
OPTIMAL, MULTI-MODAL CONTROL WITH

APPLICATIONS IN ROBOTICS

A Dissertation
Presented to

The Academic Faculty

By

Tejas R. Mehta

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
in

Electrical and Computer Engineering

School of Electrical and Computer Engineering
Georgia Institute of Technology

May 2007

OPTIMAL, MULTI-MODAL CONTROL WITH

APPLICATIONS IN ROBOTICS

Approved by:

Dr. Magnus Egerstedt, Advisor
Associate Professor, School of Electrical and
Computer Engineering
Georgia Institute of Technology

Dr. Anthony Yezzi
Associate Professor, School of Electrical and
Computer Engineering
Georgia Institute of Technology

Dr. Bonnie H. Ferri
Professor, Graduate Affairs Associate
Chair, School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Spyros Reveliotis
Associate Professor, School of Industrial
and Systems Engineering
Georgia Institute of Technology

Dr. Chin-Hui Lee
Professor, School of Electrical and Com-
puter Engineering
Georgia Institute of Technology

Date Approved: April 3rd, 2007

This work is dedicated to ...

... my parents, Rajendra and Nila,

for dedicating their life to me and

always supporting me in all my endeavors ...

... and to my love, Maya,

for being my constant source of

inspiration and encouragement.

ACKNOWLEDGMENTS

This thesis is a culmination of my academic career at the Georgia Institute of Tech-

nology. I have been fortunate to have excellent teachers and mentors throughout my

entire education, and to all of them I owe my deepest gratitude.

First and foremost, I would like to thank my advisor, Professor Magnus Egerstedt,

for his support, guidance, encouragement, and enthusiasm. He introduced me to many

interesting research areas while always giving me the freedom to pursue my interests.

I would also like to thank all my professors and teachers along the way, for they

have all had a positive influence on me. I would like to thank Professors Bonnie H.

Ferri, Chin-Hui Lee, Spyros Reveliotis, and Anthony Yezzi for serving on my defense

committee, and for their constructive comments and suggestions.

I would also like to thank all of my fellow students I have had the pleasure to

interact with over the years. Graduate school provided me with a unique opportunity

to meet and work with an incredibly diverse group of people. I have enjoyed my

time with them and gained from their varying perspective on all sort of matters from

work to life. At the risk of leaving out a few names, I would like to thank Henrik

Axelsson, Shun-Ichi Azuma, Mohamed Babaali, Mauro Boccadoro, Florent Delmotte,

Dennis Ding, Eric Innis, Meng Ji, Patrick Martin, Matt Powers, Brian Smith, Ganesh

Sundaramoorthi, Dave Wooden, Deryck Yeung, ...

Having a great work atmosphere is important, but this must be complemented

with an enjoyable life away work. I have to thank my friends and family for giving

me a great escape from research. There is no way for me to list everyone here, but

I would particularly like to thank Vihang Desai, Priya Mehta, Shohel Mollah, Anup

Patel, Minal Patel, Raj Rao, ...

No acknowledgement can be complete without thanking my parents, Rajendra

and Nila. They were my first teachers in life and provided me with endless support,

iv

guidance, and advice throughout my life. They have always put my happiness, needs,

and desires before their own, and I cannot overstate my gratitude to them for the

way they raised me.

Finally, it goes without saying that I would not be where I am without my better

half, my love, Maya. She is my constant source of inspiration, support, and encour-

agement. Thank you for everything, sweetheart!

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . xii

CHAPTER 1 INTRODUCTION AND BACKGROUND 1
1.1 Introduction . 1
1.2 Background . 3

1.2.1 Motion Description Languages 5
1.2.2 Optimal Control of Hybrid Systems 7
1.2.3 Mobile Robot Navigation . 9

CHAPTER 2 MULTI-MODAL CONTROL PROGRAMS 12
2.1 Reinforcement Learning . 14

2.1.1 Standard Reinforcement Learning 15
2.1.2 Learning Control Programs for Discrete-Time Systems 16
2.1.3 Maze Example . 17

2.2 Learning Control Programs for Continuous-Time Systems 19
2.2.1 Maze Revisited . 25

2.3 Refining the Learning Process . 26
2.4 Robustness Analysis . 28
2.5 Conclusions . 29

CHAPTER 3 ADAPTIVE MULTI-MODAL CONTROL 31
3.1 Continuous-Time LTI Systems . 32
3.2 General Framework for Adaptive Multi-Modal Control 34

3.2.1 Numerics . 38
3.3 Examples . 39

3.3.1 LTI Example . 40
3.3.2 Robotics Example . 42

3.4 Conclusions . 44

CHAPTER 4 A UNIFIED VARIATIONAL FRAMEWORK 46
4.1 Time-Driven Interrupts . 49
4.2 Event-Driven Interrupts . 53
4.3 Applications . 60

4.3.1 Mobile Robot Navigation . 60
4.3.2 Optimal Membership Functions 64

4.4 Conclusions . 68

vi

CHAPTER 5 LEARNING FROM EXAMPLE 69
5.1 Problem Formulation . 71
5.2 Variational Approach . 74

5.2.1 Numerical Algorithms . 75
5.2.2 Example . 78
5.2.3 Navigation Using the Magellan Pro 81

5.3 Learning Applied to Ground Robots (LAGR) Project 84
5.3.1 LAGR Control Architecture 86
5.3.2 Learning Behaviors From Example 88
5.3.3 Experimental Results . 92

5.4 Conclusions . 93

CHAPTER 6 MULTI-MODAL, MULTI-DIMENSIONAL SYSTEMS 95
6.1 A Motivating Example . 96
6.2 Optimal Control Framework . 101

6.2.1 Problem Formulation . 101
6.2.2 Optimality Conditions . 103
6.2.3 Numerical Algorithms . 107

6.3 Optimal Control of an Ice Skater . 110
6.4 Conclusions . 112

CHAPTER 7 CONCLUSIONS AND EXTENSIONS 113
7.1 Conclusions . 113
7.2 Extensions . 115

REFERENCES . 118

vii

LIST OF TABLES

Table 1 An algorithm for simultaneously exploring the state space and learn-
ing the optimal control program. 22

Table 2 A gradient descent algorithm. 39

Table 3 Cost comparison between the optimal mode string generated using
the original mode set (Σ), the augmented mode set using approach
outlined in Chapter 3 (Σn1), and the augmented mode set using the
methods outlined in this chapter (Σn2). 63

Table 4 The inner algorithm for Learning from Example. 76

Table 5 The outer algorithm for Learning from Example. 77

Table 6 A hill climbing algorithm. 91

Table 7 A descent algorithm for M3D systems. 108

Table 8 An algorithm to update u during each iteration. 109

viii

LIST OF FIGURES

Figure 1 An example of a robot navigating using a behavior-based approach. 10

Figure 2 Depicted is the progression from X and U being smooth manifolds
(a) to the case when both the state space and the input set are finite
(c) through the introduction of multi-modal control procedures and
Lebesque sampling. 13

Figure 3 Robot navigating through a maze using a standard reinforcement-
learning model (left) and using modes with interrupts as the control
set (right). 18

Figure 4 Simulation results demonstrating the learning of optimal mode strings
in a continuous-time system. 25

Figure 5 (a) The experimental setup of the maze. (b) The path of the robot
together with the range sensor readings (IR-based) obtained through-
out the final run. Note how the odometric drift makes the maze look
somewhat distorted. 26

Figure 6 Depicted is the original trajectory x(t) and the approximation tra-
jectory z(t). 35

Figure 7 Comparison of the CBH and COV methods for (a) T = 2, (b) T = 1. 41

Figure 8 The evolution of ~α for (a) T = 2 and (b) T = 1. 41

Figure 9 The estimated reachable set along with the optimal path (thick) to
drive a unicycle from x0 to xg using the (a) original set of modes,
(b) augmented set of modes. 44

Figure 10 Depicted is the original trajectory x(t) and the approximation tra-
jectory z(t). 48

Figure 11 The estimated reachable set along with the optimal path (thick) to
drive a unicycle from x0 to xg using the original set of modes. . . . 61

Figure 12 The estimated reachable set along with the optimal path (thick) to
drive a unicycle from x0 to xg using the augmented set of modes
using method outlined in Chapter 3. 62

Figure 13 The optimal path to drive a unicycle from x0 to xg using the aug-
mented set of modes using method outlined in Chapter 3 (dashes)
and the method outlined in this chapter (thick). 63

Figure 14 Architecture of a Takagi and Sugeno fuzzy controller. 64

ix

Figure 15 The standard piecewise linear or triangular (solid) and the differen-
tiable exponential (dashed) membership functions. 66

Figure 16 Optimization results: the trajectory for the initial guess of α (dashed)
along with the final optimal trajectory. 67

Figure 17 (a) The experimental setup, (b) The resulting trajectories plotted
using the odometry readings, while the obstacle are inferred from
the sensor readings. 68

Figure 18 The observed trajectory from a training run of a unicycle navigating
from x0 to xg. 79

Figure 19 The optimal cost as a function of the number of modes given by the
outer algorithm. 80

Figure 20 Depicted is the approximation trajectory (x̃) obtained by using three
modes (dashed) and two modes (dotted) along with the original ob-
served trajectory. 80

Figure 21 (a) The experimental setup, (b) the observed trajectory from a train-
ing run from x0 to xg. 81

Figure 22 Depicted is the approximation trajectory (x̃) obtained by using the
learned behavior (dashed) along with the original observed trajectory. 82

Figure 23 Depicted is the cost J as a function of the control parameters αg and
αo. The cost surface is color scaled from low cost (blue) to high cost
(red). 83

Figure 24 The LAGR Robot. 84

Figure 25 Standard Hybrid Control System Block Diagram. 86

Figure 26 A graphical representation of the voting scheme employed to nav-
igate the robot. The x-axis of each plot represents an ego-centric
angular distribution of possible paths around the robot from −π to
+π, with 0 being in front of the robot. The y-axis represents the rel-
ative preference of each path, according to the respective controller.
Vetoes are drawn as large negative values. The last plot represents
the sum of the votes provided by all the controllers. The largest
non-vetoed value is chosen for action by the robot. 87

Figure 27 Sample images from the test run navigating using the learned be-
haviors. 93

Figure 28 Skating trajectories using the proposed M3D model. 97

Figure 29 Depicted is the force applied during the SL mode 98

x

Figure 30 State Transition . 100

Figure 31 Depicted here is a situation where the standard update method leads
to a conflict in dimensions of the control ui. 108

Figure 32 (a) The evolution of the cost as a function of the iteration, (b) the
active mode as a function of time for the optimal switching times. . 111

Figure 33 Depicted is the optimal trajectory staring in SR & GL mode and
switching between the GL, SL & GR, GR modes. 112

xi

SUMMARY

The objective of this dissertation is to incorporate the concept of optimality to

multi-modal control and apply the theoretical results to obtain successful navigation

strategies for autonomous mobile robots. The main idea in multi-modal control is to

breakup a complex control task into simpler tasks. In particular, number of control

modes are constructed, each with respect to a particular task, and these modes are

combined according to some supervisory control logic in order to complete the overall

control task. This way of modularizing the control task lends itself particularly well

to the control of autonomous mobile robot, as evidenced by the success of behavior-

based robotics. Many challenging and interesting research issues arise when employing

multi-modal control. This thesis aims to address these issues within an optimal

control framework.

To this end, the contributions of this dissertation are as follows: We first addressed

the problem of inferring global behaviors from a collection of local rules (i.e., feedback

control laws). Given a collection of modes, an algorithm, that characterizes the

expressiveness of the multi-modal system and learns control programs that complete a

desired task while minimizing a prescribed performance criterion, is presented. Next,

we addressed the issue of adaptively varying the multi-modal control system to further

improve performance. A variational framework for adaptive multi-modal control is

developed, where a given collection of modes is adaptively improved by adding new

modes to the set. This augmentation of the mode set increases the expressiveness

and the performance of the system as well as reduces the complexity of the control

programs.

Adaptive multi-modal control led to an interesting application to the the Learning

From Example problem, where new controllers are learned from training examples.

xii

First, a variational framework is used to learn new modes as needed to approxi-

mate a given training trajectories. Next, this framework was applied to the DARPA

sponsored Learning Applied to Ground Robots (LAGR) project. The LAGR project

motivated a need for new solutions not relying on differentiability assumptions (as

the variational approach does), which was addressed by posing the learning problem

as an combinatorial optimization problem, and an algorithm for solving this problem

using a hill climbing method is presented.

Next, we addressed the optimal control of multi-modal systems with infinite

dimensional constraints. These constraints are formulated as multi-modal, multi-

dimensional (M3D) systems, where the dimensions of the state and control spaces

change between modes to account for the constraints, to ease the computational

burdens associated with traditional methods. The optimality conditions for this for-

mulation are derived and an algorithmic framework for the optimal control of M3D

systems is presented.

Finally, we used multi-modal control strategies to develop effective navigation

strategies for autonomous mobile robots. The theoretical results presented in this

thesis are verified by conducting simulated experiments using Matlab and actual ex-

periments in a lab setting using the Magellan Pro mobile robot platform. Moreover,

human operated training runs are used to develop effective navigation strategies fol-

lowing the constructivist framework for the learning from example problem. These

results were successfully verified on the LAGR robot to learn effective strategies for

the LAGR competition.

In closing, the main strength of multi-modal control lies in breaking up complex

control task into simpler tasks. This divide-and-conquer approach helps modularize

the control system. This has the same effect on complex control systems that object-

oriented programming has for large-scale computer programs, namely it allows greater

simplicity, flexibility, and adaptability.

xiii

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

To manage the complexity associated with many modern control applications, multi-

modal control has emerged as a viable approach in which a number of control modes

are constructed and combined according to some supervisory control logic, e.g., [1, 2,

3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. The idea is that the design of each individual mode,

designed with respect to a particular control task, data source, operating point, or

system configuration, constitutes a significantly more manageable task than the design

of one single, multi-objective control law. Successful examples of this divide-and-

conquer approach include flight mode control in avionics [13] and the behavior-based

control of autonomous robots [14, 15]. In addition to simplifying the design process,

the multi-modal approach also makes it possible to add new functionality to the

system without significant increase in complexity.

Two major design tasks are involved when employing multi-modal control. The

first task pertains to the design of the individual modes, which consist of a feedback

control law and may also include a condition for its termination. The second task

concerns concatenating these modes in order to achieve the desired objective. Given

that such a mode string is the design objective, the control task thus involves map-

ping symbols (tokenized mode descriptions) to signals rather than signals (continuous

control values) to signals as done in classic control theory. For example, a sample

control string for commanding a robot to fetch a ball can be “find the ball,” “grab

the ball,” “bring the ball back” (as opposed to specifying a control value at each time

instant). A number of modelling paradigms facilitating this construction have been

proposed, including Hybrid Automata [16, 17], Maneuver Automata [5, 6], Control

Quanta [7, 8], and Motion Description Languages [3, 12, 18].

1

The overall objective of this thesis is to incorporate the concept of optimality

to both of the aforementioned tasks in multi-modal control and apply the results to

robotics applications. To this end, the main topics addressed in this thesis are

• From local rules to global behaviors: Given a collection of modes, what can be

said about the global behavior of the multi-modal system in terms of expres-

siveness and task completion? Additionally if task completion is possible, can

we optimize some performance criterion while ensuring task completion?

• Adaptive multi-modal control: Given a collection of modes, can this collection

be adaptively varied in order to achieve better overall performance?

• Learning from example: Can we use multi-modal control concepts to learn

effective control strategies guided by training examples?

• Multi-modal, multi-dimensional (M3D) systems: Given a multi-modal system

with infinite dimensional state constraints, can we simplify the analysis/control

of such systems by adopting a non-standard model in which the dimensions of

the state and input spaces change between different modes to account for the

constraints?

• Robotics applications: Can we use the multi-modal control concepts developed

above to generate effective navigation strategies for autonomous mobile robots

operating in an unstructured environment?

The organization of the thesis is as follows: Section 1.2 introduces some back-

ground and a brief review of work pertaining to our research. Chapter 2 addresses

the question of inferring global behaviors from local rules. In particular, given a

collection of modes, an algorithm that estimates the reachable set is presented, thus

characterizing the expressiveness of this mode set. While estimating the reachable

set, the algorithm simultaneously learns control programs that complete the desired

2

task while optimizing a specified performance criterion. Chapter 3 introduces the mo-

tivation for adaptive multi-modal control. It is shown how systematically adding new

modes can improve the overall performance of the multi-modal system, and a general

framework for adaptive multi-modal control is introduced. Chapter 4 continues the

development of Chapter 3 and presents a unified variational framework for adaptive

multi-modal control. Chapter 5 presents an application of adaptive multi-modal con-

cepts to the Learning From Example problem, where effective control strategies are

learned from training examples. The training examples can be generated through

human operation or inspired by biological systems. Chapter 6 addresses the prob-

lem of constrained hybrid systems, where different modes experience different state

constraints. These systems are modelled in a very unique manner as M3D systems

to account for the infinite dimensional constraints, and an algorithmic framework for

optimal control of such systems is presented. The multi-modal control concepts de-

veloped throughout the thesis are applied to the problem of mobile robot navigation,

and examples are presented in various chapters when suitable. Finally, summary of

contributions and extensions are discussed in Chapter 7.

1.2 Background

A multi-modal system is a system whose dynamical model switches among finitely

many possibilities. These switches can be in response to an occurrence of a specific

event or a controlled decision. As such they belong to the wider class of hybrid sys-

tems. Hybrid systems are dynamic systems whose behavior is governed by interacting

continuous and discrete dynamics. The continuous-time dynamics of these systems

are generally given by differential equations corresponding to the physical properties

of the system. The discrete-event dynamics generally correspond to some switching

between states or modes and can be supervised by switches, digital circuitry, and/or

computer software. Such systems arise when dealing with continuous systems with

3

phased operations (e.g., diodes), continuous systems controlled by discrete inputs

(e.g., switches), complex systems involving the coordination of different processes

(e.g., flight control, mobile robots), etc. The origins of hybrid systems can be traced

back to Witsenhausen in 1966 [19], although earlier variations, including bang-bang

control, sliding mode control, and digital control, date further back.

The increasing use of computer-aided control and embedded control systems has

made hybrid systems more common. Correspondingly, this has led to growth in

research related to hybrid systems. The disciplines involved in this research effort are

control theory, computer science, mathematics, mechanics, and others. The research

directions spawned from this growth include modelling and simulation [4, 18, 20, 21],

analysis and verification [16, 22, 23, 24, 25], and control of hybrid systems [9, 13, 26,

27, 28, 29]. Note that this list of references is merely a small sample and by no means

represents an exhaustive list. Since our main interest lies in the optimal control of

multi-modal systems and robotics applications, we will devote more attention to these

topics. Readers interested in the other areas of research are encouraged to follow the

references given above.

To successfully study hybrid systems, we have to select a proper framework for

dealing with them. A number of modelling paradigms facilitating the control and

analysis of hybrid systems have been proposed over the years, including the hybrid

automata approach ([17, 21, 22]), the systems approach ([20, 24]), and the language-

based approach ([3, 5, 7, 18, 30]). Throughout our development, we will follow the Mo-

tion Description Language (MDL) framework, which was first introduced by Brockett

in 1988 and later extended by Manikonda et. al. This is discussed more thoroughly

in the next section, followed by sections on the optimal control of hybrid systems and

behavior-based robotics.

4

1.2.1 Motion Description Languages

Given a finite set, or alphabet, A, by A? we understand the set of all strings of

finite length over A. There exist a binary operation on this set corresponding to the

concatenation of string, denoted by a1 · a2 (i.e., if a1, a2 ∈ A?, then a1 · a2 ∈ A?).

Relative to this operation, A? is a semigroup, and if we include the empty string in

A?, it becomes a monoid (i.e., a semigroup with an identity). A formal language is a

subset of a free monoid over a finite alphabet.

A motion alphabet is a set, possibly infinite, of symbols representing different

control actions that define segments of motion. This notion of using language primi-

tives for motion control was first introduced by Brockett in an attempt to formalize

the computer control of movement [3], referred to as Motion Description Language

(MDL). An MDL is given by a set of symbolic strings that represent idealized motions;

thus, an MDL is a subset of a free monoid over a given motion alphabet.

In particular, an MDL device (i.e., a computer-controlled mechanism employing

the MDL framework) is transmitted a triple (u(·), κ(·), T), where u(·) is the open

loop control law, κ(·) is the closed loop control law, and T defines the epoch over

which this control pair is to be used. These triples are referred to as modal segments,

as they define the mode of control over a segment of time. Suppose that the MDL

device under consideration can be described as

ẋ(t) = f(x(t)) +G(x(t))(u(t) + κ(y(t))).

Then upon receiving the input string (u1, κ1, T1)(u2, κ2, T2) · · · (ur, κr, Tr), the MDL

device executes a motion that closely approximates the trajectory of x defined by

ẋ = f(x) +G(x)(u1 + κ1(y)); 0 ≤ t < T1

ẋ = f(x) +G(x)(u2 + κ2(y)); T1 ≤ t < T1 + T2

...
...

ẋ = f(x) +G(x)(ur + κr(y));
r−1∑
i=1

Ti ≤ t <

r∑
i=1

Ti.

5

To implement such a system that interprets a family of modal segments, it is

necessary to index the modes in a finite way. It is shown that this restriction to a finite

family of affine modal segments does not limit the expressiveness of the mechanism.

In other words, these modal segments can be used to approximate any state trajectory

produced by continuous control signals with arbitrary precision. It should be noted,

however, that the limiting case of ε-precision may require that the cycle period T

goes to zero and the length of the mode sequence goes to infinity. This demonstrates

the classic trade-off encountered when dealing with symbol-driven control, namely,

the trade-off between the complexity of the mode string and the expressiveness of the

system.

We have already defined expressiveness informally as the ability of a symbol-driven

system to generate a desired trajectory with adequate robustness. The complexity

of a mode string σ̄ (note here that σ can be a particular modal segment described

above) can be characterized by the number of bits needed to encode it. In this case,

the complexity of mode string σ̄, whose elements are drawn from a mode set Σ, is

given by |σ̄| log2(card(Σ)), where | · | is the length of the mode string and card(Σ)

is the cardinality of the mode set. For more information regarding complexity, see

[1, 2], where Egerstedt shows that the use of feedback in the MDL framework can

reduce the specification complexity of control programs. In particular, the analysis

of the reduction in complexity is done using an automaton model.

Motivated by behavior-based robotics and the need for event triggered switches

between modes, Brockett’s original framework was modified by Manikonda et. al.

to produce an extended version known as MDLe (extended MDL). In this context,

a mode is specified as a triple σ = (κ(·), ξ(·), T), where κ(·) is the feedback control

law (includes both the open and closed loop controls), ξ(·) is the interrupt function,

and T is the time over which the mode is active. In particular, ξ is a mapping from

the observations of the system to the set {0, 1}; we say that an interrupt is triggered

6

when a particular observation is mapped to a 1. In this construction, a sequence of

modes is operated on as earlier, but the transition to the next mode in the sequence

can be driven by either an event (triggering of the interrupt ξ) or time (T seconds

elapse). For more information regarding this framework, see [12, 18, 30].

In concluding this section, we note that issues regarding expressiveness and com-

plexity are naturally encountered in our work. In particular, reducing the complexity

of the mode string serves as the performance index for the learning algorithm, while

increasing expressiveness (thus possibly increasing performance) is the main motiva-

tion for adaptive multi-modal control.

1.2.2 Optimal Control of Hybrid Systems

The concept of optimality regarding hybrid systems was discussed along with the

introduction of these systems in the visionary work of Witsenhausen [19]. He formu-

lated the problem of finding a continuous control that minimizes a cost function while

satisfying the specified terminal conditions and provided the necessary conditions for

optimality. There has been a plethora of work pertaining to the optimal control of

hybrid systems since then. We cannot possibly provide an exhaustive survey here,

but rather, we present some well known references covering a wide variety of optimal

control problems.

These problems vary depending on the model of the system and, consequently, the

optimization parameters. The system can be modelled with either linear or nonlinear

dynamics, with a continuous control variable or no control variable (i.e., autonomous),

with autonomous switching (i.e., switch in the discrete dynamics in response to some

uncontrolled event) or controlled switching, fixed-schedule (i.e., the switching se-

quence or the sequence in which different process are visited is assumed fixed) or

variable-schedule, etc. Naturally, the optimization parameters change according to

the choice of the particular model. For instance, a variable-schedule model would in-

clude the sequencing variable as a parameter to optimize over, while a fixed-schedule

7

model would not include such a parameter. These references also vary in their ap-

proach to deriving the optimal control. Of the many viable approaches, we identify

two that are pertinent to this thesis. The first approach, referred to as the variational

approach, involves using Hamilton-Jacobi theory to access the necessary conditions

for optimality. The second approach, referred to as the learning-based approach, uses

dynamic programming principles to attain an optimal solution. Selected references

are presented next.

Good comprehensive references for modelling and optimal control of hybrid sys-

tems include [4, 20]. In particular, Brockett introduces four different models for

hybrid systems that combine differential equations and discrete phenomenon and dis-

cusses the control aspects of these systems. Similary, Branicky et. al. also cites four

different models arising in real-world models. Branicky et. al., moreover, proposes a

unifying model for hybrid systems and develops hybrid controllers for hybrid systems

in an optimal control framework.

In the case of autonomous systems, the control variable often includes the switch-

ing time vector (assuming a time-driven system, i.e. when the switches are controlled

time-instants) [27, 31, 32, 33, 34, 35, 36, 37, 38]. In particular, Guia et. al. present

a solution to the switching-time problem for continuous-time linear dynamics, while

Egerstedt et. al. assume general nonlinear dynamics for autonomous systems. Xu

and Antsaklis also assume general dynamics, but their control consists of a continu-

ous input as well the switching times. These references assume a fixed-schedule, thus

the control only involves the switching instants (and perhaps a continuous control

variable). The following references pertain to the more general optimal control prob-

lem, where the control includes the switching instants and the sequencing variable.

In particular, Bemporad et. al. present a solution for switched linear systems using

mixed-integer programming. Shaikh and Caines present a set of necessary conditions

for optimality and using these condition propose a class of general hybrid maximum

8

principle. Axelsson et. al. attack the scheduling problem by inserting new modes

into a fixed-scheduled system and evaluate the benefit of this insertion using varia-

tional methods. The above references regard the optimization of time-driven switched

systems, while Boccadoro considers the case of optimizing an event-driven switched

system, where the switches are triggered by surfaces [39].

While most of the above references use Hamilton-Jacobi theory to derive the nec-

essary conditions for optimality by differentiating the cost function, the following

references consider learning-based approaches for optimizing hybrid systems [11, 26,

40, 41, 42]. In particular, Bradtke considers the problem of Linear Quadratic Reg-

ulation (LQR) using policy iteration. Hedlund and Rantzer approach the control

of hybrid systems by discretizing the Bellman equation and optimizing the discrete

version. In contrast to the discretization approach, Crawford and Morgansen employ

learning methods by using a functional-approximation approach to approximate the

value function.

1.2.3 Mobile Robot Navigation

In the literature on robot navigation, two distinctly different approaches have emerged.

The first approach, which we denote as the reactive approach (following the termi-

nology of Arkin in [14]), consists of designing a collection of behaviors, or modes of

operations, such as “avoid-obstacle” or “approach-goal.” These different behaviors

are defined through a particular control law, dedicated to performing a specific task,

and the robot switches between different behaviors as obstacles, landmarks, etc. are

encountered in the environment, see for example Figure 1. This way of structuring the

navigation system has the major advantage that it simplifies the design task. Each

controller is designed with only a limited set of objectives under consideration and

no elaborate world maps are needed (see for example [14, 15, 43, 44]). Unfortunately,

very little can be said analytically about such systems. Another common criticism

of this approach is that behaviors are typically functions of only immediate sensor

9

Figure 1. An example of a robot navigating using a behavior-based approach.

information (i.e., without memory), as such they may become stuck in a local minima

(i.e., a cul-de-sac). However, this may be avoided by using more intelligent behaviors

such as the following obstacles behavior presented by Hopcroft in [45].

We contrast this approach with the second approach under consideration here,

namely the deliberative approach. Here, the motion is carefully planned out in ad-

vance and care can be taken to minimize energy consumption and so on [46, 47, 48,

49, 50, 51]. This plan-based approach has proved useful in structured environments,

e.g., in industrial settings, while unstructured environments pose a challenge. This is

due to the fact that there is normally a hefty computational burden associated with

path planning and optimal control. And, even if one is willing to pay this cost once,

as soon as unmodelled obstacles are encountered, the cost will be incurred again.

Although we only distinguished these two approaches, many hybrid strategies for

combining these two approaches have been offered (see [14] for further discussion).

The main idea here is to combine the benefits of both approaches while possibly

avoiding the pitfalls of both. In our development, we stay within the reactive navi-

gation architecture but argue that optimality might still be relevant. In particular,

optimality is attained by planning over a set of reactive behaviors. In that sense, one

can argue that our approach falls into the category of hybrid strategies. The work of

Frazzoli et. al.([5, 6]) and Bicchi et. al. ([7, 8]) is particularly closely related to our

10

development, since both approach motion planning using symbolized or quantized

control systems.

11

CHAPTER 2

MULTI-MODAL CONTROL PROGRAMS

In this chapter, we address questions regarding the global behaviors of multi-modal

systems assuming a collection of modes (i.e., local rules) have already been defined.

As hinted to in the introduction, we assume that each mode consists of a feedback

control law and a condition for its termination (called an interrupt). In particular,

given a collection of such modes, we want to derive a control strategy (i.e., a sequence

of modes) to complete a desired task while minimizing some performance criterion.

Assuming such a mode sequence is the desired output, note that control task involves

mapping symbols to signals, rather than the classical control approach of mapping

signals to signals. We show that adopting this view of mapping symbols to signals

allows us to use standard reinforcement learning techniques on previously computa-

tionally intractable problems, namely for continuous-time control systems, where the

states and control signals take on values in uncountably large sets. It should be noted

that reinforcement learning is readily applicable when the state and the input spaces

are finite sets, and the system is event-driven (e.g., finite state machines or Markov

decision processes). See for example [52, 53, 54, 55].

Here is a brief overview of how adopting an MDL view of mapping symbols to

signals provides a natural quantization of the state and the input spaces, thus al-

lowing the use of reinforcement learning techniques on systems with continuous state

and control spaces. If we start by considering a finite number of feedback laws and

interrupts, a finite quantization of the control space is readily obtained. Note that the

control set itself is not quantized but rather that the quantization acts at a functional

level. This observation takes care of the problem of quantizing the control inputs.

Moreover, by adopting a Lebesque sampling strategy where a new state is sampled

only when the interrupts trigger, the continuous time problem is transformed into

12

XU

Q

(a)

X
Σ

Q

(b)

XQ
Σ

Q

(c)

Figure 2. Depicted is the progression from X and U being smooth manifolds (a) to the
case when both the state space and the input set are finite (c) through the introduction
of multi-modal control procedures and Lebesque sampling.

an event-driven problem. The final piece of the puzzle is the observation that, given

an initial state x0 and a finite length multi-modal program, only a finite number of

states are reachable. These ideas are illustrated in Figure 2, where the first figure

corresponds to a case where the state space X ∼ Rn and the input space U ∼ Rm.

Depicted as a function of x and u is the so-called Q-function that characterizes the

utility of using control input u at state x. In the next figure, U is replaced by Σ,

which corresponds to a finite set of control-interrupt pairs. Without discretizing U ,

a finite control space is obtained by defining a finite set of available control modes.

The final figure shows a situation where both the state space and the input space are

finite. The input space is again given by Σ, while XQ is the quantized state space

obtained through an exploration of the states that are reachable from x0 (in less than

N steps) at the distinct times when the interrupts may trigger.

To go from a continuous time control system to a finite state machine is certainly

not a new idea. In particular, discretizations of the space-time domain are routinely

used for establishing reachability properties. However, such discretizations do not

reflect the underlying dynamics in any meaningful way. Alternatives are given in

[8], where tokenized control symbols result in reachable lattices, and in [28], where

LTL specifications are defined for a quantized system while guaranteeing that the

specifications still hold for the original system. The idea of structured state space

13

explorations was pursued in [56], where the reachable part of the state space was

implicitly discretized using rapidly-exploring random trees. Additional results on

motion description languages and tokenized control strategies can be found in [7, 57,

2]. Moreover, it is not necessary to let the state space and input space be finite in

order to apply learning techniques [55]. For example, a set of basis functions can be

defined for supporting the Q-function such as sigmoids, wavelets, or Gaussian kernel

functions. However, the computational burden associated with these methods is often

prohibitive.

In this chapter, we will make these preliminary, informal observations rigorous.

The outline of the chapter is as follows: In Section 2.1, we will discuss reinforcement

learning for discrete event-driven systems and see how these techniques can be modi-

fied in order to incorporate multi-modal feedback strategies. In Section 2.2, we switch

our attention to continuous-time control systems, where the state and control spaces

are Rn and Rm, respectively. A robotics example illustrating the potential usefulness

of the proposed approach is presented. Additional improvements and refinement is-

sues are treated in Section 2.3, and a brief robustness analysis is discussed in Section

2.4.

2.1 Reinforcement Learning

For systems operating in unknown environments and/or with unknown dynamics,

reinforcement learning provides the means for systematic trial-and-error interactions

with the environment. Although the aim of this chapter is to apply learning techniques

to multi-modal hybrid systems to learn control programs for continuous-time systems,

first, we briefly cover the standard reinforcement learning model and learning control

programs for discrete-time systems.

14

2.1.1 Standard Reinforcement Learning

In the standard reinforcement-learning model, at each step (discrete time), the agent

chooses an action, u ∈ UF , based on the current state, x ∈ XF , of the environment,

where UF and XF are finite sets (hence the subscript F). The corresponding result is

given by xk+1 = δ(xk, uk), where δ : XF × UF → XF is the state transition function

that encodes the system dynamics. Moreover, a cost c : XF × UF → R is associated

with taking action u at state x. The agent should choose actions to minimize the

overall cost. Given a policy π : XF → UF , the discounted cost that we wish to

minimize is given by

V π(x0) =
∞∑
k=0

γkc(xk, π(xk)), (1)

where γ ∈ (0, 1) is the discount factor and xk+1 = δ(xk, π(xk)), k = 0, 1, . . .

We use V ∗(x) to denote the minimum discounted cost incurred if the agent starts

in state x and executes the optimal policy, denoted by π∗. In other words, the optimal

value function is defined through the Bellman equation

V ∗(x) = min
u∈UF

[
c(x, u) + γV ∗(δ(x, u))

]
,∀x ∈ XF . (2)

Equation (2) simply states that the optimal value is obtained by taking the action

that minimizes the instantaneous cost plus the remaining discounted cost. Once V ∗

is known, the optimal policy, π∗, follows directly through

π∗(x) = min
u∈UF

[
c(x, u) + γV ∗(δ(x, u))

]
, (3)

which shows why knowing V ∗ is equivalent to knowing the optimal policy.

If we now let Q∗(x, u) be the discounted cost for taking action u in state x and then

continuing to act optimally, we observe that V ∗(x) = minuQ
∗(x, u), and therefore

Q∗(x, u) = c(x, u) + γ min
u′∈ UF

Q∗(δ(x, u), u′). (4)

To find Q∗, we start by assigning a uniform value to every state-action pair, and

then randomly selecting state-action pairs (x, u) and updating the Q-table using the

15

following Q-learning law

Qk(x, u) := Qk−1(x, u) +αk

(
c(x, u) + γ min

u′∈ UF

{
Qk−1(δ(x, u), u

′)−Qk−1(x, u)
})
. (5)

If each action is selected at each state an infinite number of times on an infinite

run and αk, the learning rate, is decayed appropriately, the Q values will converge

to Q∗ with probability 1. By appropriate decay of αk we mean that
∑

k αk = ∞,

while
∑

k α
2
k < ∞; hence, decreasing the learning rate over time (e.g., αk = 1/k)

will guarantee convergence. For more details regarding reinforcement learning, see

[52, 53, 54, 55].

2.1.2 Learning Control Programs for Discrete-Time Systems

We now define a new input space that corresponds to tokenized descriptions of feed-

back laws and interrupts, as prescribed within the MDLe framework. Instead of

interacting with the environment at each step, the agent takes actions based on a

feedback law κ, which is a function of the state x. The agent furthermore continues

to act on the feedback control law κ until an interrupt ξ triggers, at which point a

scalar cost is incurred.

Formally, let XF and UF be finite sets, as defined earlier, and let Σ = K × Ξ,

where K ⊆ UF
XF (the set of all maps from XF to UF) and Ξ ⊆ {0, 1}XF . Moreover,

let δ̃ : XF ×Σ → XF be the state transition mapping, x̃k+1 = δ̃(x̃k, (κk, ξk)), obtained

through the following free-running, feedback mechanism [2]: Let x̃0 = x0 and evolve

x according to xk+1 = δ(xk, κ0(xk)) until the interrupt triggers, i.e., ξ0(xk0) = 1 for

some index k0. Now, let x̃1 = x(k0) and repeat the process, i.e., xk+1 = δ(xk, κ1(xk))

until ξ1(xk1) = 1. Now, let x̃2 = x(k1), and so on. Also, let ζ : XF × Σ → R be the

cost associated with the transition.

We want to apply reinforcement learning to this model. To accomplish this we

must make a few modifications. First, note that card(Σ) is potentially much larger

than card(UF), where card(·) denotes the cardinality. This directly affects the number

16

of entries in our Q-table. If all possible feedback laws and interrupts were available,

the cardinality of the new input space would be [2card(UF)]card(XF) with obvious

implications for the numerical tractability of the problem.

Second, to find Q∗, we start again by assigning a uniform value to every state-

action pair, and then iteratively updating the Q values by randomly selecting a state-

action pair with the action comprising of one of the possible feedback laws in K and

interrupts in Ξ. The consequent Q-learning law is

Qk(x, (κ, ξ)) := Qk−1(x, (κ, ξ)) + αk

(
ζ(x, (κ, ξ)) +

+γ min
(κ′,ξ′)

{
Qk−1(δ̃(x, (κ,ξ)), (κ

′, ξ′))−Qk−1(x, (κ, ξ))
})
. (6)

Since Ξ and K are finite, the set of all possible modes Σ is finite as well. Hence,

the convergence results still hold as long as each mode is selected for each state an

infinite number of times and αk decays appropriately.

2.1.3 Maze Example

Consider the problem of an agent navigating aM×M planar grid (we will letM = 10)

with obstacles. For any of the M2 possible positions, the agent can move either north

(N), south (S), east (E), west (W), or not at all (ε). Each such action, except of

course ε, advances the agent one step, and it is understood that there is a boundary

along the perimeter of the grid that the agent can not cross. Moreover, the agent

can advance through obstacles even though a hefty cost is incurred whenever this

happens. Starting from an arbitrary location, the agent needs to find the shortest

path to a specified goal, while avoiding obstacles.

We can restate this problem as a reinforcement learning problem, where the agent

must learn the optimal policy given the model of the environment. Formally, we have

• x = (x1, x2), where x1, x2 ∈ {0, 1, 2, . . . ,M − 1};

• u ∈ {N,S,E,W, ε};

17

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
10 x 10 MAZE

start = (4,0) goal = (4,8)

(a)

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
10 X 10 MAZE

start = (4 0) goal = (4 8)

(b)

Figure 3. Robot navigating through a maze using a standard reinforcement-learning
model (left) and using modes with interrupts as the control set (right).

• δ(x, u) =



(x1,min{x2 + 1,M − 1}) if u = N

(x1,max{x2 − 1, 0}) if u = S

(min{x1 + 1,M − 1}, x2) if u = E

(max{x1 − 1, 0}, x2) if u = W

(x1, x2) if u = ε

• c(x, u) =


0 if δ(x, u) = xgoal

100 if δ(x, u) ∈ O

1 otherwise

Here, xgoal is the goal state, while O ⊂ X is the set of obstacles. Using standard

Q-learning, as previously described, the agent quickly learns the shortest path to the

goal and the resulting simulation is shown in Figure 3(a).

In this example, each input corresponds to one step in the maze. However, one

could ask the question about the shortest mode string that makes the agent reach the

goal, following the development in [2]. Unfortunately, the total number of feedback

laws is card(K) = card(UF)card(XF), i.e., in this example we have 5100 possible control

18

modes, which is a numerically intractably large number. Hence, we have to reduce

the size of K, and our particular choice is the set of constant feedback laws, i.e. K =

{κN , κS, κE, κW , κε}, where κN(x) = N, ∀x ∈ XF , and so on. Similarly, we need to

limit the size of the interrupt set, and we simply let Ξ be set of interrupts that trigger

after m steps, m = 1, 2, . . . , N (we denote these interrupts by Ξ = {ξ1, . . . , ξN}). In

this case card(Ξ) = N , and for the maze problem, we let N = 9 (since M = 10).

Thus, we need 9× 5× 100 = 4500 entries in the Q-table. Note that, in order to keep

track of the number of steps, the state space has to be augmented in a straightforward

manner.

In order to find Q∗, and consequently the optimal policy, we start by assigning

a uniform value to every state-action pair (recall we have 4500 possible such pairs).

We then randomly select a state-action pair and update its Q-value according to

the previously discussed, modified Q-learning law. The result of the simulation is

shown in Figure 3(b). Note that this may not always be the shortest path in terms

of length (even though it happens to be the shortest in this particular case), but it is

the optimal path in terms of the length of the mode string.

2.2 Learning Control Programs for Continuous-Time Sys-
tems

Now that the discrete-time case with finite state and input spaces is covered, we shift

focus to the problem of learning multi-modal control programs for continuous-time

systems. Suppose we have the following system:

ẋ = f(x, u), where x ∈ X = Rn, u ∈ U = Rm, and x(t0) = x0 is given. (7)

If at time t0, the system receives the input string σ = (κ1, ξ1), . . . , (κq, ξq), where

κi : X → U is the feedback control law, and ξi : X → {0, 1} is the interrupt, then x

19

evolves according to

ẋ = f(x, κ1(x)); t0 ≤ t < τ1

...
...

ẋ = f(x, κq(x)); τq−1 ≤ t < τq,

where τi denotes the time when the interrupt ξi triggers (i.e., changes from 0 to 1).

We are interested in finding a sequence of control-interrupt pairs that minimizes

a given cost for such a system. For example, we might be interested in driving

the system to a certain part of the state space (e.g., to the origin) and penalize

the final deviation from this target set. Previous work on reinforcement learning for

continuous-time control systems can broadly be divided into two different camps. The

first camp represents the idea of a direct discretization of the temporal axis as well

as the state and input spaces (e.g., [26, 40, 58]). The main criticism of this approach

is that if the discretization is overly coarse, the control optimizing the discretized

problem may not be very good when applied to the original problem. Of course,

this complication can be moderated somewhat by making the discretization finer.

Unfortunately, in this case, the size of the problem very quickly becomes intractable.

The second approach is based on temporal discretization (sampling) in combi-

nation with the use of appropriate basis functions to represent the Q-table (e.g.

[11, 42, 55]). Even though this is a theoretically appealing approach, it lacks in

numerical tractability. In contrast to both of these approaches, we propose to let the

temporal quantization be driven by the interrupts directly (i.e., not by a uniform sam-

pling) and let the control space have finite cardinality through the interpretation of a

control symbol as a tokenized control-interrupt pair. In other words, by considering

a finite number of feedback laws κi : X → U, i = 1, . . . ,M , together with interrupts

ξj, j = 1, . . . , N , the control space (viewed at a functional level) is finite even though

the actual control signals take on values in Rm. Another effect of the finite mode-set

20

assumption is that it provides a natural quantization of the state space. Moreover, if

we bound the length of the mode sequences, this quantization results in a finite set

of reachable states.

Given an input σ = (κ, ξ) ∈ Σ, where Σ ⊆ UX × {0, 1}X , the flow is given by

φ(x0, σ, t) = x0 +

∫ t

0

f(x(s), κ(x(s)))ds. (8)

If there exists a finite time T ≥ 0 such that ξ(φ(x0, σ, T)) = 1, then we let the

interrupt time be given by

τ(σ, x0) = min{t ≥ 0 | ξ(φ(x0, σ, t)) = 1}. (9)

If no such finite time T exists, then we say that τ(σ, x0) = τ∞ for some distinguishable

symbol τ∞. Furthermore, we let the final point on the trajectory generated by σ be

χ(σ, x0) = φ(x0, σ, τ(σ, x0))

if τ(σ, x0) 6= τ∞ and use the notation χ(σ, x0) = χ∞ otherwise. Moreover, let

χ(σ, χ∞) = χ∞,∀σ ∈ Σ.

This construction allows us to define the Lebesque sampled finite state machine

(XQ
N ,Σ, δ̃, x̃0), where N is the longest allowable mode string, and where the state

transition is given by

x̃0 = x0

x̃k+1 = δ̃(x̃k, σk) = χ(σk, x̃k), k = 0, 1, . . .

The state space XQ
N is given by the set of all states that are reachable from x̃0 using

mode strings of length less than or equal to N .

Now that we have a finite state machine describing the dynamics, we can directly

apply the previously discussed reinforcement learning algorithm, with an appropriate

cost function, to obtain the optimal control program. However, to preserve computing

21

Table 1. An algorithm for simultaneously exploring the state space and learning the
optimal control program.

X := {x̃0, δ̃(x̃0, σ)}, ∀σ ∈ Σ
step(x̃0) := 0

step(δ̃(x̃0, σ)) := 1, ∀σ ∈ Σ
p := 1
Qp(x̃, σ) := const ∀x̃ ∈ X , σ ∈ Σ
repeat

p := p+ 1
x̃ := rand(χ ∈ X | step(χ) < N)
σ := rand(Σ)

x̃′ := δ̃(x̃, σ)
if x̃′ /∈ X then

step(x̃′) := step(x̃) + 1
X := X ∪ {x̃′}
Q(x̃′, σ) := const ∀σ ∈ Σ

else

step(x̃′) := min(step(x̃′), step(x̃) + 1)
end if

Qp(x̃, σ) := Qp−1(x̃, σ)

+ αp

(
ζ(x̃, σ) + γminσ′∈Σ

{
Qp−1(x̃

′, σ′)−Qp−1(x̃, σ)
})

until mod(p, L) = 0 and |Qp(x̃, σ)−Qp−L(x̃, σ)| < ε, ∀ x̃ ∈ X , σ ∈ Σ

XQ
N = X

22

resources, we run this in parallel with the state exploration. The general algorithm

for accomplishing this is given in Table 1.

Unlike the earlier Q-learning algorithm, the state space is initially unknown for

this case, and we thus begin learning/exploring from the states we know (namely x̃0

and all the states reachable in one step). At each iteration of the learning process,

we select a state randomly from the set of known states and select a mode randomly

from the set of modes. In the algorithm, the function step(x̃) represents the length

of the shortest control program used so far to reach state x̃ from the initial state x̃0.

This is to ensure that we only explore states that are reachable from x̃0 using mode

strings of length less than or equal to N , i.e., X ⊆ XQ
N . We then calculate the next

state and determine if it is a member of our known state space (In practice, it may be

necessary to check if the next state belongs to a neighborhood of a previously visited

state). If not, we add this state to the known state space and make the corresponding

change in the Q-table. We continue to explore and update the state space and our

Q-table (or value function) in this manner until the Q-table is stationary. Note that

in the algorithm, ε > 0 is a small positive scalar and L is a large number needed to

ensure that a sufficient number of state-action pairs are visited.

In summary, the algorithm above effectively estimates the reachable set while

applying reinforcement learning over this estimated set to obtain the optimal mode

sequence. Some robustness concerns regarding the presented method are addressed

in Section 2.4.

2.2.0.1 Example

As an example, consider the following system:

ẋ = u, x ∈ R2, xo =

 1

1

 , with modes σij = (κi, ξij).

23

Suppose κi and ξij are defined as follows:

κ1(x) =

 1 0.1

0 −1

x, κ2(x) =

 −1 0

−0.2 2

x,

ξ1j =

 1 if x2
2 < M · δj

0 otherwise
, ξ2j =

 1 if x2
1 < M · δj

0 otherwise
for j = 1, 2, . . . , 5.

Note that the system is unstable in either mode. We want to learn if there exists

a mode sequence that will stabilize the system. Although it may not be possible

to drive the system to x = 0, we want to know if there is a string of modes that

can bring the system in a neighborhood around the equilibrium point x = 0. To

make this feasible, we limited the system to two modes and five interrupts in each

mode. The reachable set of states in this case has length 2
∑N

i=0 5i, where N is the

maximum number of steps (or string length). As can be seen, the state space increases

exponentially with respect to the length of the control program. To make the learning

process manageable, we limit the size of the string length to five (i.e., N = 5). Since

we want to stabilize the system in the minimum number of steps (which must be less

than or equal to 5), it is natural to assign a cost for each switch and penalize on the

final position. We will also add a cost for the trajectory since we want to minimize the

control efforts. Just to see a variation in the results, we conducted two experiments.

The resulting plots from the simulation (with M = 1 and δ = 0.75) are shown in

Figure 4. In the first experiment, we assume that the system always starts using κ1.

The resulting optimal mode string is σ̄∗ = σ13σ25σ15σ23σ15. In the second experiment,

we removed this assumption, and the optimal mode string is σ̄∗ = σ24σ12σ21σ13σ25.

This fact is apparent when we compare the trajectories from the two simulations since

the total length of the second trajectory (b) is shorter than the first one (a).

24

−1 0 1 2 3 4 5 6 7 8 9
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

x
0

x
f

σ
13

σ
15

σ
15

σ
25

σ
23

(a)

0 2 4 6 8 10
0

1

2

3

4

5

6

x
0

x
f

σ
24

σ
21

σ
25

σ
12

σ
13

(b)

Figure 4. Simulation results demonstrating the learning of optimal mode strings in a
continuous-time system.

2.2.1 Maze Revisited

We now apply this strategy for obtaining finite state machine descriptions of con-

tinuous time multi-modal control systems to the previously discussed maze problem.

The experiment will be conducted on the Magellan Pro Mobile Robot platform from

iRobot. The Magellan Pro platform will be used for various robotics applications

throughout this thesis. The robot is driven by two active wheels independently driven

by two dc motors and one caster wheel. The robot features 16 bump sensors, 16 in-

frared sensors, 16 ultrasonic sensors, and a color camera. For our experiments, we

will primarily use the infrared and ultrasonic sensors providing a sensing-range of ap-

proximately 2 meters. The control architecture allows us to send linear and angular

velocity commands as control variables. Moreover, the robot runs on a carpeted floor

in the lab, thus allowing us to ignore wheel-slippage. Hence, the dynamics of the

robot can be accurately captured by using a unicycle model, i.e.,

ẋ = v cos(φ),

ẏ = v sin(φ),

φ̇ = ω,

(10)

25

200 400 600 800 1000 1200 1400 1600 1800

200

400

600

800

1000

1200

(a)

−1 0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

(b)

Figure 5. (a) The experimental setup of the maze. (b) The path of the robot together
with the range sensor readings (IR-based) obtained throughout the final run. Note
how the odometric drift makes the maze look somewhat distorted.

where (x, y) are the Cartesian coordinates of the center of the robot, and φ is its

orientation with respect to the x-axis. The linear velocity v and angular velocity ω

are the control variables.

For the purpose of this experiment, we still use the mode set {N,S,E,W, ε}, but

define it for a planar integrator (i.e., a unicycle) instead of a finite state machine.

Moreover, we let the interrupts, which previously counted the number of steps taken,

correspond to a certain distance travelled. We apply this scheme to the problem of

making a robot negotiate a maze, and Figure 5 (a) shows the experimental setup of

the maze and the Magellan Pro robot used negotiate the maze. Figure 5 (b) shows

final path obtained through the learning algorithm.

2.3 Refining the Learning Process

In this section, we discuss some methods for enhancing the learning process. In

particular, for problems with large state and input spaces (basically all interesting

problems), the convergence is typically slow when using a purely random exploration

strategy. However, it is well-known that one can use knowledge about the problem

26

(i.e., heuristics) in order to speed up the learning process. The idea is to start out

the learning process completely at random, but as the system gains “experience” the

state space exploration becomes less and less random. In other words, we bias the

selection of the state-action pairs to explore and update based on current values of

the Q-table.

In order to formalize this, we need to introduce some notation. Let P (x, u) denote

the probability of selecting state-action pair (x, u) from XF × UF , with∑
x∈X

∑
u∈U

P (x, u) = 1.

Initially, we begin with

P0(x, u) =
1

card(X)card(U)
. (11)

In other words, every state-action pair has an equal likelihood of being selected. As

we gain experience, we can change these probabilities to bias the selection in favor of

state-action pairs with lower Q-values (potentially “good” state-action pairs). There

may be many appropriate methods for biasing these probabilities, and one simple

approach is to let the probability of selection state-action pair (x, u) be given by

Pk(x, u) =
Qk−1(x, u)

−1∑
x′∈XF

∑
u′∈UF

Qk−1(x′, u′)−1
. (12)

Given such a biased probability distribution, we do not want to use it prematurely,

for this may lead us to not learn the optimal policy. Instead, we want to introduce a

confidence value, c ∈ [0, 1], which is based on the time step k and the past Q-values.

With a lower value of c, the exploration strategy should be more random, while higher

value of c suggest using a more biased exploration strategy. Note that we still want to

leave some amount of randomness in the selection process in order to ensure that the

entire state and input space is explored. The degree of bias in the selection process

and the necessary experience will vary from problem to problem.

Based on our knowledge of the problem, we can also start pruning the state-space

as we gain experience. This means that we could exclude states that we are certain

27

(possibly with high probability) are not part of the optimal trajectory. This reduction

in the size of the state-space enables the learning process to converge faster since the

plausible state-action pairs can be selected more often. However, great caution and

high degree of accuracy must be used when pruning the state-space to ensure that

the optimal policy is still learned since incorrectly pruning a potentially useful state

may mean that only a sub-optimal policy is learned.

2.4 Robustness Analysis

Note that the entire argument presented in this chapter concerning the finite state

space model hinges on the fact that we start from a fixed initial state. In this section,

we will conduct a sensitivity analysis to show that if the mode string σ̂ is optimal

when starting at x0, it is in fact still optimal for x̃0 = x0 + ∆x0, for some small

perturbation ∆x0. It is sufficient to show that if x0 is perturbed a little, then x̃f , the

point obtained after executing σ̂ from x̃0, lies within a small neighborhood of xf , i.e.,

we need to show that ∆xf = xf − x̃f is small.

In order to simplify the notation, we let the interrupt surfaces be encoded by

smooth functions gi(x) = 0, i.e. ξi(x) = 1 when gi(x) = 0 and ξi(x) = 0 otherwise.

Also, the trajectory of x is given by x(t) = Φ1(t, t0) until g1(x) = 0. Then it is given

by x(t) = Φ2(t, τ1) until g2(x) = 0, and so on. Here Φi is the state-transition function

associated with ẋ = f(x, κi(x)), and τi is the time that interrupt ξi triggers, i.e.,

gi(x(τi)) = 0. Moreover we will denote this point xhi
= x(τi). So for t ∈ [0, τ1), we

get

˙̃x = f1(x̃, u) = f1(x+ ∆x0, u)

= f1(x, u) +
∂f1

∂x
∆x0 + o(∆x). (13)

Hence,

∆ẋ =
∂f1

∂x
∆x0 + o(∆x), (14)

28

meaning that for t ∈ [0, τ1), ∆x(t) = Φ1(t, t0)∆x0 +o(∆x). To examine the trajectory

after the interrupt, we have to calculate the change in the interrupt time τ1 and the

position at this time, namely xh1 . Again, using a first order approximation, we get

x̃(τ1 + ∆τ1) = x(τ1 + ∆τ1) + ∆x(τ1 + ∆τ1)

= x(τ1) + f1(x(τ1))∆τ1 + ∆x(τ1) + o(∆τ1). (15)

Here t = τ1 + ∆τ1 is the time that the trajectory of x̃ hits the interrupt surface, so

we must have

g1(x̃(τ1 + ∆τ1)) = 0,

which implies that

g1(x(τ1)) +
∂g1

∂x
(x(τ1))

[
f1(x(τ1))∆τ1)

]
+
∂g1

∂x
(x(τ1))∆x(τ1) + o(∆τ1) = 0. (16)

Letting Lf1g1(x(τ)) := ∂g1
∂x

(x(τ1))f1(x(τ1)), which is the Lie derivative of g1 with

respect to x along flow f1, and assuming that this quantity is non-zero, we get

∆τ1 = −
∂g1
∂x

(x(τ1))Φ1(τ1, t0)∆x0

Lf1g1(x(τ1))
, (17)

where we have ignored higher order terms. Hence,

∆xh1 = x̃(τ1 + ∆τ1)

=
[
I −

f1
∂g1
∂x

(x(τ1))

Lf1g1(x(τ1))

]
Φ1(τ1, t0)∆x0. (18)

Now, based on the assumption that Lf1g1(x(τ1)) 6= 0 (i.e., the interrupt triggers

non-tangentially), ∆xh1 is small. Similarly, we get that ∆xh2 is small under the

assumption that Lf2g2(x(τ2)) 6= 0. Continuing in this manner, we deduce that ∆xf

will be small as long as Lfi
gi(x(τi)) 6= 0, for i = 1, . . . ,M , and the result follows.

2.5 Conclusions

In this chapter, we presented a method for going from continuous-time control systems

to finite state machines in a structured manner. In particular, by only considering a

29

finite number of modes, i.e., control-interrupt pairs, the input space is finite and the

continuous-time dynamics can be replaced by a Lebesque sampled, discrete-time sys-

tem. Moreover, by limiting the length of the mode string, the reachable state space

(at the interrupt times) is finite as well. This construction means that previously

unavailable computational methods, such as reinforcement learning, are now appli-

cable in a straight forward manner. In summary, we presented an algorithm that

estimates the reachable set (thus, encoding the expressiveness of the system) and

learns control programs that optimize a prescribed performance index while ensuring

task completion (when possible).

It should be mentioned that this method is based on assumptions about sufficient

knowledge of the system dynamics, initial conditions, and the environment. The opti-

mal control program should be interpreted as a high-level plan over a set of available

modes. In this case, the disturbances in the dynamics can be handled by a low-

level controller. In Section 2.4, we conducted a robustness analysis to show that the

learning algorithm is robust to small errors in the initial condition; however, the sen-

sitivity of the algorithm with respect to errors in the environment is still unexplored.

To add robustness to errors in the environment, it may be beneficial to extend this

algorithm to dynamically update the control program whenever unmodelled obstacles

are encountered. The abundance of literature on reinforcement learning in unknown

environments (see [52, 53, 55, 58]) can facilitate this extension.

30

CHAPTER 3

ADAPTIVE MULTI-MODAL CONTROL

Now that we have a method in which strings of control modes (i.e., control programs)

can be produced given a collection of modes, one natural question to ask is whether

we can adaptively vary the mode set to further improve performance. As mentioned

earlier, one of the strengths of multi-modal control is that it allows us to add new

functionality (or modes) to the system without adding significant increase in complex-

ity. Hence, instead of changing the existing modes to improve performance, we intend

to introduce new modes to the mode set in a structured manner to improve perfor-

mance. In this chapter, we will develop the basic framework for adaptive multi-modal

control, which will be expanded in Chapter 4.

First, let us introduce some motivation for how adaptively changing the mode set

can improve performance. As hinted to in the introduction to motion description

languages (see Chapter 1), the key issue in any symbol driven system is the tradeoff

between complexity and expressiveness. Adaptive multi-modal control is an attempt

to increase the expressiveness of the system (thus possibly increasing the performance

of the system) while decrease the complexity of the control programs. If we let Σ be

the set of available modes and let the mode string σ̄ = σ1σ2 · · ·σq solve a particular

control task (e.g., one that drives the system to the origin), then we can define the

complexity of this control program as the number of bits needed for its encoding, as

was the case in [1]. In other words, the complexity of the control program σ̄, whose

elements are drawn from the mode set Σ, is given by

|σ̄| log2(card(Σ)).

Remember, we are interested in designing new modes in a highly structured man-

ner to increase expressiveness while reducing complexity. Moreover, the mode string

should be readily updated to account for these new modes without incurring any

31

hefty computational costs. Our proposed solution is based on the observation that

if a given mode string fragment σ1 · · ·σr occurs (possibly repeatedly) in the control

program, it might be possible and beneficial to replace this string with one single

mode σ1r that results in (roughly) the same behavior. If p occurrences of σ1 · · ·σr

are replaced by σ1r in the original control program (σ̄old), then the complexity of new

mode string (σ̄new) is now

(|σ̄old| − p(r − 1))card(Σold + 1) < |σ̄old|card(Σold)

as long as p ≥ 1 and r > 1. In other words, the complexity would be reduced if such

a σ1r could be found. Since the new mode will be designed to produce roughly the

same behavior, rather than the same behavior, the modified multi-modal system will

be able to produce a larger set of trajectories than the original multi-modal system

(i.e., the expressiveness is increased).

In this chapter, we will develop a general framework and algorithms for adaptive

multi-modal control by augmenting the mode set with modes that replace recurring

mode string fragments. The chapter is organized as follows: In Section 3.1, we look

at a specific, motivating example of the continuous-time linear time-invariant (LTI)

systems. In Section 3.2, we introduce the general framework for adaptive multi-modal

control, where the problem is posed as an optimal control problem and solved using

calculus of variations. Section 3.3 presents examples to illustrate the viability of the

proposed methods, followed by conclusions in Section 3.4.

3.1 Continuous-Time LTI Systems

Before deriving a general framework and algorithms for adaptive multi-modal control,

we will look at a specific, motivating example of the continuous-time linear time-

invariant (LTI) systems. Consider the following autonomous linear system:

ẋ(t) =

 A1x(t) if t ∈ [0, T
2
]

A2x(t) if t ∈ [T
2
, T]

. (19)

32

If x ∈ Rn and x(0) = x0 is given, then the evolution of x is given as follows:

x(0) = x0

x(T
2
) = eA1

T
2 x0

x(T) = eA2
T
2 x(T

2
) = eA2

T
2 eA1

T
2 x0.

Now, suppose we want to find a new A such that

x(T) = eA2
T
2 eA1

T
2 x0 ≈ eATx0. (20)

One way of obtaining A is through the use of the well-known Campbell-Baker-

Hausdorff (CBH) formula, which can be stated as follows:

Campbell-Baker-Hausdorff (CBH) Formula For any two matrices X, Y suffi-

ciently close to 0 , there exists a matrix Z ∈ L(X, Y) such that eZ = eXeY . More-

over, Z can be explicitly expressed in the Dynkin form as: Z = X + Y + 1
2
[X, Y] +

1
12

[X, [X,Y]]+ 1
12

[Y, [Y,X]]+. . . , where [X,Y] = XY −Y X is the matrix commutator.

Since the CBH formula gives an infinite series, we have to be concerned about

convergence when applying the formula. The convergence of the CBH formula has

been well studied [59, 60], and it is shown that the Dynkin series converges for matrices

X, Y if there is a Lie norm for which

‖ X ‖Lie + ‖ Y ‖Lie≤ log(2). (21)

Here, ‖ · ‖Lie denotes the Lie norm, which is a norm on matrices compatible with Lie

multiplication, i.e.,

‖ [X, Y] ‖Lie≤‖ X ‖Lie‖ Y ‖Lie . (22)

Clearly, if T is sufficiently small, then ‖ Ai T2 ‖Lie will meet the bound above (21) for

i = 1, 2. In this case we should be able to approximate this result by using a finite

number of elements from the Lie algebra.

33

Using the CBH formula it is clear that

A = 1
2
A1 + 1

2
A2 + T

4
[A1, A2] + T 2

8
[A1, [A1, A2]] + . . .

≡ 1
2
A1 + 1

2
A2 + T

4
[A1, A2] + ∆(T 2), (23)

where ∆(T 2) is the remaining part of the series, which is polynomial in T of degree

greater than T 2. Now, let us denote Ã = 1
2
A1 + 1

2
A2 + T

4
[A1, A2]; we will show that

‖ eÃ+∆(T 2) − eÃ ‖ is bounded by o(T 2). Hence, x(T) ≈ eÃT for a small enough T .

First, note the following expression derived in [61]:

eA+∆ − eA =

∫ 1

0

e(1−τ)A∆eτAdτ + o(‖ ∆ ‖). (24)

Hence, by manipulating (24) we obtain

‖ eA+∆ − eA ‖ ≤ ‖
∫ 1

0

e(1−τ)A∆eτAdτ ‖ +o(‖ ∆ ‖)

≤
∫ 1

0

‖ e(1−τ)A∆eτA ‖ dτ + o(‖ ∆ ‖)

≤
∫ 1

0

e‖A‖ ‖ ∆ ‖ e‖A‖dτ + o(‖ ∆ ‖)

= e2‖A‖ ‖ ∆ ‖ +o(‖ ∆ ‖) (25)

So in our case (25) is reduced to

‖ eÃ+∆(T 2) − eÃ ‖≤ e2‖Ã‖o(T 2). (26)

We have thus shown that A given by the CBH formula can be approximated by Ã

for a small enough T . Of course, we can approximate A by using higher-order Lie

brackets to obtain a better approximation if desired. Shortly, we will compare this

approach with the general approach presented in the next section, which relies on the

calculus of variations.

3.2 General Framework for Adaptive Multi-Modal Control

Recall, we are interested in developing a general framework for adaptive multi-modal

control by augmenting the mode set with modes that replace recurring mode string

34

κ1

κ2

ξ1

z0x0 =

ξ2 =

κ12

zf xf ξ12

Figure 6. Depicted is the original trajectory x(t) and the approximation trajectory z(t).

fragments. The CBH formula gives us an explicit formula for finding a matrix A

that behaves similarly to A1 followed by A2. Note that this formula is an infinite

series, but this example gives us an idea for a general construction of a “meta-mode”

σ1r that replaces σ1 · · ·σr. Namely, we would like this new mode to be constructed

as a function of the modes it is replacing. Constructing σ1r involves designing the

feedback law κ1r and the interrupt ξ1r. First, we start by letting ξ1r = ξr since

we want σ1r to behave similarly to σ1 · · ·σr. Now for designing κ1r, we will use an

approximation function z(t), which would approximate the trajectory of x(t) given

using the mode string fragment σ1 · · ·σr that we are trying to replace. This idea of

using an approximation function is depicted in Figure 6 for the particular example of

replacing σ1σ2 with σ12. In the general case, we define the approximation trajectory

z as follows:

ż = f(z, κ1r) until ξ1r(x) = ξr(x) = 1 with z(0) = x(0). (27)

Now, the problem of augmenting the mode set is reduced to finding the feedback

mapping κ1r that best approximates x(t). Moreover, we insist on this feedback map-

ping being a function of the feedback laws corresponding to the modes being replaced

in the recurring mode sequence. Unfortunately, we cannot let the κ1r be a general

function of the existing feedback laws, since this problem would be intractable. Thus,

in the section, we constrain the feedback law κ1r to be a linear combination of basis

functions gi:

κ1r =
N∑
i=1

αigi(z(t)), with αi ∈ R. (28)

35

The idea here is to let the basis functions gi : Rn → Rm be some differentiable

function of the existing feedback laws gi = ζ(κ1, . . . , κr). For the remainder of this

development, we do not specify ζ(·) exactly, but one possibility is to let ζ map to

the lie algebra of κ1, . . . , κr (as done in the case of continuous-time LTI systems).

The problem of finding κ1r is now reduced to choosing ~α = [α1, . . . , αN]T so that the

performance criterion

J(~α) =

∫ T

0

L(x(t), z(t))dt+ ψ(x(T), z(T)) (29)

is minimized, where L : Rn × Rn → R and ψ : Rn × Rn → R are twice differentiable

in their second argument. Note here that the instantaneous cost L determines how

close we want the approximation trajectory to track the original trajectory, while the

terminal cost ψ penalizes the final deviation.

This problem can be solved using a variational approach, where the cost (29)

is appended with the constraint given by (27) and (28) via a co-state (or lagrange

multiplier) λ(t). Next, we perturb the control vector ~α and compute the Gateaux

(or directional) derivative of J in the direction of the perturbation to gain access to

the optimality conditions. The key concept to remember in this development is that

the co-state should be chosen to simplify our computation. More specifically, we will

choose the co-state so that we avoid computing the variation in the state trajectories.

This computation is detailed next.

Starting by adding the constraint with a co-state λ(t) to (29), we obtain

J̃(~α) =

∫ T

0

[
L(x(t), z(t)) + λ(t)

(
f
(
z(t),

N∑
i=1

αigi(z(t))
)
− ż(t)

)]
dt+

+ψ(x(T), z(T)). (30)

Note above that J̃(~α) denotes the unperturbed cost. Now, we perturb (30) in such

a way that ~α → ~α + ε~θk, where ~θk = [0, . . . , θk, . . . , 0]T (note the kth entry is θk

and all other entries are 0), and ε << 1, then z → z + εη is the resulting variation

36

in z(t). Note that above, we dropped the argument t when referring to z(t) and

will continue this convention in the following development for compactness, with the

implicit understanding that x, z, and λ are functions of t. Now, the perturbed cost

is given by

J̃(~α+ ε~θk) =

∫ T

0

[
L(x, z + εη)) + λ

(
f
(
z + εη, α1g1(z + εη) + α2g2(z + εη) +

+ . . .+ (αk + εθk)gk(z + εη) + . . .+ αNgN(z + εη)
)
− ż − εη̇

)]
dt+

+ψ(x(T), (z + εη)(T)). (31)

Hence, the Gateaux (also referred to as directional) derivative of J̃ in the direction

of ~θk is

∇~θk
J̃(~α) = lim

ε→0

J̃(~α+ ε~θk)− J̃(~α)

ε

=

∫ T

0

[∂L
∂z
η + λ

(∂f
∂z
η +

N∑
i=1

αi
∂f

∂u

∂gi
∂z

η +
∂f

∂u
gkθk − η̇

)]
dt+

∂ψ

∂z
η(T). (32)

Now, by integrating λη̇ in (32) by parts and rearranging terms, we obtain

∇~θk
J̃(~α) =

∫ T

0

[∂L
∂z

+ λ
∂f

∂z
+ λ

N∑
i=1

αi
∂f

∂u

∂gi
∂z

+ λ̇
]
ηdt+

+θk

∫ T

0

λ
∂f

∂u
gk(z)dt−

[
λη

]T
0

+
∂ψ

∂z
η(T) (33)

Note that η(0) = 0 since z(0) = x(0) = x0. Recall, we want to choose the co-state λ

to avoid the computation of the variation η. Thus, we let λ(t) be given by

λ(T) =
∂ψ

∂z
(x(T), z(T)), (34)

λ̇(t) = −∂L
∂z

(x, z)− λ(t)
(∂f
∂z

(z, κ1r) +
N∑
i=1

αi
∂f

∂u
(z, κ1r)

∂gi
∂z

(z)
)
. (35)

With this choice of the co-state λ(t), which can be solved by integrating (35) back-

wards with initial condition (34), we obtain

∇~θk
J̃(~α) =

[∫ T

0

λ
∂f

∂u
(z, κ1r)gk(z)dt

]
θk (36)

37

Finally, note that (36) gives access to the partial derivative ∂J̃
∂αk

since we know that

∇~θJ̃(~α) =
∂J̃

∂α1

θ1 + · · ·+ ∂J̃

∂αN
θN , (37)

where ~θ = [θ1, . . . , θN]T . Hence using (36), (37), and the fact that αk (for k =

1, . . . , N) are independent of each other, we deduce that

dJ

dαk
=

∫ T

0

λ
∂f

∂u

(
z, κ1r(z)

)
gk(z)dt. (38)

We summarize these results in the following theorem:

Theorem 3.2.1 Given a function x(t) ∈ Rn and a set of twice differentiable func-

tions gi : Rn → Rm for i = 1, 2, . . . , N , with z(t) ∈ Rn given by (27) and (28), an

extremum to the performance index

J(~α) =

∫ T

0

L(x(t), z(t))dt+ ψ(x(T), z(T))

is attained when the control vector ~α = [α1, . . . , αN]T is chosen such that

dJ

dαk
=

∫ T

0

λ(t)
∂f

∂u

(
z(t), κ1r(z(t))

)
gk(z(t))dt = 0 for k = 1, 2, . . . , N ,

where the co-state λ(t) is chosen as follows:

λ(T) =
∂ψ

∂z
(x(T), z(T)),

λ̇(t) = −∂L
∂z

(x, z)− λ(t)
(∂f
∂z

(z, κ1r) +
N∑
i=1

αi
∂f

∂u
(z, κ1r)

∂gi
∂z

(z)
)
.

3.2.1 Numerics

In the previous section, we derived the necessary conditions that any extremum of the

performance index J must satisfy. The theorem, however, gives us very little insight

about how to attain an extremum to the performance index. In this section, we

present a numerical algorithm that utilizes the optimality conditions derived earlier to

converge to a stationary solution (i.e., control parameters that produce an extremum

to the performance index J). This algorithm (shown in Table 2) employs a gradient

38

Table 2. A gradient descent algorithm.

- Initialize with a guess of the control variables ~α(0) and let p = 0.

- while p < 1 or |J (p) − J (p−1)| < ε

1. Compute the approximation function z(t) forward in time
from 0 to T using (27) and (28) and cost J (p) (29).

2. Compute the co-state λ(t) backward in time from T to 0 using
(129) and (135).

3. Compute the gradient ∇J(~α(n)) =
[

dJ

dα
(n)
1

, . . . , dJ

dα
(n)
N

]T
using

(38).

4. Update the control variables as follows:

~α(n+1) = ~α(n) − γ(n)∇J(~α(n))

5. p = p+ 1

- end while

descent method, in which, the control parameters are updated in the negative gradient

direction until a stationary solution has been reached.

Note that the choice of the step-size γ(n) can be critical for the method to con-

verge. An efficient method among others is the use of Armijo’s algorithm presented

in [62]. Because of the non-convex nature of the cost function J , this gradient descent

algorithm will only converge to a local minimum. Hence the attainment of a “good”

local minimum can be quite dependent on the choice of a “good” initial guess for

the control variables. However, the method presented here may still offer significant

reductions in the performance index. The association of such a local method with

heuristic strategies to find a global minimum is not investigated here.

3.3 Examples

In this section, we consider some examples that illustrate the viability of our approach.

We first consider a specific example of a continuous-time LTI system, where the

39

variational method is compared to the CBH solution presented earlier. Then, we

look at an example of a unicycle navigating through a cluttered environment to a

specified goal location. This latter example illustrates the learning of optimal mode

strings and shows how adaptive multi-modal control can further improve performance.

3.3.1 LTI Example

In this section, we present a simple example of a linear, time-invariant (LTI) system

to illustrate the operation of the gradient descent algorithm derived earlier. Let

ẋ(t) =



 1 0.3

0 −1

x(t); if 0 ≤ t < T
2 −1.2 0.1

−0.3 1

x(t); if T
2
≤ t < T

. (39)

Suppose x0 = (1, 1)T , and suppose we want to derive a new matrix Anew that transfers

the system from x0 to x(T) ≈ eA2
T
2 eA1

T
2 x0 in time T without the switch at time

T
2
. To this end, we let the instantaneous cost L(x, z) = 0 and the terminal cost

ψ(x(T), z(T)) =‖ x(T)− z(T) ‖2. Figure 7 (a) shows the trajectories obtained using

the first-order approximation of the CBH formula and the corresponding calculus

of variation approximation using Ânew = α1A1 + α2A2 + α2[A1, A2] with T = 2.

Note that the COV approach obtained a virtually perfect match, while the CBH

approximation was not very accurate. In this case ~α∗ = (0.8763, 0.8112, 0.4134)T ,

hence Ânew = 0.8763A1 + 0.8112A2 + 0.4134[A1, A2] as opposed to Ãnew = 0.5A1 +

0.5A2+0.5[A1, A2], given by the CBH formula. The CBH formula expectedly provides

a better approximation when T = 1 (i.e., for a smaller T), as shown in Figure 7

(b). More specifically, for T = 2, ‖ x(T) − zCBH(T) ‖= 0.3459, while ‖ x(T) −

zCOV (T) ‖= 1.81 · 10−5. In the case of T = 1, ‖ x(T) − zCBH(T) ‖= 0.0736, while

‖ x(T)−zCOV (T) ‖= 5.84 ·10−4. The evolution of ~α in the steepest descent algorithm

for both cases (T = 2, 1) is shown in Figure 8. Here, γ(n) = 0.05 for T = 2 and

40

0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

A
1

x
0

A
COV

A
CBH

A
2

x
z

CBH
z

COV

T = 2

(a)

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

A
2

A
CBH

A
COV

x
0

A
1

x
z

CBH
z

COV

T = 1

(b)

Figure 7. Comparison of the CBH and COV methods for (a) T = 2, (b) T = 1.

0 5 10 15 20 25 30 35 40 45 50
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

T = 2
α

1
α

2
α

3

(a)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

T = 1
α

1
α

2
α

3

(b)

Figure 8. The evolution of ~α for (a) T = 2 and (b) T = 1.

γ(n) = 0.2 for T = 1 is the constant step-size for all iterations n, and it should be

noted that the algorithm converges quickly. Observe that the calculus of variations

result depends on the initial condition x0 and hence ~α∗ will vary as x0 varies; however,

the CBH formula provides global results that are independent of the initial condition

x0.

41

3.3.2 Robotics Example

In this section, we apply adaptive multi-modal control to the problem of mobile robot

navigation. We start by assuming that some preliminary modes have already been

designed, namely, “approach-goal” and “avoid-obstacles,” and apply the proposed

reinforcement learning algorithm to produce the optimal mode string that drives a

unicycle through cluttered environment. The performance criterion is to minimize the

total distance travelled while minimizing the specification complexity of the control

program. Next we show that the performance can be further improved by adding a

new mode that is a combination of the existing modes, as outlined in the previous

section.

Formally, the dynamics for the unicycle are

ẋ = v cos(φ),

ẏ = v sin(φ),

φ̇ = ω.

(40)

In the system above, (x, y) are the Cartesian coordinates of the center of the unicycle

and φ is its orientation with respect to the x-axis. Assume that v is constant and

ω is the control variable. Given that the system initially has two behaviors, namely,

“approach-goal” and “avoid-obstacle,” the feedback mappings associated with each

behavior are

κg(x, y, φ) = ωg = Cg(φg − φ), (41)

κo(x, y, φ) = ωo = Co(π + φo − φ). (42)

Note here that Cg and Co are the gains associated with each behavior, and φg and φo

are the angles to the goal and nearest obstacle, respectively. Both of these angles are

measured with respect to the x-axis and can be expressed as

φg = arctan(
yg − y

xg − x
) and φo = arctan(

yob − y

xob − x
), (43)

42

where (xg, yg) and (xob, yob) are the Cartesian coordinates of the goal and the nearest

obstacle, respectively. We also have a set of three interrupts, ξ1,2,3(x), that trigger

at three different distances away from the nearest obstacle (xob, yob), and all three

interrupts always trigger at the goal (xg, yg). Hence the total number of available

modes is six, i.e., card(Σ) = 6. The problem then is to plan a path from an initial

state (x0, y0, φ0) to an open ball around (xg, yg) given the set of modes above while

minimizing the string length of the control program (i.e., number of switches) along

with the total distance travelled.

Given this set of modes, we begin by exploring the reachable space and then

performing reinforcement learning to find the optimal path, as described earlier.

The resulting optimal path is shown in Figure 9 (a). The optimal control sequence

in this case is σ̄∗ = (κg, ξ1)(κo, ξ3)(κg, ξ1)(κo, ξ3)(κg, ξ1)(κo, ξ1)(κg, ξ1). So, clearly,

(κo, ξ3)(κg, ξ1) is repeated often in the control program. Thus, it may be beneficial to

replace it with a single mode (κn, ξ1), where we let κn = αgκg + αoκo. In this case,

we let the instantaneous cost L(x(t), z(t)) = 0.05 ‖ x(t) − z(t) ‖2 and the terminal

cost ψ(x(T), z(T)) = 10 ‖ x(T) − z(T) ‖2. Note by selecting the instantaneous cost

in this manner, we indirectly ensure feasibility of the approximation trajectory z(t)

since we are penalizing the deviation from the x(t) which is feasible. It is possible

to explicitly ensure feasibility by imposing hard constraints on the approximation

trajectory; however, this makes the optimal control problem much more difficult.

Using the variational techniques presented earlier, it is found that α∗g = 0.211 and

α∗o = 0.801. Now we recalculate the optimal path with the new feedback mapping

κn(x) and again the three existing interrupts for its termination added to the mode

set. The resulting path is shown in Figure 9 (b) and the optimal control sequence is

given by σ̃∗ = (κg, ξ1)(κn, ξ3)(κg, ξ1). The augmentation of the motion alphabet re-

sults in great improvement in terms of the optimal mode sequence and the resulting

optimal trajectory. Although we only designed the new feedback map to “merge”

43

(x
0
,y

0
,φ

0
)

(x
g
,y

g
,)

(a)

(x
g
,y

g
,)

(x
0
,y

0
,φ

0
)

(b)

Figure 9. The estimated reachable set along with the optimal path (thick) to drive a
unicycle from x0 to xg using the (a) original set of modes, (b) augmented set of modes.

two modes, the overall effect of adding the new modes reduced the size of the control

program from |σ∗| = 7 to |σ̃∗| = 3. Moreover, the complexity of the control program

is reduced from 7 · log2(6) = 18.0947 to 3 · log2(9) = 9.5098, while the expressiveness

is clearly increased since the system can generate more trajectories. This example

illustrates the viability of the proposed method.

3.4 Conclusions

In this chapter, we formulated the problem of adaptive multi-modal control. Our ap-

proach focused on enhancing the mode set by adding new modes that replace recurring

mode string fragments, rather than changing the existing modes. We showed that

this mode augmentation can increase the expressiveness of the multi-modal system

(thus possibly resulting in improved performance), while reducing the complexity of

the control program, assuming such replacement modes can be found. We presented

a framework for constructing new modes so that frequently recurring mode combi-

nations can be combined into single “meta-modes.” In particular, the “meta-modes”

are obtained through a linear combination of the known modes (or any generalizing

functions, such as the P. Hall basis). The solution utilizes calculus of variations to

44

obtain optimality condition, and numerical examples illustrate the usefulness of the

presented approach.

45

CHAPTER 4

A UNIFIED VARIATIONAL FRAMEWORK

In Chapter 3, we motivated the advantages of adaptive multi-modal control and

presented a general framework for augmenting the mode set in order to increase

performance. In this chapter, we look at several refinements to this initial frame-

work. Although we obtained good performance in certain applications using the

initial approach, there may be some room for improvement. In this development, we

incorporate the following changes the original framework:

• Why use a linear combination? Can we use a more general feedback law to

improve performance?

• Can we utilize the interrupt ξ1r to further improve performance?

• Can we guarantee that σ1r will replace every occurrence of the mode string

fragment σ1 · · ·σr in the mode string σ̄?

The first point can be addressed by making the new feedback law κ1r more general

using weighing functions in the linear combination instead of using scaler weights. In

this construction, the feedback law is given by

κ1r =
N∑
i=1

µi(x, αi)gi(z(t)), (44)

where µi : Rn × Rk → R. In (44), the weight of each basis function gi is deter-

mined by a weighing function µi, which is parameterized by vector αi ∈ Rk. We

refer to these weighing functions as membership functions as they closely resemble

membership functions in fuzzy-logic control [63, 64]. Here the control vector is the

concatenation of the shaping vectors αi for each of the N membership functions,

hence ~α = [α1, . . . , αN]T ∈ RNk.

46

In the original framework, we decided to let ξ1r = ξr in order to simplify the

problem. We rationalized that since we wanted the approximation function z(t) to be

close to x(t), they can both be triggered by the same interrupt. Although this is, in

fact, true, it may be possible to further increase performance by utilizing the interrupt

function ξ1r. Instead of using the interrupt ξr, it may be beneficial to construct ξ1r

by incrementally adapting the interrupt ξr. We will break up this discussion into two

distinct cases: time-driven interrupts and event-driven interrupts. The adjustment

in the case of time-driven interrupts is straight-forward, as this involves optimizing

switching times. In the case of event-driven interrupts, we will assume that the

interrupts are parameterized by some control vector. In particular, we let interrupt

ξi be shaped by control parameter βi ∈ Rk, i.e., ξi : Rn × Rk → {0, 1}. Now we can

design ξ1r by adjusting βr; hence, the optimization problem involves an additional

control parameter β ∈ Rk.

Since the original method only optimized over one occurrence of the mode string

fragment, we cannot say anything analytically about the approximation of the new

mode for other occurrences of the mode string fragment. However, we wish to find

σ1r such that every occurrence of mode string fragment σ1 · · ·σr can be replaced

with σ1r. This can be achieved if we define the approximation function z(t) over

the entire mode string σ̄n, where σ̄n is the new mode string with σ1r replacing every

occurrence of σ1 · · ·σr. Now the control vector ~α that minimizes (29) can be found

using a variational approach as done earlier, but the new mode designed using ~α∗ can

readily replace all occurrence of mode string fragment σ̄1r. Note that this method only

provides a local solution, but it will allow us to replace σ1 · · ·σr globally in the mode

string σ̄. It should be noted, already at this point, that this construction increases

the complexity of the optimal control problem significantly since the approximation

trajectory has mode switches. Thus, perturbing the control vector will induce a

variation in the approximation trajectory as well as the switching time instants.

47

κ1 κ2

ξ2

κ3

ξ3

κ4

ξ4

κ1

κ2 ξ2

ξ1

ξ1

x0

xf

z0 = κ12

ξ12

κ12

ξ12

κ3

κ4

zf

Figure 10. Depicted is the original trajectory x(t) and the approximation trajectory
z(t).

In light of the preceding discussion, we propose a new construction for σ1r that

incorporates the ideas discussed above. Before detailing this construction, let’s look

at a specific example to make these informal observations more concrete. Suppose we

have a mode string σ̄ = σ1σ2σ3σ1σ2σ4, and note that σ1σ2 is a recurring mode string

fragment in σ̄. Using the initial construction, the new mode is computed by using an

approximation function z(t) as shown in Figure 6. With the changes discussed above,

the new mode would be constructed using an approximation trajectory z(t) as shown

in Figure 10. In particular, the approximation trajectory is given by

ż =



f(z, κ12(z)) until ξ12(z) = 1

f(z, κ3(z)) until ξ3(z) = 1

f(z, κ12(z)) until ξ12(z) = 1

f(z, κ4(z)) until ξ4(z) = 1

, (45)

with z(0) = x(0). In equation (45) above, κ12 is shaped by the control vector ~α as

shown in equation (44) and ξ12 is ξ2 reshaped by β12.

With the approximation trajectory defined in this manner, we can cast the mode

augmentation problem as an optimal control problem as done earlier. The outline of

this chapter is as follows: In Section 4.1, we consider the case of time-driven interrupts.

48

Thus, the control parameters include the shaping vector ~α for the new feedback law

and the temporal interrupts (i.e., switching-times). In Section 4.2, the general case

of event-driven interrupts is considered. In this case, the control parameters include

the shaping vector ~α for the new feedback law and the shaping vector β1r for the new

interrupt. A detailed navigation example illustrating the viability of the proposed

methods is presented in Section 4.3, followed by conclusion in Section 4.4.

4.1 Time-Driven Interrupts

As done in Section 3.2, we cast the mode augmentation problem as an optimal control

problem using the construction outlined in the previous section for the the case when

the interrupts are time-driven. In this derivation, the problem involves finding the

optimal set of control parameters ~α = [α1, . . . , αN]T ∈ RNk to shape the feedback law

κ1r and the optimal switching times τ1, . . . , τM , which correspond to the temporal

interrupts.

It will be advantageous to introduce an identifier p(i), taking values in a finite

set, denoting the mode of operation during the time interval [τi−1, τi). Now the

approximation trajectory z(t) is given by

ż(t) =



f(z, κp(1)(z)) when t ∈ [τ0, τ1)

f(z, κp(2)(z)) when t ∈ [τ1, τ2)

...
...

f(z, κp(M)(z)) when t ∈ [τM−1, τM]

, (46)

with z(0) = x(0). Thus for our example, p(1) = 12, p(2) = 3, and so on. Observe

that f(z, κp(i)(z)) is a function of z and the control vector ~α when p(i) = 1r and just

a function of z otherwise. Thus for ease of notation, we introduce a new indexing

function f̃i(z, ~α) defined as follows:

f̃i(z, ~α) =

 f(z,
∑N

j=1 µj(z, αj)gj(z)) if p(i) = 1r

f(z, κp(i)) otherwise.
(47)

49

The optimal control problem, thus, involves finding the control vector ~α = [α1, . . . , αN]T

and the switching-times vector ~τ = [τ1, . . . , τM]T such that the performance index

J =

∫ τM

τ0

L(x(t), z(t))dt+ ψ(xf , z(τM)) (48)

is minimized, where xf is the desired final position. In the performance index above,

note that L : Rn×Rn → R and ψ : Rn×Rn → R are required to be twice differentiable

in their second argument. Also for what follows, we assume that the basis functions

gi and membership functions µi are twice differentiable.

We will derive the necessary conditions for optimality using variational arguments.

The unperturbed cost, denoted by J̃0, is attained by adding the constraint with a co-

state λ(t) to the cost (48). For ease of notation, we start by defining the Hamiltonian

as

Hi(x, z, λi, ~αi) = L(x, z) + λif̃i(z, ~α). (49)

Now, the augmented (but unaltered from an evaluation point of view) unperturbed

cost is given by

J̃0 =
M∑
i=1

∫ τi

τi−1

[
Hi(x, z, λi, ~α)− λiż

]
dt+ ψ(xf , z(τM)). (50)

Now, we perturb (50) in such a way that ~α→ ~α+ ε~γlr , where ~γlr = [0, . . . , γlr , . . . , 0]T

(note the (kl+ r)th entry is γlr and all other entries are 0, i.e., we are perturbing the

rth entry of shaping vector αl) and τi = τi + εθi for i = 1, . . . ,M , and ε << 1, then

z → z + εη is the resulting variation in z(t). Note that τ0 = 0 is assumed fixed. The

perturbed cost, denoted by J̃ε, is given by

J̃ε =
M∑
i=1

∫ τi+εθi

τi−1+εθi−1

[
Hi(x, z + εη, λi, ~α+ ε~γlr)− λiż − ελiη̇

]
dt+

+ψ(xf , (z + εη)(τM + εθM)). (51)

Using a first order approximation, we get

J̃ε =
M∑
i=1

∫ τi+εθi

τi−1+εθi−1

[
Hi(x, z, λi, ~α) +

∂Hi

∂z
εη +

∂Hi

∂αlr
εγlr − λiż − ελiη̇

]
dt+

+
[
ψ(xf , z) +

∂ψ

∂z
ε[żθM + η]

]
t=τM

. (52)

50

Hence, the first order variation in J̃ in the direction of variation in the control pa-

rameters is

δJ̃ = lim
ε→0

J̃ε − J̃0

ε

=
M∑
i=1

∫ τi

τi−1+εθi−1

[∂Hi

∂z
η +

∂Hi

∂αlr
γlr − λiη̇

]
dt+

+
M−1∑
i=1

θi

[
λi+1(τi+)

(
fi(τi−)− fi+1(τi+)

)]
+

+
[∂ψ
∂z
f̃MθM + L(x, z)θM +

∂ψ

∂z
η
]
t=τM

. (53)

The integral terms in (53), denoted by δχ, can be further reduced by integrating λiη̇

by parts to obtain

δχ =
M∑
i=1

∫ τi

τi−1+εθi−1

[∂Hi

∂z
+ λ̇i

]
ηdt+

+
M∑
i=1

γlr

∫ τi

τi−1+εθi−1

∂H

∂αlr
dt−

M∑
i=1

[
λiη

]τi
τi−1+εθi−1

. (54)

Recall that θ0 = 0 since τ0 = 0 is fixed, and note that η(0) = 0 since z(0) = x(0) = x0.

Using the fact that η(t) is continuous, (54) is reduced to

δχ =
M∑
i=1

∫ τi

τi−1+εθi−1

[∂Hi

∂z
+ λ̇i

]
ηdt+

M∑
i=1

γlr

∫ τi

τi−1+εθi−1

∂f̃i
∂αlr

dt−

−
M−1∑
i=1

[
λi(τi−)− λi+1(τi+)

]
η(τi)− λM(τM−)η(τM−). (55)

Recall, we want to select the co-state λ(t) so that we avoid having to compute

variation η(t). Substituting δχ back into δJ̃ , we see that we can use single continuous

co-state λ(t) given by

λ(τM) =
∂ψ

∂z
, (56)

λ̇(t) = −∂Hi

∂z
, when t ∈ (τi−1, τi), (57)

λ(τi−) = λ(τi+), fori = 1, . . . ,M − 1. (58)

51

With this choice of the co-state λ(t), which can be solved by integrating (57) back-

wards with boundary conditions (56) and (58), we obtain

δJ̃ =
M∑
i=1

γlr

∫ τi

τi−1

∂f̃i
∂αlr

dt+
M−1∑
i=1

θi

[
λ(τi)

(
fi(τi−)− fi+1(τi+)

)]
+

+θM

[
L(x, z) +

∂ψ

∂z
f̃M

]
t=τM

. (59)

Since the θis and αlrs are independent, the necessary conditions for optimality (i.e.,

δJ̃ = 0) are

∂J

∂τM
= L(x(τM−), z(τM−)) +

∂ψ

∂z
f̃M(τM−) ≡ 0, (60)

∂J

∂τi
= λ(τi)

[
f̃i(τi−)− f̃i+1(τi+1+)

]
≡ 0

for i = 1, . . . ,M − 1, and (61)

∂J

∂αlr
=

M∑
i=1

∫ τi

τi−1

λ
∂f̃i
∂αlr

dt ≡ 0

for l = 1, . . . , N , and r = 1, . . . , k. (62)

Relating this back to our original problem formulation, the partial derivative ∂f̃i

∂z
in

(57) is

∂f̃i
∂z

=


∂f
∂z

+ ∂f
∂u

[∑N
j=1

[
gj

∂µj

∂z
+ µj

∂gj

∂z

]]
if p(i) = 1r

∂f
∂z

otherwise.
(63)

The partial derivative with respect to the shaping vector is

∂f̃i
∂αlr

=
∂f

∂u

∂µl
∂αlr

gl (64)

if p(i) = 1r, and 0 otherwise. Hence, (62) can be further reduced to

∂J

∂αlr
=

∑
{i | p(i)=1r}

∫ τi

τi−1

λ
∂f

∂u

∂µl
∂αlr

gl dt ≡ 0, (65)

for l = 1, . . . , N , and r = 1, . . . , k.

These results are summarized in a theorem below:

52

Theorem 4.1.1 Given a function x(t) ∈ Rn and a set of twice differentiable func-

tions gi : Rn → Rm and µi : Rn × Rk → R for i = 1, 2, . . . , N , with z(t) ∈ Rn given

by (44) and (46), an extremum to the performance index

J =

∫ T

0

L(x(t), z(t))dt+ ψ(xf , z(T))

is attained when the control vector ~α = [α1, α2, . . . , αN]T ∈ RNk and switching-times

vector ~τ = [τ1, τ2, . . . , τM] are chosen as follows:

Euler-Lagrange Equations:

λ̇(t) = −∂Hi

∂z
= −∂L

∂z
(x, z)− λ(t)

∂f̃i
∂z

(z, αi) when t ∈ (τi−1, τi),

Boundary Conditions:

λ(τM) =
∂ψ

∂z
,

λ(τi−) = λ(τi+) for i = 1, . . . ,M − 1,

Optimality Conditions:

∂J

∂τM
= L(x(τM−), z(τM−)) +

∂ψ

∂z
f̃M(τM−) ≡ 0

∂J

∂τi
= λ(τi)

[
f̃i(τi−)− f̃i+1(τi+1+)

]
≡ 0

for i = 1, . . . ,M − 1,

∂J

∂αlr
=

∑
{i | p(i)=1r}

∫ τi

τi−1

λ
∂f

∂u

∂µl
∂αlr

gl dt ≡ 0

for l = 1, . . . , N , and r = 1, . . . , k.

4.2 Event-Driven Interrupts

In this section, we consider the more general case of event-driven systems. In addition

to the usual dependence on the state, we assume that interrupts are parameterized

using a control parameter β ∈ Rk, i.e., ξ : Rn × Rk → {0, 1}. Using an identifier p(i)

53

again, the approximation trajectory z(t) is given by

ż(t) =


f(z, κp(1)(z)) until ξp(1)(z, βp(1)) = 1

...
...

f(z, κp(M)(z)) until ξp(M)(z, βp(M)) = 1

, (66)

with z(0) = x(0). Observe that f(z, κp(i)(z)) is a function of z and the control vector

~α when p(i) = 1r and just a function of z otherwise. Thus for ease of notation, as

done before, we introduce a new indexing function f̃i(z, ~α) defined as

f̃i(z, ~α) =

 f(z,
∑N

j=1 µj(z, αj)gj(z)) if p(i) = 1r

f(z, κp(i)) otherwise.
(67)

Similarly, since we are only reshaping ξ1r, we can treat βp(i) as a fixed constant when

p(i) 6= 1r. Hence, our control parameter for shaping the interrupt is ~β = β1r ∈ Rk.

Again, for ease of notation, we introduce ξ̃i(z, ~β) defined as follows:

ξ̃i(z, ~β) =

 ξ1r(z, ~β) if p(i) = 1r

ξp(i)(z, βp(i)) otherwise.
(68)

Moreover, we assume that τ0 = 0 is fixed, and the other switching instants are given

by the interrupts as

τi = {t > τi−1 | ξp(i)(z(t), βp(i)) = 1}, (69)

for i = 1, . . . ,M .

Now the mode augmentation problem is reduced to finding the control vectors ~α

and ~β such that the cost

J =

∫ τM

τ0

L(x(t), z(t))dt+ ψ(xf , z(τM)) (70)

is minimized, where L : Rn×Rn → R and ψ : Rn×Rn → Rn are twice differentiable in

their second argument. As done earlier, we also assume that the basis functions gi and

membership functions µi are twice differentiable. In addition to these assumptions,

54

we must make one more assumption to ensure that the approximation function z(t)

does not approach any of the switching surfaces tangentially. Namely, we assume

that

Lf̃i

∂ξ̃i
∂z

=
∂ξ̃i
∂z

f̃i 6= 0

for i = 1, . . . ,M . In other words, we assume that the Lie derivative of ξ̃i with respect

to z along the flow f̃i does not equal 0.

Defining the Hamiltonian as

Hi(x, z, λi, ~αi) = L(x, z) + λif̃i(z, ~α), (71)

the augmented (but unaltered from an evaluation point of view) unperturbed cost is

given by

J̃0 =
M∑
i=1

∫ τi

τi−1

[
Hi(x, z, λi, ~α)− λiż

]
dt+

M∑
i=1

νi
(
ξ̃i(z(τi), ~β)

)
+ ψ(xf , z(τM)). (72)

Note here that the continuous co-state λi(t) corresponds to the constraints of the con-

tinuous dynamics during the time interval (τi−1, τi), while the co-state ν corresponds

to the discrete switching dynamics at time instant t = τi. Now we perturb (72) in

such a way that ~α → ~α + ε~γlr , where ~γlr = [0, . . . , γlr , . . . , 0]T (note the (kl + r)th

entry is γlr and all other entries are 0, i.e., we are perturbing the rth entry of shaping

vector αl) and ~β = ~β + ε~δ. With ε << 1, z → z + εη is the resulting variation in z(t)

and τi → τi + εθi for i = 1, . . . ,M is the resulting variation in the switching instants.

The perturbed cost, denoted by J̃ε, is given by

J̃ε =
M∑
i=1

∫ τi+εθi

τi−1+εθi−1

[
Hi(x, z + εη, λi, ~α+ ε~γlr)− λiż − ελiη̇

]
dt+

+
M∑
i=1

νi
(
ξ̃i((z + εη)(τi + εθi), ~β + ε~δ)

)
+

+ψ(x(τM + εθM), (z + εη)(τM + εθM)). (73)

55

Using a first order approximation, we get

J̃ε =
M∑
i=1

∫ τi+εθi

τi−1+εθi−1

[
Hi(x, z, λi, ~α) +

∂Hi

∂z
εη +

∂Hi

∂αlr
εγlr − λiż − ελiη̇

]
dt+

+
M∑
i=1

νi

[
ξ̃i(z, ~β) +

∂ξ̃i
∂z

żεθi +
∂ξ̃i
∂z

εη +
∂ξ̃i

∂~β
εδ

]
t=τi

+

+
[
ψ(xf , z) +

∂ψ

∂z
ε[żθM + η]

]
t=τM

. (74)

Hence, the first order variation in J̃ is

δJ̃ = lim
ε→0

J̃ε − J̃0

ε

=
M∑
i=1

∫ τi

τi−1+εθi−1

[∂Hi

∂z
η +

∂Hi

∂αlr
γlr − λiη̇

]
dt+

+
M−1∑
i=1

θi

[
λi+1(τi+)

(
fi(τi−)− fi+1(τi+)

)]
+

+
M∑
i=1

νi

[∂ξ̃i
∂z

f̃iθi +
∂ξ̃i
∂z

η +
∂ξ̃i

∂~β
δ
]
t=τi

+

+
[
L(x, z)θM +

∂ψ

∂z
f̃M+1θM +

∂ψ

∂z
η
]
t=τM

. (75)

The integral terms in (75), denoted by δχ, can be further reduced by integrating λiη̇

by parts to obtain

δχ =
M∑
i=1

∫ τi

τi−1+εθi−1

[∂Hi

∂z
+ λ̇i

]
ηdt+

+
M∑
i=1

γlr

∫ τi

τi−1+εθi−1

∂H

∂αlr
dt−

M∑
i=1

[
λiη

]τi
τi−1+εθi−1

. (76)

Note that θ0 = 0 since τ0 = 0 is fixed, and η(0) = 0 since z(0) = x(0) = x0. Using

the fact that η(t) is continuous, (76) is reduced to

δχ =
M∑
i=1

∫ τi

τi−1+εθi−1

[∂Hi

∂z
+ λ̇i

]
ηdt+

M∑
i=1

γlr

∫ τi

τi−1+εθi−1

∂f̃i
∂αlr

dt−

−
M−1∑
i=1

[
λi(τi−)− λi+1(τi+)

]
η(τi)− λM(τM−)η(τM−). (77)

56

Substituting δχ back into δJ̃ , we want to select the co-states λi and νi (for

i = 1, . . . ,M) so that we avoid having to calculate the variations η and θi (for

i = 1, . . . ,M). For the evolution of λ(t), we get the expected (standard) result:

λ̇i = −∂Hi

∂z
= −∂L

∂z
− λi

∂f̃i
∂z

. (78)

The boundary conditions are, however, very different. It turns out that the co-state

λ(t) is discontinuous at the switching instants. To see this, lets first look at the

variation η(τM−):

η(τM−)
[
− λM(τM−) + νM

∂ξ̃M
∂z

(τM−) +
∂ψ

∂z
(τM−)

]
≡ 0

=⇒ λM(τM) =
∂ψ

∂z
(τM−) + νM

∂ξ̃

∂z
(τM−). (79)

Similarly looking at the variation η(τi−) for i = 1, . . . ,M−1, the boundary conditions

at the switching instants τi are

λi(τi−) = λi+1(τi+) + νi
∂ξ̃i
∂z

(τi−) (80)

for i = 1, . . . ,M − 1.

Using Equations (78)-(80), λ(t) can be solved by integrating backwards in time.

However, the boundary conditions at τi depend on the costate νi. To see how we

should select νi, let’s first examine the variation θi for i = 1, . . . ,M − 1:

θi

[
λi+1(τi+)

(
fi(τi−)− fi+1(τi+)

)
+ νi

∂ξ̃i
∂z

f̃i(τi−)
]
≡ 0

=⇒ νi = −
λi+1(τi+)

(
fi(τi−)− fi+1(τi+)

)
Lf̃i

∂ξ̃i
∂z

(τi−)
, (81)

where Lf̃i

∂ξ̃i
∂z

= ∂ξ̃i
∂z
f̃i denotes the Lie derivative of ξ̃i with respect to z along the flow

f̃i. Similarly looking at θM , we select νM as

νM = −
[L(xf , z) + Lf̃M

∂ψ
∂z

Lf̃M

∂ξ̃M
∂z

]
t=τM−

. (82)

57

Note that all of the expressions derived above are well defined as long as Lf̃i

∂ξ̃i
∂z

(τi) 6= 0

for i = 1, . . . ,M . Recall that this condition simply means that the trajectory of z

does not approach the interrupt (or switching) surface tangentially.

With this choice of the co-states, (75) is reduced to

δJ̃ =
M∑
i=1

γlr

∫ τi

τi−1

∂f̃i
∂αlr

dt+
M∑
i=1

νi
∂ξ̃i

∂~β
~δ. (83)

Since αlr (for l = 1, . . . , N and r = 1, . . . , k) and ~β are independent, the necessary

conditions are optimality (i.e., δJ = 0) are

∂J

∂~β
=

M∑
i=1

νi
∂ξ̃i

∂~β
(τi−) ≡ 0, and (84)

∂J

∂αlr
=

M∑
i=1

∫ τi

τi−1

λi
∂f̃i
∂αlr

dt ≡ 0

for l = 1, . . . , N , and r = 1, . . . , k. (85)

Relating this back to our original problem formulation, the partial derivative ∂f̃i

∂z
is

∂f̃i
∂z

=


∂f
∂z

+ ∂f
∂u

[∑N
j=1

[
gj

∂µj

∂z
+ µj

∂gj

∂z

]]
if p(i) = 1r

∂f
∂z

otherwise.
(86)

The partial derivative of f̃i with respect to the shaping vector is

∂f̃i
∂αlr

=
∂f

∂u

∂µl
∂αlr

gl (87)

if p(i) = 1r, and 0 otherwise. Also, the partial derivative of ξ̃ are

∂ξ̃i
∂z

=
∂ξp(i)
∂z

, (88)

∂ξ̃i

∂~β
=
∂ξ1r
∂β1r

if p(i) = 1r, and (89)

∂ξ̃i

∂~β
= 0 if p(i) 6= 1r. (90)

58

Hence, the necessary conditions for optimality can be further reduced to

∂J

∂~β
=

∑
{i | p(i)=1r}

νi
∂ξ1r
∂β1r

(τi−) ≡ 0, and (91)

∂J

∂αlr
=

∑
{i | p(i)=1r}

∫ τi

τi−1

λi
∂f

∂u

∂µl
∂αlr

gl dt ≡ 0,

for l = 1, . . . , N , and r = 1, . . . , k. (92)

These results are summarized in a theorem below:

Theorem 4.2.1 Given a function x(t) ∈ Rn and a set of twice differentiable func-

tions gi : Rn → Rm and µi : Rn × Rk → R for i = 1, 2, . . . , N , with z(t) ∈ Rn given

by (44) and (66), an extremum to the performance index

J =

∫ T

0

L(x(t), z(t))dt+ ψ(xf , z(T))

is attained when the control vectors ~α = [α1, α2, . . . , αN]T ∈ RNk and ~β =∈ Rk are

chosen as follows:

Euler-Lagrange Equations:

λ̇(t) = −∂Hi

∂z
= −∂L

∂z
(x, z)− λ(t)

∂f̃i
∂z

(z, αi) when t ∈ (τi−1, τi),

νi = −
λi+1(τi+)

(
fi(τi−)− fi+1(τi+)

)
Lf̃i

∂ξ̃i
∂z

(τi−)
for i = 1, . . . ,M − 1,

νM = −
[L(xf , z) + Lf̃M

∂ψ
∂z

Lf̃M

∂ξ̃M
∂z

]
t=τM−

,

Boundary Conditions:

λM(τM) =
∂ψ

∂z
(τM−) + νM

∂ξ̃

∂z
(τM−),

λi(τi−) = λi+1(τi+) + νi
∂ξ̃i
∂z

(τi−) for i = 1, . . . ,M − 1,

Optimality Conditions:

∂J

∂~β
=

∑
{i | p(i)=1r}

νi
∂ξ1r
∂β1r

(τi−) ≡ 0 and

∂J

∂αlr
=

∑
{i | p(i)=1r}

∫ τi

τi−1

λi
∂f

∂u

∂µl
∂αlr

gl dt ≡ 0

for l = 1, . . . , N , and r = 1, . . . , k.

59

4.3 Applications
4.3.1 Mobile Robot Navigation

In this section, we consider the problem of navigating a unicycle, as discussed in

Section 3.3.2. We will compare the navigation strategies derived using the adaptive

multi-modal control framework presented in Section 3.2 to the strategies derived using

the methods presented in this chapter. For convenience, we will reintroduce the model

and control laws presented earlier.

The kinematic model of a unicycle is

ẋ = v cos(φ),

ẏ = v sin(φ),

φ̇ = ω.

(93)

In the system above, (x, y) are the Cartesian coordinates of the center of the unicycle

and φ is its orientation with respect to the x-axis. Assume that v is constant and ω is

the control variable. Given that the system initially has two behaviors, namely, “go-

to-goal” and “avoid-obstacle,” the feedback mappings associated with each behavior

are as follows:

κg(x, y, φ) = ωg = Cg(φg − φ), (94)

κo(x, y, φ) = ωo = Co(π + φo − φ). (95)

Note here that Cg and Co are the gains associated with each behavior, and φg and φo

are the angles to the goal and nearest obstacle, respectively. Both of these angles are

measured with respect to the x-axis and can be expressed as

φg = arctan(
yg − y

xg − x
) and φo = arctan(

yob − y

xob − x
),

where (xg, yg) and (xob, yob) are the Cartesian coordinates of the goal and the nearest

obstacle, respectively. We also have a set of three interrupts, ξ1,2,3(x), that trigger

at three different distances away from the nearest obstacle (xob, yob), and all three

60

Figure 11. The estimated reachable set along with the optimal path (thick) to drive a
unicycle from x0 to xg using the original set of modes.

interrupts always trigger at the goal (xg, yg). Hence the total number of available

modes is six, i.e., card(Σ) = 6. The problem then is to plan a path from an initial

state (x0, y0, φ0) to an open ball around (xg, yg) given the set of modes above while

minimizing the performance criterion

J = Jspec + Jpath = |σ̄| log2(card(Σ)) +

∫ T

0

v2dt+ ||~xg − ~x(T)||2.

Here T is the time that σ̄ terminates, ~x = (x, y)T , so Jpath is the length of the robot

trajectory plus a final terminal cost penalizing deviation from the desired goal.

Given this set of modes, we begin by exploring the reachable space using RRTs

as outlined in Section 2.2. The simulation environment, the estimated reachable set,

and the optimal path are shown in Figure 11. The optimal control sequence is

σ̄∗ = (κg, ξ1)(κo, ξ3)(κg, ξ1)(κo, ξ3)(κg, ξ1)(κo, ξ3)(κg, ξ1)(κo, ξ2)

(κg, ξ1)(κo, ξ3)(κg, ξ1)(κo, ξ3)(κg, ξ1)(κo, ξ3)(κg, ξ1).

The specification complexity of this control program is 15 log2(6) = 38.77 bits. Thus

the total cost J = 38.77 + 83.07 = 121.84.

Looking at the control program σ̄, we see that mode string fragment (κo, ξ3)(κg, ξ1)

is repeated often in the optimal control program; hence, it may be beneficial to

replace it with a single mode (κn, ξ1), where we let κn = αgκg + αoκo. Using the

61

Figure 12. The estimated reachable set along with the optimal path (thick) to drive
a unicycle from x0 to xg using the augmented set of modes using method outlined in
Chapter 3.

framework presented in Section 3.2, we calculate the optimal weights to replace the

first occurrence of this mode string fragment. Again, we let the instantaneous cost

L(x(t), z(t)) = 0.05 ‖ x(t) − z(t) ‖2 and the terminal cost ψ(x(T), z(T)) = 10 ‖

x(T) − z(T) ‖2.It is found that α∗g = 0.21 and α∗o = 0.80. Now, we recalculate the

optimal path with the new feedback mapping κn(x) and the existing interrupt ξ1 for

its termination added to the mode set. The resulting path is shown in Figure 12, and

the optimal control sequence is

σ̄∗n1 = (κg, ξ1)(κn, ξ1)(κg, ξ1)(κo, ξ3)(κg, ξ1)(κo, ξ2)(κg, ξ1)(κn, ξ1)(κg, ξ1).

The specification complexity in this case is 9log2(7) = 25.27 bits, and the total cost

is reduced to J = 25.27 + 68.60 = 93.87. We see that the new mode (κn, ξ1) readily

replaces the first few occurrences of the mode string fragment (κo, ξ3)(κg, ξ1) in the

mode string. However, the new mode is not very affective in circumventing the obsta-

cle closer to the goal (i.e., the new mode does not effectively replace later occurrences

of the mode string fragment). It seems that there is still room for improvement here.

Indeed, using the methods outlined in this chapter, we should be able to get a

better approximation for all occurrences of the mode string fragment. Moreover,

the guard shaping technique will allow us to tune the interrupt to further improve

62

Table 3. Cost comparison between the optimal mode string generated using the original
mode set (Σ), the augmented mode set using approach outlined in Chapter 3 (Σn1),
and the augmented mode set using the methods outlined in this chapter (Σn2).

Mode Set Optimal Control Program Jspec J
Σ σ̄∗ 38.77 121.84

Σn1 σ̄∗n1 25.27 93.87
Σn2 σ̄∗n2 14.04 82.23

Figure 13. The optimal path to drive a unicycle from x0 to xg using the augmented set
of modes using method outlined in Chapter 3 (dashes) and the method outlined in this
chapter (thick).

performance. We still use the same construction for the new feedback law, i.e., κn =

αgκg + αoκo. Now, we define a new interrupt function ξn(z, β) = ||z − zobs||2 − β.

Using the methods presented in this paper, we find that α∗g = 0.14, α∗o = 0.81, and

β∗ = 3.1. Using this new augmented set of modes, the optimal path is shown in

Figure 13. The optimal control sequence is

σ̄∗n2 = (κg, ξ1)(κn, ξn)(κg, ξ1)(κn, ξn)(κg, ξ1).

Looking at the figure, we see the improvement from using the unified framework

presented in this chapter. The new mode obtained using this new framework provides

a good approximation for all occurrences of the mode fragment (κo, ξ3)(κg, ξ1) in σ̄.

The specification complexity of the new mode string σ̄∗n2 is 5log2(7) = 14.04 bits, and

the total cost is further reduced to J = 14.04 + 68.19 = 82.23. These results are

further summarized in Table 3.

63

Figure 14. Architecture of a Takagi and Sugeno fuzzy controller.

4.3.2 Optimal Membership Functions

In the robotics application discussed in the previous section, we employed a multi-

modal (or hybrid) control strategy, meaning that the controller switches between

different modes of control. An alternative to this approach would be to let the dif-

ferent controllers (i.e., control modes) run concurrently, where the overall control

output to the robot is some combination of these controllers. This approach is quite

common in fuzzy-logic control, where different controllers are combined using mem-

bership functions [64]. Although there are many different types of fuzzy controllers,

we will focus on the popular Takagi and Sugeno (TS) fuzzy controller [63]. In the TS

approach, the inputs are specified as fuzzy sets (fuzzification) as done in the standard

fuzzy-logic control approach, but the decision logic provides a crisp output so there is

no defuzzification process. The architecture of a TS fuzzy controller is shown in Fig-

ure 14. There is typically an ensemble of control laws, i.e., u = κi(y) for i = 1, . . . , N ,

whose members become applicable based on the classification of the output y of the

system. The task of the decision logic is to determine the degree of applicability µi

to each of the control laws based on fuzzy sets or membership functions, which are

typically triangular or piecewise continuous functions. Of course, it is also possible

to use other types of membership functions. The final control value is then computed

as

u =

∑N
i=1 µi(y)κi(y)∑N

i=1 µi(y)
. (96)

64

The advantage of using this approach is that it results in smooth overall perfor-

mance since there are no hard switches, but it is often hard to say anything ana-

lytically about the optimality of such systems. The success of fuzzy control systems

depends on a number of parameters including the fuzzy membership function, yet

they are often selected subjectively and then tuned manually to improve performance.

Some work has been done on tuning these parameters using genetic algorithms as well

as other methods [65, 66, 67]. We will show that these fuzzy sets can be optimized us-

ing the variational approach presented earlier. This method relies on the dynamics of

the controlled system, and requires that the state transition functions and the mem-

bership functions are twice differentiable. In particular, we will use this technique

to derive optimal membership functions for a fuzzy-logic control based navigation

strategy.

We will derive a fuzzy-logic controller with optimal membership functions to con-

trol a unicycle with two control laws that correspond to the “go-to-goal” and “avoid-

obstacles” behavior. The dynamics of the unicycle and the behaviors are defined in

the previous section (refer to Equations (93)-(95)). Thus, the overall control output

w of the fuzzy controller is given by

w =
µg(x)ωg + µo(x)ωo
µg(x) + µo(x)

. (97)

The two control laws are weighted by µg and µo computed according to the corre-

sponding membership function.

Now that the individual control laws are defined, we must next decide on the

appropriate membership functions, which determine the degree of applicability of each

control law. This is typically done by using piecewise linear or triangular membership

functions as shown in Figure 15, but we need these functions to be twice differentiable.

Thus, we specify them using exponential functions (e.g., e−α‖x−xo‖2), and optimize

them with respect to the tuning parameter α. In particular, the membership functions

65

0 0.5 1 1.5 2 2.5 3 3.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

||x − x
o
||

α
g α

o

Standard Triangular
Differentiable Exponential

Membership Functions

Figure 15. The standard piecewise linear or triangular (solid) and the differentiable
exponential (dashed) membership functions.

are defined as

µg(x, αg) = 1− e−αg‖x−xo‖2 and µo(x, αo) = e−αo‖x−xo‖2 . (98)

Note that by defining the membership functions using exponentials, we can get func-

tions that look similar to the standard triangular function while ensuring differentia-

bility.

Having defined the membership functions in this manner, we can use the varia-

tional solution derived earlier to select the tuning parameters α so that the perfor-

mance index

J =

∫ τM

τ0

L(x(t), z(t))dt+ ψ(xf , z(τM)) (99)

is minimized. For our particular problem, we let

L(x(t), z(t)) = ae−b‖z−z0‖
2

+ c ‖ z − zg ‖2, (100)

where z = [x, y]T and ż is given by (93) and (97). Also, let ψ(x(T), z(T)) = 0 since

the control (97) ensures that the unicycle will reach the goal given that the goal is

sufficiently far away from an obstacle. The result of the gradient descent algorithm

is shown in Figure 16. For the simulation, z0 = [−1.5, 0]T , φ0 = 0, zo = [0, 0]T ,

66

−3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
0 x

gx
o

Figure 16. Optimization results: the trajectory for the initial guess of α (dashed) along
with the final optimal trajectory.

zg = [3, 0]T , a = 2, b = 10, and c = 0.01. The algorithm converges to α∗g = 5.5584

and α∗o = 1.2068.

With the optimal membership functions designed for this known environment, the

resulting fuzzy logic control strategy can easily be transitioned onto a real robotic

platform navigating in an unknown environment. Note that since the optimization

is performed over a well-defined environment, the resulting navigation strategy will

no longer be optimal in an unknown environment but rather corresponds to a sub-

optimal performance enhancing strategy. To illustrate this point, we compare the

performance of the optimal fuzzy controller to the standard fuzzy controller with tri-

angular functions on the Magellan Pro platform with the setup shown in Figure 17.

The resulting trajectories are plotted using the odometry and sensor readings from the

robot. The standard fuzzy controller resulted in a trajectory with cost Jstd = 8.8603,

while the optimized fuzzy controller lowered the cost to Jopt = 7.7641. These results

show that the approach presented in this paper offers a novel systematic approach for

fine-tuning fuzzy controllers by optimizing the corresponding membership functions,

thus resulting in improved performance.

67

Xg

X0

(a)

−1

0

1

2

3

4

5

6

7

8

9

−2−1.5−1−0.500.51

x
0

x
g

fuzzy standard
fuzzy optimal

(b)

Figure 17. (a) The experimental setup, (b) The resulting trajectories plotted using the
odometry readings, while the obstacle are inferred from the sensor readings.

4.4 Conclusions

In this chapter, we continued the development on adaptive multi-modal control

started in Chapter 3, where the utility of adaptive multi-modal control was presented.

The strength of our method lies in constructing new modes that can effectively replace

many occurrences of mode string fragments. In this chapter, we completed the effort

begun in the Chapter 3 by developing a unified variational framework for replacing re-

curring mode string fragments with new “meta-modes.” The construction of the new

modes involves designing a feedback control law, which is designed as a combination

of previously established control laws, and the design of an interrupt. We explicitly

addressed the design of the interrupt for both time-driven and event-driven systems,

and designed the new interrupts by incrementally adapting previously established

interrupts. In particular, the problem was cast as an optimal control problem and

solved using variational arguments. Moreover, the viability of the presented methods

is illustrated through a detailed navigation example. It should be noted that since

we are using variational arguments, the results found in this chapter are local results.

However, the idea here is that these locally optimal replacements modes make the

multi-modal system more expressive, which promises better overall performance.

68

CHAPTER 5

LEARNING FROM EXAMPLE

Consider a situation in which a human operator is driving a robot to a specified goal

location through an unknown environment. One would typically expect the human

operator to try to find safe paths to the goal while avoiding hazardous regions. More-

over, it is conceivable that the robot (through human control) reacts to distinctive

features in the environment in a particular way, such as “stay at least 1 meter away

from the wall.” A natural objective is to have the robot mimic the actions of the

human operator in a completely autonomous manner. However, the problem is not

to simply store the path that the human-operated robot took and then reproduce it,

but rather to learn at a behavioral level the control laws, i.e., closed-loop mappings

from sensory input data to control signals, needed to reproduce this motion. We will

refer to this problem as the Learning From Example problem, and variants of it have

received considerable attention in the robotics community [68, 69, 70, 71, 73, 74, 75].

Many different strategies for the Learning From Example problem have emerged

over the years. Generally speaking, these strategies can be placed in two major re-

search camps. One camp approaches the problem from a perception point of view and

attempts to learn the relevant features (e.g., paths, walls, etc). Then these features

are classified as traversable or non-traversable based on the learning cues from the

observed behavior. In other words, what is learned is a feature classification that can

serve as guidance for the robot to plan through the terrain [70, 71, 76]. We will refer

to this as the perception-centric approach. This approach can complemented with the

control-based view, where behaviors that closely resemble the motion demonstrated

by the human operator are learned. Typically, the relevant features are assumed to

be a priori known, and what is learned is a policy mapping features to control signals

[77, 78, 79]. This control-centric approach will be taken in this development.

69

A common feature among previous control-centric methods is that they try to

learn behavioral mappings using a “blank-slate” view, i.e., they attempt to learn

these mappings without reference to previously established capabilities [11, 68, 80,

81, 82]. However, a natural modification of this approach would consist of a systematic

improvement of the existing capabilities. Consider for example the scenario of learning

to ride a motorcycle. Assuming we already know how to ride a bicycle, we will

not completely throw out this knowledge when learning to ride a motorcycle. In

fact, we use our experience from riding a bicycle to leverage the learning of riding a

motorcycle. Indeed, constructivism views learning as a process in which the learner

actively constructs or builds new ideas or concepts based upon current and past

knowledge [83, 84].

We take this point-of-view throughout our development and approach the Learn-

ing From Example problem by constructing new behaviors from previously established

ones. In particular, we assume that we have access to a set of behaviors (possibly

of limited expressiveness). It is natural to consider such previous capabilities as de-

signed with a particular task in mind such as “avoiding-obstacles” or “following-wall.”

However, no such interpretation is necessary.

Within this context, constructivist learning can be viewed as learning new be-

haviors as some function of the known behaviors, where the learning is guided by

training examples. In particular, given a training trajectory, the learning task con-

sists of finding an appropriate sequence of new behaviors in order to approximate the

training trajectory. It should already be apparent that this view is consistent with

the approach we took in adaptive multi-modal control (Chapter 3), where new modes

were introduced as functions of existing modes. However, instead constructing a sin-

gle “meta-mode” to replace recurring mode string fragments, here we are interested

in finding a sequence of new behaviors. Again, the new behaviors will be defined as

70

linear combinations of the existing behaviors, as done in adaptive multi-modal con-

trol. Thus, the main task involves finding the weights of each existing behavior in the

linear combination, and in determining how many such new behavioral combinations

are required to approximate the training trajectory. We will let the transitions be-

tween new behaviors be temporally driven, even though event-driven transitions may

be better suited for mobile robot navigation. But, as this work represents a initial

study of constructivist learning from an optimal control point of view, we leave this

issue to future endeavors. Since the switching between new learned behaviors will be

temporally driven, the problem involves optimizing over the switching instants and

the individual behavioral weights, as was the case in Section 4.1.

The outline of the Chapter is as follows: In Section 5.1, we formalize the Learning

From Example problem as an optimal control problem. In Section 5.2, we utilize

variational arguments to solve this problem and present some examples. In Section

5.3, we look at a more specific example of the DARPA 1 sponsored Learning Applied

to Ground Robots (LAGR) project. Here, the main problem is to incorporate the

learning process seamlessly within the existing system architecture. The existing

architecture does not allow the use of the variational techniques; thus, we discuss an

alternative solution to the optimal control problem posed in Section 5.1. Finally, the

conclusions are presented in Section 5.4.

5.1 Problem Formulation

We start by formally introducing the Learning From Example problem from a con-

structivist point of view and casting it as an optimal control problem. More specifi-

cally, we start by assuming a prior collection of behaviors and try to approximate the

training trajectory from a combination of these existing behaviors.

Formally, let X denote the state space, Y denote the observation space, and U be

1DARPA - Defense Advanced Research Projects Agency.

71

the control space. Suppose the system dynamics are

ẋ(t) = f(x(t), u(t)), (101)

y(t) = h(x(t)). (102)

A behavior is a mapping from observations to control values, i.e., κ : Y → U . Hence,

if we drive the robot according to behavior κ1 until time τ1, κ2 until time τ2, and so

on, the evolution of the system is

ẋ =


f(x, κ1(y)) when t ∈ [τ0, τ1)

f(x, κ2(y)) when t ∈ [τ1, τ2)

...
...

(103)

Note that an event-driven version of this model can be defined, where the switching

times are driven by interrupts ξi : Y → {0, 1}. In this case, the switching time τi

would be given by

τi = min
t>τi−1

{t : ξi(y(t)) = 1}. (104)

Observe that this is a generalization of the motion description language framework

presented in Section 1.2.1, where state observation was assumed.

Now, suppose we have a collection of behaviors K = {κ1, κ2, . . . , κN}. In the

constructivist framework presented here, the new learned behavior will be defined

through a combination of the behaviors in K. One option is to let the new behavior

κn be given as a linear combination of the existing behaviors, i.e.,

κn(y) =
N∑
i=1

αiκi(y),

where αi is a scaling vector. However, in order to learn a richer class of behaviors,

we propose the following construction of the new behavior:

κn(y) =
N∑
i=1

µi(y, αi)κi(y),

72

where µi : Y ×Rk → R is a weighing function that is parameterized by control vector

αi ∈ Rk, as introduced in Chapter 4. It is easy to see that this more general speci-

fication of the new control mode can accommodate the linear combination solution.

Note that other combinations may also be allowed, but we will use this construction

for the solution presented in Section 5.2.

Now, given an observed trajectory from the human operated training example,

which we denote as y : [0, T] → Y , we are interested in learning a sequence of new

behaviors that will approximate the training trajectory. Assume that we know the

initial state x0 = x(0). Further assume that the human operator used M modes (note

that we will not enforce this assumption in the presented method), then define an

approximation trajectory x̃(t) as follows:

˙̃x(t) =



f(x̃, κn1(ỹ)) when t ∈ [τ0, τ1)

f(x̃, κn2(ỹ)) when t ∈ [τ1, τ2)

...
...

f(x̃, κnM(ỹ)) when t ∈ [τM−1, τM]

(105)

with x̃(0) = x(0). Here the observations ỹ(t) = h(x̃(t)), and the new behavior κnj is

given by

κnj(ỹ) =
N∑
i=1

µi(ỹ, α
j
i)κi(ỹ), (106)

where αji is the control vector parameterizing membership function µi. The Learning

From Example problem can be posed as an optimization problem: choose the control

variables αji for j = 1, . . . ,M and i = 1, . . . , N , and the switching times τi for

i = 1, . . . ,M − 1 such that the performance criterion

J =

∫ τM

τ0

L(y(t), ỹ(t))dt+ ψ(y(τM), ỹ(τM)) (107)

is minimized, where L : Y × Y → R is the instantaneous cost, and ψ : Y × Y → R

is the terminal cost. Also, in order to utilize the variational methods presented later,

73

we assume that L and ψ are twice differentiable in their second argument. Note here

that τ0 = 0 and τM = T are assumed fixed.

Of course, we do not know the exact number of modes used by the human operator.

Hence, we will provide an algorithm for determining the number of modes necessary

to approximate the observed trajectories. We call this algorithm the outer algo-

rithm, while the inner algorithm will find the optimal control parameters αji (for j =

1, . . . ,M and i = 1, . . . , N) and the optimal switching times τi (for i = 1, . . . ,M − 1)

given the number of switches. This problem will be solved using variational argu-

ments in Section 5.2, while an alternative solution (motivated by the LAGR project)

will be discussed in Section 5.3.

5.2 Variational Approach

In this section, we utilize the calculus of variations to derive the optimality conditions

for control parameters αji that shape the membership functions µi for behavior κnj,

for j = 1, . . . ,M and i = 1, . . . , N , and the optimal switching times (τ1, . . . , τM−1)

with respect to the performance criterion (107) assuming an approximation trajectory

with M modes. The approximation trajectory in this case is given by (105). As

discussed earlier, the central theme in utilizing variational arguments is to adjoin the

cost J with the constraint via a co-state (or lagrange multiplier) λ(t). The main

idea is to perturb the control parameters and compute the Gateaux (or directional)

derivative of performance index in the direction of the perturbation to gain access

to the optimality conditions. Since we will be differentiating the performance index,

we must make some mild assumptions about differentiability. Namely, assume that

L and ψ are twice differentiable in their second argument. Instead of deriving the

optimality conditions explicitly, we can use the solution derived in Section 4.1, as

both problem formulations are very similar. The results will be summarized in a

theorem below, where the proof follows from the derivation in Section 4.1.

74

Theorem 5.2.1 Given a function y(t) ∈ Y and a set of twice differentiable functions

κi : Y → U and µi : Y × Rk → R for i = 1, 2, . . . , N , with x̃(t) ∈ X and ỹ(t) ∈ Y

given by (105) and (106), an extremum to the performance index

J =

∫ T

0

L(y(t), ỹ(t))dt+ ψ(y(T), ỹ(T))

is attained when the control parameters αji and θi are chosen as follows:

Euler-Lagrange Equations:

λ̇(t) = −∂L
∂ỹ

∂h

∂x̃
− λ(t)

[∂f
∂x̃

+
∂f

∂ũ

∂κni
∂ỹ

∂h

∂x̃

]
when t ∈ (τi−1, τi),

Boundary Conditions:

λ(τM) =
∂ψ

∂ỹ

∂h

∂x̃
(τM),

λ(τi−) = λ(τi+) for i = 1, . . . ,M − 1,

Optimality Conditions:

∂J

∂τi
= λ(τi−)

[
f̃i(τi−)− f̃i+1(τi+1+)

]
≡ 0 for i = 1, . . . ,M − 1, and

∂J

∂αilr
=

∫ τi

τi−1

λ
∂f̃

∂u

∂µl
∂αilr

κl dt ≡ 0 for i = 1, . . . ,M , l = 1, . . . , N , and r = 1, . . . , k.

5.2.1 Numerical Algorithms

In the previous section, we derived the optimality conditions for minimizing (107)

given a fixed number of modes. In this section, we first present a numerical algorithm

that utilizes these optimality conditions to converge to a stationary solution for the

optimal switching times and shaping parameters. We call this the inner algorithm,

which is complemented by the outer algorithm that increments the number of modes

and weighs the benefit of adding additional modes. The idea here is to start with an

approximation trajectory using a single mode and add modes to the approximation

trajectory as long as it is beneficial to do so.

75

Table 4. The inner algorithm for Learning from Example.

- Initialize with a guess of the control variables ~τ (0) and ~α
(0)
i for

i = 1, . . . ,M , and let p = 0.

- while p < 1 or |J (p) − J (p−1)| < ε

- Compute the approximation function x̃(t), observation ỹ(t),
and cost J (p) forward in time from 0 to T using (105), (106),
and (107).

- Compute the co-state λ(t) backward in time from T to 0.

- Compute the gradients ∇J(~τ (p)), and ∇J(~α
(p)
i) for i =

1, . . . ,M .

- Update the control variables as follows:

~τ (p+1) = ~α(p) − γ(p)∇J(~τ (p)),

~α
(p+1)
i = ~α

(p)
i − γ(p)∇J(~α

(p)
i),

for i = 1, . . . ,M .

- p = p+ 1

- end while

76

Table 5. The outer algorithm for Learning from Example.

- Initialize with k = 1

- while k < 2 or |J∗(k) − J∗(k−1)| > ρ

- Obtain J∗(k) using the inner algorithm with number of modes
M = k.

- k = k + 1

- end while

The inner algorithm, which employs a gradient descent method, is shown in Table

4. Note that the choice of the step-size γ(p) can be critical for the method to con-

verge. An efficient method among others is the use of Armijo’s algorithm presented

in [62]. Because of the non-convex nature of the cost function J , this gradient descent

algorithm will only converge to a local minimum. Hence the attainment of a “good”

local minimum can be quite dependent on the choice of a “good” initial guess for the

control variables.

The inner algorithm, outlined above, provides the optimal control variables ~αi =

[αi11
, αi12

, . . . , αiNk
]T (for i = 1, . . . ,M) and optimal switching times vector ~τ = [τ1, . . . ,

τM−1]
T given a fixed number of modes. However, recall that we do not know the

number of modes a priori. Thus, we propose an outer algorithm to figure out the

number of modes necessary to approximate the observed trajectory. The main idea

here is to start by assuming that the observed trajectory can be approximated with

a single mode, then continue to increment the number modes as long as there is a

“sufficient” reduction in the performance criterion. The outer algorithm is presented

in Table 5.

The parameter ρ is the thresh hold that weighs the benefit of the reduction in cost

J∗ versus the increase in complexity introduced by the adding an additional mode

in the approximation trajectory. The choice of an appropriate ρ may be critical to

77

convergence of the algorithm, as choosing a small value for ρ may cause the number

of modes to increase indefinitely.

5.2.2 Example

In this section, we introduce a simple example to demonstrate the viability of the

proposed method. Consider the task of navigating a unicycle from a known initial

configuration to a specified goal location. Recall, the unicycle dynamics are given as

ẋ1 = v cos(x3),

ẋ2 = v sin(x3),

ẋ3 = ω.

(108)

In the system above, (x1, x2) is the Cartesian coordinates of the center of the unicycle

and x3 is its orientation with respect to the x1-axis. The initial configuration of the

robot is given as x0, while the Cartesian coordinate xg are given as (xg1 , xg2). The

observed trajectory from a training run, along with the initial configuration and the

desired goal, are shown in Figure 18. We assume that the linear velocity v is fixed,

thus the control consists of the angular velocity control term. Also, we assume that

we have a state observer, i.e., y(t) = x(t). Now, we wish to learn the number of

modes needed to approximate this training trajectory as well as a description of the

individual modes.

As mentioned earlier, we will start of with previously established behaviors. For

this example, we start with two known behaviors, namely, “go-to-goal” and “avoid-

obstacles.” Recall, the feedback laws corresponding to each of these behaviors are

given as

κg(x) = ωg = Cg(φg − x3),

κo(x) = ωo = Co(π + φo − x3).

Note here that Cg and Co are the gains associated with each behavior, and φg and φo

are the angles to the goal and nearest obstacle, respectively. Both of these angles are

78

x
0
 = (x

0
1

,x
0

2

,x
0

3

)

x
g
 = (x

g
1

,x
g

2

)

Figure 18. The observed trajectory from a training run of a unicycle navigating from
x0 to xg.

measured with respect to the x1-axis and can be expressed as

φg = arctan(
xg2 − x2

xg1 − x1

) and φo = arctan(
xob2 − x2

xob1 − x1

), (109)

where (xg1 , xg2) and (xob1 , xob2) are the Cartesian coordinates of the goal and the

nearest obstacle, respectively. Moreover, the new behaviors will be given by the

linear combination of these known behaviors:

κn(x) = αgκg(x) + αoκo(x). (110)

As outlined earlier, we start by attempting to approximate the trajectory with one

mode and then increment the number of modes as necessary. For our simulations,

the cost is given by

L(y(t), ỹ(t)) = 0.05||ỹ(t)− y(t)||2, and (111)

ψ(y(τM), ỹ(τM)) = 10||ỹ(τM)− y(τM)||2. (112)

Also, the linear velocity v = 1 m/s, the gains Cg = Co = 1, and the thresh hold in the

outer algorithm is set to ρ = 0.1. The step-size in the inner algorithm can be chosen

using the Armijo algorithm. The optimum cost J∗ as a function of the number of

modes is shown in Figure 32.

79

1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

18

20

number of modes: M

op
tim

al
 c

os
t:

 J
* (M

)

Figure 19. The optimal cost as a function of the number of modes given by the outer
algorithm.

x
0
 = (x

0
1

,x
0

2

,x
0

3

)

x
g
 = (x

g
1

,x
g

2

)

Figure 20. Depicted is the approximation trajectory (x̃) obtained by using three modes
(dashed) and two modes (dotted) along with the original observed trajectory.

80

x
g

x
0

(a)

x
0
 = (x

0
1

,x
0

2

,x
0

3

)

x
g
 = (x

g
1

,x
g

2

)

(b)

Figure 21. (a) The experimental setup, (b) the observed trajectory from a training run
from x0 to xg.

Observe that the outer algorithm quickly terminates. In fact, |J∗(4)− J ∗ (3)| =

|0.0496− 0.0382| = 0.0114 < ρ = 0.1. Hence, we deduce that the observed trajectory

can be approximated using three modes. The resulting trajectory from using three

modes (dashed) and two modes (dotted) along with the original observed trajectory

is depicted in Figure 20.

5.2.3 Navigation Using the Magellan Pro

The simulated navigation example, presented above, illustrated the operation of the

proposed method for the Learning From Example problem. In this section, we will

take the promising simulation results to obtain effective navigation strategies for the

Magellan Pro robot from training runs. The training data was obtained from a

joystick operated run guided by a human operator. The training data consisted of

the state of the robot (i.e., [x1, x2, x3]) and the range sensor readings from the entire

run. The experimental setup is shown in Figure 21 (a), while the observed training

trajectory, along with relative obstacles (gathered from the sensor readings), is shown

in Figure 21 (b).

Recall, the dynamics of the Magellan Pro can be effectively captured by a unicycle

81

x
0
 = (x

0
1

,x
0

2

,x
0

3

)

x
g
 = (x

g
1

,x
g

2

)

Figure 22. Depicted is the approximation trajectory (x̃) obtained by using the learned
behavior (dashed) along with the original observed trajectory.

model (108). As usual, we start out by assuming two known behaviors, namely,

“go-to-goal” and “avoid-obstacles.” However, for this experiment, we let the new

behaviors take on the more general form:

κn(x) = µg(x)κg(x) + µo(x)κo(x), (113)

where the membership functions are defined as

µg(x, αg) = 1− e−αg‖x−xo‖2 and µo(x, αo) = e−αo‖x−xo‖2 , (114)

as done in Section 4.3.2.

As outlined earlier, we start by attempting to approximate the trajectory with one

mode and then increment the number of modes as necessary. For this experiment,

the cost will be given by Equations (111)-(112), as done in the previous section. It

turns out that the training trajectory can be effectively approximated using one new

mode (i.e., additional modes did not significantly reduce the cost). In particular,

82

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7 0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7

75

80

85

90

95

100

105

110

115

120

125

α
o

α
g

J(
α g,α

o)

Figure 23. Depicted is the cost J as a function of the control parameters αg and αo.
The cost surface is color scaled from low cost (blue) to high cost (red).

the optimal shaping parameters were found to be α∗g = 0.67 and α∗o = 0.32, and the

corresponding cost J∗ = 76.57. The approximation trajectory, obtained using the

learned behavior, along with the training trajectory are shown in Figure 22.

For this experiment, we are only optimizing over the shaping parameters for mem-

bership functions corresponding to the “go-to-goal” behavior (αg) and the “avoid-

obstacles” behaviors (αo). Since this optimization only involves two parameters, we

can easily compute the cost J(αg, αo) over a discrete set of these parameters. Figure

23 depicts the approximate cost function parameterized by αg and αo. Note that the

cost function is highly discontinuous, as we may have expected. Moreover, there are

many apparent local extremum to the performance index J . Even so, it is obvious that

there are many choices for αg and αo that result in significant improvement over other

choices (e.g., J(αg = 0.67, αo = 0.32) = 76.57, while J(αg = 0.5, αo = 0.5) = 119.59).

As mentioned earlier, the performance of the gradient descent algorithm depends on

the initial guess of the control vector and the step-size γ(p). It is highly recommended

that the Armijo step-size be used for the descent algorithm, as this guarantees the

algorithm will converge. The choice of these parameters may be especially critical for

extreme cases such as the one shown in Figure 23.

83

Figure 24. The LAGR Robot.

5.3 Learning Applied to Ground Robots (LAGR) Project

The Learning From Example problem addressed in this chapter is one of the explicit

objectives of the DARPA sponsored LAGR (Learning Applied to Ground Robots)

project. The project involves taking a government-provided robot (shown in Figure

24) and only modifying the software to improve navigation performance. The robot’s

task is to reach a known goal location (provided via GPS coordinates) as fast as

possible, over the course of three separate runs, in an initially unknown environment.

Each run starts from the same start location and with the same orientation, and the

success of each test is evaluated in terms of the time required to complete (if the task

was completed) all three runs.

The primary objective of the project is to employ learning techniques to improve

performance during each run as well as between the different runs, thus resulting

in better overall performance for each test. Additionally, Learning From Example

is also an explicit goal of the program. The Learning From Example component

is tested separately several times throughout the duration of the project (Phase I

of the project spanned 18 months). For the Learning From Example tests, we are

provided training data (log-files containing all observations and control actions) that

84

is to be processed autonomously before each test. The training data provides cues

for successfully navigating a particular course (which may be intuitive to a human

operator), and the learning process is suppose to autonomously extract these cues,

while the controller is to use the learned cues to improve performance. Again, the

evaluation of performance is done over three runs starting from the same location.

The LAGR robot is equipped with four cameras, a Garmin GPS receiver, a front

bumper switch, and an inertial navigation measuring unit (IMU). The cameras are

paired together so that each pair can provide stereo depth maps with a range of ap-

proximately 6 meters. Since the observations are mainly vision driven, the perception

system (used to extract useful features (such as distance, traversability, etc.) from

the different observations) constitutes a major challenge, but this is not addressed

here. From the control perspective, the robot uses a hybrid control architecture that

combines a high-level planner (deliberative layer) with several low-level controllers

(reactive layer). The different behaviors are combined through a voting scheme that

is based on the Distributed Architecture for Mobile Navigation (DAMN) [85]. The

actual control architecture will be detailed shortly. It is imperative to continue using

this established architecture for the Learning From Example tests, as developing a

different architecture specifically for this test would be unfeasible. In other words,

the learning must be seamlessly integrated into the existing control architecture. As

we will detail in the next section, we cannot easily apply the solution to the Learning

From Example problem presented previously because of the structure of the DAMN

architecture. Thus, in this section, we present an alternative solution to the opti-

mization problem by treating the problem as a combinatorial optimization problem.

Next, we briefly describe the control architecture. For a detailed explanation of the

control architecture, as well as the perception and mapping modules, refer to [72].

85

Global
Map

Global
Planner

Local
Sensor Map

Low-level
Controllers

Sensors Actuators

Deliberative
Layer

Reactive Layer

Environment

Figure 25. Standard Hybrid Control System Block Diagram.

5.3.1 LAGR Control Architecture

As mentioned earlier, the control architecture on the LAGR robot corresponds to a

hybrid control strategy that combines the deliberative and reactive layers to make

control decisions to drive the robot. In this architecture, behaviors are combined with

the planned path (which can be considered a high-level behavior; though, typically

behaviors are thought of as reactions to immediate sensory information) through a

voting scheme, and this architecture is illustrated in Figure 25.

This control architecture is implemented in a manner heavily influenced by the

DAMN architecture. In this implementation, individual behaviors (each designed for

specific interests related to the robot’s overall objective) are each given an allotment of

“votes.” The behaviors may cast these votes either for or against potential actions in

a manner that works to achieve their particular goal. An arbitrator tallies the votes,

choosing the action with the most support. This implementation utilizes straight-

line paths at a resolution of 5 degrees around the robot as the control set. Similar

implementations have been successfully deployed in several robotic navigation tasks

[79, 86].

As is true with many other behavior-based implementations, a potential danger

in this architecture is the misallocation of each behavior’s gain (or in this case its

allotment of votes). If the behavior’s voting weights are not properly balanced, one

behavior’s input may dominate the tally, either preventing the robot from achieving

86

Figure 26. A graphical representation of the voting scheme employed to navigate the
robot. The x-axis of each plot represents an ego-centric angular distribution of possible
paths around the robot from −π to +π, with 0 being in front of the robot. The y-axis
represents the relative preference of each path, according to the respective controller.
Vetoes are drawn as large negative values. The last plot represents the sum of the
votes provided by all the controllers. The largest non-vetoed value is chosen for action
by the robot.

higher-level goals or allowing the robot to enter an undesirable state. Noting that this

weighting is typically an empirical process and dependent on both the implementation

and the robot’s environment, an additional layer of robustness has been added by

supplementing the voting scheme with “vetoes” [74]. Each behavior, in addition to

getting an allotment of votes to apply to the control set, is given the opportunity

to veto each action in the set. The arbitrator respects the vetoes by disregarding

any action that has been vetoed by any behavior, no matter how many votes it has

garnered.

Strategically, vetoes are only used in cases when the robot faces “imminent dan-

ger.” Of course, what qualifies as imminent danger is specific to each behavior.

However the strength of this strategy lies in the fact that because a behavior needs

only to consider imminent danger, complex calculations over the robot’s configuration

space that would be impossible in a full planner can be carried out. This allows the

behaviors potentially to consider the full dynamics of the robot, including collision

checking of rotations and the feasibility of maneuvers given the slope of the terrain.

When all of these building-blocks are combined, the result is a hybrid architecture

with respect to the control actions through a combination of deliberative planning

and reactive behaviors.

87

5.3.2 Learning Behaviors From Example

As mentioned earlier, one of the goals of this project is to solve the Learning From

Example problem by integrating the learning process within the existing architecture.

We start by assuming some relevant features are known or specified and that a collec-

tion of behaviors exploiting these features have already been designed (e.g., “follow-

path,” “follow-path-to-goal,” “turn-left-at-orange-fence”). These behaviors comple-

ment the initial set of behaviors which may include “go-to-goal,” “avoid-obstacles,”

etc. Keeping with our constructivist view of learning, we wish to learn new behav-

iors (cued by the training examples) as a combination of these previously established

behaviors. In Section 5.2, we let the new behaviors be constructed through a linear

combination of the existing behaviors. Note, however, that other combinations are

also allowed. Since the robot already has a control architecture that combines differ-

ent behaviors through an arbitration mechanism, it would be beneficial to use this

combination mechanism for learning new behaviors that would reproduce trajectories

from the training examples.

It should already be apparent that the variational approach used in Section 5.2 is

not easily applicable for this construction of the new mode. This is due to the fact that

variational methods typically make assumptions about differentiability that are not

valid for constructing new behaviors through an arbitration (using votes and vetoes)

of existing behaviors that choose actions from discrete control set. Note that there

are variational approaches that may be applicable with non-differentiable functions

using non-differentiable calculus, but this is not pursued in this development. Instead

of focusing on variational methods, we can view this problem as a combinatorial

optimization problem and use one of the many algorithms known for solving such

problems.

Using the LAGR control architecture, the constructivist approach to the Learn

From Example problem involves finding the weights (or allotment of votes) associated

88

with each behavior in the behavioral combination. Clearly, the overall behavior will

vary greatly based on the individual behavioral weights, i.e., the importance desig-

nated to each behavior. As mentioned earlier, it is desirable for these weights to be

evenly distributed so that one behavior does not dominate arbitration. The overall

objective is to select these behavioral weights such that the overall robot behavior

closely resembles the behavior observed from the training data.

In the previous formulation, we determined the number of new behaviors neces-

sary by using the outer algorithm (see Table 5) and the optimal instants to switch

between these combinations as well as the weights for each combination using the

inner algorithm (see Table 4). In this development, however, we will only seek one

behavioral combination to best approximate the entire training trajectory (i.e., fix

M = 1 and develop an algorithm similar to the inner algorithm). The main reason

for this being to reduce the complexity of the combinatorial optimization problem, as

will be seen shortly.

Combinatorial optimization problems typically involve searching over a large solu-

tion space to optimize some performance criterion. In our case, this involves searching

over all possible allotment of votes for each behavior in the behavioral combination.

Clearly, this space is very large (since each behavior can have many possible number

of votes), and this space grows as the number of behaviors grows. Combinatorial

optimization algorithms solves this hard problem by reducing the effective size of the

solution space, and by exploring the space efficiently. The domain of combinatorial

optimization is optimization problems where the set of feasible solutions is discrete

or can be reduced to a discrete one, and the goal is to find the best possible solution.

By assuming that M = 1, we do not have to solve for the switching instants and

the set of feasible solutions (i.e., the allotments of votes) can be easily restricted to

assume only integer values. Note that including the switching instants to the solution

set would significantly increase the complexity of the the combinatorial optimization

89

problem.

A number of heuristic algorithms for solving combinatorial optimization problem

exist in literature. It is important to note that solutions to combinatorial optimization

problems is generally not unique (i.e., there can be many solutions). As is common

in most optimization problems, most algorithms cannot differentiate between local

optimal solutions and a rigorous optimal solution. Thus, local optimal solutions are

considered solutions to the optimization problem. We will use a local search method,

which is similar in spirit to the gradient descent algorithm presented earlier, called

hill climbing. In the gradient descent algorithm, the local minimum is found by iter-

atively taking a step proportional to the negative of the gradient of the performance

index(found using variational techniques). A local search algorithm starts from a can-

didate solution and then iteratively moves to a neighbor solution. In hill climbing,

the next candidate is selected from a set of neighboring solutions locally minimizing

the performance criterion (i.e., there is no calculation of the gradient, we just need

to evaluate the set of neighboring solutions).

Recall, each behavior is a mapping from the set of observations to the set of control

values, i.e., κ : Y → U . Given a collection of such behaviors K = {κ1, κ2, . . . , κN},

the new (or learned) robot behavior is given as a combination of these behaviors

through the weights (i.e., allotment of votes) associated with each behavior. Thus,

the output of the new behavior (e.g., desired angular velocity) is given by u = κn(y) =

ζ(κ1, . . . , κN , α1, . . . , αN), where αi ∈ R is the weight associated with behavior κi.

The Learning From Example problem, again, involves finding ~α = [α1, . . . , αN]T such

that the performance criterion

J =

∫ τM

τ0

L(y(t), ỹ(t))dt+ ψ(y(τM), ỹ(τM)) (115)

is minimized, where L again is the instantaneous cost and ψ is the terminal cost.

The algorithm for solving this problem is given in Table 6. We start with an

initial guess of the control vector (referred to as the candidate), which gives each

90

Table 6. A hill climbing algorithm.

- Initialize with ~α(0) = [1, 1, . . . , 1]T , and k = −1

- do

- k = k+1

- Generate a set of neighboring solutions Sk around ~α(k)

- Evaluate each solution with respect to the performance crite-
rion

- Let
~α(k+1) = arg min

~α∈Sk

J(~αk)

- while (~α(k+1) == ~α(k) or ||J(~α(k+1))− J(~α(k))|| < ε)

behavior an equal number of votes. Next, we generate a set of neighboring solutions

around the candidate solution. For example, with N = 2, if ~α(k) = [1, 1] at time k,

then Sk = {[1 − δ, 1 − δ], [1 − δ, 1], [1 − δ, 1 + δ], [1, 1 − δ], [1, 1], [1, 1 + δ], [1 + δ, 1 −

δ], [1 + δ, 1], [1 + δ, 1 + δ]}. Here δ encodes how far from the candidate solutions,

the new neighboring solutions are allowed to be. Note that this is just one way to

generate the set of neighboring solutions, there are many other acceptable approaches.

Next, we evaluate each of the neighboring solutions with respect to the performance

criterion given by (115). Then, we update the candidate solution by selecting the best

neighboring solution (i.e., the control vector in S locally minimizing the performance

criterion), and repeat the process by generating samples around the new candidate

solution. The search terminates when either the new candidate is the same as the

old candidate (i.e., ~α(k+1) = ~α(k)) or the cost difference between the new candidate

and the old candidate is less than ε (i.e., ||J(~α(k+1)) − J(~α(k))|| < ε). Note that the

selection of δ may be critical in the convergence of this algorithm. If δ is too big, the

solution may not be close to the optimal solution. On the other hand, the algorithm

may take a long time to converge if δ is too small. The selection of an appropriate

91

δ will vary based on the application, and for our application δ = 1 is a reasonable

choice. Also, the choice of an appropriate ε may be critical to the convergence of the

algorithm, as choosing a small value for ε may cause the algorithm to converge slowly

or not converge.

5.3.3 Experimental Results

Learning behaviors from training examples was tested at a vacant lot in Mableton,

GA. The lot is primarily flat, but strewn with piles of landscaping waste (e.g., dead

trees, bushes, and brush) providing many challenging obstacles. This example cor-

responds to one of the LAGR tests, where the objective was for the robot to drive

autonomously from the start position to a specified goal location while emphasizing

the behavior learned from the provided positive training examples. The course was

designed such that appropriate learning from training examples significantly simpli-

fied the navigation task (i.e., leading to a path through much easier terrain with fewer

obstacles). A relevant feature (namely, a white path laid out using lime) was clearly

identified. In light of this feature, we added “follow-path,” “follow-path-to-goal,”

“follow-path-from-goal” and “avoid-path” behaviors to complement the existing “go-

to-goal,” “follow-smooth-gradient,” “follow-free-space,” “avoid-obstacles” and “veto-

obstacles” behaviors. Then we used our algorithm to learn the optimal weights for

each of these behaviors using the given training examples. We started by letting each

behavior have equal weights and let δ = 1.

Moreover, we let the terminal cost ψ = 0, and the instantaneous cost be L =

||Q(ut)−Q(u)||2, where Q : U → Uq is a finite precision quantization operator. Here,

ut represents the angular velocity from the training data and u is the output of our

learned behavior given the same observation. Note that we choose to quantized the

angular velocity (Q(u)) before computing the error in order to avoid fitting noise,

which may be the case if we attempt to minimize the true error between angular

velocities. This problem occurs because angular velocity is not always a relevant

92

(a) (b) (c)

Figure 27. Sample images from the test run navigating using the learned behaviors.

measure of the actual desired behavior. For example, suppose we have two drivers

manually driving a robot through the same course. One driver may be more ag-

gressive and make sharper turns (higher angular velocities), while the less aggressive

driver may make slower turns. However, both drivers successfully maneuver through

the course and it is not clear that one approach is better than the other. In order to

avoid this pitfall, we introduce a coarse quantization (e.g., straight, soft-left, hard-left,

soft-right, hard-right) which helps us converge to a meaningful solution for ~α. Note

that although angular velocities may not perfectly represent the human operator’s

decisions, it is all we have to go on. The algorithm converged with positive weights

(αi = 1) for “follow-path,” “follow-path-to-goal,” and “follow-smooth-gradient” be-

haviors and zero weight for the other behaviors. Figure 27 shows sample shots from

the test of this learned behavior in a course we constructed. The angular velocity

was quantized to 5-levels (straight: uq = 0 if −π
8
≤ u ≤ π

8
, soft-left: uq = −1 if

−π
2
≤ u < −π

8
, hard-left: uq = −2 if u < −π

2
, soft-right: uq = 1 if π

8
< u ≤ π

2
,

hard-right: uq = 2 if u > π
2
).

5.4 Conclusions

In this chapter, we introduced a constructivist framework for the Learning From

Example problem. This framework fits within the control-centric approaches as de-

scribed in the introduction, but with the fundamental difference that we assume some

a priori knowledge of possibly relevant behaviors. Assuming we have a collection of

93

such behaviors, a sequence of new behaviors is learned, where each learned behav-

ior is a combination of the existing behaviors, to approximate the example training

trajectory. This constructivist view is inspired by the adaptive multi-modal control

framework presented in Chapter 4. The Learning From Example problem was first

approached using variational methods, and then an alternative solution, motivated

by the LAGR project, using local search, combinatorial optimization methods was

presented. A small-scale navigation example was presented to highlight the operation

of the proposed approach, and the viability of the approach was further verified by

successful application to the LAGR project.

94

CHAPTER 6

MULTI-MODAL, MULTI-DIMENSIONAL SYSTEMS

Up until this point, we have focused on several control aspects of hybrid systems (or

more specifically, multi-modal systems). In this chapter, we focus our attention on

constrained (physical) systems (see for example [87]). In our previous development, we

assumed that a number of modes had been designed and concentrated on sequencing

this modes to optimize some performance criterion. Next, we introduced a framework

for adaptively enhancing the mode set to further improve the performance of the

system. Much importance was placed on the tradeoff between expressiveness of the

system and complexity of the control programs.

In this chapter, we shift our focus from such aspects of multi-modal control to

address constrained multi-modal (or more generally constrained hybrid) systems.

Also, we do not attempt to solve the general optimal control problem for constrained

hybrid systems, but rather focus our attention on systems for which the mode se-

quence is fixed and given (as is commonly done for optimal control of hybrid systems

[31, 36, 34]). In this case, the control parameters become the control signals within

each individual mode and parameterized characterizations of the switching condi-

tions and transition relations. We, moreover, make the model more interesting by

considering constrained systems, in which different modes experience different state

constraints. Rather than viewing these constraints as constraints, we, however, choose

to let them induce a change in the dimension of the state space. The benefit from

this is that the infinite dimensional state constraints, that typically incur significant

computational overhead, are replaced by a highly non-standard model in which the

dimensions changes. We will refer to such models as Multi-Mode, Multi-Dimension

(or M3D) models, following the work in [88] where such models were first introduced.

Although this work can be viewed as an extension of the [88], what is new here is

95

threefold. The most important novelty lies in the fact that we focus on algorithmic

aspects of optimal control of M3D systems. In other words, based on variational

arguments, we will derive computational algorithms for such systems. Secondly, the

class of systems under consideration here is significantly richer than what was consid-

ered in [88], with the main additional complication being that the control space also

changes dimensions between different modes. Moreover, we also include an additional

control parameter to control the state transitions between different modes in order to

characterize a richer class of systems. Finally, we append the performance criterion

to account for these transitions.

Thirdly, we will develop and study a fairly elaborate model of an ice-skater for

illustrating both the main modelling ingredients as well as highlight the algorithmic

aspects of the proposed optimal control methodology. This model will operate in four

different modes as the skater moves forward. A mode characterizes the particular mo-

tion of each skate. As the skating motion changes, the corresponding mode transition

is triggered.

The outline of this chapter is as follows: In Section 6.1, the ice-skater model will be

introduced as a vehicle for illustrating the various modelling issues. Following this, in

Section 6.2, M3D systems will be formally introduced and optimality conditions will

be derived using variational arguments. This section, moreover, contains a description

of the development of a computational algorithm, which is then applied to the ice-

skater model, in Section 6.3. The conclusions are given in Section 6.4.

6.1 A Motivating Example

In this section, we introduce a M3D model for an ice-skater. Figure 28 shows the

trajectories of both the left and right skate (dotted lines) with respect to the forward

motion (from left to right). The human body is modelled by three masses: m for each

leg and M for the torso and head. The skating motion is modelled as a M3D system

96

θ

−α

α

r0

s

Stride Right (SR)

Glide Left (GL)

Stride Left (SL)

x

y

Body rotation

Replant Right Skate

Replant Left Skate

Replant Right Skate

Figure 28. Skating trajectories using the proposed M3D model.

having four modes. These modes are the ‘Stride-Right’ (SR) mode, the ‘Glide-Left’

(GL) mode, the ‘Stride-Left’ (SL) and the ‘Glide-Right’ (GR) mode. The detailed

dynamics of each mode are presented next.

• SL mode:

Throughout the skating motion, the angles of the left and the right skate with

respect to the x-axis are denoted by αl and αr, respectively. During this mode,

the skater applies a force u on the right skate along the line of the body as

shown in Figure 29. The mass of the torso (M) and of the right leg (m) are

assumed to be resting on the left skate during this acceleration. Therefore, the

total mass going along the left skate is m + M . Accordingly, the mass on the

right skate is m. As the right skate pushes outward, the same force is being

applied to the right and left skate by the ice, but in the opposite direction. The

components perpendicular to each skate edge are cancelled by the forces normal

in the plane. The remaining components along the skate edge are responsible for

the forward motion. The friction between the ice and both skates is proportional

to the normal force. The proportionality constant, in turn, is a function of the

velocity [89]. This friction, however, is significantly smaller than air friction

that accounts for 75% of the resistance [89]. The air friction force satisfies

µkv
2, where µk is a constant depending on the drag coefficient, frontal area,

97

F

θ

90 + αr − θ

90− αl + θ

F

αl

αr

Left skate trajectory

Right skate trajectory

Line of body

Figure 29. Depicted is the force applied during the SL mode

and the posture of the skater [90]. A physical constraint is the distance R,

R =
√

(xl − xr)2 + (yl − yr)2 between the two skates. Furthermore, the heading

angle θ is constrained to be αl ≤ θ ≤ αr. Using Newton’s second law, the state

equations are readily obtained:

ẋl = vl cos(αl),

ẏl = vl sin(αl),

v̇l =
u

m+M
sin(αl − θ)− µk

m+M
v2
c ,

ẋr = vr cos(αr),

ẏr = vr sin(αr),

v̇r =
u

m
sin(αr − θ)− µk

m
v2
c ,

where µk is the air friction coefficient, and vc = (m+M)vl+mvr

M+2m
is the velocity of

the center mass. Also, the heading angle θ = tan−1(xl−xr

yl−yr
).

98

• GL mode:

This mode is the continuation of the previous mode, where the skater rests on

his left skate while the right skate is lifted in the air for repositioning. The state

equations, obtained by setting the applied forces to zero in the previous mode,

are

ẋl = vl cos(αl),

ẏl = vl sin(αl),

v̇l = − µk
M + 2m

v2
l .

• SR mode:

After the right skate has been replanted, the right skate begins its striding

phase, while the left skate applies the force. This is similar to the SL mode

with the role reversal between the left and right skates. The state equations are

ẋl = vl cos(αl),

ẏl = vl sin(αl),

v̇l =
u

m
sin(θ − αl)−

µk
m
v2
c ,

ẋr = vr cos(αr),

ẏr = vr sin(αr),

v̇r =
u

m+M
sin(θ − αr)−

µk
m+M

v2
c ,

where vc = mvl+(m+M)vr

M+2m
.

• GR mode:

The end of the previous mode leads to the Glide-Right mode, where the skater

glides on his right skate. This is the right skate analogue of the ‘GL mode,’ and

99

SR & GL

GL

SL & GR

GR

ΓGL+SR

ΓGR

ΓSL+GR

ΓGL

Figure 30. State Transition

the corresponding state equations are

ẋr = vr cos(αr),

ẏr = vr sin(αr),

v̇r = − µk
M + 2m

v2
r .

The boundary conditions at mode switching instants can be determined by phys-

ical arguments. Assuming the conservation of momentum, the velocity of the left

skate at the onset of the GL from SL mode is v+
l =

mv−r +(M+m)v−l
M+2m

. Since the po-

sition of left skate is determined from the end of SL, the position of the left skate

at the onset of GL satisfies x+
l = x−l and y+

l = y−l . We further denote this set of

conditions FSL. During the GL mode, the right skate is being repositioned a distance

of rx units forward to prepare for the SR mode. Therefore, at the onset of the SR

mode, x+
r = x−l + rx and y+

r = y−l − ry. Furthermore, the position and velocity of the

left skate continues from the end of GL. Hence, x+
l = x−l , y+

l = y−l , v+
l = v−l , and

v+
r = v−l . We denote this transition map as FGL. By similar arguments, the transition

map FSR from the SR mode to the GR mode is x+
r = x−r , y+

r = y−r , v+
r = (m+M)vr+mvl

M+2m
,

and the transition map FGR from GR to SL is x+
l = x−r + rx, y

+
l = y−r + ry, v

+
l = v−r ,

100

x+
r = x−r , y+

r = y−r , and v+
r = v−r .

6.2 Optimal Control Framework

Having motivated the utility of optimal control of multi-dimensional hybrid systems

in the previously, in this section we began by formalizing the optimal control problem.

Then, we use a variational arguments to derive the necessary conditions for optimal-

ity. Once these conditions are obtained, we will present a numerical algorithm that

utilizes these optimality conditions to converge to a stationary solution for the op-

timal control parameters. This algorithm is particularly interesting since we cannot

use the standard gradient descent algorithm here because of the change in dimension

of the control space.

6.2.1 Problem Formulation

The dynamical system discussed in this chapter corresponds to a specific class of

hybrid systems, where the dimension of the state and control space changes between

different modes of operation. We assume that switches between the different dynamics

is time-driven, where the switching-time vector ~τ = [τ1, . . . , τN−1]
T is also a control

parameter. Moreover, the ordering of the modes is assumed known and fixed. Also,

the initial time τ0 = 0 and final time τN = T will be assumed fixed. It will be beneficial

to introduce an identifier p(i), taking values in a finite set, denoting the mode of

operation during the time interval [τi−1, τi). As mentioned earlier, the dimensions of

the state and control spaces vary from mode to mode. Hence, we let xp(i) ∈ Rnp(i)
,

while up(i) ∈ Rmp(i)
. Now, the state evolution during time interval [τi−1, τi) is given

ẋp(i) = fp(i)(xp(i)(t), up(i)(t)), (116)

where fp(i) : Rnp(i)×Rmp(i) → Rnp(i)
is a twice differentiable continuous-state transition

function in mode p(i). Thus the control, thus far, consists of a continuous time input

up(i)(·) for each mode p(1), . . . , p(N) and the switching time vector ~τ .

101

Note that since the state trajectory switches between different dimensions, the

state trajectories are discontinuous at the switching instants. The transition functions

at the switching time instants are given as follows:

xp(i+1)(τi+) = F p(i)(xp(i)(τi−), wp(i)), (117)

for i = 1, . . . , N . Here, F p(i) : Rnp(i) × Rkp(i) → Rnp(i+1)
is a twice differentiable

discrete-state transition function, and wp(i) ∈ Rkp(i)
is a control parameter. For ease

of notation, let’s parameterize the state and control vectors by their sequential index

rather than the identifier p(i). Thus if we start with the initial state x1(0), the state

trajectory will be given as follows:

ẋi(t) = fi(xi(t), ui(t)), when t ∈ [τi−1, τi) (118)

xi+1(τi+) = Fi(xi(τi), wi), (119)

for i = 1, . . . , N . Note here once again, that xi ∈ Rni , ui ∈ Rmi when t ∈ [τi−1, τi),

and wi = Rki .

Now that we have a characterization of the state trajectory, we can formulate an

optimal control problem. More specifically, the problem is to determine the optimal

continuous control signals ui(t) for i = 1, . . . , N , discrete control signals wi for i =

1, . . . , N − 1, and the switching time vector ~τ = [τ1, . . . , τN−1]
T in order to minimize

a performance index

J =
N∑
i=1

∫ τN

τi−1

Li(xi, ui)dt+
N−1∑
i=1

φi(xi(τi−), wi) + Φ(xN(τN)). (120)

Here Li : Rni × Rmi → R is the instantaneous cost in mode i, while φi : Rni × Rki

is a state transition cost between modes and Φ : RnN → R is the terminal cost. In

the next subsection, we will derive the optimal control via calculus of variations. For

this reason, we assume that Li (for i = 1, . . . , N), φi (for i = 1, . . . , N − 1), and Φ

are twice differentiable.

102

6.2.2 Optimality Conditions

In this section, we derive the optimality conditions for the problem defined above

using a variational approach. This approach avoids the explicit computation of the

perturbations with a clever choice of the Lagrange multipliers. Adjoining the dynami-

cal constraints (118) to the cost (120) via different Lagrange multipliers (or co-states),

λi(t) ∈ R1×ni , defined over time interval (τi−1, τi), will not alter the value of J . More-

over, by adjoining the state transition constraints at the switching times (119) via

Lagrange multipliers µi ∈ R1×ni+1 , and assuming that the optimal control variables

are chosen, we obtain the optimal cost J̄0.

Defining the Hamiltonians,

Hi(xi, λi, ui) = Li(xi, ui) + λifi(xi, ui), (121)

the augmented (but unaltered from an evaluation point of view) cost is given by

J̄0 =
N∑
i=1

∫ τi

τi−1

[
Hi(xi, λi, ui)− λiẋi

]
dt+

N−1∑
i=1

µi

[
Fi(xi(τi−), wi)− xi+1(τi+)

]
+

+
N∑
i=1

φi(xi(τi−), wi). (122)

In the equation above, we let φN(xN(τN−), wN) = ΦN(xn(τN)).

Now, we perturb (122) in such a way that ui → ui + ενi for i = 1, . . . , N , τi →

τi + εθi, and wi → wi + εωi for i = 1, . . . , N − 1. With ε << 1, this perturbation

induces a sequence of perturbations {ηi} in the state trajectories xi, i.e., xi → xi+εηi.

Thus, the perturbed cost, denoted by J̄ε, is given by

J̄ε =
N∑
i=1

∫ τi+εθi

τi−1+εθi−1

[
Hi(xi + εηi, λi, ui + ενi)− λi(ẋi + εη̇i)

]
dt+

+
N−1∑
i=1

µi

[
Fi

(
(xi + εηi)|(τi+εθi)−, wi + εωi

)
− (xi+1 + εηi+1)|(τi+εθi)+

]
+

+
N∑
i=1

φi((xi + εηi)|(τi+εθi)−, wi + εωi). (123)

103

Note that θ0 = θN = 0 since the initial and final times are assumed fixed. The first

first order approximation of (123) yields

J̄ε =
M∑
i=1

∫ τi

τi−1

[
Hi(xi, λi, ui)− λiẋ

]
dt+

N∑
i=1

∫ τi+εθi

τi

Li(xi, ui)dt−

−
N∑
i=1

∫ τi−1+εθi−1

τi−1

Li(xi, ui)dt+ ε
N∑
i=1

∫ τi

τi−1

[∂Hi

∂xi
ηi +

∂Hi

∂ui
νi − λiη̇i

]
dt+

+
N−1∑
i=1

µi

[
Fi

(
(xi(τi + εθi)−), wi + εωi

)
− xi+1(τi + εθi)+)

]
+

+ε
N−1∑
i=1

µi

[∂Fi
∂xi

ηi(τi−)− ηi+1(τi+)
]

+

+
N∑
i=1

φi
(
(xi((τi + εθi)−), wi + εωi

)
+ ε

N∑
i=1

∂φi
∂xi

η(τi−). (124)

Note that we explicitly used the fact that fi(xi(t), ui(t)) − ẋi(t) is zero in the open

intervals (τi−1, τi−1 + εθi−1) and (τi, τi + εθi).

Now the first variation in the performance index (120) can be expressed as the

limit for ε→ 0 of

δJ = lim
ε→0

J̄ε − J̄0

ε
. (125)

Thus using (122) and (124), it follows that

δJ =
N∑
i=1

∫ τi

τi−1

[∂Hi

∂xi
ηi +

∂Hi

∂ui
νi − λiη̇i

]
dt+

+
N∑
i=1

Li(xi, ui)|τiθi − Li(xi, ui)|τi−1
θi−1 +

+
N−1∑
i=1

µi

[∂F
∂xi

ẋi(τi−)θi +
∂F

∂wi
ωi − ẋi+1(τi+)θi

]
+

+
N−1∑
i=1

µi

[∂Fi
∂xi

ηi(τi−)− ηi+1(τi+)
]

+

+
N∑
i=1

[∂φi
∂xi

ẋi(τi−)θi +
∂φi
∂wi

ωi +
∂φi
∂xi

η(τi−)
]
. (126)

104

Reordering the sum and reorganizing terms, remembering that θ0 = θN = 0, we get

δJ =
N∑
i=1

∫ τi

τi−1

[∂Hi

∂xi
ηi +

∂Hi

∂ui
νi − λiη̇i

]
dt+

+
N−1∑
i=1

[
Li(xi, ui)− Li+1(xi+1, ui+1)

]
τi
θi +

+
N−1∑
i=1

[
µi
∂F

∂xi
fi(τi−)− µifi+1(τi+) +

∂φi
∂xi

fi(τi−)
]
θi +

+
N−1∑
i=1

µi

[∂Fi
∂xi

ηi(τi−)− ηi+1(τi+)
]

+

+
N−1∑
i=1

∂F

∂wi
ωi +

N∑
i=1

[∂φi
∂wi

ωi +
∂φi
∂xi

η(τi−)
]
. (127)

Using integration by parts, the integral terms in (127) further reduces to

δK =
N∑
i=1

∫ τi

τi−1

[∂Hi

∂xi
ηi +

∂Hi

∂ui
νi − λ̇iηi

]
dt−

−
N∑
i=1

[
λi(τi−)ηi(τi−)− λi(τi−1+)ηi(τi−1+)

]
. (128)

Substituting δK into δJ , and choosing λi in the intervals (τi−1, τi) to solve

λ̇i = −∂Hi

∂xi
(xi, λi, ui), (129)

yields

δJ =
N∑
i=1

∫ τi

τi−1

Aiνidt+
N−1∑
i=1

Biωi +
N−1∑
i=1

Ciθi +

+
N−1∑
i=1

[
λi+1(τi+)− µi

]
ηi+1(τi+1+) +

+
N−1∑
i=1

[
µi
∂Fi
∂xi

+
∂φi
∂xi

− λi(τi−)
]
ηi(τi−) +

+
[∂Φ

∂xN
− λN(τN−)

]
ηN(τN−), (130)

105

where

Ai =
∂Hi

∂ui
, (131)

Bi =
∂φi
∂wi

+ µi
∂F

∂wi
, and (132)

Ci =
[
Li(xi, ui)− Li+1(xi+1, ui+1)

]
τi

+

+
[
µi
∂F

∂xi
fi(τi−)− µifi+1(τi+) +

∂φi
∂xi

fi(τi−)
]
. (133)

Here, we used the fact that φN(xN(τN−), wN) = ΦN(xn(τN)) and η1(0+) = 0. The

computation of the perturbations {ηi} is avoided by choosing

µi = λi+1(τi+), (134)

λi(τi−) = µi
∂Fi
∂xi

+
∂φi
∂xi

, and (135)

λN(τN−) =
∂Φ

∂xN
. (136)

These conditions specify the boundary conditions of the co-state defined by (129).

With this choice of the co-state, the first order variation of J reduces to

δJ =
N∑
i=1

∫ τi

τi−1

Aiνidt+
N−1∑
i=1

Biωi +
N−1∑
i=1

Ciθi. (137)

Since the control parameters are independent, the necessary conditions for optimality

are the vanishing of Ais, Bis, and Cis in (137). These results are summarized in a

theorem below:

Theorem Given a multi-dimensional, multi-modal system of the form (118) and

(119), an extremum to the performance index J in (120) is attained when the control

variables ui (for i = 1, . . . , N), τi and wi (for i = 1, . . . , N −1) are chosen as follows:

Euler-Lagrange Equations:

λ̇i = −∂Hi

∂xi
(xi, λi, ui) with t ∈ (τi−1, τi), for i = 1, . . . , N ,

106

Boundary Conditions:

λN(τN−) =
∂Φ

∂xN
, and

λi(τi−) = λi+1(τi+)
∂Fi
∂xi

+
∂φi
∂xi

for i = 1, . . . , N − 1,

Optimality Conditions:

∂Hi

∂ui
= 0,

∂φi
∂wi

+ λi+1(τi+)
∂F

∂wi
= 0, and

Hi(τi−)−Hi+1(τi+) = 0,

where Hi is the Hamiltonian

Hi(xi, λi, ui) = Li(xi, ui) + λifi(xi, ui).

6.2.3 Numerical Algorithms

Now that we have the necessary conditions for optimality, we introduce a numerical

algorithm that utilizes these conditions to attain optimal control values, shown in

Table 7.

This algorithm is similar to a gradient descent algorithm, however there is one big

distinction. The switching times τi and discrete control wi can be readily updated in

the negative gradient direction as usual. However, the continuous control ui cannot

be updated using the standard approach because of the change in dimensions between

modes. To see why this happens, consider the situation depicted in Figure 31. Here,

if we update the control ui using the usual update method, the u
(p+1)
i (t) ∈ Rmi when

t ∈ [τ
(p)
i−1, τ

(p)
i). However, upon updating the switching times, there will be two regions

of conflict assuming the switching times change.

There are four distinct cases of conflict that can occur for each control ui. To

address the update issue and the regions of conflict, we propose the a sub-function

for updating the continuous control ui called update-u (shown in Table 8).

107

Table 7. A descent algorithm for M3D systems.

- Initialize with a guess of the control variables τ
(0)
i , w

(0)
i , for i =

1, . . . , N − 1, and u
(0)
i (t) with t ∈ [τ

(0)
i−1, τ

(0)
i) for i = 1, . . . , N , and

let p = 0.

- while p < 1 or |J (p) − J (p−1)| < ε

1. Compute the state trajectories xi(t), for i = 1, . . . , N , and
cost J (p) forward in time from 0 to T using (118), (119), and
(120).

2. Compute the co-states λi(t), for i = 1, . . . , N , backward in
time from T to 0 using (129), and (134) - (136).

3. Compute Ai, Bi, Ci for i = 1, . . . , N using (131)-(133).

4. Update the control variables τi and wi as follow :

τ
(p+1)
i = τ

(p)
i − γ(p)

τ Ci,

w
(p+1)
i = w

(p)
i − γ(p)

w Bi,

for i = 1, . . . , N − 1.

5. Update the control ui using the update-u sub-function (de-
fined below):

u
(p+1)
i = update-u(u

(p)
i).

6. p = p+ 1

- end while

time (t)τ
(p)
i−1 τ

(p)
i

when t ∈ (τ
(p)
i−1, τ

(p)
i),

u
(p)
i (t) ∈ <mi , xi(t) ∈ <

ni , λi(t) ∈ <
1×ni .

time (t)τ
(p+1)
i−1 τ

(p+1)
i

However, u
(p+1)
i (t) ∈ <mi when

t ∈ (τ
(p+1)
i−1 , τ

(p+1)
i).

iteration p

iteration p + 1

standard update:

u
(p+1)
i = u

(p)
i − γ(p)

u

∂Hi

∂ui

′

∈ <
mi ,

when t ∈ (τ
(p)
i−1, τ

(p)
i).

regions of conflict!

Figure 31. Depicted here is a situation where the standard update method leads to a
conflict in dimensions of the control ui.

108

Table 8. An algorithm to update u during each iteration.

u
(p+1)
i = update-u(u

(p)
i)

- utemp(t) = u
(p)
i − γ

(p)
u

∂Hi

∂u
(p)
i

′

- if
(
τ

(p+1)
i−1 ≥ τ

(p)
i−1 & τ

(p+1)
i ≥ τ

(p)
i

)
- u

(p+1)
i (t) = utemp(t); t ∈ [τ

(p+1)
i−1 , τ

(p)
i),

- u
(p+1)
i (t) = utemp(τ

(p)
i) + (t− τ

(p)
i)u̇temp(τ

(p)
i); t ∈ [τ

(p)
i , τ

(p+1)
i).

- elseif
(
τ

(p+1)
i−1 ≥ τ

(p)
i−1 & τ

(p+1)
i ≤ τ

(p)
i

)
- u

(p+1)
i (t) = utemp(t); t ∈ [τ

(p+1)
i−1 , τ

(p+1)
i).

- elseif
(
τ

(p+1)
i−1 ≤ τ

(p)
i−1 & τ

(p+1)
i ≥ τ

(p)
i

)
- u

(p+1)
i (t) = utemp(t); t ∈ [τ

(p)
i−1, τ

(p)
i),

- u
(p+1)
i (t) = utemp(τ

(p)
i) + (t− τ

(p)
i)u̇temp(τ

(p)
i); t ∈ [τ

(p)
i , τ

(p+1)
i),

- u
(p+1)
i (t) = utemp(τ

(p)
i−1) + (τ

(p)
i−1 − t)u̇temp(τ

(p)
i−1); t ∈ [τ

(p+1)
i−1 , τ

(p)
i−1).

- elseif
(
τ

(p+1)
i−1 ≤ τ

(p)
i−1 & τ

(p+1)
i ≤ τ

(p)
i

)
- u

(p+1)
i (t) = utemp(t); t ∈ [τ

(p)
i−1, τ

(p+1)
i),

- u
(p+1)
i (t) = utemp(τ

(p)
i−1) + (τ

(p)
i−1 − t)u̇temp(τ

(p)
i−1); t ∈ [τ

(p+1)
i−1 , τ

(p)
i−1).

- end if

109

The idea here is to trim and extend the control ui as necessitated by the change

in the switching times. The extension is done by using a first order Taylor approxi-

mation. The instance shown in Figure 31 corresponds to the when τ
(p+1)
i−1 > τ

(p)
i−1 and

τ
(p+1)
i > τ

(p)
i . In this case, since τi−1 increased, the beginning of ui (i.e., ui(t) when

t ∈ [τ
(p−1)
i−1 , τ

(p)
i−1)) is trimmed. Also since τi increased, the end of ui (i.e., ui(t) when

t ∈ [τ
(p−1)
i , τ

(p)
i)) must be extended. Trimming ui is simple, as this involves ignoring

ui(t) for the conflicting time period (i.e., when t ∈ [τ
(p−1)
i−1 , τ

(p)
i−1)). Extending ui is little

more involved, in this case we try to approximate what ui should be in the conflicting

time period by using Taylor expansion, as shown in Table 8. Thus, we let

u
(p+1)
i (t) = utemp(τ

(p)
i−1) + (τ

(p)
i−1 − t)u̇temp(τ

(p)
i−1), when t ∈ [τ

(p+1)
i−1 , τ

(p)
i−1).

The other cases are similar.

6.3 Optimal Control of an Ice Skater

We will now use these algorithms to derive the optimal control of the ice skater using

the model presented in Section 6.1. In particular, we will address the problem of

starting from rest (i.e., vc(0) = 0) and achieving a desired velocity vd in final time

T , while minimizing the control energy (or work done). With this goal in mind, the

following performance criterion is proposed:

J =

∫ T

0

C1u(t)d(t)dt+ C2(vc(T)− vd)
2, (138)

where C1 and C2 are scalar gains, and d(t) represents the distance travelled. In order

to fit this performance index into the general framework presented in Section 6.2, we

will have to mildly modify the state equations derived in Section 6.1. First, note that

u(t) = 0 in the GL and GR modes, hence Li = 0 in GL and GR modes. In the

SR & GL and GR & SL modes, we introduce a new state d(t) to keep track of the

distance travelled, which evolves as

ḋ(t) = vc(t), (139)

110

0 5 10 15 20
15

20

25

30

35

40

45

50

55

J

iteration

(a)

0 0.5 1 1.5 2 2.5 3

SL

GL

SR

GR

time (t)

m
od

e

(b)

Figure 32. (a) The evolution of the cost as a function of the iteration, (b) the active
mode as a function of time for the optimal switching times.

where d(t) is initialized to be 0 at the beginning of the SR & GL and GR & SLmodes.

With this augmented state xi = [xl, yl, vl, xr, yr, vr, d]
T , Li(xi, ui) = C1ui(t)d(t) in the

SR & GL and GR & SL modes. Moreover, we note that φi(xi(τi−), wi) = 0 and

Φ(xN(τN)) = C2(vc(τN)− vd)
2.

For the purpose of the simulation, we will let the state transitions (Fi) be au-

tonomous (i.e., no discrete control wi), and fix αl = π
6

and αr = −π
6
. In this case the

control consists of the switching times τi and the continuous control ui(t). We will

start in the SR & GL mode and transition between different modes as specified in

Figure 29. In the simulation, x0 = [0, 0, 0, 0.25,−0.25, 0], M = 40 kg, m = 20 kg,

µk = 0.157 kg
m

([90]), vd = 2 m
s
, T = 3 s, C1 = 0.01, and C2 = 50. The evolution of

the performance index as a function of the iteration is shown in Figure 32 (a), while

Figure 32 (b) shows the optimal switching times by displaying the active mode as

a function of time. Finally, the skating trajectory using the optimal control ui and

optimal switching times τi is shown in Figure 33.

111

−1 0 1 2 3 4 5 6 7 8 9 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

SL

x

y

GL

SR

GR

start: x
0 end: x

f

SLSL

GLGL

SRSR

GRGR

Figure 33. Depicted is the optimal trajectory staring in SR & GL mode and switching
between the GL, SL & GR, GR modes.

6.4 Conclusions

In this chapter, we introduced an algorithmic framework for the optimal control of

systems that experience different constraints during different modes of operation.

These constraints can be handled using traditional methods (e.g., using Lagrange

multipliers), but this typically adds significant computational overhead. Instead, we

introduced a non-standard Multi-Mode, Multi-Dimension (M3D) model to capture

these infinite-dimensional state constraints and derived optimality conditions for such

systems using variational arguments. We, moreover, derived a detailed M3D model

for an ice-skater, and demonstrated the viability of the presented methods through

an optimal control example of the ice-skater.

112

CHAPTER 7

CONCLUSIONS AND EXTENSIONS

7.1 Conclusions

The general contribution of this thesis is captured by the title of the thesis, namely

to incorporate the concept of optimality to multi-modal control and apply the theo-

retical results to robotics applications for developing successful navigation strategies

for autonomous mobile robot. To this end, the main contributions of this thesis are

• From local rules to global behaviors: Given a collection of modes, we presented

an algorithm that utilizes rapidly-exploring random trees for reachability anal-

ysis to characterize the expressiveness of the multi-modal system. Moreover,

the algorithm uses reinforcement learning at the modal level to learn control

programs (i.e., mode strings) that complete a desired task while minimizing a

prescribed performance criterion.

• Adaptive multi-modal control: We developed a variational framework for adap-

tive multi-modal control, where a given collection of modes is adapted by adding

new modes to the set instead of changing the existing modes. We showed how

designing new modes to replace recurring mode string fragments can increase

the expressiveness of the system (thus, possibly improving performance) while

decreasing the specification complexity of the control programs. We presented a

gradient descent algorithm to construct such replacement modes, which utilizes

optimality conditions obtained using the calculus of variations.

• Learning from example: We presented a constructivist approach to the Learn-

ing From Example problem, which is inspired by adaptive multi-modal control.

First, we used the variational framework to learn new modes as needed to ap-

proximate a given training trajectories. Next, the constructivist framework for

113

learning from example was applied to the DARPA sponsored LAGR project.

The LAGR project motivated a need for new solutions not relying on differen-

tiability assumptions (as the variational approach does), which was addressed

by posing the learning problem as an combinatorial optimization problem, and

we presented an algorithm for solving this problem using a hill climbing method.

• Multi-modal, multi-dimensional (M3D) systems: We addressed the optimal

control of multi-modal systems with infinite dimensional constraints. We for-

mulated the constraints as M3D systems, where the dimensions of the state

and control spaces change between dimensions to account for the constraints,

to ease the computational burdens associated with traditional methods. We

derived the optimality conditions for this formulation and presented an algo-

rithmic framework for the optimal control of M3D systems.

• Robotics applications: We used multi-modal control strategies to develop effec-

tive navigation strategies for autonomous mobile robots. Verified the theoretical

results by conducting simulated experiments using Matlab and actual experi-

ments in a lab setting using the Magellan Pro mobile robot platform. Moreover,

we used human operated training runs to develop effective navigation strategies

following the constructivist framework for learning from example. We success-

fully used these results on the LAGR robot to learn effective strategies for the

LAGR competition.

The publications associated with these contributions are [72, 91, 92, 93, 94, 95,

96, 97]. In closing, the main strength of multi-modal control lies in breaking up

complex control task into simpler tasks. This idea of designing individual modes with

respect to particular control tasks and then sequencing these modes to achieve the

overall desired behavior helps modularize the control system. This has the same effect

on complex control systems that object-oriented programming has for large-scale

114

computer programs, namely it allows greater simplicity, flexibility, and adaptability.

7.2 Extensions

The main focus of this thesis has been to develop theoretical aspects of optimality in

multi-modal control. In particular, we developed theoretical algorithms in a general

setting to address some key research issues arising in optimal, multi-modal control,

and used these theoretical results to obtain successful navigation strategies for au-

tonomous mobile robots. However, there are still a number of research issues that

remain unexplored and could be addressed further. In this section, we discuss some of

these open issues with particular focus on the application to mobile robot navigation.

The algorithms in this thesis were developed under the assumption that sufficient

knowledge of system dynamics, initial conditions, and the environment was available.

Using this knowledge, optimal control programs are learned in Chapter 2 to complete

desired tasks. The computation of the control programs, in this case, takes place off-

line, while the system executes the programs on-line. In such a setting, the control

system may be susceptible to disturbances or variations to the assumptions about the

dynamics, initial conditions, and the environment (which is inevitably encountered

when mobile robots operate autonomously). The optimal control program should

be interpreted as a high-level plan over a set of available modes. In this case, the

disturbances in the dynamics can be handled by a low-level controller. At the end of

Chapter 2, we conducted a robustness analysis to show that the learning algorithm

can account for small errors in the estimate of the initial condition; however, the sensi-

tivity of the algorithm with respect to errors in the environment is still unexplored. It

is our belief that since our algorithm plans over a set of feedback controllers, it should

be more robust to unexpected obstacles than traditional path planners. In fact, ro-

bustness to unexpected obstacles is one of the strengths of the reactive approach as

opposed to purely deliberative approach (see [14] for a more thorough discussion on

115

these different approaches). However, more research must be done to substantiate

this belief. Moreover, taking cues from deliberative approaches such as the D∗ path

planning algorithm (see [51]), that updates the optimal path dynamically whenever

unknown obstacles are encountered, it would be possible to extend our learning al-

gorithm to update the control programs on-line whenever unmodelled obstacles are

detected. The abundance of literature on reinforcement learning in unknown envi-

ronments (see [52, 53, 55, 58]) can facilitate this extension.

So far, we have outlined some extensions to the learning algorithm, which focused

on making the algorithm more useful in dynamic environments that typically arise

in mobile robot navigation. We can make similar changes to the adaptive multi-

modal control framework. Recall that adaptive multi-modal control was introduced

as way of using experience from previous tasks to make the multi-modal control

system more expressive with the promise of improving the overall performance of the

system. The idea here was to improve the mode set off-line between different tasks.

A natural extension to this would be to make this adjustment on-line. In particular,

if we encounter recurring mode fragments during a particular run, we can try to

find replacement modes, using the techniques outlined in Chapter 4, to improve the

performance of the system on-line. Once such replacement modes are found, then the

optimal policy can be dynamically updated using the enhanced mode set.

Finally, we will conclude with a few comments concerning the implementation of

multi-modal control on mobile robot platforms. As mentioned in the introduction,

there are many proposed frameworks for modelling and simulation of multi-modal

systems. In this thesis, we stayed within the MDL framework since this framework

is well suited for analysis and development of multi-modal control systems. However,

this architecture may not be well-suited for implementation on robotic platforms. On

Hybrid automata may, on the other hand, be better suited for implementation since

it provides a truly reactive control architecture without the necessity of computing

116

control programs. In this case, the interrupts would automatically determine the next

mode of operation for the system, thus eliminating the need for specification of control

programs. As such, it would beneficial to use the MDL framework for the design and

simulation of the multi-modal system. Once the performance of the system has been

verified in simulations, the multi-modal system can be implemented on the robotic

platform using a hybrid automaton. We addressed this problem of translating the

multi-modal system from a MDL framework to a hybrid automata architecture in

[96], where hybrid automata are generated from MDL mode strings. To this end,

more research on implementation and on-line computations must be conducted to

fully utilize multi-modal control for mobile robot navigation.

117

REFERENCES

[1] M. Egerstedt. “On the Specification Complexity of Linguistic Control Proce-
dures,” International Journal of Hybrid Systems, Vol. 2, No. 1-2, pp. 129-140,
March & June, 2002.

[2] M. Egerstedt and R.W. Brockett. “Feedback Can Reduce the Specification Com-
plexity of Motor Programs,” IEEE Transactions on Automatic Control, Vol. 48,
No. 2, pp. 213-223, Feb. 2003.

[3] R.W. Brockett. “On the Computer Control of Movement,” IEEE International
Conference on Robotics and Automation, pp. 534–540, New York, April 1988.

[4] R.W. Brockett. “Hybrid Models for Motion Control Systems,” Perspectives in
Control, H. Trentelman and J. C. Willems, Eds, Birkh, Boston, pp. 29-54, 1993.

[5] E. Frazzoli. “Explicit Solutions for Optimal Maneuver-Based Motion Planning,”
IEEE Conference on Decision and Control, 2003.

[6] E. Frazzoli, M. A. Dahleh and E. Feron. “Maneuver-Based Motion Planning
for Nonlinear Systems with Symmetries,” IEEE Transaction on Robotics and
Automation, Vol. 21(6), pp. 1077-1091, 2005.

[7] A. Bicchi, A. Marigo and B. Piccoli. “On the Reachability of Quantized Control
Systems,” IEEE Transactions on Automatic Control, Vol. 4(47), pp. 546-563,
April 2002.

[8] A. Bicchi, A. Marigo and B. Piccoli. “Encoding Steering Control with Symbols,”
IEEE International Conference on Decision and Control, pp. 3343-3348, 2003.

[9] D. Hristu-Varsakelis and R. Brockett. “Experimenting with Hybrid Control,”
Control Systems Magazine, Vol. 22, No. 1, pp. 82-95, Feb. 2002.

[10] D. Hristu-Varsakelis, M. Egerstedt and P.S. Krishnaprasad. “On The Structural
Complexity of the Motion Description Language MDLe,” IEEE Conference on
Decision and Control, Dec. 2003.

[11] L. Crawford and S.S. Sastry. “Learning Controllers for Complex Behavioral Sys-
tems,” Neural Information Processing Systems Tenth Annual Conference, 1996.

[12] V. Manikonda, P.S. Krishnaprasad and J. Handler. “Languages, Behaviors, Hy-
brid Architectures and Motion Control,” Mathematical Control Theory, pp. 199-
226, 1998.

118

[13] C. J. Tomlin, G. J. Papas, J. Kotsecka, J. Lygeros and S. S. Sastry. “Advanced
Air Traffic Automation: A Case Study in Distributed Decentralized Control,”
Control Problems in Robotics, Lecture Notes in Control and Information Sciences
230, Springer-Verlag, London, 1998.

[14] R. Arkin. Behavior-Based Robotics, MIT Press, Cambridge, Massachusetts, 1998.

[15] R. Brooks. “A Robust Layered Control System for a Mobile Robot,” IEEE Jour-
nal of Robotics and Automation, Vol. 2(1), pp. 14-23, 1986.

[16] T. A. Henzinger. “The Theory of Hybrid Automata,” Proceedings of the 11th
Annual Symposium on Logic in Computer Science (LICS), pp. 278-292, 1996.

[17] J. Lygeros, C. Tomlin and S. Sastry. “Controllers for Reachability Specications
for Hybrid Systems,” Automatica, Vol. 35(3), March 1999.

[18] V. Manikonda, P.S. Krishnaprasad and J. Handler. “A Motion Description Lan-
guage and a Hybrid Architecture for Motion Planning with NonHolomic Robots,”
IEEE International Conference on Robotics and Automation, Vol. 2, pp. 2021-
2028, May 1995.

[19] H.S. Witsenhausen. “A Class of Hybrid-State Continuous-Time Dynamic Sys-
tems,” IEEE Transactions on Automatic Control, Vol. AC-11, No. 2, pp. 161-167,
April 1966.

[20] M.S. Branicky, V.S. Borkar and S.K. Mitter. “A Unified Framework for Hybrid
Control: Model and Optimal Control Theory,” IEEE Transactions on Automatic
Control, Vol. 43(1), pp. 31-45, Jan. 1998.

[21] A. Nerode and W. Kohn. “Models for Hybrid Systems: Automata, Topologies,
Stability,” Hybrid Systems: Lecture Notes in Computer Science, Springer-Verlag,
Vol. 736, pp. 317-356, 1993.

[22] R. Alur, C. Courcoubetis, T.A. Henzinger and P-H Ho. “Hybrid automata: An
algortihmic approach to the specification and verification of hybrid systems,”
Hybrid Systems: Lecture Notes in Computer Science, Springer-Verlag, Vol. 736,
1993.

[23] R. Alur, T.A. Henzinger and E.D. Sontag. “Hybrid Systems III: Verification and
Control,” Lecture Notes in Computer Science, Springer-Verlag 1996.

[24] M.S. Branicky. “Multiple Lyapunov Functions and Other Analysis Tools for
Switched and Hybrid Systems,” IEEE Transactions on Automatic Control, Spe-
cial Issue on Hybrid Systems, 1998.

[25] T. A. Henzinger, P. W. Kopke, A. Puri and P. Varaiya. “What’s Decidable About
Hybrid Automata?,” in Journal of Computer and System Sciences, Vol. 57, pp.
94-124, 1998.

119

[26] S. Hedlund and A. Rantzer. “Optimal Control of Hybrid Systems,” IEEE Con-
ference on Decision and Control, pp. 3972-3977, 1999.

[27] M.S. Shaikh and P.E. Caines. “On the Optimal Control of Hybrid Systems:
Optimization of Trajectories, Switching Times and Location Schedules,” In Proc.
of the 6th International Workshop on Hybrid Systems: Computation and Control,
Prague, The Czech Republic, 2003.

[28] P. Tabuada and G.J. Pappas. “From Discrete Specifications to Hybrid Control,”
IEEE Conference on Decision and Control, Dec. 2003.

[29] X. Xu and P. Antsaklis. “Optimal Control of Switched Systems Based on Pa-
rameterization of the Switching Instants,” IEEE Transactions On Automatic
Control, Vol. 49(1), Jan. 2004.

[30] D. Hristu-Varsakelis, P.S. Krishnaprasad, S. Andersson, F. Zhang, P. Sodre and
L. D’Anna. “The MDLe Engine a Software Tool for Hybrid Motion Control,”
ISR Technical Report, 2000-54, 2000.

[31] M. Egerstedt, Y. Wardi and F. Delmotte. “Optimal Control of Switching Times
in Switched Dynamical Systems,” IEEE Conference on Decision and Control,
Maui, Hawaii, Dec. 2003.

[32] A. Guia, C. Seatzu and C. V. Der Mee. “Optimal Control of switched autonomous
linear systems,” IEEE Conference on Decision and Control, 1999.

[33] X. Xu and P.J. Antsaklis. “An Approach for Solving General Switched Linear
Quadratic Optimal Control Problems,” IEEE Conference on Decision and Con-
trol, pp. 2478-2483, 2001.

[34] X. Xu and P.J. Antsaklis. “Optimal Control of Switched Systems via NonLinear
Optimization Based on Direct Differentiations of Value Functions,” International
Journal of Control, 2002

[35] A. Bemporad and M. Morari. “Control of Systems Integrating Logic, Dynamics,
and Constraints,” Automatica, vol. 35, pp. 407-427, 1999.

[36] M.S. Shaikh and P. Caines. “On Trajectory Optimization for Hybrid Systems:
Theory and Algorithms for Fixed Schedules,” IEEE Conference on Decision and
Control, Las Vegas, NV, Dec. 2002.

[37] H. Axelsson, Y. Wardi and M. Egerstedt. “Transition-Time Optimization for
Switched Systems,” Proc. of IFAC World Congress, Prague, The Czech Republic,
July 2005.

[38] M. Egerstedt, Y. Wardi and H. Axelsson. “Transition-Time Optimization for
Switched Systems,” IEEE Transactions on Automatic Control, Vol. 51, No. 1,
pp. 110- 115, Jan. 2006.

120

[39] M. Boccadoro, Y. Wardi, M. Egerstedt and E. Verriest. “Optimal Control of
Switching Surfaces in Hybrid Dynamical Systems,” Journal of Discrete Event
Dynamic Systems, Vol. 15(4), pp. 433-448, 2005.

[40] S.J. Bradtke, B.E. Ydstie and A.G. Barto. “Adaptive Linear Quadratic Control
Using Policy Iteration,” American Control Conference, pp. 3475-3479, 1994.

[41] B. Lincoln and A. Rantzer. “Optimizing Linear Systems Switching,” IEEE Con-
ference on Decision and Control, 2001.

[42] K. Morgansen and R.W. Brockett. “Optimal Regulation and Reinforcement
Learning for the Nonholonomic Integrator,” Proc. of the American Control Con-
ference, pp. 462-466, June 2000

[43] T. Balch and R.C Arkin. “Behavior-Based Formation Control for Multirobot
Teams,” IEEE Transaction on Robotics and Automation, vol 14, pp 926-939,
1998.

[44] M. Egerstedt. “Behavior Based Robotics Using Hybrid Automata,” Lecture Notes
in Computer Science: Hybrid Systems III: Computation and Control, pp. 103-
116, Pittsburgh, PA, Springer-Verlag, March 2000.

[45] J.E. Hopcroft and G. Wilfong. “Motion of Objects in Contact,” The International
Journal of Robotics Research, Vol. 4, pp. 32-45, 1986.

[46] P. Cheng, Z. Shen and S. M. LaValle. “Using Randomization to Find and Opti-
mize Feasible Trajectories for Nonlinear Systems,” Proc. Annual Allerton Con-
ference on Communications, Control, Computing, pp. 926-935, 2000.

[47] J.C. Latombe. Robot Motion Planning, Kluwer Academic Publishers, 1991.

[48] D. Wooden and M. Egerstedt. “Oriented Visibility Graphs: Low-Complexity
Planning in Real-Time Environments,” IEEE Conference on Robotics and Au-
tomation, Orlando, FL, May 2006.

[49] M. Zefran and V. Kumar. “Planning Smooth Motions on SE(3),” IEEE Interna-
tional Conference on Robotics and Automation, Minneapolis, MN, April 1996.

[50] M. Zefran and V. Kumar. “A Variational Calculus Framework for Motion Plan-
ning”, International Conference on Advanced Robotics, Monterey, CA, July 1997.

[51] A. Stentz. “Optimal and Efficient Path Planning for Partially-Known Environ-
ments,” IEEE International Conference on Robotics & Automation, pp. 3310-
3317, 1994.

[52] L.P. Kaebling, M.L. Littman and A.W. Moore. ”Reinforcement Learning: A
Survey,” Journal Of Artificial Intelligence Research, Vol. 4, pp. 237-285, 1996.

[53] C.J.C.H. Watkins and P. Dayan. “Q-Learning,” Machine Learning, Vol. 8(3/4),
pp. 257-277, May 1992.

121

[54] T. Jaakkola, M.I. Jordan and S.P. Singh. “On the Convergence of Stochastic
Iterative Dynamic Programming Algorithms”, in Neural Computation Vol. 6(6),
1994.

[55] R.S. Sutton and A.G. Barto. Reinforcement Learning, An Introduction, MIT
Press, Cambridge, MA, 1998.

[56] A. Bhatia and E. Frazzoli. “Incremental Search Methods for Reachability Anal-
ysis of Continuous and Hybrid Systems.” Hybrid Systems: Computation and
Control. Springer-Verlag, 2004.

[57] M. Egerstedt. “Linguistic Control of Mobile Robots,” IEEE/RSJ International
Conference on Intelligent Robots and Systems, Maui, Hawaii, Oct. 2001.

[58] R.S. Sutton. “Generalization in Reinforcement Learning: Successful Examples
Using Sparse Coarse Coding,” Neural Information Processing Systems, 1996.

[59] R. C. Thompson. “Lecture 10 : Part I - Convergence domains of the Campbell
Baker Hausdorff formula,” in John Hopkins Lecture Notes, 1988.

[60] W. Rossmann. Lie Groups: An Introduction Through Linear Groups, Oxford
University Press, Chapter 1.3, 2002.

[61] T. T. Georgiou. “Relative Entrophy and the Multivariable Multidimesional Mo-
ment Problem,” IEEE Transaction on Information Theory, Vol. 52(3), pp. 1052-
1066, March 2006.

[62] L. Armijo. “Minimization of Functions Having Lipschitz Continuous First-Partial
Derivatives,” Pacific Journal of Mathematics, Vol. 16, pp. 1-3, 1966.

[63] M. Sugeno. “An Introductory Survey of Fuzzy Control,” Information Sciences,
Vol. 36, pp. 59-83, 1985.

[64] D. Driankov, H. Hellendoorn and M. Reinfrank. An Introduction to Fuzzy Con-
trol, Springer, Berlin, 1993.

[65] D. Park, A. Kandel and G. Langholz. “Genetic-Based New Fuzzy Reasoning
Models with Application to Fuzzy Control,” IEEE Transactions on Systems,
Man and Cybernetics, Vol. 24(1), Jan. 1994.

[66] S.C. Lin and Y. Chen. “Genetic-Based New Fuzzy Reasoning Models with Ap-
plication to Fuzzy Control,” IEEE Transactions on Evolutionary Computation,
Vol. 2, pp. 846-851, 1995.

[67] K. Tanaka, T. Hori and H.O. Wang. “New Robust and Optimal Designs for
Takagi-Sugeno Fuzzy Control Systems,” IEEE International Conference on Con-
trol Applications, Vol. 1, pp. 415-420, 1999.

122

[68] M. Egerstedt, T. Balch, F. Dellaert, F. Delmotte, and Z. Khan. “What are the
Ants Doing? Vision-Based Tracking and Reconstruction of Control Programs,”
IEEE International Conference on Robotics and Automation, Barcelona, April
2005.

[69] A. Guillory, H. Nguyen, T. Balch and C. Isbell. “Learning Executable Agent
Behaviors from Observation,” Proc. of the Fifth International Joint Conference
on Autonomous Agents and Multiagent Systems, 2006.

[70] T. M. Jochem, D. A. Pomerleau and C. E. Thorpe. “Vision-Based Neural Net-
work Road and Intersection Detection and Traversal,” IEEE/RSJ Intl. Con-
forence on Intelligent Robots and Systems, pp. 344-349, 1995

[71] D. Kim, J. Sun, S. M. Oh, J. M. Rehg and A. Bobick. “Traversability Classi-
fication Using Unsupervised On-Line Visual Learning for Outdoor Robot Navi-
gation,” IEEE Intl. Conforence on Robotics and Automation, Orlando, FL, May
2006.

[72] J. Sun, T. R. Mehta, D. Wooden, M. Powers, J. Regh, T. Balch and M. Egerstedt.
Learning from Examples in Unstructured, Outdoor Environments, Journal of
Field Robotics, Vol. 23. Issue 11-12 , pp. 1019-1036, Jan. 2007.

[73] D. Pomerleau. “ALVINN: An Autonomous Land Vehicle In an Neural Network,”
Advances in Neural Information Processing Systems, pp. 305-313, 1989.

[74] R. Sukthankar, D. Pomerleau and C. Thorpe. “A Distributed Tactical Reasoning
Framework for Intelligent Vehicles,” Proc. of Intelligent Systems and Manufac-
turing, 1997.

[75] B. Webb. “What Does Robotics Offer Animal Behaviour,” Animal Behaviour,
Vol. 60, pp. 545-558, 2000.

[76] I. Ulrich and I. Nourbakhsh. “Appearance-Based Obstacle Detection with
Monocular Color Vision,” AAAI National Conference on Artificial Intelligence,
pp. 866-871, 2000.

[77] T. Balch, F. Dellaert, A. Feldman, A. Guillory, C. Isbell, Z. Khan, S. Pratt, A.
Stein and H. Wilde. “How A.I. and Multi-Robot Systems Research Will Accel-
erate Our Understanding of Social Animal Behavior,” Proceedings of the IEEE,
Vol. 94, No. 7, pp. 1445-1463, July 2006.

[78] J. Michels, A. Saxena and A. Y. Ng. “High Speed Obstacle Avoidance using
Monocular Vision and Reinforcement Learning,” International Conference on
Machine Learning, 2005.

[79] J. Rosenblatt. “Maximizing Expected Utility for Optimal Action Selection under
Uncertainty,” Autonomous Robots, Vol. 9(1), pp. 17-25, 2000.

123

[80] F. Delmotte, M. Egerstedt and A. Austin. “Data-Driven Generation of Low-
Complexity Control Programs,” International Journal of Hybrid Systems, Vol.
4(1), pp. 53-72, 2004.

[81] G. Ferrari-Trecate, M. Muselli, D. Liberati and M. Morari. “A Clustering Tech-
nique for the Identification of Piecewise Affine and Hybrid Systems,” Automatica,
Vol. 39, pp. 205-217, 2003.

[82] R. Vidal, S. Soatto, Y. Ma and S. Sastry. “An Algebraic Geometric Approach
to the Identification of a Class of Linear Hybrid Systems,” IEEE Conference on
Decision and Control, 2003.

[83] J. Bransford, A. L. Brown and R.R. Cocking. How People Learn: Brain, Mind,
Experience, and School, Washington: National Academies Press, 2000.

[84] D. Wood. How Children Think and Learn, 2nd edition. Oxford: Blackwell Pub-
lishers Ltd, 1998.

[85] J. Rosenblatt. “DAMN: A Distributed Architecture for Mobile Navigation,”
Journal of Experimental and Theoretical Artificial Intelligence, Vol. 9(2), pp.
339-60, 1997.

[86] S. B. Williams, P. Newman, J. Rosenblatt, G. Dissanayake and H. Durrant-
Whyte, “Autonomous Underwater Navigation and Control,” Robotica, Vol. 19(5),
pp. 481-496, 2001.

[87] T.D. Murphey and J.W. Burdick. “Feedback Control Methods for Distributed
Manipulation Systems that involve Mechanical Contacts,” International Journal
of Robotics Research, Vol. 23, No. 7-8, pp. 763-781, 2004.

[88] E. I. Verriest. “Multi-Mode Multi-Dimensional Systems,” International Sympo-
sium on the Mathematical Theory of Networks and Systems, Kyoto, Japan, July
2006.

[89] J.J de Koning, G de Groot and G. J van Ingen Schenau. “Ice Friction During
Speed Skating,” Journal of Biomechanics, Vol. 25(6), pp. 565-571, 1992.

[90] G. J van Ingen Schenau. “The Influence of Air Friction in Speed Skating,” Journal
of Biomechanics, Vol. 15(6), pp. 449-458, 1982.

[91] T. R. Mehta and M. Egerstedt. “Learning Multi-Modal Control Programs,” Hy-
brid Systems: Computation and Control, Springer-Verlag, Vol. 3414, pp. 466-479,
March 2005.

[92] T.R. Mehta, F. Delmotte and M. Egerstedt. ‘Motion Alphabet Augmentation
Based on Past Experience,” IEEE Conference on Decision and Control, Dec.
2005.

124

[93] T.R. Mehta and M. Egerstedt. “An Optimal Control Approach to Mode Genera-
tion in Hybrid Systems,” Nonlinear Analysis: Theory, Methods and Applications,
Vol. 65(5), pp. 963-983, September 2006.

[94] T.R. Mehta and M. Egerstedt. “Optimal Membership Functions for Multi-Modal
Control,” American Control Conference, June 2006.

[95] T. R. Mehta, D. Young, E. Verriest and M. Egerstedt. “Optimal Control of
Multi-Dimensional, Hybrid Ice-Skater Model,” American Control Conference,
July 2007.

[96] F. Delmotte, T.R. Mehta and M. Egerstedt. “MODEbox: A Software Tool for
Obtaining Hybrid Control Strategies from Data,” IEEE Robotics and Automa-
tion Magazine, To appear.

[97] T.R. Mehta and M. Egerstedt. “Multi-Modal Control Using Adaptive Motion
Description Languages,” Automatica, submitted Nov, 2006.

125

