
Genetic Programming with Guaranteed Quality

Stefan Droste
Lehrstuhl Informatik II

Universit�at Dortmund

44221 Dortmund, Germany

droste@ls2.informatik.uni-dortmund.de

ABSTRACT

When using genetic programming
(GP) or other techniques that try
to approximate unknown functions,
the principle of Occam's razor is of-
ten applied: �nd the simplest func-
tion that explains the given data,
as it is assumed to be the best ap-
proximation for the unknown func-
tion. Using a well-known result
from learning theory, it is shown
in this paper, how Occam's razor
can help GP in �nding functions,
so that the number of functions
that di�er from the unknown func-
tion by more than a certain degree
can be bounded theoretically. Ex-
periments show how these bounds
can be used to get guaranteed qual-
ity assurances for practical applica-
tions, even though they are much
too conservative.

1 Introduction

Genetic programming (GP) is a paradigm for generating
computer programs by using the basic principles of nat-
ural evolution: crossover, mutation, and selection (see
\Koza (1992)" for a detailed introduction to GP). Of-
ten GP is used to �nd a function, that approximates an
unknown function as good as possible, where the only
information about the unknown function is a set of train-
ing examples, i.e. inputs with the correct output values
of the unknown function. The main problem here is not
to �nd a function that shows the prespeci�ed behaviour
on the given inputs, but resembles the unknown function
on the other inputs, i.e. one wants to �nd functions with
good generalization properties.

To solve this problem, often the principle of Occam's
razor is applied, i.e. one tries to �nd the simplest func-
tion, that outputs the correct values for all inputs in the

training set. It is assumed that simpler functions gen-
eralize better than the average function showing the de-
sired input-output behaviour on the training examples.
In GP, for example, one tries to �nd simple functions by
using a parsimony factor, so that more complex functions
get lower �tness than simpler functions, if both have the
same �tness on the training examples. The principle of
Occam's razor, although seeming intuitively reasonable,
has never been proven to lead to functions that general-
ize better than functions resulting from other strategies.
Furthermore, it is not clear, how to measure the simplic-
ity of a function: the most often used measure, the size
of the function (i.e. the size of the program representing
the function) is dependent on the form of representation
and can be misleading, if the program contains redun-
dant code, that increases its size without its complexity.
Nevertheless, many experiments in GP show that trying
to �nd small functions leads to better generalizing func-
tions than ignoring function size (see e.g. \Hooper and
Flann (1996)", \Kinnear (1993)", \Rosca (1996)", and
\Zhang and M�uhlenbein (1995)").

In this paper the well-known Occam's razor theorem
(see \Blumer et al. (1987)") from the �eld of learning
theory is used to give an explanation on the in
uence the
size of a function can have on its generalization proper-
ties. Roughly speaking, it states, that one should restrict
the search space as much as possible while trying to �nd

a good approximation of the unknown function, as this
will reduce the probability of �nding functions that di�er
by more than an error bound from the unknown function.
If the search space is small enough in comparison to the
number of used training examples and the error bound,
Occam's razor theorem gives upper bounds on the prob-
ability, that many of the found functions di�er by more
than the error bound from the unknown function.

Because trying to �nd the smallest function that ex-
plains the training data results in restricting the search
space to small functions, the principle of Occam's ra-
zor can therefore lead to provable good results (although
Occam's razor theorem gives reason for the complemen-
tary strategy of trying to �nd the largest function that
explains the data, too, as this strategy results in restrict-

1

ing the search space to large functions).

The next sections are organized as follows: section two
formally de�nes the problem of �nding a function, that
approximates an unknown function given only by a num-
ber of training examples. Section three restates Occam's
razor theorem and tries to explain some of its conse-
quences. Experiments showing that the theoretical qual-
ity bounds are much too conservative and giving even
stronger evidence, that the size of a function is related
to its generalization quality, are described in the next sec-
tion: �rst of all, the used GP system (see \Droste (1997)"
for a more detailed description) is described, then it is
shown how to upper-bound the number of functions of
a certain maximal size (which is here used to apply Oc-
cam's razor theorem), and then the experimental results
are presented. The last section contains the conclusion.

2 De�nitions

In this section we want to formally de�ne the problem of
�nding generalizing functions and show that all systems
that generate functions being consistent with the given
data have the same generalization quality, if we assume
that all possible functions have the same probability of
being the unknown function.

Let f be the unknown function we want to approxi-
mate as good as possible, where f is from the set F of all
functions between A and B (A and B are arbitrary �nite
sets). As we do not want to model a system that is only
used to approximate a single function but a whole class
of functions, we assume that f is chosen randomly ac-
cording to a probability distribution PF : P(F) ! [0; 1]
(where P(F) is the set of all subsets of F).

The only information we get about the unknown func-
tion f is a set of inputs Xi 2 A with the correct output
f(Xi) 2 B, i.e. a set f(X1; f(X1)); : : : ; (Xm; f(Xm))g,
where m is the number of examples. We assume that
the inputsXi are randomly and independently chosen ac-
cording to a probability distribution PA : P(A)! [0; 1].
Hence, it is possible that two inputs Xi and Xj (i 6= j)
of the training examples are equal, even though the sec-
ond input gives no additional information. We also use
this probability distribution PA to measure the error
Err(h; f) 2 [0; 1] of a hypothesis h 2 F with regard
to the unknown function f :

Err(h; f) := PA(fX 2 A jh(X) 6= f(X)g):

So our goal is to �nd for an unknown function f ,
which is accessible to us only by a set of examples
f(X1; f(X1)); : : : ; (Xm; f(Xm))g, a hypothesis h : A !

B minimizing Err(h; f). If this task is done by a (GP)
system S, which outputs a hypothesis h, when its in-
put is f(X1; f(X1)); : : : ; (Xm; f(Xm))g, with probability
PS((X1; f(X1)); : : : ; (Xm; f(Xm)); h), our goal is to �nd

a system S that minimizes the expected error Err(S):

Err(S) :=
X
h2F

X
f2F

X
(X1;:::;Xm)2Am

PF (f) � PA(X1) � : : : �

PA(Xm)�PS((X1; f(X1)); : : : ; (Xm; f(Xm)); h)�Err(f; h):

(Here we assume that all inputs Xi are chosen indepen-
dently from each other and from the unknown function
f .)
With respect to a given set f(X1; f(X1)); : : : ;

(Xm; f(Xm))g of examples, we call a hypothesis h 2 F

consistent, if it has the desired input-output-behaviour
on all training examples, i.e. the set C(X1; : : : ; Xm; f) of
consistent functions is de�ned by

C(X1; : : : ; Xm; f) :=

fh : A! B j 8i 2 f1; : : : ;mg : h(Xi) = f(Xi)g:

It seems reasonable only to use consistent systems, i.e.
systems that output only hypotheses, which are con-
sistent with the given examples, i.e. hypotheses from
C(X1; : : : ; Xm; f), as there can be no bene�t in ignoring
the (in general small amount of) data we have about the
otherwise unknown function. Any not consistent system
can be simply improved by making its output-hypothesis
consistent. So any system can be made consistent with-
out quality loss.
If we assume that all functions in F have the same

probability of being the unknown function, i.e. 8F 0 �

F : PF (F
0) = jF 0j=jBjjAj, then all consistent systems S

have the same expected error

X
(X1;:::;Xm)2Am

PA(X1) � : : : �PA(Xm)�

(jBj � 1) � PA(A n fX1; : : : ; Xmg)

jBj
:

This is valid, because for all inputs in A n fX1; : : : ; Xmg

the probability of guessing the correct output is (jBj �
1)=jBj, as all jBj possible outputs have the same proba-
bility of being the correct output and there is no infor-
mation about the correct output.
So there is no system for �nding a hypothesis that

gives better results than any other system; all consis-
tent systems have the same expected error, if we assume,
that all functions have the same probability of being the
unknown function (and all non-consistent systems have
even greater expected error).
But what can we do, if all consistent systems have the

same quality? First of all, in practical applications not
all arbitrary functions shall be learned, but only \im-
portant" functions. This means that PF has not the
same value for all functions f 2 F , but is greater for
\important" functions and smaller for \less important"
functions. But as long as we cannot de�ne what those

2

\important" functions are, we can only make empirically
based statements.
Another possibility is to have a way of predicting the

error of the found hypotheses, i.e. the system has no
above-average quality over all unknown functions (as this
is impossible), but there are indicators for the quality of
the hypotheses. As the examples are chosen randomly
and the system can work randomly, too, all we can hope
for are indicators for a statement of a probabilistic kind.
In the next section we show how we can get an indicator
for a statement of the following kind: from the R found
hypotheses the number of hypotheses h with Err(h; f) <
" is with probability at least 1 � � at least a number
depending on R, �, and ".

3 Occam's razor theorem

Let us assume that for every set f(X1; f(X1)); : : : ;
(Xm; f(Xm))g of training examples the (GP) system S

outputs a hypothesis h 2 F that is consistent with this
set, i.e. that the system is consistent. If the inputs
X1; : : : ; Xm 2 A are chosen randomly, the found hy-
potheses are likely to be di�erent for di�erent choices.
But if the system would output the same hypothesis h
for many di�erent and large sets of examples, one could
assume that h is a good approximation of the unknown
function f , as it is consistent with f on many inputs.
Analogously, if the system would output hypotheses of
a prespeci�ed class H � F for many training examples,
one could assume that the average approximation qual-
ity of the found functions in H is relatively high, if H
contains relatively few functions.
Occam's razor theorem (see \Blumer et al. (1987)")

contains an exact formulation of this common-sense-
argumentation (for sake of completeness, the short proof
of the theorem is added):

Theorem 1 (Occam's razor theorem) Let H be a
subset of F and f an arbitrary element of F .
The probability of independently choosing m exam-
ples X1; : : : ; Xm 2 A according to PA, so that
there is a function h 2 H, which is consistent
with f(X1; f(X1)); : : : ; (Xm; f(Xm))g and has error
Err(h; f) > ", is less than jHj � (1� ")m .

Proof: If h 2 H is a function with Err(h; f) > ",
the probability of independently choosing m examples
X1; : : : ; Xm of f with h 2 C(X1; : : : ; Xm; f) is less than
(1 � ")m. If we assume, that all functions h 2 H have
error greater than ", the probability, that any function
in H is an element of C(X1; : : : ; Xm; f), is less than
jHj � (1 � ")m. As this assumption overestimates the
probability, that there is a consistent function in H with
error more than ", the theorem is proven. �

How can we use this theorem to get a probabilistic
lower bound on the number of functions with error at

most " in the set of functions our (GP) system has found?
Let us assume that our system was repeated R-times
(where the training examples were chosen independently
according to PA for every run) and that k-times a con-
sistent hypothesis of a prespeci�ed subset H of functions
between A and B was found. As the probability of inde-
pendently choosing m examples, so that there is a con-
sistent hypothesis in H with error greater than ", is less
than jHj�(1�")m, the probability that such a hypothesis
was found at least l-times can be bounded above by�

R

l

�
� (jHj � (1� ")m)

l
: (1)

Another bound can be obtained using the Cherno�
bound (see \Hagerup and R�ub (1989)" for a proof of the
Cherno� bound). The Cherno� bound states that for n
independent random variables Zi 2 f0; 1g with E(Zi) =
pi, p = (

Pn

i=1 pi)=n, and � > 0, the probability that the
sum of the Zi is at least (1 + �) � n � p can be bounded
above in the following way:

P (

nX
i=1

Zi � (1 + �) � n � p) �

�
exp(�)

(1 + �)1+�

�np
:

If Zi (i 2 f1; : : : ; Rg) is one, if and only if in the i-
th run a consistent hypothesis h of H with Err(h; f) >

" was found, the sum
PR

i=1 Zi is the random number
of consistent hypotheses in H with error greater than
", that were found during the R runs. As a consistent
hypothesis of H with error greater than " can only be
found, if a consistent hypothesis in H with error greater
than " exists, the expected value of every Zi is less than
jHj � (1� ")m. Hence, the probability, that at least (1 +
�)�R�jHj�(1�")m such hypotheses are found, is bounded
above by

�
exp(�)

(1 + �)1+�

�R�jHj�(1�")m

=: p(�; "; R; jHj;m):

So for l > R � jHj �(1�")m the probability, that at least
l hypotheses of H with error greater than " are found, is
less than

p(
l

R � jHj � (1� ")m
� 1; "; R; jHj;m); (2)

because:

l = (1 + �) �R � jHj � (1 � ")m

()

� =
l

R � jHj � (1� ")m
� 1:

As neither bound (1) nor bound (2) is always (i.e. for
all R,l,jHj,", and m) smaller than the other, the min-
imum of these two bounds is smaller than any one of
these bounds alone. Hence, we obtain:

3

Corollary 1 Let H be a subset of F , f an arbitrary el-
ement of F , and S a (GP) system that randomly outputs
an element h 2 C(X1; : : : ; Xm; f), when the training ex-
amples f(X1; f(x1)); : : : ; (Xm; f(Xm))g are its input. If
S is run R-times with independently chosen examples
according to PA, the probability, that at least l-times the
output h is an element of H with Err(h; f) > ", is less
than

min

��
R

l

�
� (jHj � (1� ")m)

l
;

0
B@ exp(l

R�jHj�(1�")m
� 1)

�
l

R�jHj�(1�")m

� l

R�jHj�(1�")m

1
CA
R�jHj�(1�")m

1
CCA :

So if the system S during its R runs outputs a hypothe-
sis of H exactly k-times, the probability that at least k� l
of these hypotheses have an error at most " is at least

1�min

��
R

l

�
� (jHj � (1� ")m)

l
;

0
B@ exp(l

R�jHj�(1�")m
� 1)

�
l

R�jHj�(1�")m

� l

R�jHj�(1�")m

1
CA
R�jHj�(1�")m

1
CCA :

In order to make this lower bound as high as possible,
we must restrict our search space as much as possible, so
that jHj becomes as small as possible. One possibility
to do this, is Occam's razor: if the system tries to �nd
consistent solutions, which are as small as possible, it
automatically restricts itself to small solutions; as the
number of functions of a given maximal size is restricted,
the probability of having found hypotheses with small
error can be lower bounded. Of course, as Occam's razor
theorem gives only a rough bound, not every set H will
lead to a lower bound greater than zero for all reasonable
values of ", i.e. to get a usable quality guarantee the set
H has to be relatively small.
Look, for instance, at two GP systems that both use

the number of hits on the training examples as a �tness
measure, where only the second one additionally uses a
parsimony factor. If we stop a system only if it has found
a consistent solution, then the average size of the func-
tions found by the �rst system is likely to be higher than
the average size of those of the second system. There-
fore, Corollary 1 gives us a better lower bound for the
probability of �nding good solutions for the second GP
system than for the �rst one.
Although this theorem is used in \Blumer et al.

(1987)" as an argument for the principle of Occam's ra-
zor, it can be used as a counter-argument, too: restrict
the search for consistent functions to functions as large as
possible. This will decrease the size of the solution-space,

too, so Corollary 1 can be used to make predictions about
the quality of the hypotheses of this system, too. But
certainly it is more e�cient to restrict the search space
to functions as small as possible.
So the lessons to be learned from Occam's razor the-

orem are: restricting the search space can lead to hy-
potheses with probabilistic error bounds, independent of
the way the search space is restricted. But one has to be
careful not to restrict the search space too rigorously, as
otherwise the system may not be able to �nd consistent
hypotheses in the search space, because the search space
probably does not include any consistent functions. In
the next section it is shown that the GP system pre-
sented in \Droste (1997)" can �nd hypotheses from a
search space small enough to guarantee a usable error
bound of the found hypotheses using Corollary 1.

4 Application of Occam's razor

theorem

In this section it is shown that Occam's razor theorem
(and Corollary 1), even though being only a rough es-
timation, can be used in practical applications to get
probabilistic bounds for the quality of the found hypothe-
ses. The GP system we use was originally presented in
\Droste (1997)", hence the next subsection will only give
a rough outline. Then the experimental results are pre-
sented and compared to the probabilistic boundaries of
Corollary 1.

4.1 GP with OBDDs

The used GP system outputs for a given set of m train-
ing examples f(X1; f(X1)); : : : ; (Xm; f(Xm))g of an un-
known Boolean function f : f0; 1gn! f0; 1g a consistent
hypothesis h : f0; 1gn ! f0; 1g (i.e. A = f0; 1gn and
B = f0; 1g in the context of section 2). As all inputs
of the examples are chosen with equal probability from
f0; 1gn (i.e. PA(A

0) = jA0j=2n for all A0 � f0; 1gn), the
error Err(h; f) is simply the number of inputs, where
the values of h and f disagree, divided by 2n. Because
we restrict our attention to Boolean functions, the in-
dividual functions are not represented by S-expressions,
but by a very e�cient data structure for the representa-
tion of Boolean functions called Ordered Binary Decision
Diagram (OBDD) (see \Bryant (1986)"). The used GP
system tries to output an OBDD, that is consistent with
the training examples and as small as possible.

An OBDD is de�ned as follows: given a permutation
� of the n Boolean input variables x1; : : : ; xn, an OBDD
is a directed acyclic graph with exactly one source and
two sinks, where:

� every non-sink node is labeled by one of the Boolean
input variables x1; : : : ; xn

4

� every non-sink node has exactly two outgoing edges,
labeled 0 and 1 (leading to the 0-successor and to
the 1-successor, resp.)

� one of the sinks is labeled by 0 and the other by 1

� the two sinks have no outgoing edges

� if there is an edge from a node labeled xi to a node
labeled xj, then �(xi) has to be smaller than �(xj).

An OBDD is evaluated for an input (a1; : : : ; an) 2

f0; 1gn by starting at the source and following the ai-
edge, if the actual node is labeled by xi, until a sink is
reached. The label of the sink is the value of the function.
So the OBDD O in Figure 1 represents the Boolean func-
tion fO(x1; x2; x3) = x1x3_x1x2x3 (for � = (x1; x2; x3)).

�

��
�

��

�

��

�

��

0

1

x1

x2

x3

0

�
�
�

�
�
�

S
S
Sw

0

0 1

�
�

�+
A
A
A
A
AU

PPPPPPq

0
1

1

Figure 1: An example OBDD O

As every variable can appear at most once on a path,
every path must have length at most n; hence, an OBDD
can be evaluated in time O(n), where n is the number of
variables, while for an S-expression one needs time linear
in the size of the S-expression for evaluation.
Furthermore, only reduced OBDDs are used in the GP

system, i.e. OBDDs which have no nodes with identical
0- and 1-successor and do not contain any isomorphic
subgraphs. It is well-known, that, given a Boolean func-
tion f , the reduced OBDD representing f is uniquely
determined, and that the number of nodes in a reduced

OBDD directly corresponds to the number of subfunc-
tions of the represented function (see \Bryant (1986)").
Therefore, the number of nodes of a reduced OBDD
(where the two sinks are not counted, as both appear
in every OBDD not representing a constant function) is
a well de�ned measure for the complexity of the rep-
resented function, which is not the case for general S-
expressions, which can contain redundant code.
The GP system furthermore only uses reduced

OBDDs, which are consistent with the training exam-
ples. This is done by replacing new children, which
are not consistent with the training examples, by their
parents and generating only consistent, but otherwise
random individuals in the initial generation. Mutation
(10% probability) and crossover (90% probability) are
used in slight variation of the standard operators (see

\Koza (1992)") to guarantee that the resulting struc-
tures are still valid reduced OBDDs. As consistence with
the training examples is now guaranteed, only the size of
the reduced OBDD in
uences the �tness, i.e. a smaller
reduced OBDD has higher �tness. All parameter set-
tings (if not stated otherwise in subsection 4.3) follow
the much more detailed description of the GP system
in \Droste (1997)". All in all, this GP system tries to
�nd a hypothesis that is consistent with the training ex-
amples and has an OBDD-representation with as few
nodes as possible (a well-known and NP-hard problem,
see \Sauerho� and Wegener (1994)").

This GP system has certain advantages for our goal of
applying Occam's razor theorem: �rst of all, as it uses
only consistent OBDDs, its output is always a consistent
function, which is necessary to apply Occam's razor the-
orem (although both the system and the theorem can
easily be extended to handle hypotheses, which are con-
sistent on all but m0 training examples). Furthermore, it
was shown by experiments in \Droste (1997)" that this
system can generate relatively small OBDDs (sometimes
even smaller than the OBDD of the unknown function,
which is possible, as the training examples only contain
a small amount of information about the unknown func-
tion). This probably means that the system �nds enough
functions of a subspace H � ff : f0; 1gn ! f0; 1gg small
enough to get reasonable error bounds by using Occam's
razor theorem.

4.2 Counting the number of OBDDs

Because the set of functions with reduced OBDDs of size
at most k and with exactly n variables will be used in
the next subsection as the set H of Corollary 1, we need
to compute an upper bound on the number of such func-
tions: therefore, we will generalize the concept of reduced
OBDDs to reduced OBDDs with s sinks (instead of two
sinks in the original concept). Let T (n; k; s) be an up-
per bound on the number of reduced OBDDs on n vari-
ables (w.l.o.g. we assume that the variable ordering � is

(x1; : : : ; xn)) with exactly k non-sink nodes and at most
s sinks. An OBDD of such kind can be split in three
parts:

� the source with label xi (i 2 f1; : : : ; ng)

� the subOBDD O0 starting at the 0-successor of
the source, i.e. the structure of all nodes we reach,
when we make a depth-�rst-search starting at the
0-successor

� the structure O1, which starts at the 1-successor of
the source, but where all nodes already contained in
the subOBDD O0 are excluded.

If the number of nodes in O0 is k0 2 f0; : : : ; k � 1g,
there are at most T (n� i; k0; s) possible subOBDDs O0,

5

because all nodes must have labels xj with j > i. Then
O1 must contain k�k0�1 nodes, and all its nodes must
have a label xj with j > i, too, so the number of variables
is at most n�i. But as all nodes of O0 are excluded from
O1, all nodes of O0 can additionally be sinks of O1, i.e.
the number of sinks of O1 is bounded above by s + k0.
Therefore, the number of OBDDs with n variables, k
nodes, and s sinks can be bounded above by T (n; k; s)
de�ned by the following recursive formula:

nX
i=1

k�1X
k0=0

T (n� i; k0; s) � T (n� i; k � k0 � 1; s+ k0):

The recursion starts from the following cases (tested
in this order):

1. If k = 0 then T (n; k; s) = s, as an OBDD without
nodes must be a sink.

2. If n = 0 then T (n; k; s) = 0, as an OBDD with at
least one node but without variables does not exist.

3. If k = 1 then T (n; k; s) = n � s � (s�1), as an OBDD
with one node is determined by its label and its two
sink-successors.

4. If k = 2 then T (n; k; s) =
Pn�1

i=1 2�s�(n�i)�s�(s�1),
as an OBDD with two nodes is determined by the
label xi of its source, the sink-successor of the source
and the other non-sink successor of the source.

Using this recursive formula, the number of OBDDs
with n variables, two sinks, and at most k nodes can be
upper bounded by:

S(n; k) :=

kX
i=0

T (n; i; 2):

This upper bound is used together with Corollary 1 in the
next subsection to make probabilistic error guarantees
for the hypotheses found by the GP system.

4.3 Experimental Results

In this subsection experimental results are presented
which show how Occam's razor theorem can be applied
to make probabilistic quality guarantees for the results of
the experiments. The guaranteed quality of some exper-
iments is very low, as for some test functions the found
OBDDs were much too big. But in the light of the re-
sults of section 2 and as only a rough upper bound on
the number of OBDDs is used, this is no surprise.
For every single run of the GP system m = 512 train-

ing examples X 2 f0; 1gn were chosen independently
and with equal probability and given to the GP sys-
tem together with the correct output f(X) of the un-
known function f . Then the GP system was run for

G = 2500 generations with 50 individuals per generation,
and the function represented by the smallest OBDD (i.e.
the Best-of-Run OBDD) found during those G genera-
tions was the output-hypothesis h. This was repeated
100-times, so that 100 hypotheses were found.
To use Occam's razor theorem, one has to predeter-

mine a set H of hypotheses, which, on the one hand, is
relatively small, but, on the other hand, contains enough
functions, so that a great number of found consistent hy-
potheses comes from H. The described �rst 100 runs
were just used to �nd this set H: if a is the average size
of the 100 Best-of-Run (BoR) OBDDs, the set H for the
second run (consisting of 100 single runs) was chosen as
the set of functions with OBDDs of size at most bac.
Then the GP system was run 100-times in the same way
again, and the number of BoR-hypotheses found in H

was counted. As one can assume that the distribution of
the sizes of the found OBDDs is more or less the same
for di�erent runs (consisting of 100 single runs each), the
number of found hypotheses of H should be high in the
second run, too.
Using the results of the second 100 runs (i.e. the num-

ber of found hypotheses in H), Corollary 1 was used
to get probabilistic error bounds for these hypotheses.
Then these results were compared with the real error of
the found hypotheses, which could be computed as we
used well-known test functions as the unknown (to the
GP system, not to us) functions. The tests consist of �ve
di�erent pairs of functions and variable orderings (which
have great in
uence on the sizes of the OBDDs of the
unknown function and the found hypotheses, too):

� MUX+
20: The 20-multiplexerMUX20 de�ned by

MUX20(a0; : : : ; a3; d0; : : : ; d15) := d8a0+4a1+2a2+a3 ;

(i.e. it outputs the value of the data bit adressed
by the adress bits) with the variable ordering
a0; : : : ; a3; d0; : : : ; d15. Using this variable ordering
the reduced OBDD of MUX20 contains 31 nodes
(no ordering leads to an OBDD for MUX20 with
less nodes).

� MUX�

20: The 20-multiplexerMUX20 with the vari-
able ordering d0; : : : ; d15; a0; : : : ; a3. Using this vari-
able ordering the reduced OBDD of MUX20 con-
tains more than 65535 nodes (no ordering leads to
a reduced OBDD for MUX20 with more nodes).

� ADD+
20: The 20-adder ADD20 de�ned by

ADD20(x0; y0; : : : ; x9; y9) := s0;

where s0 is the most signi�cant bit of the bi-
nary representation of the sum of the numbersP9

i=0 2
9�i �xi and

P9

i=0 2
9�i �yi. The variable order-

ing x0; y0; : : : ; x9; y9 allows an OBDD to have a low
error rate, even if only the �rst variables are tested.

6

� ADD�

20: The 20-adder ADD20 with the variable
ordering x9; y9; : : : ; x0; y0, making it impossible to
achieve a low error rate, if only the �rst variables
are tested.

� PAR20: The 20-parity function PAR20 de�ned by

PAR20(x0; : : : ; x19) := x0 � : : :� x19

with the variable ordering x0; : : : ; x19. This function
has a reduced OBDD with only 39 nodes, which con-
tains every variable on every path from the source
to one of the sinks (independent of the variable or-
dering).

As for every test function the number n of variables is
20, the m = 512 randomly chosen training examples give
only a very small amount of information on the behaviour
of the function on all 220 = 1048576 possible inputs.
The average size and the average error (in percent of

all 220 inputs) of the BoR-OBDDs over the �rst 100 runs
are shown in Table 1.

Function Avg. OBDD Size Avg. Error

MUX+
20 61.0 9.8 %

MUX�

20 253.5 46.4 %

ADD+
20 30.4 4.5 %

ADD�

20 165.0 33.3 %

PAR20 276.3 50.0 %

Table 1: Results of the �rst 100 runs

These average sizes of the BoR-OBDDs were used for
the second run (consisting of 100 single runs) to prede-
termine the set H, e.g. for ADD+

20 the set H is the set
of all OBDDs with at most 30 non-sink nodes. The av-
erage error is added here only to see the correspondence
between the average size and the average error during
these experiments: the smaller the OBDDs, the better
they generalize, i.e. the smaller is their error (on aver-
age). The parity function plays a special role here, as an
OBDD has to contain at least one path, where all vari-

ables were tested, to achieve more than 50% hits. Be-
cause all BoR-OBDDs contained no path, where all vari-
ables were tested, all BoR-OBDDs had exactly 524288
(i.e. 50%) hits.
So in the second run, consisting of R = 100 single

runs, it was counted how often the BoR-OBDD had size
at most bac, where a is the average size of the BoR-
OBDDs of the �rst 100 runs. Then Corollary 1 was used
together with the upper bound S(n; bac) on the number
of OBDDs to compute the smallest ", so that at least half
of these OBDDs with at most bac nodes have an error
at most " with 99% probability. The results are shown
in Table 2.
So for ADD+

20 in the second 100 runs k = 41 BoR
OBDDs with at most 30 nodes were found. With prob-
ability 99% at least 21 (i.e. at least one half of all 41)

Function bac #BoR-OBDDs � bac Error "

MUX+
20 61 61 50.6 %

MUX�

20 253 49 97.2 %

ADD+
20 30 41 26.9 %

ADD�

20 165 50 88.9 %

PAR20 276 55 98.1 %

Table 2: Error guarantees for the second 100 runs

of them have error at most 26.9%. For the other func-
tions the probabilistic error bounds are much worse, as
bac is much higher, i.e. the found consistent OBDDs are
on average much bigger. So for the other function types
the error of at least half of the found OBDDs with at
most bac nodes can only be probabilistically guaranteed
to be lower than a bound greater than 50.25%. But ev-
ery upper bound greater than 50.25% has no practical
value, as randomly choosing a function results with high
probability in better functions:
If we assume that a function is chosen randomly by

independently choosing the function values for all inputs
with equal probability, the expected value of the number
of incorrectly guessed outputs of such a function is

1048576

2
= 524288:

Using the Cherno� bound one can show that with prob-
ability at least 99%, the number of incorrectly guessed
outputs is at most 0.5% higher than the expected value,
i.e. at most

1:005 � 524288 = 0:5025 � 1048576:

Hence, an error rate of at most 50.25% can even be guar-
anteed with 99% probability by randomly guessing the
outputs. This does not mean, that the results of the
GP system for all other functions than ADD+

20 are worse
than randomly chosen functions, but that the probabilis-
tic error guarantee only results in good bounds, when the
found OBDDs are relatively small.
Nevertheless, Occam's razor theorem and Corollary 1

make it possible to give probabilistic error guarantees for
the results of the GP system. The GP system used here
is not even optimized, as for the function types MUX�

20,
ADD�

20, and PAR20 the sizes of the found OBDDs after
G = 2500 generations were far from converging, i.e. run-
ning the system for more generations would have resulted
in smaller BoR-OBDDs, which means better probabilis-
tic error bounds. But this paper is not intended to show
that the used GP system gives better results than any
other system, but it shall show how Occam's razor the-
orem can be used to get probabilistic error bounds for a
GP system.

4.4 Majority Function

When using Occam's razor theorem (or Corollary 1,
resp.), one gets a probabilistic lower bound on the num-

7

ber of hypotheses found with error at most ". Now one
can ask for the practical value of this result, as it is not
known, which of the found hypotheses have an error at
most ". For the second 100 runs of ADD+

20, for instance,
we know that with 99% probability at least 21 of the
found 41 hypotheses with OBDD-size at most 30 have
an error of at most 26.9%, but it is not known, which
these hypotheses are.
To get a hypothesis f� with small error, the majority of

the found hypotheses of H was used (an idea, which was
used more sophistically by \Zhang and Joung (1997)"
in GP before to use the information contained in the
whole population): so f�(X) is de�ned as the value the
majority of the found hypotheses of H has for input X;
if there is no majority, f�(X) is randomly chosen as 0 or
1. This strategy resulted in rather good results for the
experiments made. Table 3 shows the average error of
the hypotheses of H found in the second 100 runs and
the error of the majority hypothesis f�.

Function Ave. Error Err(f�; h)

MUX+
20 5.5 % 0.0 %

MUX�

20 46.5 % 40.7 %

ADD+
20 4.5 % 3.1 %

ADD�

20 32.7 % 17.6 %

PAR+
20 50.0 % 50.0 %

Table 3: Average error in comparison to majority

So for the 20-multiplexer MUX+
20 with the optimal

variable ordering the majority function f� of the found
hypotheses was the 20-multiplexer, i.e. using only at
most 51200 training examples (512 examples for every
of the 100 runs) from 1048576 possible inputs, the un-
known function was exactly approximated. For all other
function types the majority of the found hypotheses had
a much smaller error than the average of the found hy-
potheses of H; the only exception is the 20-parity func-
tion, where even the majority had 50% error.
So the experiments show how Occam's razor theorem

can be applied to get probabilistic error bounds for the
hypotheses found by the GP system. But as Occam's
razor theorem gives only a rough upper bound and the
number of OBDDs is roughly upper bounded, too, the
error guarantees are much too conservative.

5 Conclusion

This paper shows how Occam's razor theorem, a well-
known result from the �eld of learning theory, can be
used to get probabilistic error bounds for the results
of a GP system, that tries to approximate an unknown
function only given by a set of training examples. Oc-
cam's razor theorem gives a theoretical foundation for
the strategy of restricting the search space as much as
possible, as this strategy will decrease the probability

of �nding functions, that di�er much from the unknown
function. As trying to �nd the smallest solution, that ex-
plains the given training data, results in restricting the
search space to small functions, Occam's razor theorem
gives reason for the principle of Occam's razor, which is
often successfully used in GP.

A number of experiments show, how Occam's razor
theorem can be applied and that the theoretical bounds
are much too conservative, as the resulting functions
have much better generalization properties than theo-
retically guaranteed. But the intention of the paper is
not to show that the used GP system outputs better hy-
potheses than any other system, but to show how to get
theoretically founded probabilistic error bounds (exem-
pli�ed by the used GP system).

Acknowledgments

Hereby I thank Thomas Jansen, Rainer Menke, and Ingo
Wegener for their help while preparing this paper. This
research was supported by the Deutsche Forschungsge-
meinschaft as part of the Collaborative Research Center
\Computational Intelligence" (531).

Bibliography

Blumer, A., Ehrenfeucht, A., Haussler, D., and War-
muth, M.K. 1987. Occam's Razor. Information Pro-

cessing Letters. Number 24. Pages 377-380.
Bryant, R. E. 1986. Graph-based algorithms for Boolean

function manipulation. IEEE Transactions on Com-

puters. Volume 35. Pages 677-691.
Droste, S. 1997. E�cient Genetic Programming for

Finding Good Generalizing Functions. Genetic Pro-

gramming 1997: Proceedings of the Second Annual

Conference. Pages 82-87.
Hagerup, T. and R�ub, C. 1989. A Guided Tour of Cher-

no� Bounds. Information Processing Letters. Num-
ber 33. Pages 305-308.

Hooper, D. C. and Flann, N. S. 1996. Improving the
Accuracy and Robustness of Genetic Programming
through Expression Simpli�cation. Genetic Program-

ming 1996: Proceedings of the First Annual Confer-

ence. Page 428.
Kinnear, K. E. 1993. Generality and Di�culty in Genetic

Programming: Evolving a Sort. Proceedings of the

Fifth International Conference on Genetic Algorithms.

Pages 279-286.
Koza, J. R. 1992. Genetic Programming: On the Pro-

gramming of Computers by Means of Natural Selec-

tion. Cambridge, MA: The MIT Press.

8

Rosca, J. P. 1996. Generality versus Size in Genetic Pro-
gramming. Genetic Programming 1996: Proceedings

of the First Annual Conference. Pages 381-387
Sauerho�, M. and Wegener, I. 1996. On the Complexity

of Minimizing the OBDD Size for Incompletely Spec-
i�ed Functions. IEEE Transactions on CAD. Volume
15. Number 11. Pages 1435-1437.

Zhang, B.-T. and Joung, J.-G. 1997. Enhancing Robust-
ness of Genetic Programming at the Species Level.
Genetic Programming 1997: Proceedings of the Sec-

ond Annual Conference. Pages 336-342.
Zhang, B.-T. and M�uhlenbein, H. 1995. Balancing Ac-

curacy and Parsimony in Genetic Programming. Evo-
lutionary Computation. Volume 3. Number 1. Pages
17-38.

9

