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Abstract

In this paper we propose a hybrid fuzzy{evolutionary system for fuzzy modelling in high di-

mensional spaces. The system architecture is based on a Michigan{style approach (one individual

represents one fuzzy rule). The design of the evolutionary algorithm makes use of a distance measure

in the search space that in turn re
ects some heuristic assumptions about the �tness landscape. Addi-

tionally, strategy parameters are dynamically adapted by means of a fuzzy controller. The approach is

successfully applied to a complex benchmark problem as well as to several real{world modelling tasks

such as the cancellation behaviour of insurance clients and the classi�cation of automatic gearboxes.

1 Introduction

The applicability and acceptance of data{based fuzzy modelling methods are limited mainly by two

factors. First, their acceptance depends very much on the method's ability to generate small, transparent

rule bases. Second, the computing time must be acceptable even in the presence of many linguistic

variables and values.

The Fuzzy{ROSA2 method [1, 2, 3] was developed to meet these goals. Several successful applications

in the domains of fuzzy modelling, robotic control, classi�cation and prediction [4, 5, 6, 7, 8] show the

usefulness of this concept, which is brie
y described in Section 1.1.

In order to achieve reasonable computation times in high dimensional spaces, rule searches in the Fuzzy{

ROSA method are based on an evolutionary algorithm (EA). In Section 1.2, this EA is compared to other

approaches on evolutionary data{based rule generation from the literature. A novel implementation of

an evolutionary algorithm based on a distance measure in the set of fuzzy rules is described in Section 2.

This concept is elaborated in Section 3 yielding a hybrid adaptive EA. Finally, in Section 4 two practical

applications are presented.

1.1 Fuzzy{ROSA Method

The basic idea of the Fuzzy{ROSA method is to apply a statistical relevance test to fuzzy rules. The test

assess the potential of single fuzzy rules to describe a relevant aspect of the system under consideration
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[9, 10, 11]. This reduces the problem of �nding a good rule base to the problem of �nding single relevant

rules. On the other hand, since each rule with high relevance is supposed to express an important aspect of

the system, such rules are meaningful by themselves, which leads to more transparent and comprehensible

rule bases.

The Fuzzy{ROSA method can also deal with generalizing (incomplete) rules, where the length of premises

may di�er, i.e., consist of a variing number of linguistic expressions (Section 2.2.1). If a single rule is

composed of fewer expressions than the total number of input variables, the rule covers several linguistic

input situations. In particular, for large search spaces with a large number of input variables, such rule

bases turn out to be much smaller than rule bases consisting of complete rules only.

The Fuzzy{ROSA approach does not aim at locating the global optimum (which is in the general case not

achievable in polynomial time and therefore impractical for the majority of applications), but at �nding

satisfactory solutions in an acceptable time. Therefore, the rule generation process is divided into four

main steps. There are alternative strategies available for each step, so that the method can be adapted

to di�erent application requirements (e.g., for modelling, classi�cation, approximation or prediction) and

problem sizes (e.g., numbers of variables, linguistic values and data sets).

Project De�nition: Prior to rule generation, the membership functions of the input and output

variables of the system under consideration are extracted by cluster analysis (e.g., [12]), heuristics

or domain knowledge. A maximal combination depth of linguistic statements in the premise must

be chosen to reduce the computational e�ort.

Rule Generation: Depending on the size of the search space, a complete search, an evolutionary

search [13], or a combination of both is selected. The rule base is generated by iteratively collecting

relevant rules.

O�{line Rule Reduction: The number of generated rules is reduced by o�{line rule reduction methods

[14] that meet di�erent requirements, e.g., completely covering all input situations, restricting the

modelling error or following a strictly bounded number of rules.

Analysis and Optimization: The analysis of the rule base allows an assessment of the modelling

process as well as of model quality and provides feedback for problem formulation. Finally, the

input{output behaviour of the fuzzy system obtained is optimized by adjusting the remaining free

parameters.

1.2 Evolutionary Search Concepts for Data{based Fuzzy Modelling

In the literature, we �nd three main application areas of evolutionary algorithms in the �eld of fuzzy

modelling: optimization of membership functions (e.g., [15]), optimization (generation) of rules (e.g.,

[16]) and simultaneous optimization of both (e.g., [17]).

In the case of rule base optimization (generation), most evolutionary algorithms use a �xed rule base

structure of complete rules (e.g., [17]), where one individual in the evolving population represents a whole

rule base (Pittsburgh style [18, 19]). Consider a fairly small example with six input variables and one

output variable, with �ve linguistic values each. This leads to 15,625 di�erent linguistic input situations

with one rule for each input case. Obviously, it is almost impossible to interpret such a rule base. On

the other hand, the size of the associated search space grows exponentially with the number of input

situations (in the above example more than 1010000 di�erent rule bases with complete rules). For these

reasons, it is always time-consuming and often impossible to eÆciently identify high quality rule base

using this approach. In the case of simultaneous optimization of membership functions and rules the

situation becomes even worse. Therefore, the Pittsburgh style is often not practicable for more than

three or four variables and more complex applications are rarely published.

Contrarily, in our approach, which is depicted in Figure 1, each individual represents a single fuzzy rule

(Michigan style [18, 19]). While the evolutionary algorithm is searching for the 'best' rule, many good
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Figure 1: Hybrid Evolutionary Search Concept

rules are generated. The basic idea is to collect these good (relevant) rules during the course of evolution

(Figure 1).

In comparison to other approaches that also take single rules as individuals (e.g., [17, 16]), our concept

is based on one population and a single evolution process.

Since the Fuzzy{ROSA approach makes use of generalizing (incomplete) rules, a sophisticated genetic

representation and extended genetic operators had to be developed (Section 2.3 ).

As described above, the �tness evaluation of individuals is based solely on the relevance of single rules.

Thus, the overall quality of the rule base collected at the current generation does not in
uence the

evolutionary search process directly. In some situations this might lead to a rule base consisting of

a few rules of high relevance but poor overall performance. Consequently, additional measures must

be introduced in order to avoid premature stagnation and to keep the algorithm exploring the search

space. This can be achieved by dynamically adapting some of the strategy variables depending on the

performance of the current rule base collected during the course of evolution. The implementation is

based on a hybrid fuzzy{evolutionary approach (Section 3).

2 Evolutionary Fuzzy Rule Search

2.1 Design of the Evolutionary Algorithm

A common approach for the design of evolutionary algorithms is to choose an instance from the set of

\canonical" evolutionary algorithms, such as a genetic algorithm (GA) or an evolution strategy (ES)[20].

This requires a mapping, which translates the real{world problem formulation into the standard genetic

representation of the choosen algorithm. A disadvantage of this mapping between the genotype and phe-

notype spaces is that the e�ects of genetic operators (mutation and recombination) on �tness variations

are diÆcult to determine. An ill-de�ned mapping may introduce a bias (independent of selection) into

the search process as well as a weakening of the causality between variations of the genotype and the

corresponding �tness values [21, 22].

In order to avoid these diÆculties, the design of the evolutionary search is based on the concept of the

Metric Based Evolutionary Algorithm (MBEA)[23]. The basic idea of the MBEA is to express domain

knowledge as a metric on the phenotype space, such that similar individuals (according to the metric)

have similar �tness values. Depending on the mapping, this metric must be translated to the genotype

space. Based on this metric, a set of formal requirements for the genetic mutation and recombination

operators can be de�ned, e.g., bias free operation, locality (small mutations occur more frequently than



large ones), reachability (any point in the search space can be reached from any other point in a �nite

sequence of mutation steps) and feature preservation (the distance from parents to o�spring is limited).

For our application, it is diÆcult if not impossible to meet all the requirements of the MBEA, due to the

complexity of the search space, i.e., \What is the distance between two fuzzy rules?". On the other hand,

there are some reasonable heuristic assumptions about the e�ect of modi�cations of a fuzzy rule, e.g.,

a change of a linguistic value is assumed to have a smaller e�ect than a change of a linguistic variable.

These heuristic assumptions are implemented as probabilities of certain mutation events.

2.2 Heuristic Distance Measure for Fuzzy Rules+

The heuristic distance measure (HDM) for fuzzy rules, presented in this section, was developed for two

reasons. First, for the design of a MBEA it is indispensable to quantify the e�ects of modi�cations of

the individuals (fuzzy rules). Second, the distance between individuals can be used as a measure for the

diversity of the population (Section 3.2.1). The introduction of the HDM is structured as follows. In

Section 2.2.1 the structure of fuzzy rules with varying combination depth is brie
y described. Then an

extended distance measure for linguistic expressions is proposed (Section 2.2.2). Finally in section 2.2.3,

a kind of average distance between the linguistic expressions of two rules is introduced as HDM.

2.2.1 Structure of Rules

In the Fuzzy{ROSA system IF{THEN{rules have the following form

IF P THEN C with P = e1 ^ � � � ^ ed ; (1)

where the premise part P consists of a conjunction of d linguistic expressions ei and C denotes the

conclusion. The number of linguistic expressions d is called the combination depth. Given the input

variable vi with a corresponding linguistic value wi and the output variable y with a corresponding

linguistic value wc, the linguistic expressions ei and the conclusion C are de�ned by

ei = (vi; ti; wi; ni) and C = (wc) ; (2)

where ei is interpreted as

vi(T � ti) =

(
wi if ni = 0

:wi if ni = 1
: (3)

The Fuzzy{ROSA method allows to include the history of the variable vi which is re
ected by the time

delay ti 2 N, and T 2 N denotes the current time. Depending on the value of 
ag ni 2 f0; 1g expression

ei is interpreted as \if variable vi at time (T � ti) is equal to wi" in the case of ni = 0 and \if variable

vi at time (T � ti) is not equal to wi" in the case of ni = 1.

Likewise the conclusion C is interpreted as

y(T ) = wc (4)

The Fuzzy{ROSA method aims at identifying non contradictory premises. Therefore, the linguistic

expressions of a single premise have to di�er in either the linguistic variable or time depth.



De�nition 1 (Combination Restriction) For a given premise P the following condition must hold:

8ei; ej 2 P j i 6= j ) vi 6= vj _ ti 6= tj (5)

2.2.2 Distance between Linguistic Expressions

In the literature several measures for the distance between linguistic expressions (fuzzy sets) can be found.

In order to meet all requirements of the Fuzzy{ROSA method, i.e. negated linguistic expressions, the

measure proposed in [24] has to be extended:

De�nition 2 (Distance between linguistic expressions) The distance �(e; e0) between two linguis-

tic expressions e and e0 for the same linguistic variable v and time t is de�ned as:

�(e; e0) =

8>><
>>:

j w � w0 j

sv � 1
, if n = n0

1�
1

sv � 1
, if n 6= n0

(6)

with

e = (v; t; w; n)

e0 = (v; t; w0; n0)

sv 2 N : number of linguistic values of variable v

In the �rst part of Equation 6 the distance j w � w0 j between the linguistic values is normalized by the

maximum distance (sv � 1) (Figure 2 A).

Figure 2: Heuristic Distance Measures

The case n 6= n0 is somewhat more complicated, since a negated linguistic expression covers more linguistic

input situations compared to a positive linguistic expression (e.g. n = 0 and n0 = 1 in Figure 2 B). It

seems reasonable to assume, that larger di�erences in the number of covered input situations should lead

to a larger distances. Therefore in the second part of Equation 6 the ratio of covered input situations

1=(1� sv) is subtracted from one. The following cases must be considered separately:

sv = 1 : does not appear, because negation is not possible

sv = 2 : does not appear, because instead of negation the linguistic value can be changed

sv � 1 : the distance is maximal �(e; e0) = (1� 1

sv�1
) � 1



2.2.3 Distance between Fuzzy Rules

In the evolutionary search of the Fuzzy-ROSA method the �tness for a premise P is computed as the

maximum �tness of all valid fuzzy rules with premise P [13]. Therefore, we may neglect the conclusion

C when computing the distance of two fuzzy rules.

Since the Fuzzy{ROSA method can deal with generalizing rules an additional measure must be de�ned

for the distance between a single linguistic expression and a generalizing premises. Take for instance the

following two rules (see also Figure 2 C):

rule 1: IF (x1 = 3) ^ (x2 = 4) THEN : : :

rule 2: IF (x1 = 3) THEN : : :

Rule 2 is more general than rule 1, because the premise of rule 2 holds for all linguistic values of the

variable x2. Analogous to the approach for the negated linguistic expressions in Equation 6, the de�nition

of the distance is based on the ratio of the covered input situations.

De�nition 3 (Distance between a linguistic expression and a generalizing premise) The dis-

tance �G of a linguistic expression e = (v; t; w; n) to a generalizing premise, which covers all input

situations speci�ed by the linguistic variable v and the time t is calculated as follows:

�G(e) =

8>><
>>:

1�
1

sv
, if n = 0 (e is not negated)

1

sv
, if n = 1 (e is negated)

(7)

with sv 2 N : number of linguistic values of variable v.

Consequently, a larger di�erence in the number of covered input situations leads to a larger distance �G.

The following cases must be considered separately:

sv = 1 : no generalization possible, distance �G = 0

sv = 2 : distance �G = 0:5

sv � 1 : the distance is maximal �G(e) = (1� 1

sv
) � 1 , if e is not negated

the distance is minimal �G(e) = ( 1

sv
) � 0 , if e is negated

Based on De�nition 2 and 3 the HDM is calculated as an average over the distance between the linguistic

expressions of two premises.

De�nition 4 (Distance between premises) The distance D between two premises P1 and P2

is de�ned as follows:

D(P1; P2) =

X
e;e02Peq

�(e; e0) +
X

e002Pdf

�G(e
00)

j Peq j + j Pdf j

where

Peq := f e1 = (v1; t1; w1; n1) j e1 2 P1
^ (9(v2; t2; w2; n2) 2 P2 : v2 = v1 ^ t2 = t1)g

Pdf := f e1 = (v1; t1; w1; n1) j (e1 2 P1 _ e1 2 P2) ^

(8(v0; t0; w0; n0) 2 Peq : v0 6= v1 _ t0 6= t1)g



To summarize, D is the sum of the distance between linguistic expressions, which are equal in the linguistic

variable v and time t, and the distance of the remaining linguistic expressions after De�nition 3 divided

by the number of addends.

2.3 Genetic Representation and Genetic Operators+

As described in the previous section the search space consists of all feasible premises P of the form

P = e1 ^ � � � ^ ed. Feasibility in the sense of De�nition 1 has to be preserved by the genetic operators.

Genetic operators like mutation and recombination modify the genetic information through primitive op-

erations such as bit 
ips or concatenation in the case of binary strings. By the term genetic representation

(of the search space) we regard an abstract datatype which provides these primitive operators. Thus, the

design of the genetic operators depends on the algebraic properties of the genetic representation, such as

arithmetic operators and order relations. Therefore, the eÆciency of the search process strongly depends

on the choice of the genetic representation as well3.

The approach suggested here is based on the recent work of Krone and Kiendl [13], where the authors

proposed an Integer{GA{like search strategy. But a careful review showed some de�ciencies of this

algorithm due to the properties of the underlying representation. In the following we describe some

aspects of the original algorithm since this illustrates some pitfalls of EA-design frequently found in the

literature.

Each individual of the original algorithm was de�ned as a list of linguistic expressions ei = (gi; di; ni; ti),

where gi is called an event at time ti, and di and ni are two 
ags for activation and negation of the

linguistic expression ei. A sample individual is depicted in �gure 3.

linguistic expression 1 linguistic expression d

g1 d1 n1 t1 � � � gd dd nd tc

Figure 3: Representation of a premise (individual)

The events gi carry two kinds of information: The variable name and the linguistic value. Since the set

of variables as well as the set of linguistic values are �nite this is achieved by just ordering the set of all

possible events in a somewhat arbitrary way, like in the following example:

variable value index

temp = cold 1

temp = hot 2

pres = low 3

pres = medium 4

pres = high 5

cur = low 6

cur = high 7

This means that the genotype-phenotype mapping does not preserve similarities since similar values of

gi, e.g., gi = 2 and gi = 3, have completely di�erent interpretations in the phenotype-space.

Mutations on the gi are performed by addition of a random value, where small changes occur more

frequent than large ones, i.e., the mutation operator makes use of the arbitrary order on the set of events.

Thus, the disruptiveness of even the smallest mutation is completely di�erent depending on the current

value of gi and the order on the set of events.

3It is also true, that the eÆciency of the primitive operators depending on the chosen datastructure has a great impact
on the overall performance. I.e., if the runtime of primitive operations scale exponentially with, say, the cardinality of
individuals this would limit the applicability of the design just as a poor design of the genetic operators.



Recombination on the gi is performed by averaging the values at corresponding positions of the parents.

Again, recombination does not preserve the properties of the parents, since the interpretation of the

o�spring might be completely di�erent compared to the parents. Additionally, recombination introduces

a strong bias to values of s=2 if s is the number of states.

Finally, the genetic operators do not guarantee the feasibility of premises according to de�nition 1 of the

previous chapter. Since there is a large set of infeasible premises the algorithm spends a lot of time in

evaluating and discarding infeasible solutions.

Motivated by this observations and in order to obtain transparent strategy parameters for the fuzzy-

adaptation, we decided for a redesign of the genetic representation and operators. The redesign was

based on the design rules for the MBEA proposed by Droste und Wiesmann [23].

2.3.1 New Representation based on Relational Algebra

The elements of the search space, i.e. the set of feasible premises, have the following properties:

Not ordered: A premise is a conjunction of linguistic expressions. Since the conjunction is commutative

there is no inherent order on the set of linguistic expressions of a fuzzy rule.

Uniqueness: The linguistic expressions are unique in the sense that they can be unambiguously distin-

guished by the values of their components.

Varying length: The length of the premise, i.e. the number of linguistic expressions, is not constant.

Combination Restrictions: Contradictions of the Form IF (v(t) = w) AND (v(t) = w0) THEN : : : ,

where w 6= w0 are infeasible.

The �rst step in the design process was to de�ne an abstract datatype, revealing these and only these

properties. (Remember, that the reason for the weakness of the original EA resulted from introducing

an arti�cial ordering on the set of events, which in turn in
uenced the design of the genetic operators.)

Therefore, we de�ne a premise as an unordered set of linguistic expressions. The feasibility of the premises

are guaranteed by introducing special key conditions. The following speci�cation is based on relational

algebra, gleaned from database design4.

De�nition 5 (Universe �) The universe �(E) denotes the set of all feasible objects of type E.

De�nition 6 (State �) The state �(E) denotes a set of objects of type E, where �(E) � �(E) and

�(E) is �nite.

De�nition 7 (State �i) The state �i(E) denotes the i-th set of objects of type E, where �i(E) � �(E)

and �i(E) �nite.

De�nition 8 (Type R : linguistic expression) The object type R describes the structure of the object

\linguistic expression". The structure consists of several object attributes. The relation R has the form:

R(v : Dv; t : Dt; w : Dw; n : Dn) (8)

4Please do not confuse the meaning of the letters � (universe) and � (state) with the meaning of � (population size) and
� (step size) in the traditional notation for evolutionary algorithms.



Here v; t; w; n denote the linguistic variable, the time depth, the linguistic value and the negation 
ag,

respectively, and Dv ; : : : ; Dn denote the corresponding data structures. The underlined attributes in (8)

are treated as key conditions.

A tuple e = (v; t; w; n) 2 �(R) denotes an object of type R, i.e. a linguistic expression.

De�nition 9 (Key condition) Given R(v; t; w; n). fv; tg is a key condition of R if

8�8e; e0 2 �(R) : e 6= e0 ) v 6= v0 _ t 6= t0; where e = (v; t; w; n) and e0 = (v0; t0; w0; n0)

The key condition prohibits the existence of two linguistic expressions with identical v and t in a single

premise �(R).

De�nition 10 (Premise in the evolutionary search) The i-th set of linguistic expressions (of type

R) is a premise �i(R) in the evolutionary search, where �i(R) � �(R) and �i(R) �nite.

In �gure 4 the relationship of universe �(R), premise �i(R) and a single linguistic expression of type R

is illustrated.

Figure 4: Relationship of universe, premises and linguistic expressions.

While in the universe �(R) elements with identical key values exist, all key values in a single premise are

unique.

De�nition 11 (Individual and rule) An individual I which represents a rule, consits of a premise

�i(R) for which the key condition holds as well as a conclusion a 2 �c(R). The set �c(R) contains all

linguistic expressions of the conclusion.

To summarize, the premises P are de�ned as sets where additional key conditions have to be ful�lled.

Thus, the de�nition of genetic operators have to be based on set operations:

De�nition 12 (Basic operations for modi�cation of a premise �i(R)) Let e; e1; e2 2 �(R).

insert(R; i; e) : �i;new(R) = �i;old(R) [ feg (9)

delete(R; i; e) : �i;new(R) = �i;old(R)� feg (10)

change(R; i; e1; e2) : �i;new(R) = [delete(R; i; e1); insert(R; i; e2)] (11)

The genetic operators de�ned in the following sections guarantee that the key conditions hold. Thus the

key conditions are not checked by the basic operators.



2.3.2 Mutation

In accordance to the design rules given in [23] the mutation operator should have no bias, and every

element of the search space should be reachable by a �nite sequence of mutation steps. Furthermore,

small mutations have to occure more frequently than large ones. To measure the distance between two

rules, we use the heuristic distance measure for fuzzy rules presented in section 2.2.

To obtain mutation steps of di�erent length, we de�ned �ve basic mutation operators:

Mutation of value (changeV alue): changes the value of a linguistic expression

Mutation of variable (changeV ariable): changes the linguistic variable of a expression

Mutation of structure (addTerm; deleteTerm): adds or deletes a linguistic expression

Mutation of negation (negate): changes the negation 
ag of a linguistic expression

Mutation of time depth (changeT ime): changes the time depth of a linguistic expression

During a single mutation step these operators are activated with di�erent probabilities re
ecting the

disruptiveness of di�erent mutation events. A similar approach is proposed in [25].

De�nition 13 (mutation ) The mutation can be described by the 9-tupel:

!M = (fNum; fScale; nmut; pcV al; pneg ; paddT ; pdelT ; pcV ar; pcT )

with

fNum : N0 ! N0 determine the number of basic mutations

fScale : [0; 1]! [0; 1] determine the mutation strength

and pcV al; pneg; paddT ; pdelT ; pcV ar; pcT denote the probabilities for the activation of the basic mutation

operators. The parameter nmut controls the number of basic mutations fNum as well as the probability

distribution of fScale. The function fScale is used by the value-mutation only and computes the variance

of the distribution by which the linguistic value is determined.

One complete mutation cycle works as follows

for each Individual do

determine num; // Number of basic mutation steps

for i=0 to num do

determine f_mutate; // selection of one of the basic mutation operators:

// changeValue, addTerm, deleteTerm,

// changeTime, changeVariable, negate

f_mutate Individual; // mutation

done

done

Figure 5: The mutation cycle

After extensive experimentation the following mutation probabilities have been choosen:

pcV al pneg paddT pdelT pcV ar pcT
0.3 0.1 0.2 0.1 0.2 0.1



De�nition 14 (mutation of value: changeValue) The mutation of a linguistic value w is performed

by randomly choosing one of the linguistic expressions e = (v; t; w; n) from the premise �i(R) and replacing

the linguistic value w by w0
, which results in the new premise �i;new(R).

�i;new(R) =

�
change(R; i; e; e0) , if �w 6= ; ^ e0 2 �w
�i(R) , otherwise (mutation infeasible)

and

�w := f e0 = (v0; t0; w0; n0) j e0 2 �(R) ^ v0 = v ^ t0 = t ^ n0 = n ^ w0 6= w g

The expression e0 is randomly choosen from �w according to a discretized Gaussian distribution with

mean w, and the variance is computed by the function fScale.

Since the operation has no impact on v and t the key condition still holds.

De�nition 15 (mutation of negation 
ag: negate) The mutation of the negation 
ag is performed

by randomly choosing one of the linguistic expressions e = (v; t; w; n) from the premise �i(R) and 
ipping

the negation 
ag, which results in the new premise �i;new(R).

�i;new(R) =

�
change(R; i; e; (v; t; w; 1)) , if n = 0

change(R; i; e; (v; t; w; 0)) , if n = 1

Since the operation has no impact on v and t the key condition still holds.

De�nition 16 (mutation of structure: addTerm) The expansion of a premise is performed by in-

serting a randomly choosen feasible linguistic expression e into the premise �i(R), such that the key

condition holds.

�i;new(R) =

�
insert(R; i; e) , if j�i(R)j < cmax

�i(R) , otherwise

where e is randomly choosen from �vt with uniform probability, and

�vt := f e0 = (v0; t0; w0; n0) j e0 2 �(R) ^

8 (v0; t0; w0; n0) 2 �i(R) : v
0 6= v0 _ t0 6= t0 g

The operation is permitted only if the lenght of the premise doesn't exceed cmax. The key condition

holds by de�nition of �vt.

De�nition 17 (mutation of structure: deleteTerm) Delete the linguistic expression e from the

premise �i(R):

�i;new(R) =

�
delete(R; i; e) , if j�i(R)j > 1

�i(R) , otherwise

where e is randomly choosen from �i(R) with uniform probability.

The operation is permitted only if the premise will not become empty.



De�nition 18 (mutation of variable : changeVariable) The mutation of a linguistic variable v is

performed by randomly choosing a linguistic expression e = (v; t; w; n) from the premise �i(R) and ex-

changing the linguistic variable v to v0, which results in the new premise �i;new(R).

�i;new(R) =

8<
:

change(R; i; e; e0) , if �v 6= ; ^ e0 2 �v
change(R; i; e; e0) , if �vt 6= ; ^ e0 62 �v ^ e0 2 �vt
�i(R) , otherwise (mutation infeasible)

and

�v := f e0 = (v0; t0; w0; n0) j e0 2 �(R) ^ t0 = t ^ n0 = n ^

8 (v0; t0; w0; n0) 2 �i(R) : v
0 6= v0 _ t0 6= t0 g

�vt := f e0 = (v0; t0; w0; n0) j e0 2 �(R) ^

8 (v0; t0; w0; n0) 2 �i(R) : v
0 6= v0 _ t0 6= t0 g

By de�nition of �v and �vt the key condition holds.

De�nition 19 (mutation of time depth: changeTime) The mutation of the time depth t is per-

formed by randomly choosing a linguistic expression e = (v; t; w; n) from the premise �i(R) and modi�-

cation of the time depth t, which results in the new premise �i;new(R).

�i;new(R) =

8<
:

change(R; i; e; e0) , if �t 6= ; ^ e0 2 �t
change(R; i; e; e0) , if �vt 6= ; ^ e0 62 �t ^ e0 2 �vt
�i(R) , otherwise (mutation infeasible)

and

�t := f e0 = (v0; t0; w0; n0) j e0 2 �(R) ^ v0 = v ^ n0 = n ^ w0 = w ^

8 (v0; t0; w0; n0) 2 �i(R) : v
0 6= v0 _ t0 6= t0 g

�vt := f e0 = (v0; t0; w0; n0) j e0 2 �(R) ^

8 (v0; t0; w0; n0) 2 �i(R) : v
0 6= v0 _ t0 6= t0 g

Again, by de�nition of �v and �vt the key condition holds.

2.3.3 Recombination

Recombination is performed by selection of two parents and combination of their genotypes. After

selection, which is done either �tness-proportional or with equal probability, the premises of the parents

are copied unchanged into the o�springs genotype with two exceptions:

1. If the maximum length cmax is exceeded cmax elements are randomly chosen from both parents

with equal probability.

2. If two linguistic expressions have identical keys the linguistic value is either taken from one of the

parents (discrete recombination) or de�ned as the average of the parental information (intermediate

recombination). The negation 
ag is always copied from the �rst parent.



De�nition 20 (recombination: recombine) The o�spring �offspring(R) is built from of the two

parental premises �1(R) and �2(R) as:

�offspring(R) = �Equal(R) [ �TM (R)

where

�Equal(R) := f e = (v; t; w; n) j (9(v1; t1; w1; n1) 2 �1(R) : v
1 = v ^ t1 = t)

^ (9(v2; t2; w2; n2) 2 �2(R) : v
2 = v ^ t2 = t)

^ (w = fCross(w
1; w2) ^ n = n1)g

�Diff (R) := f e = (v; t; w; n) j (e 2 �1(R) _ e 2 �2(R))

^ (8(v0; t0; w0; n0) 2 �Equal(R) : v
0 6= v _ t0 6= t)g

�TM (R) � �Diff (R) , random choice with equal probability and:

j �TM (R) j � cmax� j �Equal(R) j

The recombination process is illustrated in �gure 6.

Figure 6: The recombination process.

2.4 Initialization

The initialization operator generates the � individuals of the �rst generation.

De�nition 21 initialization

For each individual a length k 2 f1; : : : ; cmaxg is randomly chosen. The individual is constructed by

applying the following operation k-times:

�i;new(R) = insert(R; i; (v; t; w; n)); where

e = (v; t; w; n) 2 �vt; and

�vt := f e0 = (v0; t0; w0; n0) j e0 2 �(R) ^

8 (v0; t0; w0; n0) 2 �i(R) : v
0 6= v0 _ t0 6= t0

By de�nition of �vt the feasibility is guaranteed for the resulting individual.



3 Fuzzy Adaptation of Strategy Parameters

Due to the complex nature of the search space the evolutionary search of the Fuzzy{ROSA method is built

on several basic operators with many free parameters. Since, these parameters have a great in
uence

on the search process and their tuning depends very much on the problem at hand, it is desirable to

dynamically adapt these parameters according to the state and history of the search. On the other hand,

as described in section 1.2, selection in the evolutionary search of the Fuzzy{ROSA method is based on

the relevance of single rules, rather than the overall quality of the rule set. This information can be fed

back into the search process by dynamic adaptation of strategy parameters as well.

Adaptation is an important issue in evolutionary computation, and di�erent approaches can be found in

the literature [26]. Since, in the case of the Fuzzy{ROSA method there exist some reasonable assumptions

about \good search behavior" (i.e., domain knowledge) it seemed appropriate to apply a fuzzy controller

to the problem of parameter adaptation. A general introduction to the use of fuzzy systems to control

the exploitation/exploration behavior in genetic algorithms is given in [27].

3.1 Indicators of Search Progress

The dynamic adaptation of strategy parameters (see next Section) again makes use of heuristic assump-

tions about the relationship between the state of the evolutionary search process and the performance

of the resulting rule base. In order to assess the process state, the following set of global measures are

chosen, based on extensive experimentation.

Diversity: Using the heuristic distance measure, the diversity of the population can be measured directly

by the mean value of the distances between individuals. Alternative diversity measures are the

entropy and the variation of the linguistic values.

Qualitative/Quantitative Progress: The best and the mean �tness of individuals are used to measure

the quality of new rules in one generation. Rules are considered to be new, if they are not already

elements of the current rule set. The total number of new rules in the current generation quanti�es

the search progress.

Rule Structure: In our experiments, the combination depth of the rules is an important criterion for the

rule set structure. The lack of short as well as of complex rules can have a negative e�ect on the

search process.

3.2 Dynamic Adaptation of Strategy Parameters

In the hybrid approach most of the indicators described above are used as inputs to a fuzzy system that

dynamically adapts the strategy parameters of the evolutionary algorithm (Figure 7).

Quantitative ProgressQuantitative Progress

Qualitative ProgressQualitative Progress

Rule StructureRule Structure

Diversity Mutation

Recombination

Restart

Fitness
Fuzzy SystemFuzzy System

Figure 7: Structure of a fuzzy system for adapting strategy parameters

The control strategy for adaptation of the mutation operator is to preserve an average diversity in the

population (Section 3.2.1). A more complex strategy is required to avoid a tendency towards short or

long rules. This is achieved through the introduction of a dynamic penalty function (Section 3.2.2).

Finally, stagnation of the search process can be assumed if certain indicators exceed some critical values.



In this case, an automatic restart is performed (Section 3.2.3).

It should be noted that the properties of the search space depends very much on the application and data

at hand. In our approach, therefore, the priority was to achieve a robust and transparent adaptation

mechanism.

3.2.1 Adaptation of the Mutation Operator+

The e�ect of the mutation operator depends strongly on the parameter nmut (number of mutations).

As described in Section 2.3.2 the mutation rate and the number of mutations are determined by this

parameter. Therefore nmut seems to be a suitable strategy parameter and is chosen for the fuzzy{

adaptation.

Our experiments have shown, that the maximum number of mutations can be restricted to 300 and

consequently nmut is normalised to this maximum value.

The diversity of the population can be measured by the (estimated) average distance �d between the

individuals (rules). In our algorithm the distance d between two fuzzy{rules is de�ned by the heuristic

distance measure, described in Section 2.2.3. In order to save computing time only those pairs of rules,

chosen for recombination, are taken to calculate the (estimated) mean value �dR.

Based on numerous experiments the membership functions for nmut and �dR are designed as shown in

�gure 8.

Figure 8: Membershipfunctions for the average distance �dR and the number of mutations nmut

.

The number of mutations is divided into the �ve linguistic values: very small (xs), small (s), middle (m),

large (l) and very large (xl). The three linguistic values for the average distance are small, middle and

big.

In our experiments the results are usually better, if the average distance �dR is not too small and not too

big. The most important e�ects concerning the diversity in the population derived from the mutation

operator are:

� A premature stagnation of the search process can mainly be observed for a (very)small number of

mutations nmut. This stagnation is indicated by a very small average distance �dR, i. e. the rules

in the population are very similar.

� A (very) large number of mutations nmut can lead to a disruptive search behaviour. Almost all

individuals are mutated one or more times in each generation. Consequently the average distance
�dR in the population increases which might lead to divergence of the search process, i. e. fewer

rules with high relevance are generated.

Therefore the control strategy for the adaptation of the number of mutations nmut is to preserve a mean

average distance �dR. If �dR is too small nmut is increased and if �dR is too big nmut is decreased. In



the case, that a mean average distance �dR has been achieved, the strategy is to avoid extreme linguistic

values, i. e. xs and xl, for the number of mutations nmut.

distance �dR
# mutation nmut small middle big

xs s s xs

s m m xs

m l m s

l xl m m

xl xl l l

Table 1: Rule base for the adaptation of the number of mutations nmut

Based on this control strategy, the rule base, shown in Table 1, was developed for the adaptation of nmut.

In the resulting fuzzy{system this rule base is used with the minimum operator for logical{AND and

Centre of Gravity (COG) for defuzzi�cation.

3.2.2 Adapting the Fitness Function

There are eÆcient methods available for the generation of short (generalising) rules, i. e. complete search

or Monte Carlo search. Therefore, the main purpose of the evolutionary search is to �nd more complex

rules, especially in high dimensional search spaces. In this section a fuzzy{system is presented, that

enforces the search process towards longer (or if necessary towards shorter) rules.

In aim of obtaining a transparent strategy parameter for the adaptation, the evaluation of the individuals

(rules) has to be extended by a penalty function. The original standard �tness value fstd(�age, Æred) is

calculated as described in [13]. The individuals are devaluated according to the parameter �age after

exceeding a maximum age. Additionally, if individuals (rules) in the population are covered by better

and more general rules in the rule base, collected from the authority, then their �tness values are multiplied

with a penalty factor for covered rules Æred < 1.

The calculation of the extended �tness value fext is given in equation 12 with cmax as the maximum

combination depth of linguistic statements in the premise:

fext(�age; Æred; �len) = fstd(�age; Æred) � (�len +
1� �len

cmax

� crule) (12)

The combination depth of the considered individual (rule) is crule. As shown in �gure 9 the degree of

devaluation for shorter rules is de�ned by parameter �len.

The fuzzy system, designed for the adaptation, recommends a simultaneous relative change � of Æred and

�len. To enforce the search towards more complex rules, Æred is increased and �len is decreased and vice

versa if shorter rules are desired. The change of each parameter is proportionl (i. e. 10 %) to its actual

permissible variation range. This conservative strategy is chosen, to avoid too large adaptation steps

and infeasible values of the adapted parameters. Based on our experiments the following seven linguistic

values are de�ned for the relative change � (Figure 10): negative big (nb), negative (n), negative small

(ns), zero (z), positive small (ps), positive (p) and positive big (pb).

The rule structure in the population is characterised by the following indicators:

Normalised Average Rule Length (�cNRL = �crule=cmax): By this indicator extreme search pro-

gresses can be characterised, i. e. a population, which almost consists of short or long rules. For

a medium value of �cNRL it is almost impossible to draw any conclusion about the distribution of

crule in the population.



Figure 9: Penalty function for the devaluation of shorter rules.

Proportion of short/long rules (PSR/PLR): The proportion of short/long rules in the population

is de�ned by

PSR = cmax �
# rules with crule = 1

# rules in the population
and PLR = cmax �

# rules with crule = cmax

# rules in the population
: (13)

With Def. 13, it is possible, that PSR/PLR exceeds one. However, as PSR and PLR only serves

to indicate a lack of short or long rules, the values can be restricted to one, by using min(1;PSR)

and min(1;PLR).

As the normalised average rule length �cNRL is only used for the detection of the extreme search progresses,

it is suÆcient to de�ne the three linguistic values small, normal and big (Figure 10). Based on our

experiments the �ve linguistic values extreme small (xxs), very small (xs), small (s) and medium (m) are

de�ned for PSR and PLR in Figure 10.

Figure 10: Membershipfunctions for nomalised average rule length �cNRL, part of long rules PLR, part of

short rules PSR and the relative change �.

In our experiments it could be observed, that a lack of short or long rules is unfavourable for the search

process. If the population only consists of short rules, usually after a short time almost none new relevant

rules are generated. The reason is, that in most applications the number of short relevant rules is very

much smaller than the number of long relevant rules, due to the exponential growth of the number of

possible rules depending on the combination depth crule. Additionally, short rules can easily be found



by a complete search or a Monte Carlo search. On the other hand, if there are only a few short rules in

the population, it can also be observed, that only few new rules are generated. A possible explanation

is, that complex rules are most often generated by recombination of short rules.

Figures 11 and 12 show the di�erence in the search progress in relation to the indicators discussed above

for two runs of the evolutionary algorithm without adaptation of the strategy parameters. The learning

data were taken from the classi�cation example discussed in section 4.2.

Figure 11: Progress of the indicators during 200 generations for the classi�cation in quality control (Left

charts for Æred = 0:9 and right charts for Æred = 0:5)

Figure 12: Part of rules with a certain combination depth crule in the same searches as in Figure 11

(Left charts for Æred = 0:9 and right charts for Æred = 0:5)

A �xed penalty factor for covered rules Æred = 0:9 was chosen for the �rst run and Æred = 0:5 for the

second run. In this application more complex rules are often covered by generalising rules and therefore

are devaluated. Consequently, a higher value for Æred leads to a better �tness for more complex rules

in the average case. Due to this better performance for Æred = 0:9, in the �rst search the population is

inundated with rules of the maximum combination depth (left side Figure 11 and 12). This is indicated

by a normalised average rule length �cNRL close to one. As discussed above, it can be observed, that only

few additional rules are generated in each generation. This premature stagnation results also in a loss



of diversity in the population. Therefore the rules are very similiar and consequently a small average

distance �ÆR can be observed.

A more desireable search progress can be reached for a Æred = 0:5. A normalised average rule length

�cNRL of approximately 0:5 indicates a balanced mix of rules with di�erent combination depths crule. The

distribution of crule in the population is shown more precisely in Figure 12. In comparison to the �rst

search no premature stagnation and loss of diversity can be observed and �nally signi�cantly a larger

number of new rules are found during the 200 generations.

In order to avoid the undesirable states of the search process discussed above a rule base for the adaptation

of the �tness function was developed (table 2). Considering only the normalised average rule length �cNRL,

the control strategy is to preserve an average rule length in the population. Additionally the indicators

PSR and PLR are used to avoid a lack of short or long rules.

If Then �=

AvgRuleLength=small ps

AvgRuleLength=normal z

AvgRuleLength=big ns

PSR=xxs and AvgRuleLength=big nb

PSR=xxs and AvgRuleLength=normal n

PSR=xs and AvgRuleLength=big n

PSR=xs and AvgRuleLength=normal n

PSR=s and AvgRuleLength=big ns

PSR=m z

PLR=xxs and PSR=m and AvgRuleLength=small pb

PLR=xxs and PSR=m and AvgRuleLength=normal ps

PLR=xxs and PSR=s and AvgRuleLength=small p

PLR=xxs and PSR=s and AvgRuleLength=normal ps

PLR=xs and PSR=m ps

Table 2: Rule Base for adapting the �tness function

3.2.3 Rule for Restart

In the case of stagnation or convergence of the search process, a new population with a higher diversity

can probably be obtained, by a complete reintialisation (restart). In our experiments a stagnation or

convergence is indicated, if the following strategy parameter exceed certain limits

� number of mutation nmut > 0:9

� average rule length �cNRL > 0:8

� penalty factor for covered rules Æred � 0:05 (5% of the original �tness value)

In a (conservative) approach a restart is performed, if each of the strategy parameter exceeds its limit

during 20 generations.

3.3 Performance of the Hybrid Evolutionary Search Concept

In this Section the eÆciency of the proposed hybrid evolutionary search concept|with and without

adaptation|is compared to a simple Monte Carlo search as well as to an earlier approach proposed in

[13], which is based on a simpler representation and lacks a mechanism for strategy parameter adaptation.



To assess the quantitative and qualitative search results, the following criteria were used: the number of

generated relevant rules, the number of relevant rules with a minimum �tness, and the number of relevant

rules with a minimum complexity.

The test suite consisted of three applications: (i) a synthetic benchmark problem consisting of 400 rules

with a maximum combination depth of �ve in a search space of 50 input variables and seven linguistic

values each, (ii) modelling a heat exchanger in a semi{batch process [4], and (iii) the classi�cation of

automatic gearboxes [7] discussed in Section 4.2.

The benchmark problem has the advantage that the global optimum (the original rule base) is known. All

experiments are performed on the same hardware5 and each search method is given the same computing

time. The mean values of �ve experiments are taken for each con�guration.

The results after a ten-minute search for problems (i) and (ii) are depicted in Figure 13 (a){(c).
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Figure 13: Results after a ten-minute search (a){(c) and time dependency of search progress (d) for (1):

Monte Carlo, (2): simple EA [13], (3): EA without adaptation, (4): EA with adaptation.

In all experiments, the hybrid evolutionary search concept|with or without adaptation|shows signi�-

cantly better performance on quantitative and qualitative search results. In particular, the much greater

ability to �nd complex rules is important for many applications (Figure 13 (c) and (d)). Figure 13 (c)

shows that the additional computational e�ort for parameter adaptation does not pay o�. This is because

the density of relevant rules is very high in this example. In this sense, the problem turns out to be too

easy.

In more complex cases, the advantage of parameter adaptation becomes noticeable, especially, in the long

run, as in the example of classi�cation of gearboxes 13 (d).

4 Applications of the Hybrid Search Concept

4.1 Prediction of Contract Durations

Insurance companies are interested in a long duration of contracts to avoid high administration costs.

Therefore, statistical methods are used to analyse the dependency of contract durations on client pro�les.

Contract duration is the time between the start of the contract and the date of cancellation. Here, the

pro�le of a client is characterized by the following seven sociodemographic characteristics: social status,

profession, sex, age, type of �rst contract, place of residence, federal state.

Data{based rule generation of a fuzzy system to predict contract duration is a transparent approach, as

the premise of a fuzzy rule can be interpreted as a pro�le of a client. The premise is a fuzzy conjunction

of the sociodemographic characteristics.

First results are presented in Figure 14 . In a 24-hr hybrid evolutionary search, a rule base of 2297 rules

with a certain minimal �tness was generated and used directly without any subsequent reduction for

5Pentium 120 MHz (without MMX), 40 MB EDO{RAM



69% near 27% exact

4% acceptable

44% near

24% wrong20% exact

12% acceptable

Figure 14: Left chart: Prediction for 4761 of 18399 learning data sets (26%), Right chart: Prediction for

251 of 808 validation data sets (31%).

prediction. Comparisons6 between real and predicted contract durations leads to the conclusion that in

principle it is possible to learn fuzzy rules for typical client pro�les. The design of a fuzzy classi�er is the

subject of our present work.

4.2 Classi�cation in Quality Control

In quality control, di�erent parameters are inspected during a test to detect material faults, production

faults, assembly faults or unusual sounds during operation. In our application, automatic gearboxes

produced by an automobile manufacturer are tested acoustically by human specialists. With 149 acoustic

input characteristics, the design of a fuzzy{classi�er is a very complex problem (1017 possible rules with

maximum combination depth of six).

As described in [7, 28] data{based generation of a fuzzy{classi�er is possible using the Fuzzy{ROSA

method based on 1060 data sets (1000 'o.k.' and 60 'not o.k.'). Five equidistant membership functions

were chosen heuristically for each characteristic.

After a 20-hr hybrid evolutionary search and subsequent rule reduction the resulting rule base (with less

than 100 rules and a maximum combination depth of six) achieved a 100% correct classi�cation on the

learning data. In order to test the systems capability of generalizing classi�cation results learning was

repeated on 90% of the data set. The remaining 10% were taken as test data. The classi�cation error

was 8% (5% for 'ok' and 30% for 'not ok').

5 Conclusions and Outlook

We have shown that the hybrid evolutionary search concept embedded in the Fuzzy{ROSA method is a

promising approach for fuzzy modelling in high dimensional search spaces. It was successfully applied to

a complex benchmark example as well as to di�erent practical applications with up to 149 input variables.

Our future work will aim at improving the fuzzy{adaptation mechanism by using more or better indi-

cators, parameters and control strategies. In particular, the speci�cation of subspaces not covered by

rules or with high modelling error seems to be a promising feedback for the hybrid evolutionary search

6If the prediction error is larger than four years, the result is called wrong, if it is between two and four years it is called
acceptable and if it is between four months and two years it is called near. An exact prediction means the error is less
than four months.



concept. From a closer adaptation of the MBEA concept we would expect an additional considerable

improvement. However, a prerequisite is the development of an applicable metric for fuzzy rules with

variable combination depth.
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