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Abstract

Ordered binary decision diagrams (OBDDs) and their variants are moti-

vated by the need to represent Boolean functions in applications. Research
concerning these applications leads also to problems and results interesting

from theoretical point of view. In this paper, methods from communication

complexity and information theory are combined to prove that the direct stor-
age access function and the inner product function have the following property.

They have linear �-OBDD size for some variable ordering � and, for most vari-

able orderings �0, all functions which approximate them on considerably more
than half of the inputs, need exponential �0-OBDD size. These results have

implications for the use of OBDDs in genetic programming.

1 INTRODUCTION

Branching programs (BPs) or binary decision diagrams (BDDs), which is just an-

other name, are representations of Boolean functions f 2 Bn, i.e., f : f0; 1gn !
f0; 1g. They are compact but not useful for manipulations of Boolean functions,

since operations like satis�ability test, equivalence test or minimization lead to hard

problems. Bryant [6] has introduced �-OBDDs (ordered BDDs), since they can be

manipulated eÆciently (see [7] and [19] for surveys on the areas of application).

De�nition 1.1 A permutation � on f1; : : : ; ng describes the variable ordering

x�(1); : : : ; x�(n). A �-OBDD is a directed acyclic graph G = (V;E) with one source.

Each sink is labelled by a Boolean constant and each inner node by a Boolean vari-

able. Inner nodes have two outgoing edges one labelled by 0 and the other by 1. If

an edge leads from an xi-node to an xj-node, then ��1(i) has to be smaller than

��1(j), i.e., the edges have to respect the variable ordering. The �-OBDD repre-

sents the function f 2 Bn de�ned in the following way. The input a activates, for

xi-nodes, the outgoing ai-edge. Then f(a) is equal to the label of the sink reached

by the unique activated path starting at the source. The size of G is measured by

the number of its nodes. An OBDD is a �-OBDD for an arbitrary �.

One-way communication complexity (see e.g. [11], [14]) leads to lower bounds for

OBDDs. This method is almost the same as counting the number of subfunctions of

f if the �rst variables according to the variable ordering are replaced by constants.

There are functions, for which the OBDD size is very sensitive to the chosen variable
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ordering. Moreover, given a �-OBDD for a function f , it is NP-hard to �nd an

optimal variable ordering for f , see [5], or even to approximate the optimal variable

ordering, see [16].

We will need the following two functions.

De�nition 1.2 i) For n = 2k, the direct storage access function (or multiplexer)

on k + n variables is the function DSAn(a0; : : : ; ak�1; x0; : : : ; xn�1) = xjaj, where

jaj is the number whose binary representation is (a0; : : : ; ak�1).

ii) For any even n, the inner product function on n variables is the function

IPn(x1; : : : ; xn) = x1x2 � x3x4 � : : :� xn�1xn.

Clearly, these two functions have �-OBDD of size O(n) for the ordering of the

varibles used in the de�nition of the functions. On the other hand, they need

exponential �-OBDD size for most of the variable orderings (a fraction of 1� n�"

for DSAn and even a fraction of 1� 2�"n for IPn, see [20]). Another example of a

function with a similar property, so-called disjoint quadratic form, may be obtained

by replacing � by disjunction in the expression describing IP.

These results are stated for error-free representations of f and, up to now, to

the best of our knowledge, nobody has looked at representations of approximations

of f from a theoretical point of view. In this paper, we investigate the in
uence

of the variable ordering for approximate representations of functions. If not stated

otherwise, by a random input ~x we mean an input ~x chosen from the uniform

distribution on f0; 1gn.

De�nition 1.3 A function g 2 Bn is a c-approximation of f 2 Bn if Pr(f(~x) =

g(~x)) � c for a random input ~x.

One of the two constant functions 0 and 1 always is a 1=2-approximation. Hence,

we consider c-approximations for c > 1=2.

We prove the following strengthenings of the previously mentioned lower bounds

on the �-OBDD complexity of DSAn and IPn for a random ordering. For most of

the orderings �, every function that is a (1=2 + ")-approximation of DSAn or IPn,

where ", 0 < " < 1=2 is any constant, requires a �-OBDD of exponential size. In

the case of IPn, the result remains true even if " tends to zero in a controlled way.

For exact formulations see Theorems 2.1 and 3.1.

The result for the inner product function is stronger, since it can be proved

for better parameters. On the other hand, the result for DSAn is of particular

interest for genetic programming, since, recently, DSAn is frequently used in exper-

iments. The proof combines methods from one-way communication complexity and

information theory.

The problems are motivated by experiments in genetic programming using OB-

DDs, where one searches for a good approximation of an unknown function given

by examples. Our results have consequences for the situation that the unknown

function has a small OBDD for some ordering, but this ordering is not known. For

more details see Section 4.

For completeness, we present also an example of a function that is hard to

approximate for any ordering.

2 THEDIRECT STORAGE ACCESS FUNCTION

First, we state the result informally. There are only a few variable orderings �

which allow an approximation gn of DSAn which is essentially better than the

trivial approximations by the constants 0 and 1 (which are 1=2-approximations)

and which, moreover, has a �-OBDD size growing not exponential.
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Theorem 2.1 Let 0 < Æ < ". For every large enough n, the following property

holds for a fraction of at least 1� n�2"
2
= ln 2 of the variable orderings � for DSAn.

Each function which is a (12+"+n
�("�Æ)=2)-approximation of DSAn has a �-OBDD

size which is bounded below by en
Æ

.

The proof of this theorem is splitted into Lemmas 2.2 and 2.3. Recall that an

ordering � for DSAn is a permutation of n+ k variables, where k = logn. In order

to simplify the terminology, we assume that the �rst n0 =def b(1 � 2")nc variables
according to � are given to Alice and the other ones to Bob. First, we derive a

property of random variable orderings �.

Lemma 2.2 With probability at least 1�n�2"
2
= ln 2, Alice obtains at most (1� ")k

address variables, i.e., a-variables.

Proof. The random variable ordering can be produced as follows. We take the k

address variables and randomly choose for them one after another a free position

among the n + k possible positions. Then we continue in the same way with the n

data variables, i.e., the x-variables. During the �rst k steps of this process, there

are always at most (1�2")n free positions among the �rst n0 = b(1�2")nc positions
and at least n open positions at all. Hence, the probability of each address variable

to be given to Alice, is at most 1 � 2". We can upper bound the probability that

Alice gets more than (1�")k address variables by the probability of at least (1�")k
successes in k independent Bernoulli trials with success probability 1� 2".

The expected number of successes E[Z] equals (1� 2")k. By Cherno�'s bound,

we obtain

Pr(Z � (1� ")k) = Pr(Z � E[Z] + "k) � e�2"
2
k = n�2"

2
= ln 2:

2

In the following, we �x a variable ordering � where Alice gets at most (1 � ")k

address variables. She also gets at least (1 � 2")n � k data variables. If Alice's

address variables are �xed, there are at least n" data variables left which may

describe the output. On the average, at least (1 � 2")n" � o(1) of these variables

are given to Alice. In order to enable Bob to compute the output exactly, Alice

has to send him the value of her address variables and those data variables which

can describe the output. If the information given from Alice is much smaller than

this, Bob can compute the value of DSAn only with probability close to 1=2. The

information given from Alice to Bob is measured by the logarithm of the size of a

�-OBDD computing the function DSAn.

For a rigorous argument, let � be an ordering and let A (resp. B) be the set

of address variables given in � to Alice (resp. Bob) and let X (resp. Y ) be the set

of data variables given in � to Alice (resp. Bob). Clearly, jA [Xj = n0 and every

computation in any �-OBDD reads �rst (some of) the variables in A [X and then

(some of) the variables in B [ Y . Let g be a function represented by a �-OBDD G

of size s. Because of the de�nition of c-approximations, we consider random inputs

(~a;~b; ~x; ~y) where ~a is a random setting of variables in A, etc. In this situation, the

following holds.

Lemma 2.3 Pr(DSAn(~a;~b; ~x; ~y) = g(~a;~b; ~x; ~y)) � 1� jXj
2n + 1

2n

�
2 � 2jAjjXj ln s

�1=2
.

Before proving Lemma 2.3, let us demonstrate its application by proving Theo-

rem 2.1.

Proof of Theorem 2.1. Recall that k = logn and let s < en
Æ

. For every ordering

�, we have (1 � 2")n � k � 1 � jXj � n. Moreover, Lemma 2.2 implies that with
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probability at least 1�n�2"
2

, we have jAj � (1�")k. By substituting these estimates

into the bound from Lemma 2.3, we obtain that the probability that DSAn and g

have the same value is at most 1
2 + " + 1p

2
n�("�Æ)=2 + logn

2n < 1
2 + " + n�("�Æ)=2.

This implies the theorem. 2

For proving Lemma 2.3, we need some more notation. Let H(U ) be the entropy

of a random variable U and H(U jE) resp. H(U jV ) the entropy of U given an event

E or a random variable V resp. Moreover, let H�(x) = �x logx� (1�x) log(1�x)
for x 2 (0; 1).

For each (a; b; y), let

q(a; b; y) = Pr(DSAn(a; b; ~x; y) = g(a; b; ~x; y))

for random assignments ~x to the variables in X. The probability, we are interested

in, is the average of all q(a; b; y). Let q(a; b) denote the average of q(a; b; y) over all

possible y and, similarly, let q(a) denote the average of q(a; b; y) over all possible b

and y. Moreover, for each partial input a, let Ia be the set of partial inputs b such

that the variable xj(a;b)j or xa;b, for simplicity, is given to Alice. Note that H�(x)

is maximal for x = 1=2 and the maximum is equal to 1. Hence, if jIaj � log s, the

next lemma implies that for most of b 2 Ia, q(a; b) is close to 1=2.

Lemma 2.4 For every a, we haveX
b2Ia

H�(q(a; b)) � jIaj � log s:

Proof. Consider the �-OBDD computing the function g described before Lemma

2.3. For any settings a; x, let h(a; x) be the �rst node, where the computation for

a; x reaches a node testing a variable in B [ Y or a sink. Note that a computation

for a; b; x; y depends on a; x only via h(a; x). This means, there is a function �b;y

such that g(a; b; x; y) = �b;y(h(a; x)). Note that the size of the range of h is at most

s.

Besides well-known information theoretical inequalities we use the following one

whose proof is postponed to the end of the section.

Claim 1 Let U and V be random variables taking values in f0; 1g. Then H�(Pr(U =

V )) � H(U jV ).

If (a; b; y) is �xed and b 2 Ia, DSAn outputs xa;b. Using the claim and the fact

that H(U j f(V )) � H(U jV ) for each function f , we conclude

H�(q(a; b; y)) = H�(Pr(~xa;b = �b;y(h(a; ~x)))

� H(~xa;b j�b;y(h(a; ~x))) � H(~xa;b jh(a; ~x)):

Now we use the fact H(U1 jV ) + : : : + H(Ur jV ) � H((U1; : : : ; Ur) jV ) for ~xa;b,

b 2 Ia, and the vector ~xa of these random variables. This impliesX
b2Ia

H(~xa;b jh(a; ~x)) � H(~xajh(a; ~x)):

In the next step we apply the equalitiesH(U jV ) = H(U; V )�H(V ) andH(U; f(U )) =

H(U ) to obtain

H(~xa jh(a; ~x)) = H(~xa; h(a; ~x))�H(h(a; ~x)) = H(~xa)�H(h(a; ~x)):
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We have H(h(a; ~x)) � log s, since there are only s di�erent possibilities for h(a; ~x).

The random variables ~xa;b, b 2 Ia, are independent and take values in f0; 1g, i.e.,
~xa is uniformly distributed over f0; 1gjIaj and H(~xa) = jIaj. This implies

H(~xa jh(a; ~x)) � jIaj � log s:

Putting all our considerations together, we obtainX
b2Ia

H�(q(a; b; y)) � jIaj � log s:

The function H� is concave. Hence, this inequality implies Lemma 2.4. 2

Proof of Lemma 2.3. Let �(a; b) = q(a; b) � 1
2 . Then we apply the inequality

H�(1
2
+t) � 1�(2= ln 2)t2 (estimate Taylor's expansion using the second derivative)

to obtainX
b2Ia

H�(q(a; b)) =
X
b2Ia

H�
�
1

2
+ �(a; b)

�
� jIaj � (2= ln 2)

X
b2Ia

�(a; b)2:

Together with Lemma 2.4, we get

1

2
ln s �

X
b2Ia

�(a; b)2:

Using Cauchy's inequality, we obtain

X
b2Ia

j�(a; b)j �

 
jIaj

X
b2Ia

�(a; b)2

!1=2

�
�
1

2
jIaj ln s

�1=2

:

Recall that q(a) is the average of all q(a; b). Since b may take 2jBj values, we get

q(a) =
1

2jBj

0
@X
b62Ia

q(a; b) +
X
b2Ia

q(a; b)

1
A

�
1

2jBj

 
2jBj �

1

2
jIaj+

X
b2Ia

�(a; b)

!

� 1� 2�jBj�1(jIaj � (2jIaj ln s)1=2) =  (jIaj);

where  (t) =def 1 � 2�jBj�1(t � (2t ln s)1=2). The function  is concave. Let

a1; : : : ; am, m = 2jAj, be the possible values of a. Then

1

m

X
1�i�m

q(ai) �
1

m

X
1�i�m

 (jIai j) �  

0
@ 1

m

X
1�i�m

jIai j

1
A =  (jXj=2jAj):

The last equality follows, since, by de�nition, the sum of all jIai j equals jXj. The
left-hand side of the above inequality is the average of all q(a) and this is the average

of all Pr(DSA(a; b; ~x; y) = g(a; b; ~x; y)) and, therefore, equal to Pr(DSA(~a;~b; ~x; ~y) =

g(~a;~b; ~x; ~y)). We have proved that this probability is bounded above by

 (jXj=2jAj) = 1�
jXj

2 � 2jAj+jBj
+

1

2 � 2jAj+jBj
(2 � 2jAjjXj ln s)1=2:

Since A and B are a partition of the logn address variables, we have 2jAj+jBj = n

and Lemma 2.3 follows. 2
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Proof of the claim. Since U and V take values in f0; 1g,

Pr(U = V ) =
X

�2f0;1g

Pr(U = � jV = �) Pr(V = �):

The concavity of H� implies

H�(Pr(U = V )) �
X

�2f0;1g

H�(Pr(U = � jV = �)) Pr(V = �):

Since H�(x) = H�(1� x), we obtain

H�(Pr(U = 0 jV = �)) = H�(Pr(U = 1 jV = �)) = H(U jV = �)

and

H�(Pr(U = V )) �
X

�2f0;1g

H(U jV = �) Pr(V = �) = H(U jV ):

2

Let us add some comments to this result. A random variable ordering for DSAn

is with a probability of at least n� logn optimal, i.e., all address variables are tested

before each data variable. If we consider cuts as in our proof, Alice gets all address

variables with a probability which is approximately nlog(1�2"). Therefore, we need

another approach to improve the result with respect to the fraction of variable

orderings but one cannot obtain a result for an exponentially small fraction. Bob

gets at least 2"n data variables. He can output the correct value, if Alice tells

him her address variables and the decisive data variable is among Bob's variables.

Otherwise, he can guess the right output with probability 1=2 (actually, he may

choose always 0 as output). Then his success probability equals 2"+1
2 (1�2") =

1
2+".

Hence, our approach cannot lead to substantially better results.

3 THE INNER PRODUCT FUNCTION

In this section, we prove results on the inner product function which are of the

same 
avor as the results on the direct storage access function in Section 2. The

di�erence is that we can prove better bounds on the quality of approximation even

for a larger fraction of variable orderings and larger OBDDs.

Theorem 3.1 Let 0 < Æ. The following property holds for a fraction of at least

1 � e�4Æ
2
n of the variable orderings � for IPn. Each function which is at least a

(12 + 2�
1

16
(1�9Æ)n�1

2 )-approximation of IPn has a �-OBDD size which is bounded

below by 2Æn.

Proof. First, we derive a property of random variable orderings �. It is convenient

to rename the variables such that IPn(x; y) = x1y1 � : : :� xn=2yn=2. We give the

�rst n=2 variables according to � to Alice and the other ones to Bob. An index i is

called a singleton if xi is given to Alice and yi to Bob or vice versa.

Lemma 3.2 With probability at least 1� e�4Æ
2
n, a random variable ordering leads

to at least (1� Æ)n=8 singletons.

Proof. The random variable ordering can be produced as follows. First, we draw

n=2 balls out of an urn with n=2 white balls (x-variables) and n=2 black balls (y-

variables). Let w be the number of drawn white balls. Because of symmetry, we

6



assume w.l.o.g. that w � n=4. Also w.l.o.g. we assume that Alice gets the x-

variables x1; : : : ; xw. Then we draw n=2�w balls out of an urn with w white balls

(the y-variables y1; : : : ; yw) and n=2 � w black balls (the remaining y-variables).

The number of drawn black balls is a lower bound for the number of singletons.

Our chance of getting many singletons is minimal for the maximal value w = n=4.

Then we have a hypergeometric distribution with mean n=8. It is well-known that

the deviation from the mean is larger for the binomial distribution with the same

success probability which is 1=2 in our case. Hence, we can bound the probability

of getting at most (1� Æ)n=8 singletons by the probability of (1 � Æ)n=8 successes

in n=4 Bernoulli trials with success probability 1=2. Now the result follows by an

application of Cherno�'s bound. 2

We only remark that it is even possible to obtain a lower bound of (1 � Æ)n=4

singletons if we increase the error probability a little bit.

In the following, we �x a variable ordering � where Alice gets among her n=2

variables exactly t singletons. Let g be a function represented by a �-OBDD G of

size s. We try to estimate the probability that IP(~x) = g(~x) on a random input ~x.

Lemma 3.3 Pr(IP(~x) = g(~x)) � 1
2 + s1=22�t=2�1=2:

First we show how this claim implies the theorem. We set s = 2Æn and t =
1
8 (1� Æ)n. Then

s1=22�t=2 = 2Æn=2 � 2(1�Æ)n=16 = 2�
1

16
(1�9Æ)n:

and the theorem follows from Lemmas 3.2 and 3.3. 2

Proof of Lemma 3.3. We consider the communication matrix for IPn with respect

to the partition of the variables between Alice and Bob, i.e., we have 2n=2 rows

corresponding to the di�erent input vectors for the variables of Alice and similarly

2n=2 columns. Each matrix entry is the value of IP on the input of the row input

and the column input. If we �x all variables xj and yj where j is not a singleton, we

obtain IP2t or its negation as subfunction. Hence, the communication matrix can

be partitioned to 2t� 2t-submatrices which are communication matrices for IP2t or

its negation. For each of these submatrices M = (Mij), w.l.o.g. Alice is the owner

of all x-variables and Bob the owner of all y-variables. It is known from Lindsey's

Lemma (see, e.g., Babai, Frank, and Simon (1986)) that for each subset A of a rows

of M and each subset B of b columns of M it holds that�� X
i2A; j2B

(�1)Mij
�� � 2t=2a1=2b1=2

i.e., each not too small submatrix is not constant. More precisely, we have to negate

at least 1
2 (ab�2t=2a1=2b1=2) entries of an a� b submatrix ofM to obtain a constant

submatrix. It follows by an averaging argument that there is an assignment to

the variables xj and yj where j is not a singleton such that Pr(IP�(~x) = g�(~x)) �
Pr(IP(~x) = g(~x)) for the resulting subfunctions IP� and g� of IP and g resp. By the

above arguments, we can assume w.l.o.g. that IP� = IP2t. It is suÆcient to prove

Pr(IP�(~x) = g�(~x)) �
1

2
+ s1=22�t=2�1=2:

Let M� be the communication matrix of g�, D = M �M�, and jjDjj the number

of 1-entries of D. Then

Pr(IP�(~x) = g�(~x)) = 1� jjDjj=22t:
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We will prove that

jjDjj �
1

2
22t � s1=223t=2�1=2

which implies the claim.

Since g� can be represented by a �-OBDD whose size is bounded by s, it follows

from the well-known relations between one-way communication complexity and �-

OBDD size that the communication matrix of g� has at most s di�erent rows. Let

r1; : : : ; rs contain the di�erent rows of M�. We partition M� to a small number of

constant submatrices which intuitively implies that M and M� are quite di�erent.

We permutate the rows (i.e., renumber the input vectors of Alice) such that we

have at �rst a1 rows equal to r1, then a2 rows equal to r2 and so on. The block

of ak equal rows can be partitioned for some bk to an ak � bk-matrix consisting of

zeros only and an ak � (2t� bk)-matrix consisting of ones only. Altogether we have

partitioned M� to at most 2s constant submatrices whose sizes are ak � bk and

ak � (2t � bk), 1 � k � s.

Now we consider the corresponding submatrices of M . By the conclusion from

Lindsey's Lemma, it follows that we have to negate at least

d =
X

1�k�s

1

2
(akbk � 2t=2a

1=2
k
b
1=2
k

+ ak(2
t � bk) � 2t=2a

1=2
k

(2t � bk)
1=2)

entries in order to convert each submatrix into a constant one. Hence,

jjDjj � d =
X

1�k�s

1

2
(ak2

t � 2t=2a
1=2
k

(b
1=2
k

+ (2t � bk)
1=2)):

The sum of all ak is equal to 2t. Hence,

d+ :=
X

1�k�s

1

2
ak2

t =
1

2
22t:

The term b
1=2
k

+ (2t � bk)
1=2 is maximized for bk = 2t�1 and

d� :=
X

1�k�s

1

2
2t=2a

1=2
k

(b
1=2
k

+ (2t � bk)
1=2)) �

X
1�k�s

2t�1=2a
1=2
k
:

Since x1=2 is concave, we obtain the maximal value for ak = 2t=s and

d� =
X

1�k�s

2t�1=22t=2s�1=2 = s1=223t=2�1=2:

Since jjDjj � d = d+ � d�, we have proved the proposed bound on jjDjj. 2

It is now easy to obtain a function which is hard to approximate by �-OBDDs

and arbitrary variable orderings. We de�ne the function permuted inner product

PIPn on dlog(n!)e+ n variables. The �rst dlog(n!)e = �(n logn) variables describe

a permutation � on f1; : : : ; ng, more precisely, for each permutation, the number

of code words is one or two. The function PIPn realizes IPn on the remaining n

variables which are permuted according to �. For each variable ordering �, we have

to represent (for the di�erent assignments to the permutation variables) IPn for all

variable orderings once or twice. Hence, the result of Theorem 5 which holds for

many variable orderings and IPn implies a similar result for PIPn and all variable

orderings.

Corollary 3.4 The function PIPn cannot be approximated well by �-OBDDs and

arbitrary variable orderings.
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4 THE MOTIVATION FROM AND CONCLU-

SION FOR GENETIC PROGRAMMING

Genetic programming was introduced by Koza [12] as a heuristic approach to con-

struct a program (in the form of an S-expression) computing a function given by

examples. Let us consider genetic programming restricted to Boolean concepts like

Boolean formulas, binary decision diagrams, circuits etc. This restricted form of

genetic programming is closely related to the following type of minimization prob-

lems.

Assume, a model for representing Boolean functions is given. It may be a model

from the list above, but also some weaker model like OBDDs, DNF formulas, deci-

sion trees etc. Moreover, a complexity measure for the given model is speci�ed. An

instance of the minimization problem is described by a set S � f0; 1gn of inputs of a
function f of n variables and the values f(x) for all inputs x 2 S. The problem is to

�nd a function g together with its representation in the given model of complexity

as small as possible and such that g(x) = f(x) for all x in S.

Genetic programming is a very general type of heuristics applicable to this kind

of problems which is expected to allow further progress in this area. Let us point out

that in genetic programming, the usual formulation of the minimization requirement

is that we look for a representation of g of complexity below a bound speci�ed among

the parameters of the run.

In the present paper, we are mostly interested in the situation, where f is a

total function, which is unknown, and we only have the values of f on a set of

inputs S, which is not complete, i.e. S 6= f0; 1gn. In this case, the goal is to �nd

a total function g which agrees with f on examples from S and, moreover, yields a

justi�able prediction of the values of the unknown function f on the inputs not in

S. The pairs hx; f(x)i for all x 2 S are called training examples and the required

function g is called a generalization of the training examples.

In order to get provable justi�cation, we assume that the examples are cho-

sen at random, independently and from the same distribution. This allows to use

known results concerning the PAC-learning model, which imply that under certain

assumptions, the generalization problem can be reduced to the minimization prob-

lem. More exactly, it is proved in [3] (see also [4]) that under natural assumptions,

it is possible to specify a complexity bound s and a number m, which is typically

larger than s, so that any function g of complexity at most s, which agrees with f

on m randomly chosen independent examples, is likely to be a good approximaion

of f on all inputs.

In experiments with S-expressions, for a long time, only tree representations

are used. Already Koza [13] has recognized the value of graph representations and

has introduced ADFs (automatically de�ned functions), i.e., subprograms which

can be used at several places. Droste [8], [9] suggested to use OBDDs and genetic

programming in order to generalize a given set of training examples. In the case of

�-OBDDs for a �xed ordering, subprograms used at several places are automatically

identi�ed and merged by the reduction algorithm. If the unknown function has a

small OBDD representation, then this signi�cantly helps to �nd the representation.

Successful experiments together with a theoretical background may be found in

[8], [9], [10], [17]. A possibility to adopt an existing learning algorithm for OBDD

using membership and equivalence queries to a heuristic minimization procedure

for incompletely speci�ed Boolean functions is described in [2].

Experiments with minimization for total functions using �-OBDDs for a �xed

ordering � were also performed, see [21], [15].

Let us recall Occam's razor theorem from [3].
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Theorem 4.1 ([3]) Let H be a set of functions and f any function on the same

domain. Assume, ~S is a collection of m examples chosen independently from a

distribution D on the domain. Then, the probability that there exists a function

g 2 H, which agrees with f on all examples in ~S, but Pr(g(~x) = f(~x)) < 1=2 + ",

where ~x is chosen from D, is at most jHj
�
1
2 + "

�m
.

It is possible to strengthen this theorem using the VC dimension of H, see [4].

However, since we have no nontrivial upper bound on the VC dimension of classes

corresponding to OBDDs, we use the weaker form. This is almost the same as if

we use the formulation using the VC dimension and estimate the VC dimension by

log jHj, which is a general upper bound on the VC dimension of H.

In a typical application of this theorem following [3], the set H is the set of

all functions of complexity at most s in some model. In order to apply Occam's

razor theorem to OBDDs, we need an upper bound on the number of nonequivalent

OBDDs of a given size s. Droste [9] used a good upper bound on this number based

on a system of recurrence relations. In order to achieve a closed formula for this

upper bound, we use a slightly di�erent model, namely complete OBDDs, which test

every variable in every computation. For complete OBDDs, the following bound is

easy to obtain using the method of counting circuits, see e.g. [18].

Lemma 4.2 The number of nonequivalent complete �-OBDDs of size s for a given

� is at most (s + 2)2s=s! � (es)s.

Combining Lemma 4.2 with Theorem 4.1, it is possible to justify the quality of

the prediction of the unknown function f , obtained by any heuristic minimization

procedure for OBDDs. We leave the exact formulation to the full paper.

The general situation is that in order to get a good approximation, it is necessary

that the heuristic minimization procedure succeeds to �nd a small OBDD that

agrees with all the training examples. Let us call the situation that we �nd such an

OBDD a compression of the set of training examples, since the size bound required

to achieve a good prediction is almost exactly the bound which guarantees that the

number of bits needed to represent g is less than m.

The results of the previous sections imply that DSAn and IPn are hard to approx-

imate by any �-OBDD for a random �. In the next theorem, we prove, moreover,

that any function f that is hard to approximate in this sense has also the following

property. If we have a set of training examples for function f� , which is obtained

from the function f by an unknown permutation � of the variables, then a reason-

able compression of the examples requires also to optimize the ordering of variables

used to represent g. More exactly, if we choose an ordering of the variables for solv-

ing the minimization problem at random before we start the minimization process

and the ordering is not modi�ed during the process, then, with high probability,

almost no compression is possible.

Theorem 4.3 Let f , 
, " and a distribution D on f0; 1gn be such that the following
is true: if an ordering � is chosen from the uniform distribution on all orderings,

then with probability at least 1 � 
, every �-OBDD h of size at most s satis�es

Pr(f(~x) = h(~x)) < 1
2 + ", where ~x is chosen from the distribution D. Let ~S be

a set of m independent random examples chosen from D. Then, with probability

1� 
 � (es)s
�
1
2 + "

�m
, there is no �-OBDD g of size at most s that agrees with f

on all training examples in ~S.

Proof. Let us call an ordering bad, if it has the property mentioned in the theorem.

A random ordering is bad with probability at least 1� 
. Since the examples are

chosen independently on the ordering, the distribution of the examples does not

change, if we condition according to the ordering. Let us estimate the conditional
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probability that the m examples may be expressed using a function g of �-OBDD

size at most s under the condition that the ordering � is bad. Every �-OBDD

of size at most s matches all the examples with probability at most
�
1
2 + "

�m
.

Multiplying this by the number of �-OBDDs of size at most s yields an upper bound

on the required conditional probability. Hence, the conditional probability that the

examples may not be expressed in complexity at most s is at least 1�(es)s
�
1
2 + "

�m
.

It follows that the probability that the ordering is bad and, moreover, the examples

may not be expressed in size at most s is at least (1�
)
�
1� (es)s

�
1
2 + "

�m�
. This

implies the theorem. 2

This general result may be combined with the results of Sections 2 and 3 to

obtain the following.

Corollary 4.4 For every large enough n, if we take m = n�(1) examples for DSAn

from the uniform distribution and choose a random ordering � of the variables, then

with probability at least 1�n�1=2, there is no �-OBDD of size 1
10m= logm matching

the given m training examples.

Proof. Let "; "0 be such that
p
ln 2=2 < " < "0 < 1=21=10�1=2. Moreover, let Æ < "

be any small positive number and let s = 1
10
m= logm. Using Theorem 2.1, we obtain

for every large enough n that a random ordering � satis�es the following. With

probability at least 1�n�2"
2
= ln 2, there is no (12+"

0)-approximation among functions

of �-OBDD complexity at most s � en
Æ

. Note that in our situation, (es)s � 2m=10.

Using also Theorem 4.3, with probability at least 1�n�2"
2
= ln 2�2m=10

�
1
2 + "0

�m �
1 � n�1=2, there is no �-OBDD of size at most s matching the given m training

examples for DSAn. 2

Corollary 4.5 Let 0 < � < 1 be a constant. For every large enough n, if we take

m = nO(1), m � n, examples for IPn from the uniform distribution and choose a

random ordering � of the variables, then with probability at least 1�e�
(n), there is
no �-OBDD of size at most (1��)m= logm matching the given m training examples.

Proof. Let Æ and " be positive numbers such that Æ < 1
9 and 1

2 + " <
�
1
2

�1��
.

Moreover, let s = (1 � �)m= logm. By Theorem 3.1, for every large enough n,

a random ordering � satis�es the following. With probability at least 1 � e�4Æ
2
n,

there is no (12 + ")-approximation of IPn among functions of �-OBDD complexity

at most s � 2Æn. Note that (es)s � 2(1��)m. Together with Theorem 4.3, we obtain

that with probability at least 1� e�4Æ
2
n � 2(1��)m

�
1
2 + "

�m
= 1� e�
(n), there is

no �-OBDD of size at most s matching the given m random training examples for

IPn. 2

On the other hand, for the functions DSAn and IPn, there are orderings, for

which a good compression is possible. This suggests that including the optimization

of the variable ordering into the minimization procedure often is necessary to get a

good quality of the computed generalization.
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