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Abstract

The self-adaptation of the mutation distribution is a distinguishing feature of evolutionary algorithms
that optimize over continuous variables. It is widely recognized that self-adaptation accelerates the
search for optima and enhances the ability to locate optima accurately, but it is generally unclear whether
these optima are global ones or not. Here, it is proven that the probability of convergence to the global
optimum is less than one in general—even if the objective function is continuous.

1 Introduction

The self-adaptation of the mutation distribution in evolution strategies (ES) was introduced by Rechenberg
(1973). Here, self-adaptation means that the control parameters of the mutation distribution are evolved by
the evolutionary algorithm internally, rather than being predetermined by some exogenously given schedule.
A simple version of this mechanism was the so-called1=5-success rule of the(1 + 1)-ES which worked as
follows: If the relative frequency of successful (i.e., improving) mutations within some prescribed period of
time is larger than1=5, then the step size control parameter (mostly the variance of the mutation distribution)
is increased by some factor, whereas it is decreased if the relative frequency of successful mutations is
smaller than1=5. This mechanism was modified by Schwefel (1977) who replaced the prescribed factor by a
lognormally distributed random variable and added the control parameter to the genome of each individual.
As a consequence, the adjustment of the control parameter implicitly results from the competition among the
individuals. Similar methods were independently proposed in evolutionary programming by Fogel (1992;
1995). Needless to say, self-adaptation is not limited to the control of mutation distributions. Further fields
of application may be found in recent surveys (Hinterding et al. 1997; B¨ack 1998).
Although it is widely recognized that self-adaptation of the mutation distribution accelerates the search for
optima and enhances the ability to locate optima accurately, the theoretical underpinnings of this mechanism
are essentially unexplored. For example, it is generally unclear whether the optima found are global ones
or not. In the case of convex objective functions (to be minimized), Rappl (1984) has given a proof of
exponentially fast convergence for a stochastic algorithm resembling a(1 + 1)-ES with 1=5-success rule
whereas Beyer (1995) examined also other evolutionary algorithms and self-adaptation rules.
As for non-convex objective functions, Rudolph (1997) has shown that every self-adaptation method leads
to global convergence for objective functions with bounded lower level sets of non-zero measure provided
that the selection method uses elitism and that the mutation distribution remains “strictly covering” under
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the self-adaptation rule (cf. Theorem 6.14, p. 204). A strictly covering mutation distribution was defined as
follows:

“Let Ẑ be a random vector with supportIRn andS = diag(s1; : : : ; sn) be a diagonal matrix with
detS = 1 andsi � smin > 0. A mutation distributionFZ will be termedstrictly covering if Z can be
generated viaZ = � T S Ẑ for arbitrary orthogonal matricesT and where� is allowed to vary in a fixed
compact subset of the positive real numbers.”

The main idea of the proof is sketched below: Since the range of the mutation control parameter� is
restricted to a fixed compact subset of the positive real numbers, there exists a positive lower as well as upper
bound for legal values of�. This implies a positive minimum probability for hitting some neighborhood
of the global solution and therefore the event of an actual transition to this neighborhood will occur with
probability1 within a finite number of mutations. Since this result holds for arbitrary neighborhoods one
immediately obtains global convergence in probability and eventually complete convergence to the global
optimum because of the exponential increase of the probability for this event.
The crucial point of the proof is the assumption of the positive lower bound for the control parameter�.
Commonly used self-adaptation mechanisms do not obey this condition. This observation was the starting
point of the work to be presented shortly. Here, it is examined whether global convergence can still be
guaranteed if the assumption of a positive lower bound of� is dropped. This is done by the construction
of a scenario under which an evolutionary algorithm with self-adaptationprovably fails. The scenario and
some auxiliary results are presented in Section 2 whereas the analysis is given in Section 3. The extension
of the scenario to related evolutionary algorithms can be found in Section 4. Section 5 finishes the paper by
a discussion that is intended to clarify the implications of this negative result in regard to the practical use
of evolutionary algorithms with self-adaptation rules.

2 Description of the Constructed Scenario

2.1 Algorithm

Let g : IRn ! IR be the objective function to be minimized and setX0 = x0 2 IRn, `0 > 0. Consider the
Markovian process(Xk; `k)k�0 generated by the stochastic algorithm

Xk+1 =

(
Xk + `k Zk , if g(Xk + `k Zk) < g(Xk)

Xk , otherwise
(1)

`k+1 =

(
1 `k , if g(Xk + `k Zk) < g(Xk)

2 `k , otherwise
(2)

where1 > 1, 2 2 (0; 1), and(Zk : k � 0) denotes a sequence of independent and identically distributed
random vectors with spherically symmetric distribution around the zero vector and supportIRn. Thus,
whenever there is a successful (i.e., improving) mutation, the step length control parameter`k is increased
and decreased otherwise. This algorithm does not exactly match a(1 + 1)-ES with self-adapting step size
control, but the analysis of this method can be modified easily to a broader class of evolutionary algorithms
(see Section 4).
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2.2 Test Problem

When a stochastic optimization algorithm is said to exhibitglobal convergence for a certain class of objec-
tive functions, then it is meant that the stochastic sequence of candidate solutions generated by the algorithm
converges (in some stochastic mode) to the global optimum forevery member of the problem classregard-
less of the initial solution. In order to falsify the property of global convergence for the entire problem class
it is sufficient to prove a negative result for a single member of the problem class and a specific starting
point. Here, the problem class is the set of continuous real-valued functions with search spaceIR. An
instance of this problem class is the functiong : IR! IR described next. Let� > 0, � > 0, z � 6 � > 0 and

g(x) =

8><
>:

3

4
� x2=�2 + � , if x � 2 �

4 � , if 2 � < x < z � 2 �
� (x� z)2=�2 , if x � z � 2 � :

Figure 1 shows a qualitative plot of the objective functiong(�). Its global optimum is located atx� = z with
valueg(z) = 0. The starting point of the algorithm described in equations (1) and (2) isX0 = 0 whereas
`0 > 0 may be chosen arbitrarily.

Figure 1: A qualitative plot of the objective functiong(�).

With these initial values the algorithm only accepts a solution different from0 if the outcome of the random
variable`k Zk is within the range(z� �; z+ �). It is clear that the occurrence of such an event in the course
of an infinite sequence of trials with probability1 is a necessary condition for global convergence. If the
probability of this event is less than1, then the algorithm will never enter the set(z� �; z+ �) with positive
probability. As a consequence, stochastic convergence toz is precluded in this case. In order to prove when
the necessary condition is violated, sufficient criteria for success and failure are developed next.

2.3 Criteria for Success or Failure

Suppose that the cumulative distribution functionFZ of the symmetrical random variableZ with zero
median is differentiable. Owing to the mean value theorem the probability of a transition from point0 to
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the set(z � �; z + �) � IR can be derived via

Pf 0! (z � �; z + �) g = Pf z � � < Z < z + � g = FZ(z + �)� FZ(z � �) = 2 � fZ(z � � + � � 2 �)
where0 < � < 1 andfZ(x) = d

dx
FZ(x). Sincez > � > 0 the transition probability can be bracketed as

follows:
2 � fZ(z � �) � Pf 0! (z � �; z + �) g � 2 � fZ(z + �) : (3)

Inequality (3) is valid for arbitrary distributions of random variableZ. In the course of the evolution,
however, the distribution ofZ will not remain constant in general. This fact will be taken into account by
adding the subscriptk (the iteration counter) toZ hereinafter.

2.3.1 Criterion for Successful Crossing

The probability of crossing the hill between the local and global optimum at stepk � 1 is

pk = Pf 0! (z � �; z + �) at stepk g � qk = 2 � fZk(z � �) (4)

where the lower boundqk results from inequality (3). It follows that the probability of a transition to
(z � �; z + �) within t � 0 trials is

1�
tY

k=1

(1 � pk) � 1�
tY

k=1

(1 � qk) :

Therefore the sufficient criterion for a successful crossing is simply
tY

k=1

(1� qk)! 0 or, equivalently,
tX

k=1

log

 
1

1� qk

!
!1 (5)

ast ! 1. If criterion (5) is fulfilled, then the evolutionary algorithm will jump to(z � �; z + �) within
a finite number of steps with probability one. This does not imply that the EA will converge to the global
optimum atx� = z, but the necessary condition for this property would be fulfilled.

2.3.2 Criterion for Unsuccessful Crossing

In contrast to the pessimistic point of view in the preceding criterion, one has to assume an optimistic point
of view now. Thanks to inequality (3) one obtains

pk = Pf 0 ! (z � �; z + �) at stepk g � qk = 2 � fZk(z + �) : (6)

As a consequence, the upper bound for the probability of a transition to(z � �; z + �) within t � 0 trials is
given by

1�
tY

k=1

(1 � pk) � 1�
tY

k=1

(1 � qk) :

If the probability on the right hand side above is smaller than1 in the limit, then the transition to(z��; z+�)
is not guaranteed. In other words, it may happen with positive probability that the EA never enters the set
(z � �; z + �). It is clear that such an event precludes the convergence to the global optimum atx� = z 2
(z � �; z + �). Thus, the sufficient criterion of failure is simply

1Y
k=1

(1� qk) > 0 or, equivalently,
1X
k=1

log

 
1

1� qk

!
<1 : (7)
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3 Analysis

Suppose that the algorithm described in equations (1) and (2) is used to minimize the objective functiong(�)
of the preceding section. If the starting point isX0 = 0 then equations (1) and (2) reduce toXk = 0 and
`k = `0 

k with  � 2 2 (0; 1) as long as a transition to the set(z � �; z + �) has not been occurred. As a
consequence, the transition probabilities of the associated Markov process prior to a successful crossing of
the hill can be bounded via inequality (3). Before explicit mutation distributions, namely Gaussian as well
as Cauchy distributions, are inserted in this inequality, two simple inequalities are proven for later use.

Lemma 1 If x 2 (0; 1) then

x < log

�
1

1� x

�
<

x

1� x
:

Proof:
Consider the series expansion

log

�
1

1� x

�
= � log(1 � x) =

1X
i=1

xi

i

which is valid forjxj < 1. This leads immediately to the inequalities

0 < x <
1X
i=1

xi

i
<

1X
i=1

xi =
1X
i=0

xi � 1 =
1

1� x
� 1 =

x

1 � x

and the proof is completed. ut

3.1 Gaussian Mutations

Suppose that random variableZ possesses Gaussian distribution with probability density function

fZ(x) =
1

�
p
2�

exp

 
� x2

2�2

!

where� will play the role of the step length control parameter`. It will now be shown that a successful
crossing of the hill between the local and global optimum is not guaranteed. For this purpose, the probability
density functionfZ(�) is inserted into inequality (6) yielding

pk � qk = �

s
2

�

1

�k
exp

 
� (z + �)2

2�2
k

!
= A�k exp(�B �2

k
) (8)

whereA = � (2=�)1=2, B = (z + �)2=2, and�k = 1=�k. Lemma 1 leads to

1X
k=1

log

 
1

1� qk

!
<

1X
k=1

qk
1� qk

� 1

1� q1

1X
k=1

qk : (9)

Let �k = �0 �
k with � = 1= > 1. Insertion of the rightmost expression of equation (8) into the rightmost

expression of equation (9) yields

1

1 � q1

1X
k=1

qk =
A

1 � q1

1X
k=1

�k
exp(B �2

k
)
=

A�0
1 � q1

1X
k=1

�k

exp(B �20 �
2k)

=
A�0
1� q1

1X
k=1

ak :
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The series above converges to a finite limit if the sequencejakj1=k converges to some limit� < 1. Since

jakj1=k =
�

exp(B �20 �
2k=k)

! � = 0

ask !1 it was shown that
1X
k=1

log

 
1

1� qk

!
< 1 :

Owing to criterion (7) one may conclude that the algorithm with self-adaptation gets stuck at the local
optimum with positive probability precluding the property of global convergence.
Evidently, this failure is caused by a too fast decrease of the step size control parameter in the case of
unsuccessful mutations. Therefore one may inquire under which step size control schedule a transition to
(z � �; z + �) is guaranteed. According to equation (4) we obtain

pk � qk = �

s
2

�

1

�k
exp

 
� (z � �)2

2�2
k

!
= A�k exp(�C �2

k
) (10)

whereA = � (2=�)1=2, C = (z � �)2=2, and�k = 1=�k. Choose

�k =

s
1

C
log

�
A

C1=2
k
�

for k > C1=2=A. Insertion into eqn. (10) leads to

qk =

s
log

�
A

C1=2
k
�
� 1
k
� 1

k

where the inequality is valid for sufficiently largek, i.e., for allk � k0, say. Finally, Lemma 1 yields

tX
k=k0

log

 
1

1 � qk

!
�

tX
k=k0

qk �
tX

k=k0

1

k
!1

ast!1. This result is equivalent to the statement

1�
tY

k=k0

(1 � qk)! 1 as t!1

which implies that a transition from0 to the set(z� �; z+ �) happens in finite time with probability1. This
proves the existence of a schedule to escape from the local optimum under self-adaptation, but the mean step
sizes have to be changed extremely slowly. Since such a schedule is also in action after entering the set(z�
�; z + �) the mean convergence velocity to the global optimum would be extremely slow as well (provided
that convergence occurs at all). One is therefore tempted to inquire for another mutation distribution that
might work with a faster self-adapting schedule than the inversely logarithmic one or even with the original
one. Few years ago, some authors have suggested to replace the Gaussian mutation distribution by a Cauchy
mutation (Kappler 1996; Yao and Liu 1996). Since the tails of the Cauchy distribution decrease much slower
than the tails of the Gaussian distribution, it is hoped that such evolutionary algorithms exhibit an improved
ability to escape from local optima. This hypothesis is examined next.
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3.2 Cauchy Mutations

Suppose that the random variableZ possesses a Cauchy distribution with probability density function

fZ(x) =
1

�

s

s2 + x2
(11)

where the scale parameters plays the role of the step size control parameter`. At first, consider the original
schedule as given in equation (2). Unless one gets a successful mutation the scale parametersk decreases
assk = s0 

k with 0 <  < 1. According to inequality (6) one obtains

pk � qk = 2 � fZk(z + �) =
2 �

�

sk
s2
k
+ (z + �)2

= D
sk

s2
k
+ E

(12)

whereD = 2 �=� andE = (z + �)2. Inequalities (9) and (12) lead to

1X
k=1

log

 
1

1 � qk

!
<

1

1 � q1

1X
k=1

qk =
D

1 � q1

1X
k=1

sk
s2
k
+ E

=
D s0
1� q1

1X
k=1

k

s20 
2 k +B

=
D s0
1 � q1

1X
k=1

ak :

The series above converges to a finite limit if the sequencejakj1=k converges to a limit� < 1. Since

jakj1=k =


(s20 
2 k + E)1=k

!  < 1

ask !1 it was shown that Cauchy mutations with the original step size control schedule are not a remedy:
The hill between the local and global optimum will not be crossed with positive probability. Consequently,
the property of global convergence is not present.
Again, one might seek for a slightly slower schedule than the original one that guarantees the crossing of
the hill with probability1. For this purpose choose

sk =
1

k

for k � 1 and insert this expression into the inequality (4). This leads to

pk � qk = 2 � fZk (z � �) = D
sk

s2
k
+G

= D
1=k

1=k2 +G

whereD = 2 �=� andG = (z � �)2. Owing to Lemma 1 one obtains

1X
k=1

log

 
1

1� qk

!
>

1X
k=1

qk = D
1X
k=1

1=k

1=k2 +G
� D

1 +G

1X
k=1

1

k
=1

which fulfills the criterion for successful crossing of the hill between local and global optimum. At a
first glance, self-adaptation with Cauchy mutations seems to work with a faster schedule than in the
case of Gaussian mutations. But this impression is misleading since the choice of a sufficiently slowly
schedule depends on the representation of the step size control parameter in the definition of the prob-
ability density functionfZ(�). For example, if parameters in equation (11) is replaced byh(s) with
h(s) = log()= log(s=s0), then the original schedule would lead to a crossing of the hill with probabil-
ity 1. Thus, some caution is appropriate here.
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4 Extensions of the Scenario

4.1 Original (1+1)-Strategy with Self-Adaptation

As mentioned in Section 2.1 the stochastic algorithm considered so far does not match the original(1 + 1)-
strategy with self-adaptation exactly. It will be shown that the results obtained by now remain valid for the
original (1 + 1)-EA which changes the step size control parameter if the relative frequency of improving
mutations is below or above some threshold withinm, say, trials. Unless there is an outcome ofZk in the
set (z � �; z + �) the step size control parameter is decreased by factor 2 (0; 1) after everymth trial.
This behavior can be squeezed into our original scenario by considering thesem trials as an elementary
event of stagek. The probability of observing a transition to(z � �; z + �) within m trials at stagek is
p̂k = 1 � (1 � pk)

m wherepk is the probability of successful crossing for a single trial (as known from
the previous section). Notice thatpk � qk if and only if p̂k = 1 � (1 � pk)

m � q̂k = 1 � (1 � qk)
m and

analogous for the reversed inequality. Therefore the sufficient criterion for unsuccessful crossing of the hill
(eqn. 7) remains valid ifqk is replaced bŷqk. Sincem is finite and

1Y
k=1

(1 � q̂k) =
1Y
k=1

(1 � qk)
m =

"
1Y
k=1

(1 � qk)

#
m

< 1 () m �
1X
k=1

log

 
1

1 � qk

!
< 1

one may conclude from the preceding analysis withm = 1 that the(1 + 1)-EA with usual self-adaptation
and Gaussian or Cauchy mutations does not globally converge for the class of continuous functions in
general.

4.2 Multiple Offspring

Now let the parent produce� � 2 offspring with the same mutation distribution. The offspring with the
least objective function value replaces the parent if and only if its objective function value is less than that
of the parent. This EA is known as the(1 + �)-EA. Thus, at every stage there are now� � m in lieu of
m trials. Since� is finite the argumentation of Section 4.1 is directly transferable to this scenario: The
(1+�)-EA with self-adaptation and Gaussian or Cauchy mutations does not globally converge for the class
of continuous functions in general.

4.3 Different Starting Point

It might be argued that the entire analysis is irrelevant since the event of starting the EA atX0 = 0 has
zero measure under random initialization. But this hope is in vain. Suppose that the EA is started in the set
[��; �] which has non-zero measure under random initialization.
With X0 2 [��; �] the EA only accepts offspring with objective function value less than0:75 �X 2

0=�
2 + �.

Suppose for the moment that the EA does not accept improvements within the left valley. In the best case
the starting point is atX0 = � because the set of improving solutions on the other side of the hill as well
as the assigned probability mass becomes maximal. Now one is back at the preceding scenarios—if the
EA is unable to enter the setH� = (z � �

q
7=4; z + �

q
7=4) with probability1 then global convergence

is precluded. The original analysis remains the same for this situation—only the values of the constants
A;B; : : : in the original analysis are affected. Since they do not influence the argumentation of the analysis
the main result is also valid under this scenario.
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Finally, let the EA also accept better solutions in the left valley. To preclude the property of global conver-
gence it is sufficient to show that the EA is unable to enter the setH� with probability one. This leads to the
following model: The EA minimizes the convex function with domain[��; �] exponentially fast (as proven
in Rappl 1984) or the EA enters the setH� and halts. At each stage the probability of a transition toH� is
less than1 � (1 � ~qk)

m where~qk plays the role ofqk with altered constants. While the EA minimizes the
convex function the step size control parameter may temporarily increase—in the limit, however, the step
size control parameter decreases exponentially fast. Therefore, the probability~qk may increase temporarily
as well—but in the limit it decreases too fast to make the event of entering the setH� a sure one. Summing
up:

Theorem 1 A randomly initialized (1 + �)-EA with a self-adaptation method resembling the 1=5-success
rule does not converge with probability 1 to the global optimum of a continuous objective function in
general. ut

5 Discussion

The negative result concerning self-adaptation just presented should be accompanied by some comments.
From a theoretical point of view, this result is remarkable because many EAs without self-adaptation do
globally converge to the optimum. But this does not automatically imply that self-adaptation is an ob-
structive feature of evolutionary algorithms. Proofs of global convergence for EAs without self-adaptation
ensure that the global optimum will be found in finite time with probability 1 regardless of the starting
point. Although finite, the time actually necessary to enter some vicinity of the global optimum (in which
the objective function is locally convex) may be transcomputational long. Moreover, even if this event has
been occurred, these EAs require much time to locate the optimum with more accuracy. Evolutionary algo-
rithms with self-adaptation do not always enter the vicinity of the global optimum in finite time, but as soon
as they have reached this set the global optimum is approached exponentially fast. If the union of vicinities
with locally convex objective functions and sufficiently good local optima is large enough, then repeated
runs of the EA will ensure that at least one run enters this union of vicinities with high probability (the fail-
ure probability decreases exponentially in the number of runs). After this has happened a sufficiently good
local optimum is approached exponentially fast. From a practical point of view, such a behavior is certainly
satisfying. Therefore, future research should be engaged in replacing the vague phrase “...sufficiently good
local optima islarge enough ...” by rigorous statements.
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