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Abstract. The task of finding minimal elements of a partially ordered set is a
generalization of the task of finding the global minimum of a real–valued func-
tion or of finding pareto–optimal points of a multicriteria optimization problem.
It is shown that evolutionary algorithms are able to converge to the set of mini-
mal elements in finite time with probability one, provided that the search space
is finite, the time–invariant variation operator is associated with a positive transi-
tion probability function and that the selection operator obeys the so–called ‘elite
preservation strategy.’

1 Introduction

Traditionally,evolutionary algorithms (EAs) were used to find or approximate the global
minimum of a real–valued objective functionf : S ! IR defined on some non–empty
setS. The development of EAs that can cope with more than a single objective function
began in the mid–1980s but for a long time this field of application did not receive the
resonance that it should have deserved. The situation changed during the last five years:
As can be learned from recent surveys [1–3] there are now numerous suggestions of
how to design multi–objective EAs. But these activities were notaccompanied by the
development of a theoretical foundation. A similar time lag between practice and theory
can be observed in case of single–objective EAs. It is therefore the goal of this paper to
seed a starting point regarding a theory of multi–objective EAs that may initiate further
research on that subject.

The main difference between single– and multi–objective optimization rests on the
fact that two elements are not guaranteed to be comparable in the latter case. To un-
derstand the problem to full extent it is important to keep in mind that the values
f1(x); : : : ; fm(x) of them � 2 objective functions representincommensurablequan-
tities that cannot be minimized simultaneously: Whilef1 may measure costs,f2 may
measure the level of pollution,f3 the pressure of some boiler, and so forth. As a con-
sequence, the notion of the “optimality” of some solution needs a more general formu-
lation as in the single–criterion case. It seems reasonable to regard those elements as
being optimal which cannot be improved with respect to one criterion without getting
a worse value in another criterion. Elements with this property are said to bePareto–
optimalin this context.

From a more general point of view single– as well as multi–objective optimization
can be seen as special cases of the task to findminimal elementsof partially ordered
sets. The meaning of these terms will be made rigorous in Section 2. After these prepa-
rations it is shown in Section 3 that EAs with finite search space and partially ordered
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fitness values do stochastically converge to minimal elements provided that the selec-
tion mechanism employs some kind of elitism and that the time–invariant variation op-
erator’s support is identical to the search space. This result includes earlier established
convergence results regarding single–objective EAs with finite search space (e.g. [4–7])
as special cases. Moreover, it also includes anewconvergence result for multi–objective
EAs. Section 4 is devoted to transcribe the general result into the terminology of these
special cases. Finally, some directions towards an extension of the presented theory are
discussed in Section 5.

2 Partially Ordered Sets

A prerequisite to introduce ‘partially ordered sets’ is the notion of the ‘relation.’ The
definitions presented in this section are extracted from [8] and [9].

Definition 1. LetX be some set. The subsetR � X � X is called abinary relationin
X . Letx; y 2 X . If (x; y) 2 R, also denotedxRy, thenx is said to be in relationR to
y. A relationR in X is said to be

(a) reflexiveif xRx is true for allx 2 X ,
(b) antireflexiveif xRy ) x 6= y is true for allx; y 2 X ,
(c) symmetricif xRy ) yRx is true for allx; y 2 X ,
(d) antisymmetricif xRy ^ yRx) x = y is true for allx; y 2 X ,
(e)asymmetricif xRy ) yRx is true for allx; y 2 X ,
(f) transitiveif xRy ^ yRz ) xRz is true for allx; y; z 2 X . ut

Some relations that possess several of the properties above simultaneously bear their
own names. For example, ifR is a reflexive, symmetric and transitive relation thenR is
called anequivalence relation. In this case it is common to use the symbol “�” in lieu
of R. A reflexive, antisymmetric and transitive relation “�” is termed apartial order
relation whereas astrict partial order relation“�” must be antireflexive, asymmetric
and transitive. The result below shows how to obtain a strict partial order relation from
a partial order relation.

Lemma 1. LetX be some set and let “�” denote a reflexive, antisymmetric and tran-
sitive relation onX . Then the relation “�” defined by

x � y , (x � y) ^ (x 6= y) (1)

is antireflexive, asymmetric and transitive onX .

Proof.

(a)x � y ) x 6= y (antireflexive):
Follows directly from the definition of relation�.

(b)x � y ) y � x (asymmetric):
Let x � y be valid and assumey � x. By definition of� it follows thatx � y ^ y � x

is true. Since� is antisymmetric we obtainx = y which contradicts the validity of
x � y.
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(c) x � y ^ y � z ) x � z (transitive):
Since� is transitive one immediately obtainsx � y ^ y � z ) x � z. It remains to
provex 6= z. Notice that antireflexivity of� impliesx 6= y andy 6= z. Assumex = z.
It follows thatx � y ^ y � x is true. Since� is antisymmetric we obtainx = y which
contradictsx 6= y. ut

As a convention, every appearance of “�” in context with a poset tacitly assumes its
definition via eqn. (1) and the partial order relation of the poset. After these preparations
one is in the position to turn to the actual objects of interest.

Definition 2. LetX be some set. If the reflexive, antisymmetric and transitive relation
“�” is valid on X then the pair(X ;�) is called apartially ordered set(or short:
poset). Distinct pointsx; y 2 X are said to becomparablewhen eitherx � y or y � x.
Otherwise,x andy are incomparablewhich is denoted byx k y. If each pair of distinct
points of a poset(X ;�) is comparable then(X ;�) is called atotally ordered setor a
chain. Dually, if each pair of distinct points of a poset(X ;�) are incomparable then
(X ;�) is termed anantichain. ut

For example,(IRn;�) with n � 2 is a partially ordered set whenx � y means
xi � yi for all i = 1; : : : ; n. According to Lemma 1 one obtains a strict partial order
relation “�” from this partial order relation if it is additionally required thatx 6= y.
Notice that the poset(IRn;�) is neither a chain nor an antichain. The situation changes
for the poset(IR;�) with x � y if and only if x � y. Since each pair of distinct
points inIR is comparable the poset(IR;�) is totally ordered and therefore a chain. An
example for an antichain is the set of “minimal elements” introduced next.

Definition 3. An elementx� 2 X is called aminimal elementof the poset(X ;�) if
there is nox 2 X such thatx � x�. The set of all minimal elements, denotedM(X ;�),
is said to becompleteif for eachx 2 X there is at least onex� 2 M(X ;�) such that
x� � x. ut

Minimal elements are the targets of the evolutionary search studied in the next
section. Since the analysis presented in the next section assumes the completeness of
M(X ;�) it is useful to know under which circumstances this assumption is fulfilled.

Lemma 2. ([10], p. 91) If (X ;�) is a poset with0 < jX j <1 then the set of minimal
elementsM(X ;�) is complete. ut

This result shows that the set of minimal elements may be incomplete only if the
poset is infinitely large. But since many evolutionary algorithms operate in finite search
spaces and in favor of an easy presentation the more general case will not be considered
here. Nevertheless, the next result does not require the finiteness of the poset.

Lemma 3. LetM(X ;�) 6= ; be the set of minimal elements of some partially ordered
set(X ;�) andG(x) = fy 2 X : y � xg withx 2 X .

(a) x 2M(X ;�) () G(x) n fxg = ;.

(b) IfM(X ;�) is complete andx =2M(X ;�) then(G(x)nfxg)\M(X;�) 6= ;.
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Proof.

(a) By definition,x 2M(X ;�), (6 9 y 2 X : y � x), (6 9 y 2 X : y � x ^ y 6= x)

are valid equivalences. The rightmost expression is equivalently rewriteable as6 9 y 2

G(x) : y 6= x which in turn is equivalent toG(x) n fxg = ;.

(b) Let x =2 M(X ;�). Owing to part (a) we know thatG(x) n fxg is not empty. It
remains to show that at least one element ofM(X ;�) is also inG(x) n fxg. Since
M(X ;�) is complete there must exist anx� 2 M(X ;�) with x� 6= x such that
x� � x. By definition ofG(�) it follows that necessarilyx� 2 G(x) n fxg. ut

3 Evolutionary Search in Partially Ordered Sets

Hereinafter it is assumed that the setS 6= ; is finite and thatf : S ! F = ff(x) : x 2

Sg is a mapping where(F ;�) is a poset. Trivially, sinceS is finite so isF = f(S).
Owing to Lemma 2 it is guaranteed that the set of minimal elements is complete. This
property plays a key role in the subsequent analysis. At first only a simple individual–
based EA is considered before the result is extended to the population–based case. This
individual–based EA may be seen as a generalized version of the(1 + 1)–EA. More
specifically, the algorithm runs as follows:

(1) Generate an individualx0 2 S at random and setk = 0.
(2) Apply some variation operator to obtain an offspringyk 2 S from xk.
(3) If f(yk) � f(xk) then setxk+1 = yk otherwisexk+1 = xk.
(4) Increasek and goto (2) unless some termination condition is fulfilled.

Needless to say that the purpose of this EA is to generate a sequence(xk : k � 0)

such that the sequence(f(xk) : k � 0) enters the set of minimal elementsM(F ;�)

in a finite number of steps and then stays there forever. Indeed, this EA can accomplish
this task if it is assumed that the variation operator is characterized by the property that
its associated transition probability function (calledvariation kernelhereinafter) fulfills
the inequalityPv(x; y) � � > 0 for all x; y 2 S. Before proving this claim one needs
the following result.

Lemma 4. LetS 6= ; be a finite set andf : S ! F = ff(x) : x 2 Sg be a mapping
where(F ;�) is a partially ordered set. Then the following statements are valid:

(a) T (f(x)) = G(f(x)) \M(F;�) 6= ; for all x 2 S .

(b) I(f(x)) = fy 2 S : f(y) 2 T (f(x))g 6= ; for all x 2 S .

Proof.

SinceM(F;�) is complete Lemma 3(b) ensures that the setT (f(x)) is not empty
for eachx 2 S. As a consequence, the inverse image setI(f(x)) of T (f(x)) must be
non–empty as well. ut

Since the variation kernel is strictly bounded from zero, the probabilityof generating
a specific offspringy 2 S with f(y) 2 M(F ;�) by a variation of an arbitrary parent
x 2 S is at least� > 0. Thus, every minimal element can be visited withinonestep
from everyx 2 S. Assume that this event has happened, i.e., there was a transition from
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x 2 S to y 2 S with f(y) 2 M(F ;�). There is, however, no guarantee of acceptance
for it can be seen from the third step of the EA that an offspringy is accepted if and only
if f(y) 2 G(f(x)). Thus, it may happen that the offspringy 2 S is rejected although
f(y) is a minimal element. But Lemma 4(a) ensures the existence of minimal elements
that are also contained inG(f(x)) for every specificx 2 S. These minimal elements
are collected in the setT (f(x)) for everyx 2 S whereas the setI(f(x)) 6= ; contains
all offspring which will be accepted and whose image is minimal inF . Therefore, the
probability that the EA generates andaccepts an offspring whose image is minimal in
F within a single iteration can be bounded via

P (x; I(f(x))) � � � jI((f(x))j � � > 0 (2)

for eachx 2 S . Next it is investigated what happens as soon as the sequence(f(xk) :

k � 0) has entered the set of minimal elements for the first time. Letf(xk0) 2

M(F;�) for somek0 � 0. Owing to Lemma 3(a) it is guaranteed thatf(xk) 2

M(F;�) for all k � k0, because the set of acceptable elements isG(f(xk0 )) =

ff(xk0)g. This in turn impliesf(xk) = f(xk0 ) for all k � k0. As a consequence,
the probability to leave the set of minimal elements once it was entered is zero. Taking
into account this result and the result summarized in inequality (2) it follows from a
theorem in [11] that

Pf f(xk) 2M(F ;�) g � 1� (1� �)k (3)

for k � 0. To proceed—and in anticipation of potential generalizations of these results
to arbitrary metrizable spaces—the setF is equipped with a metric. Notice that every
non–empty setF may be endowed with thediscrete metric

d(a; b) =

�
0 if a = b

1 if a 6= b

with a; b 2 F . Using this metric the distanced(a;A) = minfd(a; b) : b 2 Ag from
a pointa 2 F to a subsetA � F is well–defined. With the definition of the nonneg-
ative random variableDk = d(f(xk);M(F ;�)) inequality (3) may be equivalently
expressed by

PfDk � " g � 1� (1� �)k (4)

for every" > 0. Since the r.h.s of inequality (3) converges to one ask !1 it has been
shown that the sequence(Dk : k � 0) converges in probability to zero. Since the rate of
approach in inequality (4) is geometrically fast it follows that(Dk : k � 0) converges
even completely to zero (implying convergence with probability 1). Moreover, conver-
gence in mean is ensured by the boundedness ofDk and convergence in probability.
Thus, it was proven:

Theorem 1. Let S 6= ; be a finite set andf : S ! F = ff(x) : x 2 Sg be
a mapping where(F ;�) is a partially ordered set that is additionally endowed with
the discrete metricd(�; �). Let (xk : k � 0) with xk 2 S be the random sequence
generated by the generalized(1+1)–EA whose time–invariant variation kernel has the
propertyPv(x; y) � � > 0 for all x; y 2 S . Then the sequenced(f(xk);M(F;�)) of
random distances betweenf(xk) and the set of minimal elementsM(F ;�)) converges
completely and in mean to zero ask !1. ut
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The generalization of this theorem to the population–based case is almost trivial.
Let the population of the EA consist of ann–tuple of individuals wheren < 1. The
input of the variation operator is now the entire population whereas its output is anN–
tuple of offsprings with0 < N < 1. Suppose that the associated variation kernel has
the propertyPv(p; q) � � > 0 for all p 2 Sn andq 2 SN . Then it is guaranteed that
the image of at least one offspring enters the set of minimal elements with minimum
probability� > 0 in one iteration, regardless of the actual population of parents. The
mechanism to compile the new population of parents may be arbitrary provided that the
procedure obeys theelite preservation strategy:

Let (x(1)
k
; x

(2)

k
; : : : ; x

(n)

k
) be the population of parents andOk = fy

(1)

k
; y

(2)

k
; : : : ; y

(N)

k
g

be the collection of offspring at generationk � 0. Without loss of generality let parent
x
(1)

k
be theelitist parent. If Bk = fy 2 Ok : f(y) 2 G(f(x

(1)

k
)) n ff(x

(1)

k
)gg is empty

then setx(1)
k+1 = x

(1)

k
. Otherwise, choose an arbitraryy�

k
2 Bk whose image is minimal

in the poset(f(Bk);�) and setx(1)
k+1 = y�

k
.

Evidently, the sequence(x(1)
k

: k � 0) behaves like the generalized(1 + 1)–EA
considered previously and without much effort it was proven:

Theorem 2. LetS 6= ; be a finite set andf : S ! F = ff(x) : x 2 Sg be a mapping
where(F ;�) is a partially ordered set that is additionally endowed with the discrete
metricd(�; �). An evolutionary algorithm withn <1 parents andN <1 offspring in
S and fitness functionf(�) is guaranteed to generate at least one sequence(xk : k � 0)

of parents such that the sequenced(f(xk);M(F;�)) converges completely and in
mean to zero, provided that the time–invariant variation kernel is positive onS

n
� S

N

and that the selection operator obeys the elite preservation strategy. ut

An early example of a probabilistic algorithm resembling an evolutionary algorithm
that obeys the elite preservation strategy was proposed by Peschel & Riedel in 1977
[12]. Originally, their method was designed for multi–objective optimization overS =

IR
` but it can be easily formulated in the framework presented here. For this purpose

let Pk be the collection ofnk parents andOk be the collection ofN individuals at
generationk � 0. Then the algorithm runs as follows:

1. Generate a collectionP0 of n0 = N parents at random and setO0 = P0.
2. Select those offspring whose images are minimal in the poset(f(O0);�). This

yieldsn1 distinct parents after deletion of potential duplicates. Setk = 1.
3. Generate a collectionOk of N offspring from the collectionPk of nk parents by

variation.
4. Select those individuals fromPk [ Ok whose images are minimal in the poset

(f(Pk [ Ok);�). This yieldsnk+1 distinct parents after deletion of potential du-
plicates.

5. Increasek and goto (3) unless some termination criterion is fulfilled.
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Notice that the number of offspringN < 1 was fixed whereas the number of
parentsnk may vary for each generationk � 0. Actually, the number of parents is a
random variable. But sinceS is finite and the population consists of distinct individuals
one immediately obtainsnk � jSj < 1 and hencePfmaxfnk : k � 0g < 1g = 1.
If the variation kernel is positive onSn �SN for arbitraryn 2 f1; 2; : : : ; jSjg then the
argumentation in the proof of Theorem 2 remains valid. The elite preservation strategy
is fulfilled since a parentx 2 Pk is not contained inPk+1 if and only if there exists
a y 2 Pk+1 with f(y) � f(x). Therefore Theorem 2 ensures that the generalized
Peschel/Riedel–method generates at least one sequence that converges to the set of
minimal elements. But an even stronger result than Theorem 2 can be proven for this
method.

Theorem 3. LetS 6= ; be a finite set andf : S ! F = ff(x) : x 2 Sg be a mapping
where(F ;�) is a partially ordered set. The set–valued sequence(f(Pk) : k � 0) gen-
erated by the generalized Peschel/Riedel–method with positive time–invariant variation
kernel converges completely and in mean to the set of minimal elementsM(F ;�) as
k!1, i.e., jf(Pk) \M(F ;�)j ! jM(F ;�)j completely and in mean ask !1.

Proof.

Let m = jM(F;�)j andMk = jf(Pk) \M(F ;�)j for k � 0. Since the variation
kernel is positive the transition probability of the stochastic process(Mk : k � 0) can
be bounded viapi;i+1 = PfMk+1 = i + 1 jMk = ig � � (m � i) for 0 � i < m

and some� > 0. Notice thatpij = 0 if 0 � j < i � m by construction of the
algorithm, i.e.,Mk increases monotonically. Although there are also transitions with
pi;i+j > 0 for j > 1, these short cuts will be ignored. Thus, it is assumed thatMk

attains all values from0 tom consecutively. It is clear that this modified process requires
more time to reach the valuem than the original one. Larger values thanm cannot be
attained because the completeness ofM(F ;�) guarantees thatjf(Pk)\M(F ;�)j �

jM(F;�)j for everyk � 0. As a consequence,pii = 1 if and only if i = m. By
settingpi;i+1 = � (m � i) for 0 � i < m andpii = 1 � pi;i+1 for i < m one obtains
a finite absorbing Markov chain that requires more time to reach its only absorbing
statem than the original stochastic process. The eigenvalues of the associated transition
matrix aref1; � m; � (m� 1); : : : ; 2 �; �g. Owing to a result in [13], p. 391, one obtains
PfMk < m g = O(�k

�
) where�� = � m is the second largest eigenvalue. This proves

complete convergence ofMk tom; convergence in mean follows from the boundedness
of Mk. ut

4 Transcription of Result into Specialized Terminology

4.1 Real–valued Function Minimization

Let S 6= ; be a finite set andf : S ! F = ff(x) : x 2 Sg � IR be a real–
valued mapping. In this case the poset(F ;�) with the usual order relation� in IR is
totally ordered. As a consequence, the set of minimal elements inF consists of a single
elementf�, which is called theglobal minimumof the objective functionf(�). The
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lower level setG(f(x)) = ff(y) : f(y) � f(x)g contains the unique global minimum
f� for everyx 2 S.

In this case the elite preservation strategy is simplified as follows: Without loss of
generality letx(1)

k
be the elitist parent at generationk � 0. If Bk is empty then set

x
(1)

k+1 = x
(1)

k
, i.e., there was no offspring with an objective function value less than

f(x
(1)

k
). If Bk is not empty then choose an arbitrary offspringy�

k
2 Bk among those

possessing the least objective function value, and setx
(1)

k+1 = y�
k
.

Moreover, since the setF is finite stochastic convergence to zero in the discrete
metric d(f(xk); f�

) is equivalent tojf(xk) � f�j ! 0 as well as tof(xk) ! f�.
Now one is in the position to transcribe the main result of the previous section into the
terminology of real–valued function minimization.

Corollary 1 (to Theorem 2). LetS 6= ; be a finite set andf : S ! F = ff(x) : x 2

Sg � IR be the objective function. An evolutionary algorithm withn <1 parents and
N < 1 offspring inS and fitness functionf(�) is guaranteed to generate at least one
sequence(xk : k � 0) of parents such that the sequence(f(xk) : k � 0) converges
completely and in mean to the global minimumf�, provided that the time–invariant
variation kernel is positive onSn � SN and that the selection operator obeys the elite
preservation strategy. ut

4.2 Multicritera Optimization

Let S 6= ; be a finite set andf : S ! F = ff(x) : x 2 Sg � IR
m with f(x) =

(f1(x); f2(x); : : : ; fm(x))
0 a vector–valued function, where each of them � 2 real–

valued objective functionsf1; : : : ; fm are to be minimized simultaneously. The partial
order relation “�” on F is given by

f(x) � f(y) () fi(x) � fi(y) for all i = 1; : : : ;m:

In this particular context the set of minimal elementsM(F ;�) is called thePareto set
while its elements are termedpareto–optimalor efficient points.

Corollary 2 (to Theorem 2). Let S 6= ; be a finite set andf : S ! F = ff(x) :

x 2 Sg � IR
m wheref(�) is a vector ofm � 2 real–valued objective functions. An

evolutionary algorithm withn < 1 parents andN < 1 offspring inS and objective
function vectorf(�) is guaranteed to generate at least one sequence(xk : k � 0) of
parents such that the sequence of distances (in discrete metric) betweenf(xk) and the
Pareto set converges completely and in mean to zero, provided that the time–invariant
variation kernel is positive onSn � SN and that the selection operator obeys the elite
preservation strategy. ut

5 Potential Directions of Further Research

There are several directions in which the main results may be extended. First, the pre-
conditions regarding the variation kernel and the requirement of the elitist preserva-
tion property can be weakened certainly. Second, a generalization to infinitely large
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search and image sets should be possible. Metrizable topological spacesought to be
sufficiently general, although some complications regarding measure theory can be ex-
pected. Third, if the binary relation onF is reflexive and antisymmetric but not neces-
sarily transitive, then one has to cope with quasi–ordered sets in lieu of partially ordered
sets. Last but certainly not least, the finite time behavior of the evolutionary algorithms
is of significant practical importance. This includes the expected first entry times to the
set of minimal elements as well as the expected achievable quality of the solution under
some specific stopping rules.
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