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Abstract. The task of finding minimal elements of a partially ordered set is a
generalization of the task of finding the global minimum of a real-valued func-
tion or of finding pareto—optimal points of a tariteria optimization problem.

It is shown that evolutionary algorithms are able to converge to the set of mini-
mal elements in finite time with probability one, provided that the search space
is finite, the time—invariant variation operator is associated with a positive transi-
tion probability function and that the selection operator obeys the so—called ‘elite
preservation strategy.

1 Introduction

Traditionally, evolutionary algorithms (EAs) were used to find or approximate the global
minimum of a real-valued objective functign: S — IR defined on some non—empty
setS. The development of EAs that can cope with more than a single objective function
began in the mid—1980s but for a long time this field of application did ecgive the
resonance that it should have deserved. The situation changed during the last five years:
As can be learned from recent surveys-3] there are now numerous suggestions of
how to design multi—objective EAs. But these activities wereatabmpanied by the
development of a theoretical foundation. A similar time lag between practice and theory
can be observed in case of single—objective EAs. It is therefore the goal of this paper to
seed a starting point regarding a theory of multi-objective EAs that may initiate further
research on that subject.

The main difference between single— and multi-objective optimization rests on the
fact that two elements are not guaranteed to be comparable in the latter case. To un-
derstand the problem to full extent it is important to keep in mind that the values
fi(z), ..., fm(x) of them > 2 objective functions represeimtcommensurablguan-
tities that cannot be minimized simultaneously: Whflemay measure costg; may
measure the level of pollutiorfz the pressure of some boiler, and so forth. As a con-
sequence, the notion of the “optimality” of some solution needs a more general formu-
lation as in the single—criterion case. It seems reasonable to regard those elements as
being optimal which cannot be improved with respect to one criterion without getting
a worse value in another criterion. Elements with this property are said Rafeto—
optimalin this context.

From a more general point of view single— as well as multi—objective optimization
can be seen as special cases of the task tonfiimiimal elementsf partially ordered
sets The meaning of these terms will be made rigorous in Section 2. After these prepa-
rations it is shown in Section 3 that EAs with finite search space and partially ordered



fitness values do stochastically converge to minimal elements provided that the selec-
tion mechanism employs some kind of elitism and that the time—invariant variation op-
erator’s support is identical to the searclasp. This result includes earlier established
convergence results regarding single—objective EAs with finite search space (e.g. [4-7])
as special cases. Moreover, it also includesw@convergence result for multi—objective

EAs. Section 4 is devoted to transcribe the general result into the terminology of these
special cases. Finally, some directions towards an extension of the presented theory are
discussed in Section 5.

2 Partially Ordered Sets

A prerequisite to introduce ‘partially ordered sets’ is the notion of the ‘relation.” The
definitions presented in this section are extracted from [8] and [9].

Definition 1. Let.X’ be some set. The subgetC X' x X is called abinary relationin
X.Letz,y € X.If (z,y) € R, also denotedRy, thenx is said to be in relatiorR to
y. ArelationR in X is said to be

(a) reflexiveif xR« is true for allz € X,

(b) antireflexiveif Ry = = # yistrue forallz,y € X,

(c) symmetricif Ry = yRx istrueforallz,y € X,

(d) antisymmetridf e Ry A yRx = » = yistrue forallz,y € X,
(e)asymmetridf 2Ry = yRz istrue forallz,y € X,

(f) transitiveif Ry A yRz = «Rzistrueforallz, y, z € X. O

Some relations that possess several of the properties above simultaneously bear their
own names. For example, ¥ is a reflexive, symmetric and transitive relation tties

called arequivalence relationin this case it is common to use the symbel”in lieu

of R. A reflexive, antisymmetric and transitive relatio™is termed apartial order

relation whereas atrict partial order relation” <" must be antireflexive, asymmetric

and transitive. The result below shows how to obtain a strict partial order relation from

a partial order relation.

Lemma 1. Let X’ be some set and let<” denote a reflexive, antisymmetric and tran-
sitive relation onY. Then the relation <” defined by

r<ye (@Y N(e#y) D)
is antireflexive, asymmetric and transitive &h

Proof.

@)z < y = = # y (antireflexive):

Follows directly from the definition of relatior.

(b)z < y = y < « (asymmetric):

Letz < y be valid and assumg < =. By definition of< it follows thatz < y Ay < =
is true. Since< is antisymmetric we obtaim = y which contradicts the validity of
xr < Y.



(©)x <yAy<z=z < z(transitive):

Since< is transitive one immediately obtains< y Ay < z = z < z. It remains to
provez # z. Notice that antireflexivity o impliesz # y andy # z. Assumer = z.

It follows thatz < y A y < z is true. Sincex is antisymmetric we obtain = y which

contradictse # y. O

As a convention, every appearance €f ‘in context with a poset tacitly assumes its
definition via egn. (1) and the partial order relation of the poset. After these preparations
one is in the position to turn to the actual objects of interest.

Definition 2. Let X be some set. If the reflexive, antisymmetric and transitive relation
“<"is valid on X then the pair(¥, <) is called apartially ordered sefor short:
posej}. Distinct pointse, y € X are said to becomparablavhen either: < y ory < «.
Otherwisey andy are incomparablevhich is denoted by || . If each pair of distinct
points of a posett’, <) is comparable thet', <) is called atotally ordered sebr a
chain Dually, if each pair of distinct points of a posgt’, <) are incomparable then
(¥, <) is termed arantichain O

For example(IR", <) with n > 2 is a partially ordered set when < y means
z; <y foralli =1,...,n. According to Lemma 1 one obtains a strict partial order
relation “<” from this partial order relation if it is additionally required that#£ y.
Notice that the pos€IR", <) is neither a chain nor an antichain. The situation changes
for the posef(IR, <) with # < y if and only if # < y. Since each pair of distinct
pointsinIR is comparable the posdR, <) is totally ordered and therefore a chain. An
example for an antichain is the set of “minimal elements” introduced next.

Definition 3. An element:* € X is called aminimal elemenbf the pose{.t’, <) if
thereisnar € X' such that: < =*. The set of all minimal elements, denotet ¥, <),
is said to becompletef for eachz € X there is at least one* € M(X', <) such that
" <. a

Minimal elements are the targets of the evolutionary search studied in the next
section. Since the analysis presented in the next section assumes the completeness of
M(X, <) itis useful to know under which circumstances this assumption is fulfilled.

Lemma 2. ([10], p. 91) If (X, <) is a poset with) < |.X'| < oo then the set of minimal
elementsM (X', <) is complete. O

This result shows that the set of minimal elements may be incomplete only if the
poset is infinitely large. But since many evolutionary algorithms operate in finite search
spaces and in favor of an easy presentation the more general case will not be considered
here. Nevertheless, the next result does not require the finiteness of the poset.

Lemma 3. Let M (X, <) # 0 be the set of minimal elements of some partially ordered
set(X, <) andG(z) ={y € ¥ 1y <z} withz € X.

@z eMX, <) = Gx)\{z}=0.
(b) If M(X, <) is complete and ¢ M (X, <) then(G(z)\ {z}) N M(X, <) £ 0.



Proof.

(a) By definition,r € M(X, <) & (Aye Xy <z) & (Aye X y<rAy#x)

are valid equivalences. The rightmost expression is equivalently rewritealfle as
G(z) : y # x whichin turnis equivalent tg(z) \ {z} = 0.

(b) Letx ¢ M(X,=). Owing to part (a) we know thaf(z) \ {z} is not empty. It
remains to show that at least one element\éfX', <) is also inG(x) \ {«}. Since
M(X, <) is complete there must exist art € M(X, <) with z* # z such that
z* < x. By definition ofG(-) it follows that necessarily* € G(z) \ {«}. O

3 Evolutionary Search in Partially Ordered Sets

Hereinafter it is assumed that the set ) is finiteand thaff : S — F = {f(z) : 2 €

St is a mapping wheréF, <) is a poset. Trivially, since is finite so isF = f(S).

Owing to Lemma 2 it is guaranteed that the set of minimal elements is complete. This
property plays a key role in the subsequent analysis. At first only a simple individual—
based EA is considered before the result is extended to the population—based case. This
individual-based EA may be seen as a generalized version @1 thel)-EA. More
specifically, the algorithm runs as follows:

(1) Generate an individual, € S at random and sét = 0.

(2) Apply some variation operator to obtain an offspringe S from .

(3) If f(yr) < f(xk) then setey 1 = yi Otherwisery 1 = k.

(4) Increase: and goto (2) unless some termination condition is fulfilled.

Needless to say that the purpose of this EA is to generate a sequgncet > 0)

such that the sequen¢é(zy) : & > 0) enters the set of minimal elememtd (F, <)

in a finite number of steps and then stays there forever. Indeed, this EA can accomplish
this task if it is assumed that the variation operator is characterized by the property that
its associated transition probability function (callediation kernelhereinafter) fulfills

the inequalityP, (z,y) > § > 0 for all z,y € S. Before proving this claim one needs

the following result.

Lemma4. LetS # § be afinitesetand : § — F = {f(z) : = € S} be a mapping
where(F, <) is a partially ordered set. Then the following statements are valid:

@) T(f(x)) = G(F(x)) N M(F, <) £ Bforall z € S.
(B)Z(f(x) = {y €S : f(y) € T(f(x))} # Oforallz € 5.

Proof.

Since M (F, <) is complete Lemma 3(b) ensures that the Béf(x)) is not empty
for eachx € S. As a consequence, the inverse imageZ$¢i{x)) of 7(f(x)) must be
non—empty as well. a

Since the variation kernel is strictly bounded from zero, the probability of generating
a specific offspring; € S with f(y) € M(F, <) by a variation of an arbitrary parent
z € Sis atleastd > (. Thus, every minimal element can be visited witlime step
from everyx € S. Assume that this event has happened, i.e., there was a transition from



r € Stoy € Swith f(y) € M(F, <). There is, however, no guarantee of acceptance
for it can be seen from the third step of the EA that an offspgiraccepted if and only

if f(y) € G(f(»)). Thus, it may happen that the offspripge S is rejected although

f(y) is aminimal element. But Lemma 4(a) ensures the existence of minimal elements
that are also contained M( f(x)) for every specificc € S. These minimal elements

are collected in the sét(f(x)) for everyz € S whereas the séi(f(z)) # §§ contains

all offspring which will be accepted and whose image is minimaFirrherefore, the
probability that the EA generates aadcepts an offspring whose image is minimal in

F within a single iteration can be bounded via

P, Z(f(2))) 2 6 - [Z((f(z))| =2 >0 (2)

for eachx € S. Next it is investigated what happens as soon as the sequéhgg) :

k > 0) has entered the set of minimal elements for the first time. fliet,,) €
M(F, =) for somek, > 0. Owing to Lemma 3(a) it is guaranteed th&te,) €
M(F,=<) for all & > ko, because the set of acceptable elemen@(i§»y,)) =
{f(zx,)}. This in turn impliesf(xx) = f(xx,) for all & > ky. As a consequence,

the probability to leave the set of minimal elements once it was entered is zero. Taking
into account this result and the result summarized in inequality (2) it follows from a
theorem in [11] that

P{f(zr) € M(F, <)} > 1 &(1 4)" 3)

for £ > 0. To proceed—and in anticipation of potential generalizations of these results
to arbitrary metrizable spaces—the géts equipped with a metric. Notice that every
non—-empty sef’ may be endowed with thdiscrete metric

0ifa=b
d(“’b)—{1 if a # b

with a, b € F. Using this metric the distane&a, A) = min{d(a,b) : b € A} from
a pointa € F to a subsetd C F is well-defined. With the definition of the nonneg-
ative random variabld®, = d(f(xx), M(F, <)) inequality (3) may be equivalently
expressed by

P{Dy <e}>1a(led)" (4)
for everys > 0. Since the r.h.s of inequality (3) converges to oné as oo it has been
shown that the sequen¢B;, : k£ > 0) converges in probability to zero. Since the rate of
approach in inequality (4) is geometrically fast it follows ti&t, : £ > 0) converges
even completely to zero (implying convergence with probability 1). Moreover, conver-
gence in mean is ensured by the boundedned3,0édnd convergence in probability.
Thus, it was proven:

Theorem 1. Let S # () be a finitesetandf : $ — F = {f(z) : = € S} be

a mapping wherd F, <) is a partially ordered set that is additionally endowed with
the discrete metrici(-,-). Let (xx : k£ > 0) with z;, € S be the random sequence
generated by the generaliz€ti+ 1)-EA whose time—invariant variation kernel has the
property P, (z,y) > d > O forall z,y € S. Then the sequenc# f (), M(F, <)) of
random distances betwegiwr;) and the set of minimal elementd (F, <)) converges
completely and in mean to zero As— ~c. a



The generalization of this theorem to the population—based case is almost trivial.
Let the population of the EA consist of ar-tuple of individuals whera < co. The
input of the variation operator is now the entire population whereas its outputVs-an
tuple of offsprings with) < N < oco. Suppose that the associated variation kernel has
the propertyP, (p,q) > ¢ > 0 forall p € S" andq € SV . Then it is guaranteed that
the image of at least one offspring enters the set of minimal elements with minimum
probabilityé > 0 in one iteration, regardless of the actual population of parents. The
mechanism to compile the new population of parents may be arbitrary provided that the
procedure obeys thalite preservation strategy:

Let (+ 2(? ... 2{") be the population of parents adt = {y\", y\* ... 4"}

be the collection of offspring at generatién> 0. Without loss of generality let parent
x,(j) be theelitist parent If B, = {y € Ok : f(y) € (](f(xfj))) \ {f(x,(j))}} is empty
then setvfjﬁl = x,(j). Otherwise, choose an arbitrayy € 55, whose image is minimal
inthe poset f(5;), <) and setvfjﬁl =y

Evidently, the sequenc(ecfj) : k > 0) behaves like the generalizétl + 1)-EA
considered previously and without much effort it was proven:

Theorem 2. LetS # () be afinitesetand : S — F = {f(«¢) : « € §} be a mapping
where(F, <) is a partially ordered set that is additionally endowed with the discrete
metricd(-, -). An evolutionary algorithm with < oo parents andV < oo offspring in

S and fitness functioffi(-) is guaranteed to generate at least one sequénge k£ > 0)

of parents such that the sequendgf(zx), M(F, <)) converges completely and in
mean to zero, provided that the time—invariant variation kernel is positiveor S

and that the selection operator obeys the elite preservation strategy. a

An early example of a probabilistic algorithm resembling an evolutionary algorithm
that obeys the elite preservation strategy was proposed by Peschel & Riedel in 1977
[12]. Originally, their method was designed for multi—objective optimization ¢ver
IR’ but it can be easily formulated in the framework presented here. For this purpose
let P, be the collection of:;, parents and?; be the collection ofV individuals at
generatiork > 0. Then the algorithm runs as follows:

1. Generate a collectioR, of ny = N parents at random and €8t = Py.

2. Select those offspring whose images are minimal in the pggély), <). This
yieldsn; distinct parents after deletion of potential duplicates./Set 1.

3. Generate a collectiof?; of N offspring from the collectior;, of n; parents by
variation.

4. Select those individuals frorR?, U O, whose images are minimal in the poset
(f(Px U Of), <). This yieldsnz4; distinct parents after deletion of potential du-
plicates.

5. Increase: and goto (3) unless some termination criterion is fulfilled.



Notice that the number of offsprinty < o~ was fixed whereas the number of
parentsn; may vary for each generation > 0. Actually, the number of parents is a
random variable. But sincg is finite and the population consists of distinct individuals
one immediately obtains;, < |S| < oo and hencd{ max{n; : k > 0} < oo} = 1.

If the variation kernel is positive of” x S for arbitraryn € {1,2,...,|S|} then the
argumentation in the proof of Theorem 2 remains valid. The elite preservation strategy

is fulfilled since a parent € Py is not contained iP; 4, if and only if there exists

ay € Pry1 with f(y) < f(x). Therefore Theorem 2 ensures that the generalized
Peschel/Riedel-method generates at least one sequence that converges to the set of
minimal elements. But an even stronger result than Theorem 2 can be proven for this
method.

Theorem 3. LetS # () be afinitesetand : § — F = {f(«) : « € §} be a mapping
where(F, <) is a partially ordered set. The set-valued sequeif@®;,) : £ > 0) gen-
erated by the generalized Peschel/Riedel-method with positive time—invariant variation
kernel converges completely and in mean to the set of minimal eleréfits <) as

k — oo, i.e,|f(Pr) N M(F,<)| — |M(F,=<)| completely and in mean &s— oc.

Proof.

Letm = |[M(F, <) and My = |f(Px) N M(F,=<)| for k& > 0. Since the variation
kernel is positive the transition probability of the stochastic pro¢ggs: £ > 0) can

be bounded vig; i1 = P{Mi11 =i+ 1| My =i} > d(mei)for0 <i<m

and some&j > 0. Notice thatp;; = 0if 0 < j < ¢ < m by construction of the
algorithm, i.e.,M; increases monotonically. Although there are also transitions with
pii+; > 0for j > 1, these short cuts will be ignored. Thus, it is assumed Miat
attains all values frorfi to m consecutively. Itis clear that this modified process requires
more time to reach the value than the original one. Larger values thancannot be
attained because the completenes$tifF, <) guarantees thay (Px) N M(F, <)| <
|IM(F,=)| for everyk > 0. As a consequencey; = 1 if and only if i = m. By
settingp; i+1 = 6 (m <) for 0 < i < m andp;; = 1 &p; ;41 for i < m one obtains

a finite absorbing Markov chain that requires more time to reach its only absorbing
statem than the original stochastic process. The eigenvalues of the associated transition
matrix are{1,d m,d (m<1),...,24,4}. Owing to a resultin [13], p. 391, one obtains

P{ M, < m} = O()\) where\. = § m is the second largest eigenvalue. This proves
complete convergence o1, tom; convergence in mean follows from the boundedness
of M. O

4 Transcription of Result into Specialized Terminology

4.1 Real—-valued Function Minimization

Let S # 0 be afinitesetand : S — F = {f(z) : = € S8} C IR be a real-
valued mapping. In this case the po&#t, <) with the usual order relatiof in IR is
totally ordered. As a consequence, the set of minimal elemetfconsists of a single
elementf*, which is called theglobal minimumof the objective functiory(-). The



lower level setG (f(z)) = {f(y) : f(y) < f(x)} contains the unique global minimum
f* foreveryz € S.

In this case the elite preservation strategy is simplified as follows: Without loss of
generality Ietx,(j) be the elitist parent at generatién> 0. If B, is empty then set

x,(jll = x,(j), i.e., there was no offspring with an objective function value less than

f(x,(j)). If B, is not empty then choose an arbitrary offsprigige 5, among those
possessing the least objective function value, andfﬁa; =y

Moreover, since the sef is finite stochastic convergence to zero in the discrete
metricd(f(zx), f*) is equivalent to f(xx) < f*| — 0 as well as tof(zx) — f*.
Now one is in the position to transcribe the main result of the previous section into the
terminology of real—valued function minimization.

Corollary 1 (to Theorem 2).LetS # @) be afinitesetand : S — F = {f(z) : z €

S} C IR be the objective function. An evolutionary algorithm witk: co parents and

N < oo offspring inS and fitness functiorf(-) is guaranteed to generate at least one
sequencéxy : k > 0) of parents such that the sequengéz;) : £ > 0) converges
completely and in mean to the global minimyim provided that the time—invariant
variation kernel is positive o™ x 8" and that the selection operator obeys the elite
preservation strategy. O

4.2 Multicritera Optimization

LetS # O be afinitesetand : S — F = {f(z) : « € S} C R™ with f(z) =
(fi(z), fo(x), ..., fm(x))" a vector-valued function, where each of the> 2 real—
valued objective functiong, , . . ., f,, are to be minimized simultaneously. The partial
order relation <" on F is given by

flx) = fly) < filx) < fi(y)foralli=1,...,m.

In this particular context the set of minimal elemeMs F, <) is called thePareto set
while its elements are termgghreto—optimabr efficient points

Corollary 2 (to Theorem 2).LetS # () be afinite setang : § — F = {f(z) :

z € 8§} C R™ wheref(-) is a vector ofm > 2 real-valued objective functions. An
evolutionary algorithm withh < oo parents andV < oo offspring inS and objective
function vectorf(-) is guaranteed to generate at least one sequénge: £ > 0) of
parents such that the sequence of distances (in discrete metric) befiwggnand the
Pareto set converges completely and in mean to zero, provided that the time—invariant
variation kernel is positive o™ x 8" and that the selection operator obeys the elite
preservation strategy. O

5 Potential Directions of Further Research

There are several directions in which the main results may be extended. First, the pre-
conditions regarding the variation kernel and the requirement of the elitist preserva-
tion property can be weakened certainly. Second, a generalization to infinitely large



search and image sets should be possible. Metrizable topologaaspught to be
sufficiently general, although some complications regarding measure theory can be ex-
pected. Third, if the binary relation df is reflexive and antisymmetric but not neces-
sarily transitive, then one has to cope with quasi—ordered sets in lieu of partially ordered
sets. Last but certainly not least, the finite time behavior of the evolutionary algorithms
is of significant practical importance. This includes the expected first entry times to the
set of minimal elements as well as the expected achievable quality of the solution under
some specific stopping rules.
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