
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes

and Systems by means of Computational Intelligence Methods

On the Analysis of Evolutionary Algorithms | A

Proof That Crossover Really Can Help

Thomas Jansen and Ingo Wegener

No. CI-51/98

Technical Report ISSN 1433-3325 December 1998

Secretary of the SFB 531 � University of Dortmund � Dept. of Computer Science/XI
44221 Dortmund � Germany

This work is a product of the Collaborative Research Center 531, \Computational
Intelligence", at the University of Dortmund and was printed with �nancial support of
the Deutsche Forschungsgemeinschaft.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46902616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ON THE ANALYSIS OF EVOLUTIONARY

ALGORITHMS |

A PROOF THAT CROSSOVER REALLY CAN

HELP

Thomas Jansen? and Ingo Wegener?

FB Informatik, LS 2, Univ. Dortmund, 44221 Dortmund, Germany

jansen, wegener@ls2.cs.uni-dortmund.de, fax: 0049-231-7552047

Abstract. There is a lot of experimental evidence that crossover is, for

some functions, an essential operator of evolutionary algorithms. Nev-
ertheless, it was an open problem to prove for some function that an

evolutionary algorithm using crossover is essentially more e�cient than

evolutionary algorithms without crossover. In this paper, such an exam-
ple is presented and its properties are proved.

1 Introduction

Stochastic search strategies have turned out to be e�cient heuristic optimization

techniques, in particular, if not much is known about the structure of the function

and intense algorithmic investigations are not possible. The most popular among

these algorithms are simulated annealing (van Laarhoven and Aarts 1987) and

evolutionary algorithms,which come in great variety (evolutionary programming

(Fogel, Owens, and Walsh 1966), genetic algorithms (Holland 1975, Goldberg

1989), evolution strategies (Schwefel 1995)). There is a lot of \experimental

evidence" that these algorithms perform well in certain situations but there is a

lack of theoretical analysis. It is still a central open problem whether, for some

function, a simulated annealing algorithm with an appropriate cooling schedule

is more e�cient than the best Metropolis algorithm, i. e., a simulated annealing

algorithm with �xed temperature (Jerrum and Sinclair 1997). Here, we solve a

central open problem of similar avor for genetic algorithms based on mutation,

crossover, and �tness based selection. All these three modules are assumed to

be essential but this has not been proved for crossover. Evolutionary algorithms

without crossover are surprisingly e�cient. Juels and Wattenberg (1994) report

that even hill climbing (where the population size equals 1) outperforms genetic

algorithms on nontrivial test functions. For a function called \long path", which

was introduced by Horn, Goldberg, and Deb (1994), Rudolph (1997) has proved

that a hill climber performs at least comparable to genetic algorithms. Indeed,

? This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of
the Collaborative Research Center \Computational Intelligence" (531).

the following central problem considered by Mitchell, Holland, and Forrest (1994)

is open:

� De�ne a family of functions and prove that genetic algorithms are essentially

better than evolutionary algorithms without crossover.

One cannot really doubt that such examples exist. Several possible examples

have been proposed. Forrest and Mitchell (1993) report for the well-known candi-

date called Royal Road function (Mitchell, Forrest, and Holland 1992) that some

random mutation hill climber outperforms genetic algorithms. So the problem is

still open (Mitchell and Forrest 1997). The problem is the di�culty to analyze

the consequences of crossover, since crossover creates dependencies between the

objects. Hence, the solution of the problem is a necessary step to understand the

power of the di�erent genetic operators and to build up a theory on evolutionary

algorithms.

There are some papers dealing with the e�ect of crossover. Baum, Boneh,

and Garrett (1995) use a very unusual crossover operator and a population of

varying size which not really can be called genetic algorithm. Another approach

is to try to understand crossover without �tness based selection. Rabinovich,

Sinclair, and Wigderson (1992) model such genetic algorithms as quadratical

dynamic systems, and Rabani, Rabinovich, and Sinclair (1998) investigate the

isolated e�ects of crossover for populations. These are valuable fundamental

studies. Here, we use a less general approach but we investigate a typical genetic

algorithm based on mutation, uniform crossover, and �tness based selection.

The algorithm is formally presented in Section 2. In Section 3, we prove, for the

chosen functions, that algorithms without crossover necessarily are slow and, in

Section 4, we prove that our genetic algorithm is much faster.

De�nition 1. The function JUMPm;n : f0; 1g
n
! IR is de�ned by

JUMPm;n(x1; : : : ; xn) =

�
m + kxk1 if kxk1 � n �m or kxk1 = n

n� kxk1 otherwise

where kxk1 = x1 + � � �+ xn denotes the number of ones in x.

The value of JUMPm (the index n is usually omitted) grows linearly with

the number of ones in the input but there is a gap between the levels n � m

and n. We try to maximize JUMPm. Then, inputs in the gap are the worst

ones. We expect that we have to create the optimal input (1; 1; : : : ; 1) from

inputs with n�m ones. This \jump" is di�cult for mutations but crossover can

help. More precisely, we prove that time
(nm) is necessary without crossover

while a genetic algorithm can optimize JUMPm with large probability in time

O(n2 logn + 22mn logn) and the same bound holds for the expected time. The

gap is polynomial for constant m and even superpolynomial for m = �(logn).

2

2 Evolutionary Algorithms

We discuss the main operators of evolutionary algorithms working on the state

space S = f0; 1gn where we maximize a �tness function f : S ! IR. We use the

operators initialization, mutation, crossover, and selection.

X := initialize(S; s). Choose randomly and independently s objects from S

to form the population X.

(y; b) := mutate(X; p). Choose randomly an object x 2 X and, indepen-

dently for all positions i 2 f1; : : : ; ng, set yi := 1 � xi with probability p and

yi := xi otherwise. Set b := 0, if x = y, and b := 1 otherwise.

The most common choice is p = 1=n ensuring that, on average, one bit of x

is ipped. The optimality of this choice has been proved for linear functions by

Droste, Jansen, and Wegener (1998b). For some evolutionary algorithms it is not

unusual to abstain from crossover. Evolutionary programming (Fogel, Owen, and

Walsh 1966) and evolution strategies (Schwefel 1995) are examples. The so-called

(�+�)-evolution strategy works with a population of size �. Then � children are

created independently by mutation and the best � objects among the parents

and children are chosen as next population. Ties are broken arbitrarily.

Genetic algorithms typically use crossover. For the function at hand, uniform

crossover is appropriate.

(y; b) := uniform-crossover-and-mutate(X; p). Choose randomly and in-

dependently x
0
; x

00
2 X and, independently for all positions i 2 f1; : : : ; ng, set

zi := x
0
i
with probability 1=2 and zi := x

00
i
otherwise. Then y := mutate(fzg; p).

Set b := 0, if y 2 fx0; x00g, and b := 1 otherwise.

Ronald (1998) suggests to avoid duplicates in the population in order to

prevent populations with many indistinguishable objects. We adopt this idea

and only prevent replications (see below). Moreover, we use a variant of genetic

algorithms known as steady state (Sarma and De Jong 1997). This simpli�es the

analysis, since, in one step, only one new object is created. Now we are able to

describe our algorithm.

Algorithm 1.

1. X := initialize(f0;1gn; n).

2. Let r be a random number from [0; 1] (uniform distribution).

3. If r � 1=(n logn),

(y; b) := uniform-crossover-and-mutate(X; 1=n).

4. If r > 1=(n logn),

(y; b) := mutate(X; 1=n).

5. Choose randomly one of the objects x 2 X with smallest f-value.

6. If b = 1 and f(y) � f(x),

X := (X � fxg)[fyg.

7. Return to Step 2.

Steps 5 and 6 are called steady state selection preventing replications. We do

not care about the choice of an appropriate stopping rule by using as most of the

authors the following complexity measure. We count the number of evaluations

3

of f on created objects until an optimal object is created. In the following we

discuss in detail the evolution strategies described above and the genetic algo-

rithm described in Algorithm 1. We are able to obtain similar results for the

following variants of the algorithm (details can be found in the full version).

1. Evolutionary algorithms without crossover may use subpopulations which

work independently for some time and may exchange information sometimes.

2. Evolutionary algorithms without crossover as well as the genetic algorithm

may choose objects based on their �tness (for mutation, crossover, and/or

selection) as long as objects with higher �tness get a better chance to be

chosen and objects with the same �tness get the same chance to be chosen.

3. The genetic algorithm may refuse to include any duplicate into the popula-

tion.

4. The genetic algorithm may accept replactions as well as duplicates. In this

case, all our results qualitatively still hold. The actual size of the upper

bounds for the genetic algorithm changes in this case, though. At the end of

Section 4 we discuss this in more detail.

5. The genetic algorithm may replace the chosen object by y even if f(y) <

f(x).

3 Evolutionary Algorithms without Crossover on

JUMPm

Evolutionary algorithms without crossover create new objects by mutations only.

If x contains i zeros, the probability of creating the optimal object equals pi(1�

p)n�i. Let m � (1
2
�")n. It follows by Cherno�'s inequality that, for populations

of polynomial size, the probability to have an object x, where jjxjj1 > n�m, in

the �rst population is exponentially small. Then, the expected time to reach the

optimum is bounded below by tm;n = minfp�i(1� p)i�n j 0 � i � n�mg. This

holds since we do not select objects x where n � m < jjxjj1 < n. It is obvious

that tm;n = �(nm), if p = 1=n. The following result follows by easy calculations.

Proposition 1. Let m � (1
2
� ")n for some constant " > 0. Evolutionary al-

gorithms without crossover need expected time
(nm) to optimize JUMPm if

mutations ip bits with probability 1=n. For each mutation probability p, the

expected time is
(nm�c) for each constant c > 0.

Droste, Jansen, and Wegener (1998a) have proved that, for population size

1 and p = 1=n, the expected time of an evolutionary algorithm on JUMPm,

m > 1, equals �(nm).

4 The Genetic Algorithm as Optimizer of JUMPm

The main result of this paper is the following theorem.

4

Theorem 1. Let m be a constant. With probability 1� e
�
(n) the genetic algo-

rithm creates an optimal object for JUMPm within O(n2 logn) steps.

Proof. Our proof strategy is the following. We consider di�erent phases of the

algorithm and \expect" in each phase a certain behavior. If a phase does not

ful�ll our expectation, we estimate the probability of such a \failure" and may

start the next phase under the assumption that no failure has occurred. We

also assume to have not found an optimal object, since otherwise we are done.

Finally, the failure probability can be estimated by the sum of the individual

failure probabilities. The constants c1; c2; c3 > 0 will be chosen appropriately.

Phase 0: Initialization. We expect to obtain only objects x where kxk1 � n�m

or kxk1 = n.

Phase 1: This phase has length c1n
2 logn. We expect to create an optimal

object or to �nish with n objects with n�m ones.

Remark: If Phase 1 is successful, the de�nition of the genetic algorithm ensures

that the property is maintained forever.

Phase 2: This phase has length c2n
2 logn. We expect to create an optimal

object or to �nish with objects with n � m ones where the zeros are not too

concentrated. More precisely, for each bit position i, there are at most 1
4m

n of

the n objects with a zero at position i.

Phase 3: This phase has length c3n
2 logn. We expect that, as long as no optimal

object is created, the n objects contain at each position i 2 f1; : : : ; ng altogether

at most 1
2m

n zeros. Moreover, we expect to create an optimal object.

Analysis of Phase 1. We apply results on the coupon collector's problem

(see Motwani and Raghavan 1995). There are n empty buckets and balls are

thrown randomly and independently into the buckets. Then the probability that,

after 2n lnn throws, there is still an empty bucket is O(e�n). This result remains

true if, between the throws, we may rename the buckets.

We consider the n2 bit positions of the n objects as buckets. Buckets corre-

sponding to zeros are called empty. The genetic algorithm never increases the

number of zeros. Hence, we slow down the process by ignoring the e�ect of new

objects created by crossover or by a mutation ipping more than one bit. We

further slow down the process by changing the �tness to kxk1 and waiting for

ones at all positions. If a mutation ips a single bit from 0 to 1, we obtain a

better object which is chosen. The number of empty buckets decreases at least

by 1. If a single bit ips from 1 to 0, we ignore possible positive e�ects (perhaps

we replace a much worse object). Hence, by the result on the coupon collector's

problem, the failure probability is bounded by e�
(n2) after 4n2 lnn good steps.

A step is not good if we choose crossover (probability 1=n logn) or we ip

not exactly one bit. The probability of the last event equals 1�n �
1
n
� (1� 1

n
)n�1

and is bounded by a constant a < 1. Hence, by Cherno�'s bound, we can bound

the probability of having enough good steps among c1n
2 lnn steps by e

�
(n2),

if c1 is large enough.

Analysis of Phase 2. We have n objects with m zeros each. We cannot

prove that the mn zeros are somehow nicely distributed among the positions.

Good objects tend to create similar good objects, at least in the �rst phase. The

5

population may be \quite concentrated" at the end of the �rst phase. Then,

crossover cannot help. We prove that mutations ensure in the second phase that

the zeros become \somehow distributed".

We only investigate the �rst position and later multiply the failure probability

by n to obtain a common result for all positions. Let z be the number of zeros

in the �rst position of the objects. Then z � n in the beginning and we claim

that, with high probability, z � 1
4m

n at the end. We look for an upper bound

p
+(z) on the probability to increase the number of zeros in one round and for

a lower bound p
�(z) on the probability to decrease the number of zeros in one

round. The number of zeros at a �xed position can change at most by 1 in one

round. As long as we do not create an optimal object, all objects contain n�m

ones.

Let A+ resp. A� be the event that (given z) the number of zeros (at position

1) increases resp. decreases in one round. Then

A
+
� B [

0
@
B \C \

2
4
0
@
D \E \

[
1�i�m�1

F

+
i

1
A [

0
@
D \E \

[
1�i�m

G

+
i

1
A
3
5
1
A

with the following meaning of the events:

{ B: crossover is chosen as operator.

{ C: an object with a one at position 1 is chosen for replacement.

{ D: an object with a zero at position 1 is chosen for mutation.

{ E: the bit at position 1 does not ip.

{ F

+
i
: there are exactly i positions among the (m� 1) 0-positions j 6= 1 which

ip and exactly i positions among the (n � m) 1-positions which ip. We

can exclude the case i = 0 which leads to a replication.

{ G

+
i
: there are exactly i positions among the m 0-positions which ip and

exactly i � 1 positions among the (n�m � 1) 1-positions j 6= 1 which ip.

Hence,

p
+(z) �

1

n logn
+

�
1�

1

n logn

�
n� z

n�
z

n

m�1X
i=1

�
m � 1

i

��
n�m

i

��
1

n

�2i�
1�

1

n

�n�2i

+
n� z

n

mX
i=1

�
m

i

��
n�m� 1

i� 1

��
1

n

�2i�
1�

1

n

�n�2i �

�
1

n logn
+

�
1�

1

n logn

�
n� z

n�
z

n

(m � 1)(n�m)
1

n
2

�
1�

1

n

�n�2
+O

�
m

2

n
2

�

+
n� z

n

m

1

n
2

�
1�

1

n

�n�2
+O

�
m

2

n
3

�!�
:

6

Similarly, we get

A
�
� B \C \

2
4
0
@
D \E \

[
1�i�m

F

�
i

1
A [

0
@
D \E \

[
1�i�m

G

�
i

1
A
3
5

where

{ F

�

i
: there are exactly i � 1 positions among the (m � 1) 0-positions j 6= 1

which ip and exactly i positions among the (n�m) 1-positions which ip.

{ G

�
i
: there are exactly i positions among the m 0-positions which ip and

exactly i positions among the (n � m � 1) 1-positions j 6= 1 which ip (if

i = 0, we get the case of a replication).

Hence,

p
�(z) �

�
1�

1

n logn

�
z

n

�
z

n

mX
i=1

�
m� 1

i� 1

��
n�m

i

��
1

n

�2i�
1�

1

n

�n�2i
+

n � z

n

mX
i=1

�
m

i

��
n�m� 1

i

��
1

n

�2i�
1�

1

n

�n�2i �

�

�
1�

1

n logn

�
z

n

�
z

n

(n �m)
1

n
2

�
1�

1

n

�n�2

+
n � z

n

m(n �m� 1)
1

n
2

�
1�

1

n

�n�2 �
:

Sincem is a constant, we obtain, if z � 1
8m

n, that p�(z) � p
�(z)�p+(z) =
(1

n
)

and it is also easy to see that p�(z) = O(1
n
). We call a step essential, if the num-

ber of zeros in the �rst position changes. The length of Phase 2 is c2n
2 logn. The

following considerations work under the assumption z �
1
8m

n. The probability

that a step is essential is
(1
n
). Hence, for come c02 > 0, the probability of having

less than c
0
2n logn essential steps, is bounded by Cherno�'s bound by e

�
(n).

We assume that this failure does not occur. Let q+(z) resp. q�(z) be the condi-

tional probability of increasing resp. decreasing the number of zeros in essential

steps. Then q
+(z) = p

+(z)=(p+(z) + p
�(z)), q�(z) = p

�(z)=(p+(z) + p
�(z)),

and q
�(z) � q

+(z) = (p�(z)� p
+(z))=(p+(z) + p

�(z)) =
(1). Hence, for some

c
00
2 > 0, the probability of decreasing the number of zeros by less than c

00
2n is

bounded by Cherno�'s bound by e�
(n). We obtain c002 = 1 by choosing c2 large

enough. But this implies that we have at some point of time less than z� = 1
8m

n

zeros at position 1 and our estimations on p
+(z) and p

�(z) do not hold. We

investigate the last point of time with z
� zeros at position 1. Then there are t

essential steps left. If t � 1
8m

n, it is sure that we stop with at most 1
4m

n zeros

at position 1. If t > 1
8m

n, we can apply Cherno�'s bound and obtain a failure

probability of e�
(n). Altogether the failure probability is ne�
(n) = e
�
(n).

Analysis of Phase 3. First, we investigate the probability that the number

of zeros at position 1 reaches 1
2m

n. For this purpose, we consider subphases

starting at points of time where the number of zeros equals 1
4m

n. A subphase

7

where the number of zeros is less than 1
4m

n cannot cause a failure. The same

holds for subphases whose length is bounded by 1
4m

n. In all other cases we

can apply Cherno�'s bound and the assumption z �
1
4m

n. Hence, the failure

probability for each subphase is bounded by e
�
(n) and the same holds for all

subphases and positions altogether. We create an optimal object if we perform

crossover (probability 1
n logn

) if the following mutation does not ip any bit

(probability (1 � 1
n
)n), if the chosen bit strings do not share a zero at some

position (probability at least 1
2
, see below) and the crossover chooses at each

of the 2m positions, where the objects di�er, the object with the one at this

position (probability (1
2
)2m). We prove the open claim. We �x one object of the

population. The m zeros are w. l. o. g. at the positions 1; : : : ;m. There are at

most 1
2m

n objects with a zero at some �xed position j 2 f1; : : : ; ng, altogether

at most 1
2
n colliding objects. Hence, the probability of choosing a second object

without collision with the �rst one is at least 1
2
. Hence, the success probability

is at least 1
n logn

(1� 1
n
)n2�2m�1 and the failure probability for c3n

2 logn steps

is bounded by e�
(n).

Combining all estimations we have proved the theorem. 2

Corollary 1. Let m be a constant. The expected time of the genetic algorithm

on JUMPm is bounded by O(n2 logn).

Proof. We remark that Theorem 1 can be proved for arbitrary starting popula-

tions instead of random ones. Then we add one phase of length �(n2 logn) at

the beginning. With the analysis of Phase 1, it follows that the probability that

Phase 0 ends with a population containing at least one object with i ones, where

n�m < i < n, is e�
(n). The expected number of superrounds consisting of the

four phases is 1 + e
�
(n). 2

In the following, we generalize our results to the case m = O(logn) where

we reduce the crossover probability to 1
n log3 n

. Nothing has to be changed for

Phase 1 (and Phase 0). In Phase 2, we obtain p
�(z) � p

+(z) =
(1
n log2 n

),

p
�(z) = O(logn

n
), and q�(z)� q

+(z) =
(1
log3 n

), if z � 1
8m

n. Then O(n2 log5 n)

steps are enough to obtain the desired properties with a probability bounded

by e
�
(n�) for each � < 1. The same arguments work for the �rst property of

Phase 3 as long as the length is polynomially bounded. In order to have an

exponentially small failure probability for the event to create an optimal object,

we increase the number of steps to �(n222m). If we are satis�ed with a constant

success probability, �(n(log3 n)22m) steps are su�cient. We summarize these

considerations.

Theorem 2. Let m = O(logn). For each constant � < 1, with probability

1� e
�
(n�), the genetic algorithm creates an optimal object for JUMPm within

O(n2(log5 n+ 22m)) steps. The expected run time is bounded by

O(n log3 n(n log2 n+ 22m)):

8

If we allow replications as well as duplicates things change a little. We con-

centrate on the case where m is a constant. Nothing changes for phase 0. Our

analysis of phase 1 remains valid, too. We remark that replications occur with

probability at least (1 � 1
n logn

)(1 � 1
n
)n, so the tendency of good objects to

create similar or equal objects in the �rst phase is enlarged. We change the

length of phase 2 to a(n) � c2n
3 logn and discuss the role of a(n) later. We have

to adapt our considerations to the circumstance that replications are allowed.

For A+ we have to include the event F+
0 , for A� we include G�

0 . We still have

p
�(z) � p

�(z)�p+(z) =
(1
nm2) =
(1

n
), but p�(z) = O(1

n
) does not hold, now.

We consider only essential steps that still occur with probability
(1
n
). Let again

q
�(z) resp. q+(z) be the conditional probabilities for decreasing resp. increasing

the number of zeros in one essential step. Now, we have q�(z)� q
+(z) =
(1

n
).

If in exactly d of a(n) �c02n
2 logn essential steps the number of zeros is decreased,

we end up with z + a(n) � c02n
2 logn � 2d zeros. Applying Cherno�'s inequality

yields that the probability not to decrease the number of zeros to at most 1
4m

n

in a(n) � c02n
2 logn essential steps is e�
(a(n) logn). Choosing a(n) = n

logn
yields

that with probability 1� e
�
(n) the number of zeros is at most 1

4m
n at all po-

sitions after phase 2, which now has a length of c2n
4 steps. With a(n) = logn,

phase 2 needs only c2n
3 log2 n steps, but the probability of a failure is increased

to e
�
(log2 n), which is still subpolynomial. In Phase 3 replications change the

probabilities for changing the number of zeros in the same way as in phase 2.

Therefore, we can adapt our proof to the modi�ed algorithm the same way as we

did for phase 2. Since we are satis�ed, if the number of zeros is not increasing too

much, compared to phase 2, where we need a decreasement, it is not necessary

to adjust the length of phase 3. We conclude that a genetic algorithm that al-

lows replications �nds a optimum of JUMPm, for constant m, in O(a(n)n3 logn)

steps with probability e�
(a(n) logn). We remark that the analysis of this variant

of a genetic algorithm can be adapted to m = O(logn), too.

5 Conclusion

Evolutionary and genetic algorithms are often used in applications but the theory

on these algorithms is in its infancy. In order to obtain a theory on evolutionary

and genetic algorithms, one has to understand the main operators. This paper

contains the �rst proof that, for some function, genetic algorithms with crossover

can be much more e�cient (polynomial versus superpolynomial) than all types

of evolutionary algorithms without crossover. The speci�c bounds are less im-

portant than the fact that we have analytical tools to prove such a result. The

di�erence in the behavior of the algorithms can be recognized in experiments

already for small parameters, e. g. n = 50 and m = 3.

References

Baum, E. B., Boneh, D., and Garret, C.: On genetic algorithms. In Proceedings of the
8th Conference on Computational Learning Theory (COLT '95), (1995) 230{239.

9

Droste, S., Jansen, Th., and Wegener, I.: On the Analysis of the (1 + 1) Evolution-

ary Algorithm. Tech. Report CI-21/98. Collaborative Research Center 531, Reihe

Computational Intelligence, Univ. of Dortmund, Germany, (1998).

Droste, S., Jansen, Th., Wegener, I.: A rigorous complexity analysis of the (1 + 1)
evolutionary algorithm for separable functions with Boolean inputs. Evolutionary

Algorithms 6(2) (1998) 185{196.
Fogel, L. J., Owens, A. J., and Walsh, M. J.: Arti�cial Intelligence Through Simulated

Evolutions. (1966) Wiley, New York.
Forrest, S. and Mitchell, M.: Relative building block �tness and the building block

hypothesis. In D. Whitley (Ed.): Foundations of Genetic Algorithms 2, (1993) 198{

226, Morgan Kaufmann, San Mateo, CA.

Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
(1989) Addison Wesley, Reading, Mass.

Holland, J.H.: Adaption in Natural and Arti�cial Systems. (1975) Univ. of Michigan.

Horn, J., Goldberg, D.E., and Deb, K.: Long Path problems. In Y. Davidor, H.-P.
Schwefel, and R. M�anner (Eds.): Parallel Problem Solving from Nature (PPSN

III), (1994) 149{158, Springer, Berlin, Germany.
Jerrum, M. and Sinclair, A.: The Markov Chain Monte Carlo method: An approach to

approximate counting and integration. In D. S. Hochbaum (Ed.): Approximation

Algorithms for NP-hard Problems. (1997) 482{520, PWS Publishers, Boston, MA.
Juels, A. and Wattenberg, M.: Stochastic Hillclimbing as a Baseline Method for Eval-

uating Genetic Algorithms, Tech. Report CSD-94-834, (1994), Univ. of California.

van Laarhoven, P. J.M. and Aarts, E.H.L.: Simulated Annealing. Theory and Appli-

cations, (1987), Reidel, Dordrecht, The Netherlands.
Mitchell, M. and Forrest, S.: Royal Road functions. In T. B�ack, D. B. Fogel and

Z. Michalewicz (Eds.): Handbook of Evolutionary Computation, (1997) B2.7:20{

B2.7:25, Oxford University Press, Oxford UK.
Mitchell, M., Forrest, S., and Holland, J.H.: The Royal Road function for genetic al-

gorithms: Fitness landscapes and GA performance. In F. J. Varela and P. Bourgine
(Eds.): Proceedings of the First European Conference on Arti�cial Life, (1992)

245{254, MIT Press, Cambridge, MA.

Mitchell, M., Holland, J.H., and Forrest, S.: When will a genetic algorithm outperform

hill climbing? In J. Cowan, G. Tesauro, and J. Alspector (Eds.): Advances in Neural

Information Processing Systems, (1994), Morgan Kaufman, San Francisco, CA.

Motwani, R. and Raghavan, P.: Randomized Algorithms. (1995) Cambridge University

Press, Cambridge.

Rabani, Y., Rabinovich, Y., and Sinclair, A.: A computational view of population

genetics. Random Structures and Algorithms 12(4) (1998) 314{334.
Rabinovich, Y., Sinclair, A., and Wigderson, A.: Quadratical dynamical systems (pre-

liminary version). In Proceedings of the 33rd IEEE Symposium on Foundations of

Computer Science (FOCS '92), (1992) 304{313, IEEE Press Piscataway, NJ.
Ronald, S.: Duplicate genotypes in a genetic algorithm. In Proceedings of the IEEE

International Conference on Evolutionary Computation (ICEC '98), (1998) 793{
798, IEEE Press Piscataway, NJ.

Rudolph, G.: How mutation and selection solve long path problems in polynomial

expected time. Evolutionary Computation 4(2) (1997) 195{205.
Sarma J. and De Jong, K.: Generation gap methods. In T.B�ack, D. B. Fogel and Z.

Michalewicz (Eds.): Handbook of Evolutionary Computation, (1997) C2.7, Oxford

University Press, UK.
Schwefel, H.-P.: Evolution and Optimum Seeking. (1995) Wiley, New-York, NY.

10

