


NEW SOLUTIONS FOR SURFACE RECONSTRUCTION FROM

DISCRETE POINT DATA BY MEANS OF

COMPUTATIONAL INTELLIGENCE

Klaus Weinert, J�orn Mehnen, Frank Albersmann, Peter Drerup

Department of Machining Technology, University of Dortmund, Germany

Abstract: Surface reconstruction by means of triangulation of digitized point data
leads to computational complex optimization problems. Here, deterministic algo-
rithms often result in insu�cient solutions or very long computation times. In this
article, alternative methods of computational intelligence are discussed.
A comparative analysis of two evolutionary algorithms applied to four di�erent
smoothness criteria for the triangulation of sparse point data sets is presented.
Optimally triangulated surfaces are the basis for many practical applications. The
results presented here cover the e�cient implementation and the in
uence of di�erent
triangulations for an adequate touch probe radius compensation (TPRC).
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Introduction

In various practical endevours, triangulation
has become a widely used method for representing
surfaces that are given by three-dimensional dis-
crete point data. In the �eld of surface reconstruc-
tion, these sets are generated via optical or tactile
digitizing methods. These techniques generate a
huge number of points that cannot be properly
processed via CAD systems. Therefore, the num-
ber of points have to be reduced to a sparse set
of point data. Any reduction of the number of
points usually implies a loss of accuracy. Thus,
a proper piecewise linear interpolation method is
needed that gives best approximations of the orig-
inal smooth surfaces.
Due to the fact that global triangulation of sparse
data is a highly nonlinear optimization problem
with a high computational complexity, nondeter-
ministic optimization strategies have to be applied
to gain optimal interpolation results.
Evolutionary algorithms show a great 
exibility
and robustness. Their ability to �nd solutions
even in complex problem spaces surely is one of
the reasons for their growing popularity.

The problem of �nding an optimal function (met-
ric) to describe optically su�ciently smooth trian-
gulations has not been solved yet. Here, methods
from Computational Intelligence (CI) give very
promising means to solve this problem. The term
CI subsumes numerical nature-motivated strate-
gies like evolutionary algorithms, neural networks
and fuzzy logic. The focus of this article lies
on evolutionary algorithms, particularly on sim-
ulated annealing (SA) and an evolutionary multi-
individual strategy (EA).
Here, four �tness functions will be compared using
two evolutionary strategies. It will be shown that
depending on the parameterization and the �t-
ness function EAs provide a proper means to solve
the computationally hard combinatorial topology
problem of surface reconstruction.

Formal problem de�nition

Let P = fpijpi 2 IR3; i = 1; : : : ; ng. Construct
a piecewise linear C0 interpolant (triangulation)
through this data set. Here, the functional case,
i.e. the data are supposed to originate from an



unknown bivariate function de�ned over a domain
W � IR2, is considered. The data represent closed
objects.

The objective is to �nd a quality criterion for
triangulations with

� shape preserving properties (representing
the original function at least \optically
smooth"),

� applicability to 3D scattered data,

� high e�ciency.

Another point is to present an e�cient algo-
rithm that generates optimal triangulations.

Complexity of approximations by triangu-
lations

Aggarwal and Suri (1994) de�ne the �-
approximation to be a piecewise-linear function
g(x; y) de�ned on a set P of sampled points in
IR3 from an unknown bivariate function f(x; y), if,
for every p 2 P jf(x; y) � g(x; y)j � � halts. The
problem of computing an �-approximation with a
minimum number of vertices is NP-hard (Aggar-
wal, 1994).

It will be shown that even simpli�ed versions
of the problem of surface approximation can be
computationally very hard. Given a �xed num-
ber of vertices, the problem can be reduced to the
characterization of triangulations using smooth-
ness quality criteria.

Minimum weight triangulation (MWT)

Given a set of points P = fpij pi 2 IR3; i =
1; : : : ; ng, not all being collinear, we de�ne the set
of possible triangulation Ti(P ) of the convex hull
Conv(P ) of P

Ti(P ) := ft1; ::; tmj tk with vertices vj 2 Pg (1)

where the tk triangles have disjoint and not empty
interiors. The number m of triangles (w.l.o.g. in
the projection onto the xy-plane) with h holes
and n vertices is m = 2n � k + 2h � 2 where
k is the number of points on the boundary of
Conv(P ). The number of interior edges Ei is
Ei = 3n� 2k + 3h� 3 (Schumaker, 1993).

Let Si(P ) be the edges (line segments) of Ti(P )

Si(P ) = f�j j �j line segment of Ti(P )g ; (2)

the total length of all edges is

LOEi(P ) =
X

�j2Si(P )

k �j k : (3)

The minimum of the line segment lengths of all
possible triangulations Ti(P ) is

MWT (P ) = minifLOEi(P )g : (4)

The minimum weight triangulation (MWT)
follows the idea of giving the minimum distance
neighbor from each point in P .

Complexity of MWT

Considering the projection of a three-
dimensional graph onto the xy-plane, the NP-
hardness or the existence of a polynomial-time
algorithm remains open. However, the minimum
weight triangulation for a simple polygon with n
vertices can be computed by dynamic program-
ming on time O(n3). There are several heuristics
that attempt to �nd as small triangulations as pos-
sible. These include the Delaunay triangulation
by Shamos and Hoey (1975) and the Greedy tri-
angulation by Duppe and Gottschalk (1970). The
conjecture that these triangulations lead to MWT
has been disproven, e.g. by Lloyd (Preparata,
1985).

Minimum surface area (SURF)

Problem de�nition: Given a �nite set P of
arbitrary but �xed points in three-dimensional
Euclidean space. Among all polyhedra P for a
vertex set P , �nd one with the smallest surface
area.

Let P = fpij pi 2 IR3; i = 1; : : : ; ng be a set of
vertices and Ti(P ) a triangulation like in MWT.

The size4k of the face of a triangle tk 2 Ti(P )
with vertices vk1; vk2; vk3:

4k =
1

2
k a k � k b k � sin(
) (5)

a = vk1 � vk2; b = vk3 � vk2 (6)


 =
a� b

k a k � k b k : (7)

The total sum of the triangle areas 4k of each
triangulation Ti(P ) is

SURFi(P ) =
X
k

4k : (8)

The optimal surface with the smallest surface
area is de�ned by

SURF = minifSURFi(P )g : (9)

Complexity of SURF

Following the proof of Fekete and Pulleyblank
(1993), one can show that the problem of �nding a
minimum surface polyhedron can be described by
a reduction of Hamiltonian Cycles in Grid Graphs
(HCGG). Thus, the problem of SURF is NP-hard.



The authors show more generally that in any
�xed dimension 1 < k < d and 2 � d it is NP-hard
to minimize the volume of a simple non-degenerate
d-dimensional polyhedron with a given set of ver-
tices in d-dimensional space.

Minimum sum of angles between normals
(ABN)

The directions of the surface normals provide
implicit information about the relative orienta-
tions of the surface points making up part of any
given centroid triangle. This directional informa-
tion can be partially determined via calculations
of the angle between the normals. Furthermore,
Phong (1975) shading generates smoother surfaces
when the angle between normals is very small.

Let P = fpij pi 2 IR3; i = 1; : : : ; ng be a set of
vertices and Ti(P ) a triangulation like in MWT.

Let t� and t� be two triangles with two com-
mon vertices v1�� and v2�� and vertex v� belong-
ing to triangle t� and v� belonging to triangle t�,
respectively.

��� =
arccos(n� � n�)
k n� k � k n� k

(10)

ns =
as � bs

k as � bs k
(11)

as = v1�� � vs; bs = v2�� � vs (12)

with s 2 f�; �g.

The total sum of the angles between normals
��� of each triangulation Ti(P ) is

ABNi(P ) =
X
��

��� : (13)

We are searching for the minimum of the sums
ABNi(P ) of all possible triangulations Ti(P )

ABN(P ) = minifABNi(P )g : (14)

Minimal total absolute curvature (TAC)

Classically, tightness is de�ned in terms of the
total absolute curvature integral: a mapping of a
surface into space is called tight if it has minimal
total absolute curvature.
Given a mapping f of a surface M into space, the
total absolute curvature is

�(f) =
1

2�

Z
M

jKj dA (15)

where K is the Gaussian curvature.

Given a triangulation 4 with some vertex �
with coordinate x0, let x1; : : : ; xM�

be the coordi-
nates of the ordered (e.g. clockwise) neighboring

vertices of �. Then, the integral curvature at the
vertex � is

K(�) = 2� �
M�X
j=1

�j : (16)

The �j denote the angles between the edges from
the neighboring points on the convex hull of x0
that meet in x0 (van Damme and Alboul, 1995).

The de�nition of the total absolute curvature
of a complete triangulation Ti(P ) is

TACi(P ) =
X
�2P

K(�) : (17)

The optimal surface is the minimum of all
TACi(P ), i.e.

TAC(P ) = minifTACi(P )g : (18)

Simulated Annealing

The simulated annealing (SA) process follows
the model of natural self organization (e.g. build-
ing of crystal structures) of hot metal that is
cooling down. A descriptive mathematical model
that abstracts from local particle-to-particle in-
teraction has been formulated by Boltzmann �rst.
Metropolis et al. (1953) have implemented the
model algorithmically �rst.
By means of a Monte-Carlo method new particle
con�gurations are generated. Their free energy
Enew is compared with that of the former state
Eold. If the condition Enew � Eold holds, the new
con�guration \survives" and forms the basis for
the next generation. The new state may survive
also if Enew > Eold, but only with a certain prob-
ability

w =
1

c
exp

�
Eold �Enew

KT

�
; (19)

where K denotes the Boltzmann constant and T
the current temperature. c serves to normalize
the probability distribution (e.g.

p
2�). An in-

dividual will survive, if � � w, with � 2 [0; 1]
from a uniform distribution. The temperature T
is lowered during the optimization process due to
a given function, e.g. Tk = �k T0; k = 1; 2; : : :,
and 0 < � < 1.

Applied to the optimization of triangulations,
di�erent quality criteria can be used. The states
Eold and Enew represent di�erent triangulations
Ti(P ). The states can be compared or subtracted
with the scalar operators '�' and '<' after the ap-
plication of a quality criterion.

A state Enew is generated from Eold by 
ipping
edges within a triangulation. An edge e is called

ippable, if e is contained in the boundary of two
triangles ti and tj and C = ti [ tj is a convex
quadrilateral. Flipping e denotes the operation of
removing e form a triangulation T and replacing
it by the other diagonal of C.



Hurtado and Urritia (1996) show that any trian-
gulation in the plane of an n point set contains at
least n�4

2
edges that can be 
ipped. The transfor-

mation of a triangulation T of a polygon Qn with
k re
ex vertices into a triangulation T 0 of Qn can
be performed by 
ipping at most O(n+k2) edges.

The number of edges 
ipped during each op-
timization step depends on the actual tempera-
ture T . Hence, the number of edges to be 
ipped
with T0 is at least

n�4
2

and the maximum is n� k
where k is the number of points on the boundary
of Conv(P ). The maximum number of 
ippable
edges can be signi�cant lower and depends on the
actual triangulation.

Evolutionary Algorithms

Evolutionary algorithms are a class of heuris-
tic strategies that follow Darwin's idea of survival
of the �ttest. Genetic algorithms (GA) (Holland,
1975), evolutionary strategies (ES) (Rechenberg,
1971; Schwefel, 1975) and evolutionary program-
ming (EP) (Fogel, 1966) are subclasses of evolu-
tionary algorithms. Simulated annealing (SA) and
single trial versions of ES are closely related in case
they are designed for optimization over continuous
variables (Rudolph, 1994).
Following the de�nition of B�ack (1996), the gen-
eral evolutionary algorithm can be de�ned as an
8-tuple

EA = (I;�;
;	; s; �; �; �) ; (20)

where I = Ax � As is the space of individuals ,
and Ax,As denote arbitrary sets. � = I �! IR
denotes a �tness function (quality criterion) as-
signing scalars to individuals.


 = f!�1
; : : : ; !�z

j!�i
: I� ! I�g [ 
�0

(21)

where

�0

= f!�0
: I� ! I�g (22)

is a set of probabilistic genetic operators !�i
, each

of which is controlled by speci�c parameters sum-
marized in the sets �i � IR.

s�s
: (I� [ I�+�) �! I� (23)

denotes the selection operator, which may change
the number of individuals from � or � + � to
�. � is the number of \parent" individuals and
� denotes the number of \o�spring" individuals.
� : I� �! ftrue; falseg is a termination cri-
terion for the EA, and the transition function
	 : I� �! I� describes the complete process of
transforming a population P into a subsequent one
by applying genetic operators and selection:

	 = s � !�i1
� : : : � !�ij

� !�0
; (24)

where fi1; : : : ; ijg � f1; : : : ; zg, and Q 2 f;; Pg.

The probabilistic genetic operators !�ij
in a

general EA are called recombination and muta-
tion. Jacob (1997) describes further genetic op-
erators like inversion, deletion and duplication.
The selection function s may contain random ele-
ments (e.g. �tness-proportional selection) or may
use linear or exponential ranking schemes or tour-
nament strategies (for a comparison of selection
strategies used in GAs see, e.g. (Blickle and
Thiele, 1995)).

The EA described here uses a mutation oper-
ator only. The mutation of an individual Ij (a
triangulation) has been realized by randomly 
ip-
ping edges. The number of edges changed depends
on a mutation rate function that is motivated by
discrete optimization strategies.

flips(i) =
1

a � i+ 1
Sbegin�Send

+ Send (25)

where Sbegin denotes the number of 
ips in gen-
eration 0, and Send is a minimal number of edge-
swapping operations.
Following the approach of ES, the operator s se-
lects the � best individuals (triangulations) from
the � o�spring which are evaluated by any �tness
function � that characterizes the smoothness of a
triangulation.

The termination criterion � yields true, if the
actual number of generations exceeds a given
limit.
The initial population can be generated using any
deterministic triangulation scheme, like Delaunay,
Greedy or Dijkstra (Weinert and Mehnen, 1997).

Optimization Results

The test point data set has been generated
via a tactile line-oriented digitizing process of a
milled workpiece. This object shows typical sur-
face structures, like cylinder, cone and sphere seg-
ments. The original data set has 135000 points,
which has been reduced by more than 99% to a
very sparse point set of 1164 points. The points
have been eliminated by a tangent approximation
strategy (TDV) (Friedho�, 1996) �tting a linear
2D approximation into the point data by choosing
only the start and end point of each line segment
and eliminating all points that are enclosed in a
tube like �-region around each line segment.

The initial individual for the SA and the EA
has been generated by means of a local determin-
istic triangulation algorithm (Friedho�, 1996).

Quality criteria

The surfaces generated via the SA and EA
for the global surface reconstruction using MWT,
SURF, ABN, and TAC are displayed in �gures 1
and 2. Figures 3 and 4 show the wire frames of
each triangulation, respectively.



The results of the optimization runs for EA
and SA are very similar and are fairly sensitive to
the choice of parameters.

                        

Figure 1: Surfaces generated
using MWT (left), SURF (right)

                        

Figure 2: Surfaces generated
using ABN (left), TAC (right)

Figure 3: Wire frames generated
using MWT (left), SURF (right)

Figure 4: Wire frames generated
using ABN (left), TAC (right)

The �tness function has a relevant in
uence
on the proper parameter settings. Table 1 shows
the best settings for the SA:

MWT SURF ABN TAC
T0 50.0 0.89 100.0 0.98
� 0.95 0.95 0.97 0.95

Table 1: SA Parameter Settings.

Following the advice of Schumaker (1993), it is
reasonable to choose T0 to be twice the largest �t-
ness function value of good edge swaps. The an-
nealing parameters � have been found by discrete
exploration of the interval ]0; 1[.

Table 2 shows the best settings for the EA-
(5,50) and EA-(5+50) strategies. The parameters
have been the same for the plus and the comma
strategy.

MWT SURF ABN TAC
Sbegin 600 600 1000 1000
Send 5 5 5 100
a 0.0005 0.0005 0.0005 0.0005

Table 2: EA Parameter Settings.

The runs have been terminated after 3000 gen-
erations. The optimal number of parents � and
o�spring � has been found experimentally. Gener-
ally, the ratio of � and � should be chosen to be in-
versely proportional to the probability of success.
The expectation values for the success probabil-
ity can be calculated from a given �tness function
by integrating only the probabilities of improve-
ment occurrences over the success area. However,
in practical applications, the calculation of these
values can become rather di�cult.

All criteria show good approximation abilities.
Long 
ag-shaped triangles that reach out of the
surface can be avoided. This problem is typical for
deterministic strategies that follow the line struc-
ture of the digitized point data.

The MWT criterion typically generates trian-
gulations with angles of 60 degree on the average.
These triangulations are similar to Delaunay tri-
angulations. Unfortunately, the surface structures
generated usually do not show very high surface
qualities because equilateral triangles usually do
not �t a surface very well in areas with a high
curvature (e.g. torus-like �llet radii) when only
few points are given. Potential practical applica-
tions of MWT in mechanical engineering may also
lie in the �eld of ultra-light constructions.

SURF typically generated quite good surface
reconstructions. The advantage of this criterion is
that it exploits the information that lies within the
3D structure of the points. MWT does not use this
information and tries to minimize the mesh even
in 2D. SURF is motivated by minimal surfaces
like soap �lms. The properties of these di�eren-
tial geometrical objects can be adopted by SURF.
Potential practical applications of least-area sur-
faces can also be seen in engineering problems,
e.g., the design of minimal-weight constructions
with huge volumina.



The ABN criterion reproduces the average cur-
vature of a surface. The ABN strategy produces
rather good results around saddle points but per-
forms not too well on convex/concave areas. How-
ever, the ability of ABN to minimize the angles be-
tween the normals of the triangles leads to smooth
rendering properties.

The TAC criterion usually generates best, i.e.
optically smooth, surfaces. Experiments with
other surface structures show similar results. The
surface is approximated with optimally adapted
triangles that show long edges when the curva-
ture in one direction is nearly zero and positive or
negative in the orthogonal direction.
Another advantage of TAC lies in the property of
extreme vertices. A vertex v of a polyhedral sur-
face M is called a locally extreme vertex if v is a
vertex of the convex hull of the star of v, and it
is a (globally) extreme vertex if it is a vertex of
the convex hull of M . A locally extreme vertex is
the local maximum for the height function on M
in some direction, and a vertex that is not locally
extreme is a saddle point for every height function
onM . A polyhedral surfaceM is tight if, and only
if, every locally extreme vertex of M is a globally
extreme vertex of M . Thus, a local characteriza-
tion of the vertices leads to a characterization of
the global optimum.
The TAC criterion seems to generate no mini-
mal surface in general. The application of SURF
to a TAC solution leads to further reduction of
the global triangle surface area (for nontrivial sur-
faces).

Each smoothness criterion shows a typical and
di�erent behavior. An EA produced typical and
structural di�erent triangulations after changing
the criterion. This may allow the conclusion that
all smoothness criteria presented here show an
inherently di�erent behavior on nontrivial sparse
point sets in 3D.

Convergence

While SA and EAs provide a good means for
global optimization, usually, it cannot be guaran-
teed that these strategies will �nd the global opti-
mum. For (1; �) ES optimizations Rudolph (1997)
showed that, for special preconditions of the �t-
ness function and for discrete parameter spaces, a
global optimum will be reached after a �nite num-
ber of generations with probability one. A precon-
dition for the reachability of and possibly conver-
gence to a global optimum is the ability of the evo-
lutionary algorithm to explore the complete search
space. Dyn (1993) proved that, given any two
triangulations T1 and T2 on the domain 
 with
polygonal boundary, it is always possible to get
from T1 to T2 by a �nite sequence of edge swaps.
This ensures the reachability of the global opti-
mum by a (�; �) ES. In contrast, (�+�) strategies
may get stuck in local optima if mutations are sin-
gle edge swaps. In order to explore the complete

search space, this EA should allow huge mutation
steps, which can be represented by few random in-
dividuals that are included into the o�spring pop-
ulation. Then, the reachability of the optimum
and even convergence of the (�+ �) strategy can
be guaranteed.
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Figure 5: Objective-function values from SA
(top) and EA (bottom) runs using TAC

Figure 5 displays the convergence behavior of
SA, EA-(5 + 50) and EA-(5; 50) strategies using
TAC. Each criterion has been applied �ve times
with the parameter settings from table 1 and 2.
The graphs of the objective functions MWT,
ABN, SURF und TAC have been very similar.
The values of the objective functions are expo-
nentially decreasing.

In the interval [25; : : : ; 300], the �tness values
from the SA approximately follow the functions

vMWT (x) =
e25�0:04�x

2 � 107 + 105 ; (26)

vSURF (x) =
e25�0:03�x

7 � 108 + 8:57 � 103 ; (27)

vABN (x) =
e25�0:02�x

2 � 106 + 1:62 � 104 ; (28)

vTAC(x) =
e25�0:03�x

5 � 108 + 9 (29)

for the MWT, SURF, ABN, and TAC crite-
rion, respectively.

In the interval [30; � � � ; 2000] of generations, the
average convergence of the EA-(5; 50) strategy can
be approximated by the functions

vMWT (x) =
e30�0:008�

p
140x

1:8 � 109 + 1:03 � 104 ; (30)



vSURF (x) =
e30�0:020�

p
150x

8:3 � 109 + 8:57 � 103 ; (31)

vABN (x) =
e30�0:015�

p
25x

2 � 108 + 1:85 � 104 ; (32)

vTAC(x) =
e30�0:05�

p
9x

5 � 1010 + 8:5 : (33)

In the interval [300; � � � ; 2000] of generations,
the average convergence of the EA-(5 + 50) strat-
egy can be approximated by the functions

vMWT (x) =
e30�0:01�

p
120x

9:2 � 108 + 1:01 � 104 ; (34)

vSURF (x) =
e30�0:020�

p
120x

1:3 � 108 + 8:57 � 103 ; (35)

vABN (x) =
e30�0:015�

p
25x

2:3 � 108 + 1:5 � 104 ; (36)

vTAC(x) =
e30�0:014�

p
150x

2 � 1010 + 9 : (37)

Experiments with an SA (T0 = 0 for all runs,
thus allowing improvements only) with a succes-
sively increased number of digitized point data
([1367; � � � ; 7222]) from the same object using the
TAC criterion show an exponential slowdown of
the convergence velocity. However, optima with
nearly the same �tness values have been found
after at least 300 generations.
Edelsbrunner and Tan (1993) showed that the
number of di�erent triangulations of P in IR2 de-
pends on the number of vertices n = jP j and on
their relative location. If P is in convex posi-
tion, then it admits 1

n�1

�
2n�4
n�2

�
� 2n�3 di�erent

triangulations. In order to choose an optimal tri-
angulation under some criterion, it is thus not
feasible to exhaustively search the set of all tri-
angulations. Although the convergence velocity
of EA depends on the number of vertices, only
heuristical strategies like evolutionary algorithms
will allow to �nd fairly good triangulations in ac-
ceptable time.

All experiments have been made on a SGI
Power ONYX RE2 with two R10000 processors.

Application to touch probe radius compen-
sation

Tactile digitization of workpiece surfaces is of-
ten preferred to optical methods due to its higher
accuracy. One of its drawbacks, however, is that
it provides so-called center data: the measuring
equipment reports coordinates of the probe's cen-
ter rather than those of the actual point of contact
with the sampled workpiece. This nature of data
must be taken into account in subsequent process-
ing, usually in the form of an explicit step of touch
probe radius compensation.

Friedho� (1996) compiles di�erent approaches
to the solution of this problem. One of these solu-
tions is based on the observation that the problem
of touch probe compensation is related to simula-
tion of 3-axis milling.

In milling simulation, a set M of line segments
in 3D space de�ning the path of some reference
point of the cutter during the process of milling
and the shape of the cutter are given. The task is
to calculate the surface cut into a solid block when
the reference point, i.e., the cutter, is moved along
the pathM . Taking the touch probe centers to be
points on some milling path, and the sensor tip as
cutter, the surface calculated by milling simula-
tion gives the same points like real tactile digiti-
zation.

The di�culty with this idea is to �nd \milling
paths" in a way that the obtained surface repre-
sents the digitized surface reasonably. It turns out
that a reasonable approximation can often be ob-
tained by interpolating the measured center points
of the probe by triangular surfaces. Finding a suit-
able triangulation is one of the main problems due
to touch probe radius compensation. Here, the
methods from optimal triangulation can serve as
adequate tools.

Summary and Conclusion

It has been shown that evolutionary algorithms
are useful for solving the highly complex (NP-
hard) problem of 3D triangulation. Four di�er-
ent smoothness criteria have been compared. All
four �tness functions lead to smooth piecewise lin-
ear interpolations for given nontrivial sparse point
data sets. Each criterion lead to di�erent charac-
teristic solutions. The gained quality depends on
the criterion, the parameter settings and the local
curvature properties of the surface. Criteria that
cover the average characteristics of a surface lead
to better, i.e., tighter global surface reconstruc-
tions. Our experiments gave the impression that
TAC and ABN generate the best global triangu-
lations.

EAs show high e�ciency for complex (multi-
modal, combinatorial and computationally hard)
optimization problems. However, the proper pa-
rameterizing of an EA can be rather di�cult. Due
to the high combinatorial complexity of triangu-
lation, the convergence velocity decreases depend-
ing on the number of vertices. Thus, for large
numbers of vertices, the optimization may become
slow although the convergence of the evolution-
ary algorithms towards a local optimum is expo-
nential. However, large numbers of vertices im-
ply large numbers of triangles. Usually, this leads
to problems with CAD systems. Hence, we con-
sidered quality criteria and e�cient optimization
strategies for sparse digitized point data to gener-
ate more e�cient CAD surface representations.



Future research will focus on su�cient and ef-
�cient characterizations of tight surface triangula-
tions, on e�cient segmentations of point sets, and
on the parallelizations of EAs. This will yield fur-
ther insight into the complex problem of surface
reconstruction.
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