

the probability that an o�spring will lie outside its parents become equal to the probability that it will
lie between its parents." Furthermore they inferred [7, p. 193]: \In other words, � = 0:5 balances the
convergent and divergent tendencies in the absence of selection pressure." Thought their former statement
is correct, the latter one is wrong. As one can easily see from Eq. (52) for � = 1=2, the variance ratio
becomes

BLX-0.5:
�2 (g+1)

�2 (g)
=

7

6
�

1

�
: (53)

That is, depending on � the population converges or diverges. A simple calculation yields:

BLX-0.5 divergence: � > 6; (54)

that is, only for � = 6 convergent and divergent tendencies are balanced by BLX-0.5. This result is valid
for GAs with random sampling, where the parents chosen for crossover are drawn at random from the
parental pool of size �. The CHC-GA of Eshelman [17] uses a more sophisticated selection technique in
order to prevent incest. Even in this case, there still remains a random sampling component producing
similar results for the �2 dynamics. Furthermore, even a �ctitious algorithm without diversity loss, as in
the case of in�nite population size �, does not con�rm the claim of [7]. However, the real variance evolution
of CHC remains still to be analyzed.
Since it is postulated for self-adaptation to have a diverging population in
at �tness landscapes (see

Proposition 2 in Section II-B), we may ask how to choose � given a �xed population size �. Divergence is
obviously ful�lled if the large parenthesis in (52) is greater than 1. Resolving for � one obtains

� >

p
3 + 6=�� 1

2
: (55)

Similar to (49) one can ask for the minimal population size. By the criterion �2[y](g) > �2[y](0) applied to
(52) one �nds

population size: � >
3

2�+ 2�2 � 1
: (56)

E.3 FR-d (fuzzy recombination)

In case of fuzzy recombination, the calculation of �2 starts from (43) using (17) and (18)

�2 =

Z �=0

�=�1

(1 + 2�d)2(� + 1)d� +

Z �=1

�=0

(1 + 2�d)2(1� �)d�: (57)

The integration can be carried out easily. One �nally obtains

�2 = 1 +
2

3
d2: (58)

This yields with (40) the variance dynamics of the FR operator

�2[y](g) = �2[y](0)
�
1 +

1

3
d2 �

1

�

�g
: (59)

We can now determine the minimum population size by demanding �2[y](g) > �2[y](0) for
at �tness
landscapes. One immediately gets

population size: � >
3

d2
: (60)

In [6, p. 106] Voigt et al. suggested d � 1=2 and as a rule of thumb to use d = 1=2. As one can see from
(60) the case d = 1=2 requires � > 12. From the viewpoint of variance evolution in
at �tness landscapes,

there is no reason to postulate d � 1=2. However, � must scale quadratically with the decrease of d.
Interestingly, Voigt et al. realized that there is a critical population size (which they have called N� in [6,
p. 107]) below which the GA does not work appropriately: \It depends om [should read `on'] I, n and �."
However, they did not realize that this population size depends also on d.

F. Some simulation examples

Figure 1 compares the formula of the population variance dynamics with simulations on the SBX op-
erator. Figure 2 shows results for the BLX operator. Figure 3 displays simulations for the \fuzzy" re-
combination operator. As one can see, each of these operators can exhibit exponentially increasing as

0.1

1

10

100

1000

10000

100000

10 20 30 40 50 60 70 80

sq
rt

(V
ar

[y
])

g

"10_eta=2.dat"
SBX(g, 10, 2, 1)
"10_eta=5.dat"

SBX(g, 10, 5, 1)

1

10

100

1000

10000

100000

1e+06

1e+07

10 20 30 40 50 60 70 80

sq
rt

(V
ar

[y
])

g

"300_eta=2.dat"
SBX(g, 300, 2, sqrt(21))

"300_eta=10.dat"
SBX(g, 300, 10, sqrt(21))

Fig. 1. Evolution of the square root of the expected population variance for the SBX operator. Left picture: population
size 10 with � = 2 (upper curve) and � = 5 (lower curve). Right picture: population size 300 with � = 2 (upper curve)
and � = 10 (lower curve). The simulation results have been obtained by averaging over 100 (pop-size = 300) and 3000
(pop-size = 10), respectively, independent runs.

well as decreasing population variance, depending on the choice of corresponding characteristic parameter
value (�, �, or d, respectively). The deviation of the simulation from the theoretical predictions are due
to cumulation of statistical errors.

IV. Simulation Results on Sphere Model

The above calculations on population variance on
at �tness allow us to investigate if GAs with di�erent
crossover operators but having similar variance property have similar performance on the sphere model.

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70 80

sq
rt

(V
ar

[y
])

g

"blx_0.0_60.dat"
BLX(g,60,0.0,1.0)

"blx_0.0_4.dat"
BLX(g,4,0.0,1.0)

0.001

0.01

0.1

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80

sq
rt

(V
ar

[y
])

g

"blx_0.5_60.dat"
BLX(g,60,0.5,1.0)

"blx_0.5_4.dat"
BLX(g,4,0.5,1.0)

Fig. 2. Evolution of the square root of the expected population variance for the BLX operator. Left picture: BLX-0.0 for
population size 60 (upper curve) and 4 (lower curve). Right picture: BLX-0.5 for population size 60 (upper curve) and
4 (lower curve). The simulation results have been obtained by averaging over 100 (pop-size = 60) and 2000 (pop-size =
4), respectively, independent runs.

0.1

1

10

100

0 10 20 30 40 50 60 70 80

sq
rt

(V
ar

[y
])

g

"fuz_0.5_60.dat"
FUZ(g,60,0.5,1.0)

"fuz_0.5_8.dat"
FUZ(g,8,0.5,1.0)

1

10

100

1000

0 10 20 30 40 50 60 70 80

sq
rt

(V
ar

[y
])

g

"fuz_0.7_60.dat"
FUZ(g,60,0.7,1.0)

"fuz_0.7_8.dat"
FUZ(g,8,0.7,1.0)

Fig. 3. Evolution of the square root of the expected population variance for the fuzzy recombination operator. Left picture:
d = 0:5 for population size 60 (upper curve) and 8 (lower curve). Right picture: d = 0:7 for population size 60 (upper
curve) and 8 (lower curve). The simulation results have been obtained by averaging over 100 (pop-size = 60) and 3000
(pop-size = 8), respectively, independent runs.

We realize that ideally population variance under a complete GA cycle (reproduction and variation) must
be made on sphere model to compare the performances of di�erent GAs. But, such an analysis is certainly
di�cult, although may not be intractable. In any case, the above calculations provide some guidelines for
GAs with di�erent crossover implementations to be compared in any �tness landscape.
Equating the variance terms (Eqs. (48), (52), and (59)) for the
at �tness case, we obtain the parameter

values for three crossover operators, given in Table I.
In the experimental results, we use a 20-dimensional sphere function. Along with the respective crossover

operators, we use a binary tournament selection and no mutation. A population size of 100 is chosen. We
have initialized the population at xi 2 [�5; 5]. For three crossover operators, we choose the parameter
setting, presented in the �rst row of Table I, although they are calculated for
at �tness landscapes.
Figure 4 shows the distance of the best solution in the population from the optimum for all three crossover
operators (averaged over 10 independent runs). It is clear from the plot that GAs with all three crossover
operators have more or less similar performance. This is also demonstrated in Figure 5, which plots the
standard deviation in the arbitrarily chosen variable x10.

TABLE I

Parameter values for identical population variance growth in three crossover operators.

SBX BLX FR
� � d

2 0.662 1.095
3 0.500 0.707
5 0.419 0.433
10 0.381 0.226

1e-20

1e-10

1

1e+10

0 200 400 600 800 1000

B
es

t R

Generation Number

SBX (eta=2)
BLX (alpha=0.662)

FR (d=1.095)
Modified ES (tau=0.57)

Fig. 4. Population best distance from the optimum. The
curve labeled `Modi�ed ES' is described in Section VI.

1e-20

1e-10

1

1e+10

0 200 400 600 800 1000

S
ta

nd
ar

d
D

ev
ia

tio
n

in
 x

_1
0

Generation Number

SBX (eta=2)
BLX (alpha=0.662)

FR (d=1.095)
Modified ES (tau=0.57)

Fig. 5. Standard deviation in x10. The curve labeled
`Modi�ed ES' is described in Section VI.

V. Analysis of self-adaptive ES in flat fitness landscapes

A. Mutation and recombination operators

The standard ES algorithm using isotropic Gaussian mutations has the following update rule

8 l = 1; : : : ; � :

(
�
(g+1)

l := Reco�(�
(g)

1;�; : : : ; �
(g)

�;�) � ��

y
(g+1)

l := Recoy(y
(g)

1;�; : : : ;y
(g)

�;�) + �
(g+1)

l
~N (0; 1):

(61)

The parents are selected by truncation, that is, taking the � best (as to their �tness) out of the � o�spring

from the previous generation, denoted by �
(g)

m;� and y
(g)

m;�, respectively.
Since we are interested in the
at �tness landscape behavior, the evolution of the strategy parameter

�(g) is decoupled from the evolution of the object parameters. That is, the population variance of a single
object parameter entry yi := (y)i after selection is given by (writing y = yi)

�2[y](g+1) = E
h
Var

n
Recoy(y

(g)

1;�; : : : ;y
(g)

�;�)
oi

+ E
h
�2 (g+1)

i
: (62)

This follows immediately from the second line in (61). The population variance is the sum of the (inde-

pendent) population variances after recombination and mutation.
The recombinational variance depends on the way how recombination is performed. Usually, in ESs �

parental individuals contribute to the procreation of one o�spring individual (called recombinant, for an
introduction, see e.g. [18, p. 83]). This is in contrast to standard crossover in GAs. In this paper we will
restrict our analysis to � = � multi-recombination often used in applications. We will consider intermediate
and dominant recombination as well.
If there is (�=�I)-intermediate recombination, the center of mass of all � parents is calculated. Therefore,

there is no variance at all, since all recombinants are the same. However, if dominant (�=�D) recombination
is considered, a random sampling is performed: Given the expected parental population variance �2[y](g),
the variance of the recombinants becomes (1� 1=�)�2[y](g) [16]. Thus, we have

E
h
Var

n
Recoy(y

(g)

1;�; : : : ;y
(g)

�;�)
oi

=

(
0; if (�=�I ; �)-ES�

1� 1
�

�
�2[y](g); if (�=�D; �)-ES:

(63)

Other recombination variants might be considered, however, it is quite clear that for standard ES recom-
bination techniques

0 � E
h
Var

n
Recoy(y

(g)

1;�; : : : ;y
(g)

�;�)
oi

� �2[y](g) (64)

holds, that is, the variance can only reduce or remains unchanged by the recombination operator. The
main contribution to the population variance, however, is given by the mutations, those standard deviation
is computed in the �rst line of (61).
There are di�erent ways to perform the recombination and mutation on the strategy parameters. The

usual way of recombination is the intermediate (�=�I) one, resulting in an average recombinant individual.
This is accomplished by calculating the arithmetic mean of the � parental � values

intermediate (�=�I)-recombination: Reco�I :=
1

�

�X
m=1

�
(g)

m;� =: �(g+1)rI
: (65)

Alternatively one can use the geometric mean

geometric (�=�G)-recombination: Reco�G := �

vuut �Y
m=1

�
(g)

m;� =: �(g+1)rG
: (66)

Usually the former (65) is the standard way of recombining the mutation strength. Interestingly, the
dominant (or discrete) recombination often used for object parameters has proved to be not suited for

strategy parameters. Therefore, it will be not considered here. Alternatively, the geometric version (66)
has been suggested by Hansen [19]. He claims that geometric recombination is a \drift-free" operator in
contrast to intermediate (arithmetic) (�=�I)-recombination. The latter should exhibit a systematic drift
toward larger � values. As we will see below, this statement of Hansen [19, p. 29] is not correct.
The change of the mutation strength � is done by multiplicative mutations denoted by �� in the �rst

line of (61). This operator can be realized in di�erent ways, e.g.

�� := exp(�); (67)

with a random variate �. The most prominent version uses N (0; �2) normally distributed random numbers
� [20]

�LN := �N (0; 1): (68)

That is, � is log-normally distributed and the mutation operator (67) is called the log-normal operator.
Besides other mutation rules discussed in [15], the symmetric two-point rule is often used [21, p. 47]. The
symmetric version reads

�TP :=

�
+"; if u[0; 1] � 1

2

�"; if u[0; 1] > 1
2

; " > 0: (69)

Therefore, �TP yields e" and e�" with the same probability 1=2. Note, usually this rule is rewritten by the
substitution � := e" in terms of

�TP :=

�
�; if u[0; 1] � 1

2

1=�; if u[0; 1] > 1
2
:

(70)

B. Calculation of the population variance

The recursive equation of the population variance can be derived from (62). Since the �rst term in
(62) is given by (63), the calculation of E[�2 (g+1)] remains to be done. Here, it is important to realize
that due to the selection neutrality in
at �tness landscapes, the �rst line in (61) is decoupled from the
second line. That is, the � evolution is fully determined by the �rst line in (61). Therefore it su�ces to
calculate the expected variance produced by the recombination operator in the �rst line of (61). This will
be done in the next two points; furthermore we will see that the evolution of the expected �r (r stands

for the recombinant) and �2r is di�erent, that is, �
2 (g)
r 6= �

(g)
r

2

. After that, the calculation of the expected
population variance �2[y](g) will be performed.

B.1 Determining �r

In order to calculate the expected value of the strategy parameter � after recombination in the �rst line

of (61), denoted by �r, we have to take (67) into account. The �
(g)

m;� are generated according to the �rst
line in (61), (65), and (66), respectively, that is, the � value of the lth o�spring is obtained as

�
(g)

l := �(g)r e�
(g)

l : (71)

Since selection does not prefer any instantiation of (71), the recombination result using � individuals
becomes

intermediate (�=�I)-recombination: �(g+1)rI
:=

1

�

�X
m=1

�(g)rI
e�

(g)
m (72)

and

geometric (�=�G)-recombination: �(g+1)rG
:= �

vuut �Y
m=1

�
(g)
rG e

�
(g)
m : (73)

Determining the expected value taking the statistical independence into account, one gets for the (�=�I)
version

�
(g+1)
rI = �

(g)
rI

1

�

�X
m=1

e�
(g)
m = �

(g)
rI e� (74)

and for the geometric recombination

�
(g+1)
rG = �

(g)
rG E

"
�Y

m=1

exp

�
(g)
m

�

!#
= �

(g)
rG

�
e�=�

��
: (75)

The expectations e� and e�=� can be easily calculated for the log-normal and the two-point case (for a

summary, see Table III). Since the expectation of the log-normal variate exp(
N (0; 1)) = exp(
2=2), we
have

log-normal mutation: e�LN = e�
2=2 and e�LN=� = e�

2=2�2 : (76)

For the symmetric two-point rule (69) we immediately �nd

two-point mutation: e�TP =
1

2
(e" + e�") = cosh(") and e�TP =� = cosh("=�): (77)

From Eqn. (74/75) one can easily derive the evolution equations, that is, the g-dynamics of �r. By iteration
one immediately obtains the results displayed in Table II. As one can see, as long as j� j > 0 and j"j > 0,

TABLE II

Dynamics of the expected value of � after recombination. �
(0)
r is the initial value of mutation strength.

(�=�I)-recombination (�=�G)-recombination

log-normal rule �
(g)
r = �

(0)
r exp

�
�2

2
g

�
�
(g)
r = �

(0)
r exp

�
�2

2�
g

�

two-point rule �
(g)
r = �

(0)
r [cosh(")]g �

(g)
r = �

(0)
r

�
cosh

�
"

�

���g

respectively, the expected value of � increases exponentially with g. This is a bit astonishing for geometric
recombination, because according to Hansen [19, p. 29], geometric recombination should be \drift-free" in
contrast to the standard intermediate one. As we see here, the type of recombination does not introduce
any drift. The drift comes from the mutation operators. Both the log-normal and the symmetric two-point
rule are biased toward a � increase, because both the expected values (76) and (77) are greater than one.
Looking at (74) and (75), however, we see that the averaging crossover conserves the expected e�ect of the

mutation operator used, whereas the geometric version reduces the e�ect of the mutations.This e�ect is
also observed in the variance evolution �2[y](g) of the parental object parameters (see Section V-B.3 below
and Figure 6).
As we have already pointed out, a slight increase of the expected � is desired for a correct working in

at �tness landscapes. However, one can also construct � mutation operators with e� = 1. This would

guarantee that �
(g)
r remains constant. Interestingly, even for that case, the expected population variance

�2[y](g) can increase over the time. The reason for this astonishing behavior becomes clear if one takes into

account that �
2 (g)
r = �

(g)
r

2

+D2[�r]
(g): As long as �r
uctuates with a variance D2, we have �

2 (g)
r 6= �

(g)
r

2

.
Actually, D2[�r]

(g) has in
uence on the expected population variance �2[y](g). That is why we have to

consider �
2 (g)
r next.

B.2 Determining �2r

The calculation of �2r starts from (72) and (73), respectively. Taking the square of (72), we obtain for
the intermediate recombination

�2 (g+1)
rI

=
1

�2

�X
k=1

�X
j=1

�2 (g)
rI

e�
(g)

k e�
(g)

j

= �2 (g)
rI

1

�2

�X
m=1

e2�
(g)
m + �2 (g)

rI

1

�2

�X
k=1

X
j 6=k

e�
(g)

k e�
(g)

j : (78)

Now the expected value can be calculated taking the statistical independence of the identically distributed
�k, �j , and �m into account

�
2 (g+1)
rI = �

2 (g)
rI

2
4 1

�2

�X
m=1

e2� +
1

�2

�X
k=1

X
j 6=k

e�
2

3
5

= �
2 (g)
rI

�
1

�
e2� +

�2 � �

�2
e�

2
�
: (79)

Therefore, we get

�
2 (g+1)
rI = �

2 (g)
rI

�
e�

2
+

1

�

h
e2� � e�

2
i�

(80)

or alternatively

�
2 (g+1)
rI = �

2 (g)
rI

�
e�

2
+

1

�
D2[e�]

�
with D2[e�] = e2� � e�

2
; (81)

where D2[e�] is the variance of the mutation operator. Finally, we obtain the equation of the �2r dynamics

�
2 (g)
rI = �

2 (0)
rI

�
e�

2
+

1

�
D2[e�]

�g
: (82)

One can clearly see �
2 (g)
rI = �

(g)
rI

2

does only hold for � ! 1 because D2[e�] > 0. As pointed out in the

previous subsection, even when e� = 1 were guaranteed (leading to �
(g)
rI = �

(0)
rI , see Table II), �

2 (g)
rI will be

an monotonously increasing function.

As to the calculation of �
2 (g+1)
rG (geometric recombination) we start from (73)

�2 (g+1)
rG

=

�Y

m=1

�(g)rG
e�

(g)
m

! 2
�

= �2 (g)
rG

�Y
m=1

exp

2�

(g)
m

�

!
: (83)

The expected value reads

�
2 (g+1)
rG = �

2 (g)
rG

�Y
m=1

e2�=� = �
2 (g)
rG

�
e2�=�

��
: (84)

Here, we have taken the statistical independence of the identically distributed �m into account. One can
rewrite (84) by introducing the variance of e�=�

D2[e�=�] = e2�=� � e�=�
2

(85)

leading to

�
2 (g+1)
rG = �

2 (g)
rG

�
e�=�

2
+ D2[e�=�]

��
: (86)

Thus, the evolution equation of �
2 (g)
rG becomes

�
2 (g)
rG = �

2 (0)
rG

�
e�=�

2
+ D2[e�=�]

��g
: (87)

One can see that { similar to the intermediate recombination case { a vanishing drift, that is, e�=� = 1

(leading to �
(g)
rG = �

(0)
rG , see Table II), does not imply �

2 (g)
rG = �

2 (0)
rG . Again, the reason lies in the

stochasticity of the � mutation operator.

B.3 Determination of the expected population variance of the object parameters

The calculation of �2[y](g+1) starts from Eq. (62). The �rst term of (62) is already known from Eq. (63).
Therefore, it remains to calculate E[�2 (g+1)]. Since �(g+1) is generated in the �rst line of Eq. (61) and ��
is independent of the � recombination, we �nd with (67) and (65/66)

E[�2 (g+1)] = e2� �
2 (g)
r : (88)

Let us consider the intermediate object parameter recombination case �rst. With (62), (63), and (88)
we have (writing g instead of g + 1)

�2[y](g) = 0 + e2� �
2 (g�1)
r (89)

and therefore the evolution dynamics becomes with (82)

(�=�II)-recombination: �2[y](g) = �
2 (0)
r e2�

�
e�

2
+

1

�
D2[e�]

�(g�1)

: (90)

for the \II" recombination case.4 For the \IG" recombination version we obtain with (87)

(�=�IG)-recombination: �2[y](g) = �
2 (0)
r e2�

�
e�=�

2
+ D2[e�=�]

��(g�1)
: (91)

As one can see, both the (�=�II) and the (�=�IG) versions can exhibit exponential variance increase as
postulated by Proposition 2 (see Section II-B). As necessary and su�cient condition, the value of the
expression in the large parenthesis of (90) and (91), respectively, must be greater than 1. This does even

hold when the � mutation operator is \drift free", that is, e� = 1 and e�=� = 1, respectively.
The cases with dominant object parameter recombination need further considerations. Instead of (89)

we now get from (63), (62), and (88)

�2[y](g) =
�� 1

�
�2[y](g�1) + e2� �

2 (g�1)
r : (92)

Considering (82) and (87), respectively, one sees that (92) is of the form

a(g) = ba(g�1) +
� c
d

�
dg; (93)

with

b :=
�� 1

�
; c := �

2 (0)
r e2� (94)

4In order to simplify references to di�erent variants of recombination, we will use the notation \OS" where \O" stands for
the object parameter recombination types I jD and \S" stands for the strategy parameter recombination types IjDjG, that
is, \II" means intermediate object parameter recombination and intermediate strategy parameter recombination.

and

dI := e�
2
+

1

�
D2[e�] (95)

for the intermediate � recombination and

dG :=
�
e�=�

2
+ D2[e�=�]

��
(96)

for the geometric � recombination.
By recursion, Eq. (93) can be expressed as a sum of geometric progression. It reads

a(g) = a(0)bg +
c

d

g�1X
k=0

bkdg�k = a(0)bg +
cdg

d

g�1X
k=0

(b=d)k: (97)

Thus, one gets the closed solution

a(g) = a(0)bg +
c

d
dg
1� (b=d)g

1� (b=d)
= a(0)bg + c

dg � bg

d� b
: (98)

Finally, we get for (98) with (94) and (95) the population variance dynamics of the \DI" case

(�=�DI)-recombination:

�2[y](g) = �2[y](0)
�
1�

1

�

�g
+ �

2 (0)
r e2�

�
e�

2
+ 1

�
D2[e�]

�g
�
�
1� 1

�

�g
�
e�

2
+ 1

�
D2[e�]

�
�
�
1� 1

�

� : (99)

For the \DG" recombination version one respectively obtains with (96)

(�=�DG)-recombination:

�2[y](g) = �2[y](0)
�
1�

1

�

�g
+ �

2 (0)
r e2�

�
e�=�

2
+D2[e�=�]

��g
�
�
1� 1

�

�g
�
e�=�

2
+D2[e�=�]

��
�
�
1� 1

�

� : (100)

In order to use this formulae, the statistical parameters of the mutation operators are needed. For conve-
nience these expressions are collected in Table III.

TABLE III

Statistical parameters of the standard � mutation operators

log-normal rule symmetric two-point rule

e� e�
2=2 cosh(")

e2� e2�
2

cosh(2")

e�=� e�
2=2�2 cosh("=�)

e2�=� e2�
2=�2 cosh(2"=�)

D2[e�] e�
2

(e�
2

� 1) cosh(2") � (cosh("))2

D2[e�=�] e�
2=�2 (e�

2=�2 � 1) cosh(2"=�)� (cosh("=�))2

When comparing the variance evolution of the \II" and \IG" type, Eqn. (90), (91), with those of type
\DI" and \DG", Eqn. (99), (100), one sees that the dominant object parameter recombination adds decay
terms to the variance evolution. That is, the initial parental population variance fades away exponentially.
However, unlike the intermediate (�=�) object parameter recombination, there is still a certain \memory"
of the older parental states. It is an open question whether this property has some performance bene�ts
in nonlinear �tness landscapes.

0.001

0.01

0.1

1

10

100

20 40 60 80 100 120 140 160 180 200

sq
rt

(V
ar

[y
])

g

"6II6,60LN.dat"
II_LN(g, 6, 0.3, 0.001)

"6IG6,60LN.dat"
IG_LN(g, 6, 0.3, 0.001)

0.001

0.01

0.1

1

10

100

20 40 60 80 100 120 140 160 180 200

sq
rt

(V
ar

[y
])

g

"6DI6,60LN.dat"
DI_LN(g, 6, 0.3, 0.001, 0.0)

"6DG6,60LN.dat"
DG_LN(g, 6, 0.3, 0.001, 0.0)

Fig. 6. Evolution of the square root of the expected population variance. Left picture: intermediate object parameter
recombination, right picture: dominant object parameter recombination. The simulation results have been obtained by

averaging over 500 independent runs. In all experiments �2[y](0) = 0 and �
(0)
r = 0:001 has been chosen. As learning

parameters � = 0:3 and " = 0:3, respectively, have been used.

B.4 Simulation examples and discussion

Figure 6 compares the formulae with simulations on (6=6; 60)-ESs using all four variants of recombination
and the log-normal mutation operator. One observes a good agreement between theory and experiments.
As one can see, even the geometric recombination variants exhibit the exponential variance increase.

However, the time constant is larger. For example, considering (99) and (100) one can estimate that the
geometric recombination has an up to � times larger time constant. This means that the variance evolution
slows down by an maximal factor of �. Choosing � su�ciently large, one could infer from simulation
experiments that the ES versions with geometric recombination are indeed \drift free", as has been argueed
by Hansen [19, p. 29]. However, by the analysis presented here, it becomes clear that the variance increasing
behavior (\drift" of the � values) comes from the �-mutation operators, those standard versions ((67)/(68))
and (70) are already biased toward a �2 increase. From this point of view, geometric recombination is more
\biased" than intermediate recombination because of its strong �-dependent damping behavior.

VI. Real-parameter GAs versus Self-adaptive ESs

With the above calculations of expected population variance for real-parameter variation operators and
self-adaptive ES operators on
at �tness landscapes, it becomes easier to explain why similar perfor-
mances of them have been observed earlier [4]. Although the calculations will be di�erent for other �tness
landscapes, our postulation allows us to conclude that as long as the expected population variances of a
self-adaptive ES and a real-parameter GA are more or less the same, their performance will be similar.
For
at �tness landscapes, this allows us to equate the growth of expected population variances of two
operators and to �nd corresponding characteristic parameter values. For example, considering the self-
adaptive ES with log-normal update and (�=�II)-recombination operator and real-parameter GAs with a
fuzzy recombination operator, we equate their growth ratio of expected population variances (Eqs. (90)
and (59)) to �nd a relation between characteristic parameter (� and d) values:

�2[y](g)

�2[y](g�1)
= e�

2

+
1

�ES
e�

2
�
e�

2

� 1
�
= 1 +

d2

3
�

1

�GA
: (101)

For large population size, the following relationship holds:

� �

s
ln

�
1 +

d2

3

�
: (102)

Using the above relationship between self-adaptive ESs and real-parameter GAs with FR operator, we
would expect to have similar dynamics of the expected population variance on a
at �tness landscape.
However, when applied to other �tness landscapes, the expected population variance may not be same.
This is because real-parameter GAs and self-adaptive ESs traditionally use di�erent reproduction opera-
tors. This makes it di�cult to compare them in landscapes other than
at �tness landscapes. As mentioned

earlier, reproduction operator has an e�ect of reducing the population variance in general. Thus, if repro-
duction operators used in self-adaptive EAs do not have similar property in reducing population variance,
comparison of variation operators with identical variance growth properties would be meaningless.
In order to investigate how good this estimate is on the sphere �tness landscapes, we run a self-adaptive

ES with � = 0:57 (calculated using Eq. (101) with d = 1:095 and �GA = 100). To have a similar selection
pressure as that in real-parameter GAs, we use binary tournament selection operator, instead of an usual
truncation selection in the self-adaptive ES. Thus, we use �ES = � = 50, but use a children population size
� = 100. Simulation results with (�=�II)-recombination operator are shown in �gures 4 and 5 (average of
10 runs). The performance of self-adaptive ESs are not signi�cantly di�erent from that of real-parameter
GAs. The di�erence in the performance arises due to use of estimates for
at �tness landscapes in a
sphere model. It has been observed that for � � 0:4, the self-adaptive ESs show very similar linear order
convergence as demonstrated by real-parameter GAs.
It is interesting to note that the expected population variance never reduces with self-adaptive ESs.

This is due to the way self-adaptive mutation operators are constructed. On the other hand, the expected
population variance in real-parameter GAs can increase or decrease depending on the population size. If
the population size is small, a decrease in expected population variance is likely. Thus, there is a greater
need of choosing an appropriate population size in GAs than in self-adaptive ESs.
Clearly, the calculations of expected population variance and their relavance in the performance of an

algorithm demonstrated here mark a �rst step towards �nding a better connection among self-adaptive
evolutionary algorithms.

VII. On the current state of the analysis of EAs in real-valued linear fitness

landscapes

Proposition 3 of our postulates in Section II-B concerns the behavior in linear �tness landscapes. Up
until now, the analysis of self-adaptive properties in EAs on linear �tness landscapes has not been done.
As an exception, the analysis of the (1; �)-�SA-ES on the sphere model was presented in [15]. Although
not explicitly considered there, the linear �tness case is implicitly included in that analysis. This is so
because, given �xed mutation strength �, the normalized mutation strength �� de�ned by

�� := �
N

R
; (103)

with R as the actual parental distance to the optimum and N the object parameter space dimension, goes
to zero when R!1. However, this means that with increasing R the spherical landscape appears for the
mutations with strength � more and more plane. In the limit one gets the behavior of a hyperplane (linear
�tness landscape) if �� ! 0. That is, by considering the limit �� ! 0 for 0 < � < 1, the result of the
sphere model theory can be used to describe the behavior of the ES in linear �tness landscapes.

A. Determining the expected � evolution

The central quantity of the �SA theory is the so-called self-adaptation response function (��(g)). It is
de�ned for the (1; �)-�SA-ES as

 (��(g)) := E

�
�(g+1) � �(g)

�(g)

�
(104)

and measures the relative change of the strategy parameter � given a parental state � and ��, respectively.

Figure 7 shows typical graphs of (��(g)) functions. From this curves only the value at �� = 0 is of interest
for linear �tness landscapes. Unfortunately, in almost all cases there is no analytical expression for (��).
The only exception is for the (1; 2)-�SA-ES with two-point mutation operator (70). One �nds in this
special case [22, p. 27]

symmetrical two-point rule: 1;2(0) =
1

2

(�� 1)2

�
> 0: (105)

For small learning parameters � and �� 1, respectively, it is possible to derive approximate (��) expres-
sions [15, p. 328]

log-normal rule: 1;�(0) = �2
�
d
(2)

1;� �
1

2

�
+ : : : > 0; (106)

1 2 3 4 5
σ∗

τ=0.1

τ=0.2

τ=0.3

τ=0.4
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

ψ

1 2 3 4 5
σ∗

α=1.1

α=1.2

α=1.3

α=1.4-0.3

-0.2

-0.1

0

0.1

0.2

0.3

ψ

Fig. 7. The self-adaptation response (��) for the (1;10)-�SA-ES with N = 30. Figure left: log-normal rule (67/68) used.
Figure right: symmetric two-point rule (70) used.

symmetrical two-point rule: 1;�(0) = (2� �)(�� 1)2
�
d
(2)

1;� �
1

2

�
+ : : : > 0; (107)

with d
(2)

1;� the second order progress coe�cient (see e.g. [15, p. 325]).
In order to calculate the � dynamics on
at �tness landscapes Eq. (104) is used to express the expected

� at generation g + 1 by that of g. One immediately �nds with �� = 0

�(g+1) = (1 + (0)) �(g): (108)

Therefore, the dynamics of the expected � evolution reads

�(g) = �(0)(1 + (0))g : (109)

Since (0) > 0 for the � mutation rules considered here, one observes an exponentially increase of the
expected mutation strength. As a consequence, the population variance of the object parameters must
increase as well. This is again regarded as a desired behavior. In the doctoral thesis of Ostermeier [12,
p. 11] it was claimed that a (1; 2)-�SA-ES does not exhibit such a behavior. Since he uses the symmetric
two-point rule, we are able to disprove his assertion rigorously: Because of the exact result (105), the
(1; 2)-�SA-ES does necessarily increase the expected � according to (108) as long as � > 1. The error in
Ostermeier's argumentation comes again from the consideration of improvement probabilities. It could be
avoided by looking at the expected � changes as has been done here.

B. Determining the expected distance traveled

Unlike the cases considered in the previous sections, the calculation of the parental variance does not
make sense for the case of (1; �) strategies considered here (note, there is only one parent). One could
consider the o�spring variance instead. However, alternatively we can investigate the expected distance
traveled in optimum (gradient) direction.
Assuming small learning parameters, the expected distance E[�x] traveled from generation g to (g + 1)

is roughly

E[�x](g) = x(g) � x(g�1) = c1;��(g) + : : : ; (110)

with the progress coe�cient5 c1;� (for a table of values, see e.g. [15, p. 325]). Formula (110) is exact for
small learning parameters (that is, � ! 0, �! 1). However, it may be well used as a �rst approximation
here. From (110) we get with (109)

E[�x](g) = c1;��
(0)(1 + (0))g + : : : (111)

5Eq. (110) holds exactly for isotropic normally distributedmutations (that is, for � ! 0 or �! 1). In this case, the problem

reduces to a one-dimensional: Starting from a point x(g�1), � o�spring are generated by �N (0; 1) mutations zl. The largest

mutation, denoted by z�:� produces the best o�spring and therefore the parent x(g) for the next generation. The variate
z�:� is known as the �th order statistics (see e.g. [23]) of the N (0; �2) variate, and its expectation is c1;��, with the progress
coe�cient c1;� .

and therefore, by assuming an initial x(0) = 0, we get

x(g) = x(g�1) + c1;��
(0)(1 + (0))g + : : : : (112)

By recurrence one obtains a sum of geometric progression

x(g) = c1;��
(0)

gX
k=1

(1 + (0))k + : : :

= c1;��
(0)

�1 + (1 + (0))g +

g�1X
k=0

(1 + (0))k

!
+ : : :

= c1;��
(0)

�
�1 + (1 + (0))g +

1� (1 + (0))g

1� (1 + (0))

�
+ : : : : (113)

After rewriting (113) we end up with

x(g) = c1;��
(0)

�
1 +

1

 (0)

�
[(1 + (0))g � 1] + : : : : (114)

As one can see, for su�ciently large g the self-adaptation algorithm exhibits an exponential increase of the
distance traveled in optimum direction. As an example, the (1; 10)-�SA-ES is simulated and the graph of
(114) are plotted in Figure 8. One observes a good agreement over may orders of magnitude.

0.001

0.01

0.1

1

10

100

1000

10000

100000

1e+06

10 20 30 40 50 60 70 80 90 100

si
gm

a
 a

nd

 x

g

’x_plan-d1,10.dat’
x_dyn_LN(g,c1kl,d1kl,0.3,0.001)

’s_plan-d1,10.dat’
sigma_LN(g,d1kl,0.3,0.001)

Fig. 8. The �-evolution and the distance x traveled toward the optimum produced by a standard (1;10)-�SA-ES using
log-normal mutations on a linear �tness landscape. As learning parameter � = 0:3 has been chosen. The simulation
results have been obtained by averaging over 500 independent runs. The parameter space dimension (search space) was
N = 30.

VIII. Conclusions

In this paper, we postulate the properties on population mean and variance for self-adaptive evolutionary
algorithms (SA-EAs). With the task of exploration and exploitation in mind, we argue that the population
mean should not be changed by a variance operator. Although the manner in which the population
variance should be changed by a variance operator must depend on the �tness landscape and the associated
reproduction operator, we argue that it may be better strategy, in general, to have a certain tendency of
increasing the population variance by a variation operator (that is, by recombination and mutation).
We have analyzed the population mean and variance of three crossover operators|blend crossover (BLX),

simulated binary crossover (SBX), and fuzzy recombination (FR)|commonly-used with real-coded GAs.
Theoretical predictions of increasing and decreasing nature of population variance are validated with ex-
perimental results on a
at �tness landscape. By choosing an appropriate characteristic parameter for each
crossover operator so as to make the population variance the same, we have shown that GAs with all three
crossover operators exhibit similar self-adaptive feature on a sphere model.
For the �rst time, the population variance has been calculated for self-adaptive evolution strategies (ESs).

Theoretical results have also been supported by showing simulation results on a
at �tness function. An
estimate of the expected distance traveled on a linear �tness function has also been calculated.

Using the estimates for expected population growth on a
at �tness landscape, the performance of self-
adaptive ESs and real-parameter GAs are compared on a sphere model. Although the results have shown
similar behaviors, a closer similarity can be achieved if the expected population variation estimates can be
obtained for both reproduction and variation operators.

Acknowledgments

The �rst author acknowledges support as Heisenberg Fellow of the Deutsche Forschungsgemeinschaft
under grant Be1578/4-1. The second author acknowledges the support from Alexander von Humboldt
Foundation, Germany and Department of Science and Technology, India during the course of this study.

References

[1] Hans-Paul Schwefel. Collective phenomena in evolutionary systems. In P. Checkland and I. Kiss, editors, Problems of
Constancy and Change | the Complementarity of Systems Approaches to Complexity, Papers presented at the 31st

Annual Meeting of the Int'l Soc. for General System Research, volume 2, pages 1025{1033, Budapest, 1.{5. Juni 1987.
Int'l Soc. for General System Research.

[2] L. J. Fogel, P. J. Angeline, and D. B. Fogel. An evolutionary programming approach to self-adaptation on �nite state
machines. In J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, editors, Proceedings of the Fourth International
Conference on Evolutionary Programming, pages 355{365, , 1995.

[3] N. Hansen, A. Ostermeier, and A. Gawelczyk. On the Adaptation of Arbitrary Normal Mutation Distributions in
Evolution Strategies: The Generating Set Adaptation. In L. J. Eshelman, editor, Proc. 6th Int'l Conf. on Genetic
Algorithms, pages 57{64, San Francisco, CA, 1995. Morgan Kaufmann Publishers, Inc.

[4] K. Deb and H.-G. Beyer. Self-adaptive Genetic Algorithms with Simulated Binary Crossover. Technical report no.
CI-61/99, University of Dortmund, Department of Computer Science/LS11, 1999.

[5] H. Kita. A comparison study on self-adaptation in evolution strategies and real-coded genetic algorithms. Department
of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Japan, 1998.

[6] H.-M. Voigt, H. M�uhlenbein, and D. Cvetkovi�c. Fuzzy recombination for the Breeder Genetic Algorithm. In L. J. Eshel-
man, editor, Proc. 6th Int'l Conf. on Genetic Algorithms, pages 104{111, San Francisco, CA, 1995. Morgan Kaufmann
Publishers, Inc.

[7] L. J. Eshelman and J. D. Scha�er. Real-coded genetic algorithms and interval schemata. In L. D. Whitley, editor,
Foundations of Genetic Algorithms, 2, pages 187{202. Morgan Kaufmann, San Mateo, CA, 1993.

[8] K. Deb and R. B. Agrawal. Simulated binary crossover for continuous search space. Complex Systems, 9:115{148, 1995.
[9] I. Ono and S. Kobayashi. A real-coded genetic algorithm for function optimization using unimodal normal distribution

crossover. In T. B�ack, editor, Proceedings of the Seventh International Conference on GeneticAlgorithms, pages 246{253,
Morgan Kau�man, San Mateo, CA, 1997.

[10] K. Deb and H.-G. Beyer. Self-Adaptation in Real-Parameter Genetic Algorithms with Simulated Binary Crossover.
In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, editors, GECCO-99:
Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, CA, 1999. Morgan Kaufmann.

[11] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, Reading, MA,
1989.

[12] A. Ostermeier. Schrittweitenadaptation in der Evolutionsstrategie mit einem entstochastisierten Ansatz. Doctoral thesis,
Technical University of Berlin, Berlin, 1997.

[13] K. Deb. Optimization in engineering design: Algorithms and examples. Prentice-Hall, New Delhi, 1995.
[14] T. B�ack, D. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Computation, New York, 1997. IOP Publishing

and Oxford University Press.
[15] H.-G. Beyer. Toward a Theory of Evolution Strategies: Self-Adaptation. Evolutionary Computation, 3(3):311{347, 1996.
[16] H.-G. Beyer. On the Dynamics of EAs without Selection. In W. Banzhaf and C. Reeves, editors, Foundations of Genetic

Algorithms, 5, pages 5{26, San Mateo, CA, 1999. Morgan Kaufmann.
[17] L. J. Eshelman. The CHC Adaptive Search Algorithm: How to Have Save Search When Engaging in Nontraditional

Genetic Recombination. In G. J. E. Rawlins, editor, Foundations of Genetic Algorithms, 1, pages 265{283. Morgan
Kaufmann, San Mateo, CA, 1991.

[18] H.-G. Beyer. Toward a Theory of Evolution Strategies: On the Bene�t of Sex { the (�=�;�)-Theory. Evolutionary

Computation, 3(1):81{111, 1995.
[19] N. Hansen. Verallgemeinerte individuelle Schrittweitenregelung in der Evolutionsstrategie. Doctoral thesis, Technical

University of Berlin, Berlin, 1998.
[20] H.-P. Schwefel. Numerical Optimization of Computer Models. Wiley, Chichester, 1981.
[21] I. Rechenberg. Evolutionsstrategie '94. Frommann{Holzboog Verlag, Stuttgart, 1994.
[22] H.-G. Beyer. Towards a Theory of `Evolution Strategies': The (1; �)-Self-Adaptation. Technical Report SYS-1/95,

Department of Computer Science, University of Dortmund, 1995.
[23] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja. A First Course in Order Statistics. Wiley, New York, 1992.

