
Rare Fault Detection
by Possibilistic Reasoning

Marc Thomas, Andreas Kanstein, and Karl Goser

Microelectronics Department,

University of Dortmund, 44221 Dortmund, Germany.

E-mail: thomas@luzi.e-technik.uni-dortmund.de

Abstract. Kernel based neural networks with probabilistic reasoning

are suitable for many practical applications. But in�uence of data set

sizes let the probabilistic approach fail in case of small data amounts.
Possibilistic reasoning avoids this drawback because it is independent of

class size.

The fundamentals of possibilistic reasoning are derived from a probabil-
ity/possibility consistency principle that gives regard to relations. It is

demonstrated that the concept of possibilistic reasoning is advantageous

for the problem of rare fault detection, which is a property desired for
semiconductor manufacturing quality control.

1 Introduction

Possibilistic reasoning allows the implementation of a possibility based classi�er
analogous to a classi�er based on Bayes' theorem. The new concepts main advan-
tage is found in problems of rare fault classi�cation. The possibilistic reasoning
approach is derived analogue to the probabilistic one. Possibilistic reasoning is
based on a probability/possibility consistency principle di�erent from the de�-
nition of Dubois and Prade [1].

Applications under investigation are dealing with fault detection in semi-
conductor fabrication such as defect density analysis, production line analysis,
and tests of power semiconductor devices. In these cases faults are often limited
to about a few percent [2]. Furthermore, problems are growing with separating
di�erent types of faults.

The possibility based classi�er is implemented in a kernel based neural net-
work similar to radial basis function networks that implement a suboptimal
Bayesian classi�er. Kernel based neural networks are a favoured technique for
classifying tasks. They provide quick learning, an interpretable structure and
robustness. These features result from their equivalence to certain fuzzy sys-
tems and from kernel adaptation by competitive learning of data clusters. That
accounts for the growing interest in this neural network type.

2 Motivation

The usual way of implementing a classi�er in a kernel based neural network is a
radial basis function network (RBFN). The kernel neurons are trained by com-



petitive learning to represent clusters of data. The composition of the activations
of kernel neurons approximates a posteriori probabilities of classes. In this way
the network implements a suboptimal Bayes classi�er. This concept has been
proven very powerful in many applications.

The main disadvantage of Bayesian classi�ers is their inability to classify rare
faults. If the size of the classes di�er strongly, the interesting class representing
faults is likely to be covered by probabilities of classes with a large number of
data that represent the normal case. The Bayesian classi�er might also fail due
to badly estimated probability distributions if the number of samples is very low.
Figure 1 displays both cases in drastic but illustrative examples. Misclassi�cation
occurs by choosing a disadvantageous criterion, because rare fault detection is
made impossible by a dominating probability of the non-fault case. Low a priori
probability can cause this e�ect, shown in Fig. 1(a). Misclassi�cation also occurs
by badly estimated probability distributions. Consider two adjacent uniform
distributions, one small and one large. Estimating the probability distributions
by very few examples can result in a dominating situation as shown in Fig. 1(b).
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Fig. 1. Misclassi�cation of rare faults in Bayesian classi�ers due to dominating proba-

bility distributions. (a) Overlapping of distributions due to low a priori probability of
rare faults. (b) Bad estimation of adjacent uniform distributions of di�erent size due

to very few samples of data.

These problems are very likely to appear in semiconductors manufacturing.
Because of processing complexity the number of di�erent fault classes is very
large while the amount of data of single classes is low. The interest in the anal-
ysis of data that is collected in these processes is growing. The new concept of
possibilistic reasoning implemented in a kernel based neural network is a promis-
ing approach because of the features listed above. In the following, the derivation
of a decision rule from the de�nition of possibility distributions and a consistency
principle is presented.

3 Possibilistic Approach

The set M of possible elements x includes all events that can ever appear and
can be de�ned by probability values.

M := fx 2 X jP(x) > 0g :



The membership function of element x is given by:

�M (x) =

�
1 for P(x) > 0
0 for P(x) = 0 :

Because the set M is not known it has to be estimated using given data.
Considering the uncertainty in this process, continuous possibility values in [0;1]
are introduced. The similarity to fuzzy sets is obvious.

De�nition 1. The mapping� :X ! [0;1],X � IRd is a possibility distribution.

A distinction between continuous and discrete universes, as necessary for
probabilities, is not needed for these distributions. In the following continuous
possibility distributions are denoted as �(x).

To use possibilities as probabilities are in Bayes' theorem a connection be-
tween both has to be de�ned. The known consistency principles of Zadeh [3] or
Dubois and Prade [1] are based on absolute values and do not regard relations
as preferable for classi�cation. The presented consistency keep this in mind.

De�nition 2. A possibility and a probability distribution are relational consis-

tent, i�
8x1; x2 2 IRd : �(x1) > �(x2)) p(x1) � p(x2) .

Equivalent to this de�nition is 8x1; x2 2 IRd : p(x1)�p(x2)) �(x1)>�(x2).
The properties of probabilities, the common concept of both and the relational
consistency lead to the well known t-norm for intersection and s-norm for union
of sets.

By using probabilities a distinction between the normal and the conditional
case is necessary. To facilitate a decision as in Bayes classi�cation, conditional
possibility is required. Because t-norm and s-norm operators for intersection
and set union of possibilities are not based on the property of dependent or
independent events. Then the following relation can be used: � (A \ B) =
� (� (AjB);� (B)); (� is t-norm). Then � (AjB) can be calculated by � (BjA),
� (A) and � (B) for a bijective operator or special cases.

Possibilistic Classi�cation

The decision criterion is derived by minimizing the error possibility given
by Si6=r � (!i) with f!ig all decisions and !r the resulting decision. Using the

possibilistic approach analogous to Bayes decision theory, this criterion results
in the following decision rule:

Choose !r with max
!i2


�

�
S
j

� (K(x;mij ; sij);� (!ijj!i));� (!i)

�
:

� (!ijj!i) and � (!i) are the a priori possibilities and are free parameters of
the classi�er. � is a t-norm and S denotes an s-norm. The trained clusters !ij
given by centers mij and widths sij are speci�ed by the kernel function K()



which computes the possibility �(xj!ij) of a vector x belonging to the cluster
!ij of class !i. In contrast to probabilistic density estimation the kernel function
need only be monotonous in distance. The used clustering algorithm is an on-
line version of k-means with kernel function as distance measure. The process of
classi�cation, especially the clustering part is described in detail in [4].

4 Example

To demonstrate the target of possibilistic classi�cation, an arti�cial dataset is
used. The data are given by two overlapping gaussian distributions with one of
them having a �ve times larger standard deviation and ten times greater amount
of samples.
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Fig. 2. Two overlapping gaussian distributions A and B

An RBF network, recognizing two clusters, gives a global error of 9:1% in
hold-one-out. Best result by possibilistic reasoning is a value of 15:9%, keep-
ing the a priori possibilities � (!i) �xed to one. But examination of RBF-
classi�cation shows that always the bigger class A is determined. This is in �nal
no classi�cation for all inputs at all. Using possibilistic decision making results
in an error of 16:9% in class A and 10% in B. This allows usable classi�cation
despite of a larger global error.

5 Conclusion

The presented approach for classi�cation based on possibilistic reasoning allows
to detect rare classes while keeping the facility of an implementation in a kernel
based neural network. As the classical radial basis function approach stays as a
special case of this network, the operation range of that neural network method
is extended. The approach demonstrated here facilitates to handle the named
task in semiconductor environment.
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