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Abstract

Evolutionary algorithms usually are controlled by various parameters and it

is well known that an appropriate choice of these control parameters is crucial

for the eÆciency of the algorithms. In many cases it seems to be favorable not

to use a static set of parameter settings for a problem but let the sizes of the

parameters vary during an optimization. Even for the most simple type of non-

static parameter settings, dynamic parameter control, no formal general proof is

known that varying the parameter settings is advantageous. Here, a very simple

evolutionary algorithm is analyzed, and an exponential improvement against even

the optimal static parameter setting is proved. This result is closely related to

the open question whether simulated annealing with a natural cooling schedule can

provably outperform the Metropolis algorithm on a natural problem.

1 Introduction

When designing optimization algorithms, it seems much more natural to use algorithms

that adapt their search strategy accordingly to the information they gather during a run.

We consider evolutionary algorithms (EAs), which are general search heuristics that can

be used for static function optimization. Evolutionary algorithms use strong abstractions

of the principles of natural evolution. While many other optimization algorithms use only

one single element of the search space, EAs typically employ a whole population of them.

They generate new search points using genetic operators like recombination or mutation

and select the next population out of these and the old population. This is done until some

stopping criterion is ful�lled. Depending on the representation, the genetic operators, and

the selection method used the resulting EA belongs to the paradigm of genetic algorithms

(see Holland (1975)), evolution strategies (see Schwefel (1995)), evolutionary programming

(see Fogel (1995)) or genetic programming (see Koza (1992)). Although there are many

successful applications of EAs, theoretically founded knowledge is in general rare.

�This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Collaborative

Research Center \Computational Intelligence" (531).
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Evolutionary algorithms are controlled by a number of di�erent parameters, and it is well

known, that an appropriate choice of the parameter settings is crucial for an eÆcient

optimization. In the simplest case the parameter settings are kept constant during a run,

but it is at least intuitively clear, that varying the parameter settings during a run can be

advantageous. B�ack (1998) divides the class of evolutionary algorithms with non-static

parameter settings into three subclasses. The simplest model is that of dynamic parameter

control, where the parameters settings are modi�ed according to some �xed schedule. A

more sophisticated model is adaptive parameter control, where the new choice of the

parameters is guided by the success during the optimization so far. Finally, using self-

adaptive parameter control means that the parameter values are evolved in a way similar

to the treatment of the population of the EA, which is evolved by the application of

randomized evolutionary variation operators and selection.

Though all three models are successfully applied, even for the most simple variant, the

dynamic parameter control, there exists only little formal knowledge. Because of this lack

of a theoretical basis, the analysis of most EAs used in practice is too diÆcult. To lay

the foundations it is therefore advisable to start with simple EAs. One of them is the

so-called (1+1) EA (see Rudolph (1997)) used for maximization of an objective function

f : f0; 1gn ! R. Its population consists of only one bit string of length n, which is

randomly initialized in the beginning. To generate a new search point, every bit of the

old bit string is 
ipped with probability 1=n, which is selected for the new population, if

it has at least the same objective function value as the old one. Otherwise, the element

of the old population forms the new one. The expected running times of the (1+1) EA

for di�erent classes of objective functions are analyzed theoretically in Rudolph (1997),

Droste, Jansen, and Wegener (1998b,1998c).

Here we present an analysis of a similar and also very simple evolutionary algorithm, where

we prove for two examples that there is an exponential gap in the expected running time

between an appropriate dynamic parameter control and the optimal static choice for the

parameter settings.

In the following we analyze a variant of the (1+1) EA, where mutation consists of 
ipping

exactly one randomly chosen bit. While this makes an analysis much easier, the selection

is now more complicated: if the new search point is x0 and the old one x, the new point

x0 is selected with probability min(1; �f(x0)�f(x)), where the selection parameter � is an

element of [1;1[. So worsenings are now accepted with some probability, which decreases

for large worsenings, while improvements are always accepted.

The only parameter for which we consider static and non-static settings is the selection

parameter �. For two concrete functions to be maximized, we show that the expected

running time until the maximum is found for the �rst time is polynomial when dynamic

parameter control is employed appropriately, but exponential for static � regardless of the

chosen �. We do this by showing, that the running times with dynamic parameter control

are exponential only with exponentially small probability, while they can be polynomially

upper bounded in all the other cases. This implies the results about the expected running

times.
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To avoid any misunderstandings we present the algorithms, which are for sake of brevity

denoted by Dynamic EA and Static EA, more formally now.

Algorithm 1.1: Static EA

1. Choose x 2 f0; 1g uniformly at random.

2. Create y by 
ipping one uniformly chosen random bit from x.

3. With probability minf1; �f(y)�f(x)g set x := y.

4. Continue at 2.

Algorithm 1.2: Dynamic EA

1. Choose x 2 f0; 1g uniformly at random. Set t := 1.

2. Create y by 
ipping one uniformly chosen random bit from x.

3. With probability minf1; �(t)f(y)�f(x)g set x := y.

4. Set t := t+ 1. Continue at 2.

The function � : N ! [1;1[ is usually denoted as selection schedule. We note that

Static EA is an instance of the Metropolis algorithm (see Metropolis, Rosenbluth,

Rosenbluth, Teller, and Teller (1953)), while Dynamic EA is a simulated annealing

algorithm, where the neighborhood of a search point consists of all points with Hamming

distance one. Hence, our approach can be seen also as a step to answer the question

raised by Jerrum and Sinclair (1997): Is there a natural cooling schedule (which corre-

sponds to our selection schedule), so that simulated annealing provenly outperforms the

Metropolis algorithm for a natural problem? There are various attempts to answer this

question. We mention Jerrum and Sorkin (1998) which prove that already the Metropolis

algorithm can eÆciently solve the problem of graph bisection on a special type of random

graphs. Another valuable attempt is presented by Sorkin (1991), who proves that simu-

lated annealing, i. e. dynamic parameter control, is superior to the Metropolis algorithm,

i. e. static choice of �, on a carefully designed fractal function. He proves his results using

the method of rapidly mixing Markov chains (see Sinclair (1993) for an introduction).

Note, that our examples have a much simpler structure and are easier to understand.

Furthermore, we derive our results using quite elementary methods. Namely, our proofs

do chie
y use Cherno� bounds (Hagerup and R�ub 1989).

We use the expected number of steps the algorithms need to reach a global maximum of

the objective function f for the �rst time to measure the performance of the algorithms.

The analysis of Dynamic EA and Static EA is done for two special, arti�cial functions,

namelyModJump2 and Valley. Both functions are symmetric, i. e. their function value

depends only on the number of ones in its argument. Hence, we will present in the next

section some basic properties of Static EA for symmetric functions. For ModJump2
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we show in Section 3 that for a class of selection schedules, where the probability of

accepting worsenings is rising during the run of the algorithm,Dynamic EA outperforms

Static EA for any constant choice of �. The gap between the expected running times

is proven to be exponential. For Valley we show in Section 4 the same for a class of

selection schedules, where the probability of accepting worsenings decreases during the

run. Finally, we draw some conclusions and make some remarks about possible future

research.

2 Basic Properties of Static EA for symmetric func-

tions

In this section we derive some equations for the expected number of steps, Static EA

needs to �nd a maximum. If we can bound the value of �(t), which Dynamic EA

uses, these equations will be also helpful to bound the expected number of steps of

Dynamic EA. So even if we speak only of Static EA in the following, all results

can be used for Dynamic EA, too, if we have a bound for �(t).

We assume that our objective functions are symmetric and have their only global maxi-

mum at the all ones bit string (1; : : : ; 1). These assumptions are valid for the functions

ModJump2 and Valley we analyze in Sections 3 and 4. A symmetric function is de�ned

as follows:

De�nition 2.1: A function f : f0; 1gn ! N is called symmetric, if there is a vector

(f0; f1; : : : ; fn) 2 N
n+1, so that

8x = (x1; : : : ; xn) 2 f0; 1g
n :

 
nX

i=1

xi = j ) f(x) = fj

!
:

So, when trying to maximize a symmetric function with Static EA, the expected number

of steps the algorithm needs depends only on the number of ones the actual bit string x

contains, but not on their position. Therefore, it can be modeled by a Markov chain with

exactly n+1 states. Let the random variable Ti (for i 2 f0; : : : ; ng) be the random number

of steps Static EA needs to reach the maximum for the �rst time, when starting in a

bit string with i ones. As the initial bit string is chosen randomly with equal probability,

the expected value of the number T of steps, the whole algorithm needs, is

E (T ) =

nX
i=0

�
n

i

�
2n

� E (Ti) :

So, by bounding E(Ti) for all i 2 f0; : : : ; ng we can bound E(T ). As Static EA can

only change the number of ones in its actual bit string by one, the number Ti of steps to

reach the maximum (1; : : : ; 1) is the sum of the numbers T+
j
of steps to reach j + 1 ones,

when starting with j ones, over all j 2 fi; : : : ; n� 1g:

Ti = T+
i
+ T+

i+1 + : : :+ T+
n�1:
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Let p+
i
resp. p�

i
be the transition probability, that Static EA goes to a state with i+ 1

resp. i� 1 ones when being in a state with i 2 f0; : : : ; ng ones. Then it directly follows:

Lemma 2.2: The expected number E(T+
i
) of steps to reach a state with i + 1 ones for

the �rst time, when starting in a state with i 2 f1; : : : ; n� 1g ones, is:

E(T+
i
) =

1

p+
i

+
p�
i

p+
i

� E(T+
i�1):

Proof: When being in a state with i 2 f1; : : : ; n � 1g ones, the number of ones can

increase, decrease or stay the same. This leads to the following equation:

E(T+
i
) = p+

i
� 1 + p�

i
�
�
1 + E(T+

i�1) + E(T+
i
)
�
+
�
1� p+

i
� p�

i

�
�
�
1 + E(T+

i
)
�

, p+
i
� E(T+

i
) = 1 + p�

i
� E(T+

i�1)

, E(T+
i
) =

1

p+
i

+
p�
i

p+
i

� E(T+
i�1):

2

Using this recursive equation to determine E(T+
i
), we can derive the following lemma:

Lemma 2.3: The expected number E(T+
i
) of steps to reach a state with i+1 ones for the

�rst time, when starting in a state with i 2 f1; : : : ; n� 1g ones, is for all j 2 f1; : : : ; ig:

E(T+
i
) =

 
j�1X
k=0

Q
k�1
l=0 p�

i�lQ
k

l=0 p
+
i�l

!
+

Q
j�1
l=0 p

�

i�lQ
j�1
l=0 p

+
i�l

� E(T+
i�j

):

Proof: The equation can be proven by induction over j. For j = 1 it is just Lemma 2.2.

Assuming that it is valid for j, we can prove it for j + 1 in the following way:

E(T+
i
) =

 
j�1X
k=0

Q
k�1
l=0 p�

i�lQ
k

l=0 p
+
i�l

!
+

Q
j�1
l=0 p

�

i�lQ
j�1
l=0 p

+
i�l

� E(T+
i�j

)

=

 
j�1X
k=0

Q
k�1
l=0 p�

i�lQ
k

l=0 p
+
i�l

!
+

Q
j�1
l=0 p

�

i�lQ
j�1
l=0 p

+
i�l

�

 
1

p+
i�j

+
p�
i�j

p+
i�j

� E(T+
i�j�1)

!

=

 
j�1X
k=0

Q
k�1
l=0 p�

i�lQ
k

l=0 p
+
i�l

!
+

Q
j�1
l=0 p

�

i�lQ
j

l=0 p
+
i�l

+

Q
j

l=0 p
�

i�lQ
j

l=0 p
+
i�l

� E(T+
i�j�1)

=

 
jX

k=0

Q
k�1
l=0 p�

i�lQ
k

l=0 p
+
i�l

!
+

Q
j

l=0 p
�

i�lQ
j

l=0 p
+
i�l

� E(T+
i�(j+1)):

2

Because E(T+
0 ) = 1=p+0 , we get for the case j = i:
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Corollary 2.4: The expected number E(T+
i
) of steps to reach a state with i + 1 ones,

when starting in a state with i 2 f1; : : : ; n� 1g ones, is:

E(T+
i
) =

 
i�1X
k=0

Q
k�1
l=0 p�

i�lQ
k

l=0 p
+
i�l

!
+

Q
i�1
l=0 p

�

i�lQ
i�1
l=0 p

+
i�l

�
1

p+0
=

iX
k=0

Q
k�1
l=0 p�

i�lQ
k

l=0 p
+
i�l

=

iX
k=0

1

p+
k

�

iY
l=k+1

p�
l

p+
l

:

3 The function ModJump2

We consider the function ModJump2 that is a modi�cation of the function Jump2 intro-

duced by Droste, Jansen, and Wegener (1998a). Though ModJump2 is in some sense a

fairly well structured and therefore easy to analyze function, it turns out that it is helpful

to take a look at an even simpler function, namely OneMax, before.

De�nition 3.1: The function OneMax : f0; 1gn ! N is de�ned by

OneMax(x) := jjxjj1;

where jjxjj1 = x1 + � � �+ xn denotes the number of ones in x.

The function ModJump2 : f0; 1g
n ! N is de�ned by

ModJump2(x) :=

8>><
>>:
jjxjj1 for jjxjj1 � n� 3.

3n2 + n for jjxjj1 = n� 2.

3n2 for jjxjj1 = n� 1.

3n2 + n+ 1 for jjxjj1 = n.

Since OneMax is a symmetric function we can use the results of Section 2. They lead

us directly to:

Lemma 3.2: The expected number of steps until Static EA reaches for the �rst time

the maximum of OneMax when started in a bit string with exactly i < n ones equals

E (Ti) =

n�1X
j=i

E
�
T+
j

�
=

n�1X
j=i

 
1

�j
�
n�1
j

� jX
k=0

�
n

k

�
�k

!
;

where

�

��
1 +

1

�

�
n

� 1

�
� E (Ti) �

�
1 +

1

�

�
n�1

� n (ln(n � i) + 1) :

Proof: It is easy to recognize that for all i 2 f0; : : : ; n� 1g:

p+
i
=

n� i

n
and p�

i
=

i

n
� �(i�1)�i =

i

�n
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holds for OneMax. By Corollary 2.4 we get

E
�
T+
j

�
=

jX
k=0

n

n� k

jY
l=k+1

l

�(n� l)
=

jX
k=0

n

n� k
�

j! � (n� j � 1)!

�j�k � k! � (n � k � 1)!

=
j! � (n� j � 1)!

�j � (n� 1)!

jX
k=0

n!

n� k
�

�k

k! � (n� k � 1)!
=

1

�j
�
n�1
j

� jX
k=0

�
n

k

�
�k;

which proves the exact formulation for E (Ti).

For the upper bound we consider E
�
T+
j

�
and see that

E
�
T+
j

�
=

1

�j
�
n�1
j

� jX
k=0

�
n

k

�
�k =

j!(n� j � 1)!

�j(n� 1)!

jX
k=0

n!�k

k!(n� k)!

=
j!(n� j � 1)!

�j(n� 1)!

jX
k=0

n!�j�k

(j � k)!(n� j + k)!

=
n

n� j

jX
k=0

��k

�
j

k

�
�
n�j+k

n�j

� � n

n� j

jX
k=0

�
j

k

��
1

�

�k

=
n

n� j

�
1 +

1

�

�j

holds. So we have

E (Ti) =

n�1X
j=i

E
�
T+
j

�
�

n�1X
j=i

n

n� j

�
1 +

1

�

�j

= n

�
1 +

1

�

�n

�

n�iX
j=1

1

j

�
1 +

1

�

�
�j

�

�
1 +

1

�

�n�1

� n (ln(n� i) + 1)

as upper bound.

For the lower bound we have

E (Ti) � E
�
T+
n�1

�
=

1

�n�1
�
n�1
n�1

� n�1X
k=0

�
n

k

�
�k =

�P
n

k=0

�
n

k

�
�k
�
� �n

�n�1

=
(1 + �)

n � �n

�n�1
= �

��
1 +

1

�

�n

� 1

�
:

2

Using Lemma 3.2 we can prove a lower bound on the expected running time of Static EA

on ModJump2.

Theorem 3.3: The expected number of steps until Static EA reaches the maximum of

ModJump2 for the �rst time is




 
n � �n +

�
1 + 1

�

�n�3
n2

!

which is exponential for all choices of � 2 [1;1[.
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Proof: We model the run of Static EA on ModJump2 as a Markov chain as we did

for OneMax. For all bit strings with i � n � 3 ones the transition probabilities p+
i
and

p�
i
are equal for OneMax and ModJump2. Therefore, for j � n� 3 we still have

E
�
T+
j

�
=

1

�j
�
n�1
j

� jX
k=0

�
n

k

�
�k:

We assume w. l. o. g. that n is even. With probability at least 1=2 Static EA starts in a

bit string with at most n=2 ones. We reconsider the derivation of the bounds in the proof

of Lemma 3.2 and see that for ModJump2

E
�
Tn=2

�
�

n�3X
j=n=2

E
�
T+
j

�
� E

�
T+
n�3

�
=

1

�n�3
�
n�1
n�3

� � n�3X
j=0

�
n

j

�
�j

�
1

�n�3n2

n�3X
j=0

�
n� 3

j

�
�j =

�
1 + 1

�

�n�3
n2

holds.

Additionally, we inspect the step from a bit string with n � 2 ones to a bit string with

n� 1 ones. The probability for such a transition equals

2

n
� �3n2�(3n2+n) =

2

n � �n
:

With probability 1 � (n + 1)=2n Static EA starts with a bit string that contains less

than n � 1 ones. Therefore, the expected number of steps until a bit string with n � 1

ones is reached is


 (n � �n) ;

so this lower bounds the expected running time of the algorithm. Altogether we have




 
n � �n +

�
1 + 1

�

�
n�3

n2

!

as lower bound for the expected number of steps as claimed. For � � 2 we recognize that

the bound is 
 (n � 2n) and for � < 2 it is 
 ((3=2)n=n2). 2

We see that the running time of Static EA is exponential regardless of the choice of �.

Now we prove that an appropriate selection schedule enables Dynamic EA to maximize

ModJump2 in a polynomially bounded expected number of steps. In fact, our proof

does not rely on one special selection schedule, but is carried our for a class of selection

schedules. As mentioned above, the most important common property of these selection

schedules is, that the probability of accepting worsenings is rising during the run.
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Theorem 3.4: With probability 1�O(e�n) the number of steps until Dynamic EA with

the selection schedule

�(t) := max

�
1 +

1

n
;
s(n)

t

�

reaches the maximum of ModJump2 for the �rst time is O(s(n)) for any polynomial s(n)

with s(n) � 8en3 lnn. Furthermore, the expected number of steps until this happens is

O(s(n)).

Proof: First of all, we notice that everything we said about Static EA carries over

to Dynamic EA if we take into account that � is no longer �xed. It depends on the

number of steps performed so far. Then the idea of the proof is simple. In a �rst phase

a local maximum with n � 2 ones is reached quite fast with high probability since �(t)

is large enough. In a second phase with high probability the algorithm stays there long

enough for �(t) to decrease suÆciently so that �nally the maximum is reached. With

small probability things go wrong. In this case we are able to �nd an upper bound on the

running time, too. So altogether the expected running time can be polynomially upper

bounded.

We distinguish two phases. The �rst phase ends after s(n)=n steps. During the �rst

s(n)=n steps, we have �(t) � n. Furthermore, since s(n) � 8en3 lnn, we have that

s(n)=n � 8en2 lnn. From the proof of Lemma 3.2 it is clear, that the expected number

of steps until Dynamic EA reaches a bit string with n � 2 steps is bounded above by

2en ln n. We use Markov's inequality and see that the probability that it is not reached

in 4en ln n steps is bounded above by 1=2. As our analysis is independent of the initial

bit string we may in case, that a bit string with more than n� 3 ones is not yet reached,

consider the following at least (2n�1) �4en ln n steps together with the �rst 4en lnn steps

as at least 2n independent trials. Therefore, the probability that after the �rst phase the

current x of Dynamic EA contains less then n� 2 ones is upper bounded above by 4�n.

Once such a bit string is reached, the probability that a bit string with less than n � 2

ones is reached in at most s(n)=n steps is bounded above by

s(n)

n

�
n� 2

n
� �n�3�(3n2+n)

�
� n�3n2+O(1):

Hence, the second phase starts with a bit string having at least n � 2 ones with high

probability and is �nished when the maximum ofModJump2 is found or s(n)+4n3 steps

are performed (including the steps in the �rst phase). We assume pessimistically that

the initial bit string in the second phase contains exactly n � 2 ones. Therefore, the

probability to reach a bit string with n� 3 ones in one step is

n � 2

n
� �n�3�(3n2+n) � ��3n2 :

Obviously, the probability to reach a bit string with n�3 ones in at most s(n)+4n3 steps

is upper bounded by �
s(n) + 4n3

�
��3n2 :

9



We have �(t) � 1 + 1=n in all steps, so we have

s(n) + 4n3

(1 + 1=n)3n
2
�

nO(1)

e3n
2=(2n)

= eO(lnn)�(3=2)n = O
�
e�n
�

as an upper bound.

If the maximum is not reached before, there are 4n3 steps in the second phase where

�(t) = 1 + 1=n holds. Then, the probability, that from a bit string with at least n � 2

ones the maximum is reached in two steps, is lower bounded by�
2

n
� �3n2�(3n2+n)

�
�
1

n
=

2

n2
�

�
1 +

1

n

�
n

�
2

en2
:

The probability, that after 2n3 \double-steps" (i. e. 4n3 subsequent steps) the maximum

is not reached is bounded above by

�
1�

2

en2

�2n3

� e�n:

We combine what we have so far. The probability that the global maximum is not found

after at most s(n) + 4n3 steps is bounded above by

e�n +O
�
e�n
�
+ 4�n + n�3n2+O(1) = O

�
e�n
�
:

Therefore, with probability 1�O(e�n) the maximum is reached after O (s(n)) steps. We

consider the unlikely case that this does not happen and give an upper bound for the

expected number of steps. We do not care what happens in the �rst s(n) + 4n3 steps of

the run. After that we have �(t) = 1 + 1=n for the rest of the time. This yields

p+
b
=

n� b

n
; p�

b
=

b

(1 + 1=n)n

for 0 � b � n� 3 and

p+
n�2 =

2

(1 + 1=n)n � n
; p�

n�2 =
n� 2

(1 + 1=n)3n
2+3 � n

; p+
n�1 =

1

n
; p�

n�1 =
n� 1

(1 + 1=n)n � n

for the rest of the cases. From Corollary 2.4 we know that the expected number of steps

to come from a state with b ones to one with b+ 1 ones for the �rst time equals

E
�
T+
b

�
=

bX
i=0

1

p+
i

bY
j=i+1

p�
j

p+
j

and it is obvious that this decreases with increasing values for p+
i
and decreasing values

for p�
j
=p+

j
. We compare E

�
T+
b

�
to a pure random walk that corresponds to choosing

� = 1 regardless of the objective function. We see, that for 0 � b � n� 3 the probability

10



to increase the number of ones in one step from b to b + 1 for the pure random walk is

equal to p+
b
and the probability to decrease it is by a factor 1+ 1=n larger. For b = n� 2

we have
p�
n�2

p+
n�2

=
n� 2

(1 + 1=n)3n
2+3n

�
(1 + 1=n)nn

2
=

n� 2

2(1 + 1=n)3n
2
�n+3

;

which quickly converges to zero. For the pure random walk the corresponding value is

n� 2

n
�
n

2
=

n� 2

2
:

We conclude that for 0 � b � n � 2 we have that E
�
T+
b

�
is upper bounded by the

corresponding value for the pure random walk. The same is true for E
�
T+
n�1

�
, as can

easily be seen by recognizing that the probability to increase the number of ones in one

step from n� 1 to n for the pure random walk is equal to p+
n�1 and that the probability

to decrease it is much larger than p�
n�1. Therefore the expected number of steps a pure

random walk started with b ones needs to reach the all ones string is an upper bound for

E (Tb).

Now we investigate the expected number of steps until a pure random walk �nds the

all ones string for the �rst time. We look for an upper bound. We have to take into

account that the starting point is the current x of Dynamic EA after s(n) + 4n3 steps

and it cannot be assumed to be random. The expected number of steps decreases with

increasing number of ones b in the starting point. We have

E (Ti) � E (T0) =

n�1X
j=0

1�
n�1
j

� jX
k=0

�
n

k

�
< 2n

n�1X
j=0

1�
n�1
j

�
= 2n

 
2 +

n�2X
j=1

1�
n�1
j

�
!
� 2n

 
2 +

n�2X
j=1

1

n� 1

!
< 2n � 3;

so the expected number of steps is at most 3 � 2n for any starting point.

This yields that the contribution in case of a failure to the expected number of steps is

3 � 2n �O
�
e�n
�
= O(1)

and we have O (s(n)) as upper bound on the expected running time as claimed. 2

4 The function Valley

We showed in the previous section, that for maximizing ModJump2 Static EA for

arbitrarily chosen � needs exponential expected time, while Dynamic EA with an ap-

propriate selection schedule � : N ! [1;1[ needs only polynomial expected time. The

used selection schedule increased the probability of accepting worsenings with increas-

ing t. Regarding 1=�(t) as temperature of simulated annealing this means an increasing

temperature, which is not according to the physical analogue of cooling down.

11



Hence, we show in this section, that there exists a functionValley, so thatDynamic EA

using an appropriate selection schedule with decreasing probability for accepting worsen-

ings needs only polynomial expected time, while Static EA needs exponential expected

time, independent from the choice of �. Analogously to the previous section we do this by

showing that the running time of Dynamic EA is exponential only with exponentially

small probability, while it is polynomial in all other cases.

Intuitively the function Valley should have the following properties: for a constant

fraction of points the function values, when moving to the maximum, should decrease in

the beginning, so that a high probability of accepting worsenings speeds up this process.

This should be followed by a rise of the function values, so that accepting worsenings

would slow down the maximization. We will show that the following function ful�lls

these intuitive concepts to a suÆcient extent:

De�nition 4.1: The function Valley : f0; 1gn ! N is de�ned by (w. l. o. g. n is even):

Valley :=

�
n=2 � jjxjj1 for jjxjj1 � n=2

(7n2 lnn)� n=2 + jjxjj1 for jjxjj1 > n=2
:

Then the following holds:

Theorem 4.2: The expected number of steps until Static EA reaches the maximum of

Valley for the �rst time is




 �r
�

4

�n

+

�
1

�
+ 1

�n�4
!
;

which is exponential for all choices of � 2 [1;1[.

Proof: When we take a look at the function Valley for all x with jjxjj1 < n=2, we see,

that it behaves like �OneMax with respect to Static EA. So, if p+
j
resp. p�

j
is the

probability of increasing the number of ones resp. decreasing the number of ones by one,

when the actual x contains exactly j ones, we have for all j 2 f0; : : : ; n=2 � 1g

p+
j
=

n� j

� � n
and p�

j
=

j

n
:

Hence, using Corollary 2.4, we get for E(T+
i
), the expected number of steps until we reach

a bit string with i+ 1 ones, when starting with a bit string with i < n=2 ones:

E(T+
i
) =

iX
k=0

1

p+
k

�

iY
l=k+1

p�
l

p+
l

=

iX
k=0

� � n

n� k
�

iY
l=k+1

l

n
�
� � n

n� l

=

iX
k=0

�i�k+1 �
n

n� k
�
i! � (n� i� 1)!

k! � (n� k � 1)!
=

iX
k=0

�i�k+1 �

�
n

k

�
�
n�1
i

� : (1)
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So E(T+
n=2�1) can be lower bounded in the following way

E(T+
n=2�1) =

n=2�1X
k=0

�n=2�k �

�
n

k

�
�

n�1
n=2�1

� � �n=2�
n�1

n=2�1

� � �n=2

2n
: (2)

Hence, E(T+
n=2�1) is 


��p
�=4

�
n
�
. So for � � 4 + " (where " > 0) this results

in an exponential lower bound for E(T+
n=2�1), implying this bound for E(Ti) for all

i 2 f0; : : : ; n=2 � 1g. Because this is a constant fraction of all bit strings, we have

an exponential lower bound for the expected number of steps of the whole Static EA

for � � 4 + ".

In the following we want to show an exponential lower bound for the expected number

of steps E(Tn�1) for � < 4 + ". When � is small, worsenings are accepted with large

probability, so that we can expect E(Tn�1) to be large. To lower bound E(Tn�1) we use

Lemma 2.3. Because we have for all i 2 fn=2 + 2; : : : ; n� 1g:

p+
i
=

n � i

n
and p�

i
=

i

n � �
;

we can lower bound E(T+
n�1) by:

E(T+
n�1) �

n=2�3X
k=0

Q
k�1
l=0 p�

n�1�lQ
k

l=0 p
+
n�1�l

=

n=2�3X
k=0

Q
n�1
l=n�k

p�
lQ

n�1
l=n�k�1 p

+
l

=

n=2�3X
k=0

Q
n�1
l=n�k

l

n��Q
n�1
l=n�k�1

n�l

n

=

n=2�3X
k=0

n

�k
�

(n� 1)!

(n� k � 1)! � (k + 1)!
=

n=2�3X
k=0

�
n

k+1

�
�k

= � �

n=2�2X
k=1

�
n

k

�
�k

� � �

 �
1
�
+ 1
�n�4

2
� 1

!
= 


 �
1

�
+ 1

�n�4
!
:

Hence, for all i 2 f0; : : : ; n=2 � 1g the expected value of Ti is

E(Ti) = 


 �r
�

4

�n

+

�
1

�
+ 1

�n�4
!
;

which is exponential for all choices of � 2 [1;1[. As the fraction of bit strings with at

most n=2 � 1 ones is constant, the expected running time of Static EA is exponential

for all �. 2

Intuitively, Dynamic EA can perform better than Static EA on Valley, if the selec-

tion schedule works as follows: in the beginning, worsenings are accepted with probability

almost one, so that the actual point x is making a random walk, until its number of ones

rises to n=2+1. After this point the probability of accepting worsenings should decrease,

so that only improvements are accepted in order to reach the maximum (1; : : : ; 1) quickly.

These intuitive concepts will be proven rigorously in the next theorem.
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Theorem 4.3: With probability 1�O(n�n) the number of steps until Dynamic EA with

the selection schedule

�(t) := 1 +
t

s(n)

reaches the maximum of Valley for the �rst time is O(n � s(n)) for any polynomial s

with s(n) � 2en4 log n. Furthermore, the expected number of steps until this happens is

O(n � s(n)), if we additionally have �(t) = 1 for t > 2n.

Proof: The basic idea of the proof is similar to the proof of Theorem 3.4. We split the

run of Dynamic EA into two phases of prede�ned length. We show that with very high

probability a state with at least n=2 + 1 ones is reached within the �rst phase, and all

succeeding states have at least n=2+1 ones, too. Furthermore, with very high probability

the optimum is reached within the second phase. Finally, we upper bound the expected

number of steps in the case, that any of these events do not happen.

The �rst phase has length s(n)=n + 2en3 log n. We want to upper bound the expected

number of steps in the �rst phase Dynamic EA takes to reach a state with at least

n=2 + 1 ones. For that purpose we upper bound E
�
T+
i

�
for all i 2 f0; : : : ; n=2g. We do

not care what happens during the �rst s(n)=n steps. After that, we have �(t) � 1+ 1=n.

Pessimistically we assume that the current state at step t = s(n)=n contains at most n=2

ones.

We use equation (1) of Theorem 4.2, which is valid for i 2 f0; : : : ; n=2 + 1g.

E
�
T+
i

�
=

iX
j=0

�i�j+1 �

�
n

j

�
�
n�1
i

� = iX
j=0

�j+1 �

�
n

i�j

�
�
n�1
i

�
=

iX
j=0

�j+1 �
n!

(i� j)! � (n� i+ j)!
�
i! � (n � 1 � i)!

(n� 1)!
=

iX
j=0

�j+1 �

�
i

j

�
�
n�i+j

j

� � n

n � i

As the last expression decreases with decreasing i, it follows that E
�
T+
i

�
� E

�
T+
i+1

�
for

all i 2 f0; : : : ; n=2� 1g. Since the length of the �rst phase is s(n)=n+2en3 log n, we have

�(t) � 1 + 2=n during the �rst phase. Using this and setting i = n=2 � 1, we get

E
�
T+
n=2�1

�
�

n=2�1X
j=0

�
1 +

2

n

�j+1
�
n=2�1

j

�
�
n=2+1+j

j

� � n

n=2 + 1
� 2

n=2�1X
j=0

e = en:

Hence, by using Lemma 2.2 we can upper bound E
�
T+
n=2

�
by

E
�
T+
n=2

�
=

1

(n=2)=n
+

(n=2)=n

(n=2)=n
� E
�
T+
n=2�1

�
� 2 + en:

So, the expected number of steps until a bit string with more than n=2 ones is reached is

bounded above by

(n=2) � en+ 2 + en � en2:
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We use the Markov inequality and see, that the probability of not reaching a state with

more than n=2 ones within 2en2 steps is at most 1=2. Our analysis is independent of the

current bit string at the beginning of such a subphase of length 2en2. So, we can consider

the 2en3 log n steps in the �rst phase as n log n independent subphases of length 2en2

each. Hence, the probability of not reaching a state with more than n=2 ones within the

�rst phase is O (n�n).

Assume that Dynamic EA reaches a bit string with more than n=2 ones at some step

t with t � s(n)=n. This yields �(t) � 1 + 1=n. Let p(n) be some polynomial. The

probability to reach a bit string with at most n=2 ones within p(n) steps is bounded

above by

p(n) �
n=2 + 1

n � (1 + 1=n)7n
2 lnn

<
p(n)

e4n lnn
= O

�
n�n

�
where the last equality follows since p(n) is a polynomial. We conclude that after once

reaching a bit string with more than n=2 ones, for polynomially bounded number of steps

the number of ones is larger than n=2, too, with probability 1�O(n�n). Hence, after the

�rst phase the probability of not being in a state with more than n=2 ones is O (n�n).

Now we consider the succeeding second phase, which ends with t = n � s(n), which is

polynomially bounded. Therefore, we neglect the case that during the second phase a bit

string with at most n=2 ones is reached. We saw above, that this case has probability

O (n�n).

We want to prove that with very high probability the optimum is reached within the second

phase. In order to do so we upper bound the expected number of steps Dynamic EA

needs to reach the optimum. We do not care about the beginning of phase 2 and consider

only steps with t � (n� 1)s(n). Then we have �(t) � n. Due to the length of the second

phase, we have �(t) � n+1, too. Using equation (2) of Theorem 4.2, we can upper bound

E
�
T+
(n=2)�1

�
in the following way.

E
�
T+
n=2�1

�
�

n=2�1X
j=0

(n+ 1)n=2�j �

�
n

j

�
�

n�1
n=2�1

� � n=2�1X
j=0

�
n

j

�
nn�j =

(1 + n)n

2

Hence, we can upper bound E
�
T+
n=2

�
by

E
�
T+
n=2

�
=

1

(n=2)=n
+

(n=2)=n

(n=2)=n
� E
�
T+
n=2�1

�
� 2 +

(1 + n)n

2

and E
�
T+
n=2+1

�
for n � 3 by

E
�
T+
n=2+1

�
�

1

(n=2 � 1)=n
+

(n=2 + 1)=(n � n7n
2 lnn)

(n=2 � 1)=n
� E
�
T+
n=2

�
�

2n

n� 2
+

n + 2

2n7n
2 ln(n)+1

�
2n

n� 2
(1 + n)n

� 6 +
5(1 + n)n

n7n
2 ln(n)+1

� 7:
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Using Lemma 2.3 for j = i� n=2 � 1, we get for all i 2 fn=2 + 2; : : : ; n� 1g

E
�
T+
i

�
=

0
@i�n=2�2X

j=0

Q
j�1
k=0 p

�

i�kQ
j

k=0 p
+
i�k

1
A+

Q
i�n=2�2
k=0 p�

i�kQ
i�n=2�2
k=0 p+

i�k

� E
�
T+
n=2+1

�

�

0
@i�n=2�2X

j=0

Q
i

k=i�j+1 p
�

kQ
i

k=i�j
p+
k

1
A+

Q
i

k=n=2+2 p
�

kQ
i

k=n=2+2 p
+
k

� 7:

As Valley behaves like OneMax for all states with at least n=2 + 2 ones with respect

to Dynamic EA, we have p+
k
= (n� k)=n and p�

k
� k=(n�). Hence, we get

E
�
T+
i

�
�

0
@i�n=2�2X

j=0

Q
i

k=i�j+1 k=(n � n)Q
i

k=i�j
(n� k)=n

1
A+

Q
i

k=n=2+2 k=(n � n)Q
i

k=n=2+2(n� k)=k
� 7

=

0
@i�n=2�2X

j=0

n�2j � i!=(i� j)!

n�j�1 � (n � i+ j)!=(n� i� 1)!

1
A+

n2i+n+2 � i!=(n=2 + 1)!

n�i+n=2+1 � (n=2 � 2)!=(n� i� 1)!
� 7

=

0
@i�n=2�2X

j=0

n1�j �

�
i

j

�
(n� i) �

�
n�i+j

j

�
1
A+

(n=2 � 1) �
�

n

n=2+1

�
� nn=2+1

(n� i) �
�
n

i

�
� ni

� 7:

To upper bound the second term, we derive the following for all i 2 f0; : : : ; n� 2g.

(n� i) �

�
n

i

�
� ni � (n� (i+ 1)) �

�
n

i+ 1

�
� ni+1

()
n � i

n� i� 1
�

n!

i! � (n� i)!
�
(i+ 1)! � (n � i� 1)!

n!
� n

()
i+ 1

n� i� 1
� n, which is valid for all i 2 f0; : : : ; n� 2g:

Hence, we get the following upper bound for E
�
T+
i

�
, as i is at least n=2 + 2:

E
�
T+
i

�
�

0
@i�n=2�2X

j=0

n1�j �

�
i

j

�
(n� i) �

�
n�i+j

j

�
1
A+ 7:

So, by upper bounding E
�
T+
n�1

�
, we get an upper bound for E

�
T+
i

�
for all i 2 fn=2 +

2; : : : ; n� 1g (and n � 3).

E
�
T+
n�1

�
� n �

0
@n=2�3X

j=0

�
1

n

�j

�

�
n�1
j

�
�
j+1
j

�
1
A+ 7 � n �

0
@n=2�3X

j=0

�
1

n

�j �
n

j

�1A+ 7

� n �
(1 + 1=n)n

2
+ 7 �

en

2
+ 7 � 4n

16



Hence, for all i 2 fn=2+1; : : : ; ng the value of E (Ti) can be upper bounded by 2n2. Using

the Markov inequality, this implies that after 4n2 steps the probability that the optimum

is not reached is upper bounded by 1=2. Considering the s(n) � 2en4 log n steps as at

least en2 log n independent subphases of length 2n2 each, implies that the optimum is

reached with probability 1�O(n�n). Altogether we proved that the optimum is reached

within the �rst n � s(n) steps with probability 1�O(n�n).

In order to derive the upper bound on the expected number of steps we consider the case

that the optimum is not reached. This has probability O (n�n). We use the additional

assumption that �(t) = 1 holds for t > 2n. We do not care what else happens until t > 2n

holds. Then we have �(t) = 1. This implies that Dynamic EA performs a pure random

walk. As we saw in the proof of Theorem 3.4, the expected number of steps in this case

is upper bounded by 3 � 2n. So, this case adds only

3 � 2n �O
�
n�n

�
= O(1)

to the expected running time. Altogether, we see that the expected running time is upper

bounded by O (n � s(n)). 2

5 Conclusions

We presented a simple evolutionary algorithm, which accepts worsenings with some prob-

ability. In order to see how even simple dynamic parameter control mechanisms can speed

up the search process signi�cantly, we compared it to a variant where the selection prob-

ability varies over the number of steps made so far. We analyzed the expected running

times of these two EAs for two di�erent objective functions, and exhibited that they

are exponential for any constant selection probability but only polynomial for appropri-

ate time-dependent selection probabilities. Furthermore, we have shown that for these

time-dependent selection probabilities the probability of using more than polynomially

many steps is exponentially small. Hence, we have given a proof that dynamic parameter

control in EAs can help signi�cantly. It is an open problem to give similar examples

for the other classes of non-static parameter settings, namely adaptive and self-adaptive

parameter control.

We note, that the algorithms are instances of simulated annealing respectively the Metro-

polis algorithm. So our approach is also a step towards answering the still open question,

whether simulated annealing with a natural cooling schedule outperforms the Metropolis

algorithm with a carefully chosen temperature for some natural problem. We believe

that presenting carefully designed and well structured, although arti�cial functions with

desired properties, helps to understand the way the two algorithms achieve optimization.

Furthermore, we believe that this understanding is helpful if not even necessary to identify

a natural problem where the two algorithms show di�erent behavior.
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