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Abstract

In sensory experiments, often designs are used that are balanced for carryover effects. It is hoped
that this controls for possible carryover effects, like, e.g., a lingering taste of the products.

Proper randomization is essential to guarantee the usual model assumption of independent iden-
tically distributed (i.i.d.) errors. We consider a randomization procedure that permutes treatment
labels and assessors. This restricted randomization leaves the neighbour structure unchanged and
validates the assumption of i.i.d. errors if the design used is a Generalized Youden Design (GYD).

However, the use of a neighbour balanced GYD may require too many assessors. The question
arises, whether nearly balanced designs may be used without grossly violating the validity of the
analysis. We therefore do a simulation study to assess the properties (under this restricted ran-
domization) of nearly balanced designs like, e.g., the ones proposed by Périnel and Pagès (2004,
Food Quality and Preference 15, 439–446).

We observe that, if there are no carryover effects, the variance estimates for treatment contrasts
are not significantly biased whenever we use designs that are nearly GYD. Additionally, designs that
are nearly carryover balanced still produce conservative variance estimates, even in the presence of
large carryover effects.

In all, ”nearly neighbour balanced nearly GYD” as proposed by Périnel and Pagès (2004) appear
to be useful in experimental situations where the use of GYD is too restrictive. It should be stressed,
however, that these results are true only if randomization is used as a protection against effects
unaccounted for in the statistical model.
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1 Introduction

There is a large number of papers in the sensometrics literature dealing with experimental

designs if there is a danger of carryover effects. While the traditional recommendation had

been to simply randomize the order in which the products are presented to the assessors,

the publication of the seminal paper by Mac Fie, Greenhoff, Bratchell and Vallis (1989)

has started a discussion about the use of neighbour balanced designs. While Mac Fie et al.

(1989), Schlich (1993) and Wakeling and MacFie (1995) discussed construction methods for
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neighbour balanced designs, Ball (1997) and Périnel and Pagès (2004) deal with designs that

are ”near” such designs.

As already expressed in Kunert (1998), we are concerned about the consequences that this

development might have for the practice of sensometrics. We are worried that experimenters

might decide to use highly structured systematic designs for their experiments and neglect

the benefits to be gained from randomization, see e.g. Kunert, Meyners and Erdbrügge

(2002).

Another problem is that experimenters might think that the problem of carryover can be

overcome with these designs. Hence they might spend less efforts in non-statistical methods

to avoid carryover (like, e.g. washout periods). Neighbour designs are no panacea for

problems concerned with carryover. They only work in a quite optimistic model, where the

carryover effects are additive. Even in that model they do not avoid all bias due to carryover.

It was, however, shown by several authors (see e.g. Azäıs and Druilhet, 1997) that these

designs provide some robustness, they minimize some measures of the bias of the estimated

treatment differences.

In Kunert (1998) it was demonstrated with the help of permutation tests, that the ran-

domization by Bailey (1985) validates the model with assessor and order effects but leaves

neighbour balance intact, provided the starting design is a special Generalized Youden De-

sign.

Hence, we would support the use of neighbour balanced Generalized Youden Designs with

this randomization. It will do no harm, if there are no carryover effects, but might provide

some robustness if there are.

The construction methods in Ball (1997) and Périnel and Pagès (2004) try to achieve designs

that are as similar as possible to such neighbour balanced Generalized Youden Desings.

They do not claim to minimize some theoretical concept like bias due to carryover effects,

or variance of the estimates. It was not clear to us, how these designs perform in practice.

The present paper has two aims. Firstly, we want to give a formal proof that the ran-

domization of assessors and treatment labels introduced by Bailey (1985) for Generalized

Latin Squares, ensures the validity of the model with assessor and order effects whenever the

starting design is a special Generalized Youden Design and whenever there are no carryover

effects. With that, we hope to remind experimenters of the need to randomize.

It is not possible to extend our proof to the ”near” designs by Périnel and Pagès (2004).
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So the second aim of our paper is to examine the performance of such designs under the

randomization of assessors and treatment labels. Fortunately, our simulations appear to

show that the non-validity is not very dramatic, at least for reasonable designs. For the

designs that are near the neighbour balanced Generalized Youden Designs the bias of the

variance estimates due to non-validity of the model appears to remain reasonably small.

2 Randomization Analysis when the Carryover Effects

are Neglected

The treatments in a sensory experiment are assigned to period i and assessor j via a design δ.

Formally, the design δ is a mapping from {1, . . . , k}×{1, . . . , b} on {1, . . . , t}, where k is the

number of periods (i. e. the number of assessments made by each assessor), b is the number

of assessors and t is the number of treatments. Assessor j in period i receives treatment

δ(i, j). As an example consider the case that we have two assessors, each of whom makes

two assessments, and that there are three treatments. One possible mapping might be

d =

[
1 1

2 3

]
,

where rows indicate periods and columns assessors, while the numbers give the treatments.

Then, for instance, assessor 1 in period 2 receives treatment 2, d(2, 1) = 2.

Assume ηij is the hypothetical rating of assessor j at period i if he/she rated a standard

product. The usual model for randomization analysis assumes that there is an additive

treatment effect. More precisely, if the assessor rates product r, the randomization model

assumes that his/her rating changes to

yij = ηij + τr, (1)

where τr is the effect of product r. In (1) it is assumed that the treatment effects are additive

and that there are no carryover effects.

In the row-column model each ηij can be written as

ηij = αi + βj + eij, (2)

where α1, . . . , αk are the fixed effects of the periods, β1, . . . , βb are the fixed effects of the

assessors and the eij are independent random variables, each with expectation 0 and variance

σ2.
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It is convenient to write the model in vector notation. We have

Y = Tδτ + η

= Tδτ + (1b ⊗ Ik)α + (Ib ⊗ 1k)β + e,

where Y = [y11, . . . , yk1, y12, . . . , ykb]
′, Tδ is the treatment design matrix, τ is the vector of

treatment effects and η = [η11, . . . , ηk1, η12, . . . , ηkb]
′. Also, 1k denotes the k-dimensional

vector of ones, α and β are the vectors of period and assessor effects and e is the vector of

errors.

With a randomized design, δ is not fixed but randomly selected among a set of such mappings.

The distribution of δ is chosen by the experimenter in such a way that it induces a distribution

on the yij which is easy to treat. The idea is to consider the conditional distribution of the

yij for given ηij such that this conditional distribution is independent of all peculiarities

which the distribution of the ηij may have. The experimenter might decide to randomize

assessors and treatment labels of a starting design d, i. e. he randomly selects a permutation

π of {1, . . . , b} and a permutation γ of {1, . . . , t} and thus gets a design δ, such that

δ(i, j) = γ
(
d
(
i, π(j)

))
.

Assume Π is the b× b permutation matrix corresponding to the permutation π of assessors

and Γ is the t × t permutation matrix corresponding to the permutation γ of treatment

labels. Then the design matrix after randomization can be written as

Tδ = (Π⊗ Ik)HdΓ,

where ⊗ indicates the Kronecker product of matrices, Ik is the identity matrix of size k, and

Hd is the design matrix of the starting design d.

We are interested in estimating contrasts of the treatment effects, i. e. functions of the form

`′τ where ` is a t-vector such that `′1t = 0. Assuming model (2) we get a least squares

estimate `′τ̂ for `′τ in that model, we get a variance var(`′τ̂) of that estimate and we get an

estimate v̂ar(`′τ̂) of that variance. A model is called (strongly) valid, see e.g. Bailey and

Rowley (1987), for a given randomization if, for every fixed η, we have in model (1) that all

Eδ (`′τ̂) = `′τ (3)

and all

varδ (`′τ̂) = Eδ {v̂ar(`′τ̂)} , (4)
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where the index δ indicates that the expectation and the variance are calculated with respect

to the distribution induced by the random selection of δ (while η is kept fixed !).

The usual randomization procedures to justify model (2) destroy any neighbour structure

we might have given to the starting design d. They especially destroy balance for carryover

effects. It is clear that we do not have to randomize if we assume that model (2) holds.

In that case we can estimate treatment differences and the variance of the estimates even

for fixed δ. However, we think this would be dangerous. If our assumptions on the η turn

out to be wrong, then this might lead to grossly wrong estimates. Fortunately, for certain

designs, there is a randomization which preserves balance for carryover effects and justifies

model (2). This randomization procedure will be discussed in the rest of this section.

We use a starting design d with some desirable properties and apply some randomization

which does not destroy these properties. Then we find out how the estimates from model

(2) perform under the distribution induced by this randomization.

If we have a starting design which is balanced for carryover effects and do not want to destroy

this balance, then it is only possible to randomize the assessors and the treatment labels.

It is known, see Bailey (1985), that this randomization can justify model (2) if the starting

design is a Latin Square. We show now that it can validate model (2) if the starting design

belongs to a larger class. Consider the following properties:

(GYD1) The number of periods is not greater than the number of products and each assessor

receives each product at most once.

(GYD2) For any pair of treatments the number of assessors receiving both treatments is a

constant, namely bk(k − 1)/(t(t− 1)).

(GYD3) Each product appears in each period either
[

b
t

]
or
[

b
t

]
+ 1 times.

(GYD4) The number of periods where any two distinct treatments occur
[

b
t

]
+ 1 times is a

constant.

A design which fulfils conditions (GYD1) through (GYD4) is called a Generalized Youden

Design. If for a Generalized Youden Design the number of assessors b is a multiple of the

number of treatments t, then it is called uniform on the periods. A design which fulfils

conditions (GYD1) and (GYD2) only is called a balanced incomplete block (BIB) design if
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k < t and a complete block design if k = t. Assume we start with a design d for which the

design matrix is Hd and randomize assessors and treatment labels. As was indicated in the

example, there are permutation matrices Π and Γ such that Tδ = (Π⊗ Ik)HδΓ, where Tδ is

the design matrix of the design δ resulting from the randomization. Kunert (1998) has an

example for the following proposition.

Proposition 1:

Assuming model (1), if we start with a Generalized Youden Design d that is uniform on

the periods and randomize treatment labels and assessors, then the row-column model (2)

is valid.

(The proof is in the appendix.)

Note that this result cannot be extended to the case that some (or all) products are tasted

more than once by any assessor.

If the number of assessors is not a multiple of t, then Proposition 1 cannot be used. Yet

the row-column model (2) is also valid for the special case where we consider a Generalized

Youden Design d where k = t.

Proposition 2:

If we then assume model (1), start with a Generalized Youden Design d where k = t and

randomize treatment labels and assessors, then the row-column model (2) is valid.

(The proof is in the appendix.)

The results above hold for any of the Generalized Youden Designs considered above. They

especially hold if the starting design d (and therefore every resulting δ) is balanced for

carryover effects.

3 Influence of Carryover Effects on the Estimates

If there are carryover effects then the randomization model 1 transforms to

yij = ηij + τδ(i,j) + ρδ(i−1,j), (5)

where ρδ(i−1,j) is the carryover effect of the product tasted in the preceding period. In period

1 there is no carryover effect. If, for the ηij in (5), the row-column model is assumed, then it
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can be shown that designs which are balanced for carryover effects have excellent optimality

properties, see e.g. Kunert (1984).

Unfortunately, assuming model (5), the row-column model cannot be validated by random-

ization, see Kunert and Utzig (1993).

Often the designs which are balanced for carryover effects are used together with the uncor-

rected estimate τ̂ from section 2. Then the balance is used as a precaution. It has to be

pointed out, however, that these estimates in the case of balanced designs are not unbiased

from carryover. We only get from balanced designs that the bias is in some sense minimal.

Some considerations of the size of this bias in the case of fixed balanced designs can be found

e.g. in Dyke (1983) or in Kunert (1985). We consider the bias of the estimate τ̂ under the

viewpoint of randomization in the notation of section 2.

Model (5) in vector notation can be written as

Y = Tδτ + Fδρ + η,

where ρ = [ρ1, . . . , ρt]
′. Here, the carryover design matrix Fδ is achieved from Tδ by pre-

multiplying with the matrix Ib ⊗W , where

W =



0 · · · 0

1

0
. . . . . .

...
...

. . . . . .

0 · · · 0 1 0


.

The following proposition is proved in the appendix.

Proposition 3:

Assume model (5). We start with a Generalized Youden Design and randomize assessors

and treatment labels. If we use the estimate `′τ̂ and if there are carryover effects ρ 6= 0

then generally this estimate will be biased. The bias equals − `′ρ
k

and is independent of

the treatment order in the starting design d. The carryover effects generally increase the

variance of the estimate.

Assume now that the starting design d and the design d∗ which consists of the first k − 1

periods of d are both Generalized Youden Designs that are uniform on the periods and that

d is balanced for carryover effects. Then the variance of the estimate `′τ̂ is the same with or

without carryover effects.

7



4 Simulation Study

4.1 Introduction

The results of propositions 1, 2 and 3 are demonstrated using a simulation study. A number

of designs were randomized and then applied to different data sets. This data represents the

results of the application of the designs in sensory trials. One aim of the simulation study

is to provide examples for the usefulness of randomization in sensory trials.

Some authors have suggested using nearly balanced designs that do not require restrictions

on t, b and k, see e.g. Ball (1997) or Périnel and Pagès (2004). It is unclear whether using

such designs leads to grossly biased results when carryover effects are present. Therefore,

another goal of the simulation study is to assess the validity of designs which do not fulfil

the requirements of the propositions above.

All computations were done in R, version 1.8.1. Programm code for doing the analysis can

be obtained from the authors.

The data were generated by sampling 150 realizations, 5 for each of 30 virtual assessors, from

the log-normal distribution. Artificial non-additive period effects were created by sorting the

data for each assessor in ascending order. The data was then censored such that values larger

than 10 were set to 10. This means that the assessors rate the products on a continuous

scale from 0 to 10. The rounded data matrix is shown in appendix D.

This data set was used as a basis for all simulations reported in this paper. For design d3 of

section 4.2 for example, we were using the first 15 columns and the last 3 rows of this data.

We also simulated normal data with additive period effects. Since the row-column model (2)

corrects for additive period effects, we get very good approximations to the theoretical results.

Also, in the case of normal data, the randomization t-statistics are actually t distributed.

The non-additive non-normal data are more informative as they also show how good our

method of analysis works if the model assumptions are violated. Therefore we will only

discuss the results we get when making more realistic assumptions about the nature of the

data.
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4.2 Analysis of Randomization Distributions

In the following we will arbitrarily focus on the elementary contrast `′τ = τ1 − τt, where

t again is the number of treatments in the starting design d, i.e. ` = (1, 0, . . . , 0,−1)′.

We will randomize treatment labels and assessors and thereby generate n = 10000 designs

d(i), i = 1, . . . , 10000. We then compute an estimate `′τ̂ (i) of the treatment contrast in the

row-column model (2) for every permutation i = 1, . . . , 10000 of d. Note that the data

remains unchanged in each permutation as long as there are no treatment effects at all. If

we want to simulate direct treatment effects or first order carryover effects, the data has to

be edited according to the permutation of the starting design.

To check the validity of the design we need to compute estimates for the mean and variance

of the contrast estimates under the randomization distribution δ as well as an estimate of

the mean of the variance estimate in model (2). We estimate Eδ(`
′τ̂) by the arithmetic mean

Ẽδ(`
′τ̂) of the estimated contrasts. A good estimate for varδ(`

′τ̂) is the empirical variance

ṽarδ(`
′τ̂) =

1

n− 1

n∑
i=1

(
`′τ̂ (i) − 1

n

n∑
i=1

`′τ̂ (i)

)2

of the estimated contrasts. Our estimate for Eδ {v̂ar(`′τ̂)} will be the arithmetic mean

Ẽδ {v̂ar(`′τ̂)} of the estimated variances of the estimated contrasts

τ̂
(i)
1 − τ̂

(i)
5 , i = 1, . . . , 10000.

If (3) holds, then Ẽδ(`
′τ̂) should be close to `′τ . If (4) holds, ṽarδ(`

′τ̂) should be close to

Ẽδ {v̂ar(`′τ̂)} .

It follows from the central limit theorem that

Z =
√

n
Ẽδ(`

′τ̂)− `′τ

ṽarδ(`′τ̂)
∼ t9999 ≈ N(0, 1),

if indeed Eδ(`
′τ̂) = `′τ. We may reject the null hypothesis that (3) holds for model (2) if |Z|

is larger than u0.975 = 1.96.

Since we will only consider designs where all treatment contrasts are estimable, we don’t

have to do this test as long as there are no carryover effects.

In order to assess whether (4) holds for our model, we compute a confidence interval for

varδ(`
′τ̂)− Eδ {v̂ar(`′τ̂)} . (6)
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For the construction of the confidence interval we divide the set of permutation estimates for

the contrasts, `′τ̂ (i), and the variance estimates of the contrasts, v̂ar(`′τ̂)(i), i = 1, . . . , 10000,

into 100 groups of 100 statistics each. For every group j we then compute the empirical

variance S
2 [j]
`′τ̂ of the contrast estimates and the arithmetic mean X̄

[j]
ˆvar(`′τ̂) of the variance

estimates. If the randomization is valid, the differences

λ[j] = S
2 [j]
`′τ̂ − X̄

[j]
ˆvar(`′τ̂), j = 1, . . . , 100

are unbiased i.i.d. estimates for (6). Thus we can use the central limit theorem to show that

(X̄λ[j] − u0.975

√
S2

λ[j]/100, X̄λ[j] + u0.975

√
S2

λ[j]/100) (7)

is an approximate 95% confidence interval for (6). Here, X̄λ[j] and S2
λ[j] denote the arithmetic

mean and empirical variance of the values of λ[j].

Another way to demonstrate the validity and usefulness of a design by way of simulation is

to compute the randomization t-statistics

t(i) =
`′τ̂ (i)√

v̂ar(`′τ̂)(i)
, i = 1, . . . , 10000. (8)

If the design is valid and if there are no product effects at all, then these permutation t-

statistics are asymptotically t distributed with ν degrees of freedom, where ν is the degrees

of freedom associated with estimating treatment contrasts in the row-column model, i.e.

ν = (b − 1)(k − 1) − t + 1. This will be assessed using probability function plots. Kunert

(1998) also uses the following fact to assess the validity of the assumed model. The number

L of permutation t-statistics smaller than tν,0.05, the 5% quantile of the t distribution with ν

degrees of freedom, is binomial with expectation 10000π and variance 10000π(1− π). If the

permutation t-statistics were in fact t distributed with ν degrees of freedom, then π = 0.05

and
L− 500√

475

approx.

∼
N(0, 1), (9)

It follows that values of L smaller than 458 or larger than 542 indicate at the 5% level

that the permutation statistics do not follow the hypothesized t distribution. However, it

should be noted that for some data generating processes the asymptotic distribution of the

permutation t-statistics is not equal to the t distribution. Since the test above assumes that

the permutation t-statistics are t distributed we may get misleading results if, for example,

we use data with an extreme outlier. Only the results for the mean and variance of the

contrasts hold independently of the data.
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4.3 Example 1: A carryover balanced Generalized Latin Square

Kunert (1998) demonstrates that the Generalized Youden Design d1, where

d1 =


1 2 3 4 5 3 4 5 1 2

5 1 2 3 4 4 5 1 2 3

2 3 4 5 1 2 3 4 5 1

4 5 1 2 3 5 1 2 3 4

3 4 5 1 2 1 2 3 4 5

 ,

validates the row-column model (2) if there aren’t any product effects and treatment labels

and assessors are randomized.

We redo the analysis with our data and generate 10000 designs d
(1)
1 , . . . , d

(10000)
1 by random-

izing product labels 1 through 5 and by randomizing assessors 1 through 10. For τ = ρ = 0

we have Ẽδ(`
′τ̂) = −0.0018.

ṽarδ(`
′τ̂) = 0.2446 is close enough to Ẽ {v̂ar(`′τ̂)} = 0.2486 to demonstrate that the sec-

ond condition for the validity of the design is fulfilled. This is because the realization

(−0.0110, 0.0024) of (7) includes 0.

Another indication that the use of the design d1 is valid is given in figure 1a. The empirical

cumulative distribution function of the t-statistics (8) almost perfectly fits the cumulative

distribution function of the t distribution with ν = 32 degrees of freedom. For example,

L = 476 ∈ [458, 542] of the 10000 t-statistics are smaller than t32, 0.05. According to the

remark after (9) we do not reject the hypothesis that the true proportion is 0.05.

With exactly the same procedures we analyze the case where the first product has a direct

effect of -1. H0 : `′τ = 0 is no longer true. L = 6154 of the permutation t-statistics are

smaller than t32, 0.05. This means that the empirical power of the test of the hypothesis

H0 : `′τ = 0 vs. H1 : `′τ < 0 is 0.6154.

The validity however is destroyed if there are first order carryover effects. This was also

shown in Kunert (1998). Let’s consider the case where product 2 has a carryover effect

of 10 and there are no other direct or carryover effects. Then our estimates `′τ̂ (i) don’t

change and we still get Ẽδ(`
′τ̂) = −0.0018. According to proposition 3 we get a bias of

−`′ρ/k = −(1, 0, 0, 0,−1)(0, 10, 0, 0, 0)′/5 = 0, i.e. the estimate is unbiased. Also, since d1 is

carryover balanced and the first k− 1 periods of d1 also form a Generalized Youden Design,

the variance of the estimate does not increase. This is verified in the simulation, where we
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get ṽarδ(`
′τ̂) = 0.2446. However, the estimate of the variance of the contrast estimate is

increased. Therefore, the test of H0 : `′τ = 0 vs. H1 : `′τ < 0 becomes conservative. There is

no t(i) which is larger than t32, 0.05. This is also shown in figure 1b.

−4 −2 0 2 4

0.
0

0.
4

0.
8

(a)

C
D

F

empirical
t

−4 −2 0 2 4

0.
0

0.
4

0.
8

(b)

C
D

F

empirical
t

Figure 1: Empirical and theoretical CDF of the permutation t-statistics for the starting

design d1 (a) if there are no product effects and (b) for ρ2 = 10.

If we add an additional direct treatment effect of τ = −1, the power of the test of H0 :

`′τ = 0 vs. H1 : `′τ 6= 0 via the permutation t-statistics is reduced compared to the situation

without carryover effects. This is also because the variance estimate increases while the true

variance of the contrast estimate does not increase. Our model is no longer valid. This result

is supported by the fact that the confidence interval (7) takes the value (−3.6110, −3.5910)

and doesn’t include 0.

The validity is also destroyed by carryover effects of treatments occurring in the treatment

contrasts. In addition to the situation above we also get a biased estimate of `′τ . If there

are no treatment effects at all and ρ = (10, 0, 0, 0, 0)′, we get Ẽδ(`
′τ̂) = −2.0018, ṽarδ(`

′τ̂) =

0.2446 and Ẽδ {v̂ar(`′τ̂)} = 3.8433. This again perfectly fits into the theoretical results of

proposition 3. Since the variance estimate is way too large, only 48 of the 10000 t-statistics

are smaller than the 5% quantile of the t32-distribution although the contrast estimates are

biased.
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Finally, if we add a direct effect of τ1 = −1 to the data we get an empirical power of

detecting this departure of the null hypothesis of 0.3005. This is because the bias introduced

by the carryover effect of product 1 draws the t-statistics farther from zero compared to the

situation where there is no carryover effect.

The results for design d1 are summarized in table 1.

Proportion of Mean of Emp. var. of Mean of
τ1 ρ1 ρ2 t(i) < t32,0.05 `′τ̂(3) i

`′τ
`′τ̂(3) i v̂ar(`′τ̂)i

Case 1 0 0 0 0.0476 -0.0018 0 0.2446 0.2486

Case 2 -1 0 0 0.6154 -1.0018 -1 0.2446 0.2486

Case 3 0 0 10 0.0000 -0.0018 0 0.2446 3.8453

Case 4 -1 0 10 0.0000 -1.0018 -1 0.2446 3.8453

Case 5 0 10 0 0.0048 -2.0018 0 0.2446 3.8433

Case 6 -1 10 0 0.3005 -3.0018 -1 0.2446 3.8433

Table 1: Results for 10000 permutations of the starting design d1.

4.4 Example 2: A nearly carryover balanced GYD

Let us now take a look at a design that fulfils the conditions of proposition 2. We obtain d2

from design d1 by deleting the last assessor. This design is no longer a Generalized Youden

Design and it is not carryover balanced any more.

Table 2 shows that the design is valid if there are no product effects at all. The realization of

the confidence interval (6) is (−0.0082, 0.0067) which includes 0. That supports our claim

that the variance estimate is unbiased.

Neither the mean of the variance estimate nor the variability of the contrast estimate change

if we add a direct effect of -1. If carryover effects are present, the variance of the estimated

contrast changes. This is due to the fact that d2 is not carryover balanced. For example,

product 3 follows product 1 twice, whereas product 4 follows product 1 only once. If we

have ρ2 = 10, the variability of `′τ is about three times as large as in case 1. It is about

twice as large as in case 1 if we have a carryover effect of 10 on the first product. Since

neither the values for the contrast estimates nor the values for the variance estimates change

dramatically compared to those of design d1, we get similar results for the proportion of

13



t-statistics smaller than the respective critical values. The power in cases 2 and 6 is a little

smaller than the power for design d1. But that may be the case just because we have one

assessor less to observe the difference in treatments.

These results suggest that d2 is almost as good as d1 for practical purposes even if there are

carryover effects.

Proportion of Mean of Emp. var. of Mean of
τ1 ρ1 ρ2 t(i) < t28,0.05 `′τ̂(3) i

`′τ
`′τ̂(3) i v̂ar(`′τ̂)i

Case 1 0 0 0 0.0471 -0.0075 0 0.3104 0.3103

Case 2 -1 0 0 0.5343 -1.0075 -1 0.3104 0.3103

Case 3 0 0 10 0.0000 -0.0159 0 0.9009 4.3654

Case 4 -1 0 10 0.0017 -1.0159 -1 0.9009 4.3654

Case 5 0 10 0 0.0199 -2.0100 0 0.5438 4.3558

Case 6 -1 10 0 0.2555 -3.0100 -1 0.5438 4.3558

Table 2: Results for 10000 permutations of the starting design d2.

4.5 Example 3: A nearly balanced design by Périnel and Pagès

(2004)

The design d3, where

d3 =


2 10 7 3 8 4 9 1 2 2 4 1 8 6 9 7 6 5 5 10 3 7 3 6 1 4 10 9 1 8

3 2 4 9 4 7 10 9 6 10 1 7 2 8 1 8 5 3 6 3 10 5 1 5 9 7 4 8 2 6

5 9 8 4 3 2 7 5 4 1 10 9 5 3 6 6 8 1 10 7 2 1 8 9 3 10 6 2 4 7

7 7 10 5 6 8 1 6 10 8 9 3 4 2 2 3 9 4 1 5 9 4 7 2 8 6 1 5 3 10

6 3 5 10 9 1 4 7 8 5 6 8 9 1 7 4 10 2 3 2 8 6 10 4 5 2 3 7 9 5

 ,

was suggested by Périnel and Pagès (2004). Their design does not fulfil the conditions of

proposition 1, it is not even a balanced incomplete block design.

Does the simulation suggest that it is not valid in case 1? The realization of (6) is close

to zero. The confidence interval for the difference between the contrast variance and the

expectation of its estimate is (−0.0072, 0.0018). So there is no indication that the design

may be invalid. If it isn’t valid, than this is of no practical effect if there are no carryover

effects.

14



In case 3 the mean of the variance estimates for the contrast is 7 times as high as in case 1

while the variance of the contrast estimate increases only by as factor of 4. We overestimate

the true variance of `′τ although the design is not fully carryover balanced. As in the analysis

of design d2, the t-test based on (9) is conservative. The CDF plots for design d3, cases 1

and 3 in figures 2a and 2b below, are very similar to the respective figures for d1.

In case 5, our estimate of the contrast is biased. The mean of `′τ = −1.9865 is close to

−10/k = −2. Although we once again overestimate the variance of the contrast, we falsely

reject the hypothesis that `′τ = 0 against the alternative that `′τ < 0 too often. Because of

the huge bias, 51% of the permutation t-statistics are less than t107, 0.05.

The results for d3 are summarized in table 3.

−4 −2 0 2 4

0.
0

0.
4

0.
8

(a)

C
D

F

empirical
t

−4 −2 0 2 4

0.
0

0.
4

0.
8

(b)

C
D

F

empirical
t

Figure 2: Empirical and theoretical CDF of the permutation t-statistics for the starting

design d3 (a) if there are no product effects and (b) for ρ2 = 10.

4.6 Example 4: An unbalanced design

In order to examine what happens if we use designs that clearly aren’t uniform on the

periods, let’s consider the design d4 where

d4 =

 1 1 1 1 1 1 1 3 2 2 2 2 4 5 4

2 2 2 2 3 3 3 1 3 3 3 3 5 4 5

4 4 5 5 4 4 5 5 4 4 5 5 1 2 3

 .

15



Proportion of Mean of Emp. var. of Mean of
τ1 ρ1 ρ2 t(i) < t107,0.05 `′τ̂(3) i

`′τ
`′τ̂(3) i v̂ar(`′τ̂)i

Case 1 0 0 0 0.0466 0.0090 0 0.1658 0.1682

Case 2 -1 0 0 0.7728 -0.9910 -1 0.1658 0.1682

Case 3 0 0 10 0.0028 0.0062 0 0.5201 1.3896

Case 4 -1 0 10 0.0925 -0.9938 -1 0.5201 1.3896

Case 5 0 10 0 0.5096 -1.9865 0 0.3160 1.3895

Case 6 -1 10 0 0.9707 -2.9865 -1 0.3160 1.3895

Table 3: Results for 10000 permutations of the starting design d3.

Note that d4 is not even a balanced incomplete block design. The rows of the first 12 columns

of d4 are not even connected. The design is also not carryover balanced as treatment 2

follows treatment 1 four times whereas treatment 1 never follows treatment 2. However, we

don’t reject (3). The confidence interval for (6) is (0.0164, 0.0609), which does not include

0. Therefore we conclude that the design is not valid because the second condition, (4),

is violated significantly at the 5% level. Still, the variance estimates don’t differ much.

We underestimate the variance by approximately 5%. This is why the empirical cumulative

distribution function of the t-statistics almost coincides with the CDF of the t24-distribution.

This is shown in figure 3a.

In case 3 the variance of the contrast estimate gets inflated by the carryover effect of product

two. This is because d4 is not carryover balanced. The empirical variance of our samples of

`′τ(2) is about 8 times as high as in case 1. The average value of the least squares variance

estimate is only about 60% of the empirical variance of the contrast estimates. This means

that we underestimate the true variance and the test of H0 : `′τ = 0 vs. H1 : `′τ < 0 becomes

anti-conservative. The empirical α-level of the test is 0.089 > 0.050 as 890 of the 10000

permutation t-statistics are less than the critical value of t24, 0.05. Note that in figure 3b the

empirical CDF lies above the CDF of the t-distribution for x < 0 whereas in figures 1b and

2b the empirical CDF lies below the theoretical CDF.

Finally in case 5, we also get an anti-conservative t-test. The reason for this is that the

contrast estimate is biased by −10/k = −3.3333 as indicated by the mean of the contrast

estimates which is −3.3571. As long as there are no carryover effects, the randomization

may not validate the use of the design but this might still be of little practical interest.

However, if there are carryover effects then the use of highly unbalanced designs like this

one is discouraged.
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The results for d4 are summarized in table 4.
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Figure 3: Empirical and theoretical CDF of the permutation t-statistics for the starting

design d4 (a) if there are no product effects and (b) for ρ2 = 10.

Proportion of Mean of Emp. var. of Mean of
τ1 ρ1 ρ2 t(i) < t24,0.05 `′τ̂(3) i

`′τ
`′τ̂(3) i v̂ar(`′τ̂)i

Case 1 0 0 0 0.0492 0.0121 0 0.7084 0.6699

Case 2 -1 0 0 0.3104 -0.9879 -1 0.7084 0.6699

Case 3 0 0 10 0.0890 0.0072 0 5.6120 3.4831

Case 4 -1 0 10 0.2054 -0.9928 -1 5.6120 3.4831

Case 5 0 10 0 0.5078 -3.3571 0 3.8175 3.4567

Case 6 -1 10 0 0.7324 -4.3571 -1 3.8175 3.4567

Table 4: Results for 10000 permutations of the starting design d4.
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4.7 Example 5: A carryover balanced design for which proposition

3 does not hold

There is one additional design of interest in this study. The design d5, where

d5 =

 1 2 3 4 1 2 3 4 1 2 3 4

2 3 4 1 3 4 1 2 2 1 4 3

4 1 2 3 2 3 4 1 3 4 1 2


is a Generalized Youden Design which is also carryover balanced yet does not fulfil the

conditions of proposition 3. Three assessors get treatments 1 and 2 in the first two periods

of d5 but only one assessor gets treatments 1 and 4 in the first two periods.

As can be seen from table 5 the empirical variance is larger in cases 3–6 than in the case

with no carryover effects. But since the design is carryover balanced the variance does not

get inflated much as was the case with d4 for example and the t-test is still conservative in

case 3.

Proportion of Mean of Emp. var. of Mean of
τ1 ρ1 ρ2 t(i) < t19,0.05 `′τ̂(3) i

`′τ
`′τ̂(3) i v̂ar(`′τ̂)i

Case 1 0 0 0 0.0500 0.0005 0 0.6028 0.6019

Case 2 -1 0 0 0.3331 -0.9995 -1 0.6028 0.6019

Case 3 0 0 10 0.0000 0.0071 0 0.7665 4.3203

Case 4 -1 0 10 0.0027 -0.9929 -1 0.7665 4.3203

Case 5 0 10 0 0.3896 -3.3307 0 0.6636 4.2956

Case 6 -1 10 0 0.7749 -4.3307 -1 0.6636 4.2956

Table 5: Results for 10000 permutations of the starting design d5.

5 Conclusions

The simulation study demonstrates that the row-column model (2) is valid for Generalized

Youden Designs if model (1) holds. It may be valid even if we don’t use Generalized Youden

Designs as long as the conditions aren’t too badly violated. Even if our analysis strongly

suggests that the row-column model (2) is invalid for a design, the t-test can still work in

practice if the differences between the randomization distribution of the t-statistics and the

model t distribution are small.
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If there are carryover effects of treatments, we may get a conservative analysis even if we

don’t use Generalized Youden Designs that are carryover balanced. If there are carryover

effects of products that do not cancel out, we are likely to get into trouble whether we use

balanced designs or not.

In many practical situations the use of Generalized Youden Designs, especially of those that

are also balanced for carryover, may be too restrictive. Designs which are constructed from

such designs by omitting a few blocks (assessors) may be applied in such situations without

getting extremely wrong results.

The extent of damage that is caused by carryover effects should always be reduced by both

non-statistical methods also. Any carryover effects should be minimized by the way the

experiment is conducted. Then one may want to use a balanced or nearly balanced design

together with the randomization of row and treatment labels. If there are no carryover

effects, then the analysis which ignores carryover effects is valid or nearly valid. If there are

carryover effects then the additional variance due to carryover effects is reduced by a large

degree.
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A Proof of Proposition 1

Define Qx = Ix − 1
x
1x1

′
x. Then correction for row- and column-effects corresponds to multi-

plication with Qb ⊗Qk. Hence, in the row-column model (2) a contrast `′τ is estimated by

20



`′τ̂ , where

τ̂ = C+
δ T ′

δ(Qb ⊗Qk)Y,

C+
δ is the Moore-Penrose generalized inverse of Cδ = T ′

δ(Qb ⊗Qk)Tδ and `′1t = 0. In model

(2) the variance of `′τ̂ equals var(`′τ̂) = σ2`′C+
δ ` and is estimated by v̂ar(`′τ̂) = σ̂2`′C+

δ `,

with

σ̂2 =
1

(b− 1)(k − 1)− t + 1
{Y ′(Qb ⊗Qk)Y − τ̂ ′Cδ τ̂} .

If the starting design d is a Generalized Youden Design that is uniform on the periods, then

with our randomization each design δ will be another Generalized Youden Design that is

uniform on the periods. It then follows that

Cδ = c1Qt,

where c1 = b(k−1)
t−1

. Since QtT
′
δ(Qb ⊗Qk) = T ′

δ(Qb ⊗Qk) we get

τ̂ =
1

c1

T ′
δ(Qb ⊗Qk)Y.

We explore the performance of the estimates `′τ̂ and v̂ar(`′τ̂) in model (1) under the ran-

domization distribution of δ. There are permutation matrices Π and Γ such that Tδ =

(Π⊗ Ik)HdΓ, see section 2. Thus,

`′τ̂ =
1

c1

`′T ′
δ(Qb ⊗Qk)(Tδτ + η)

=
1

c1

`′ {Cδτ + Γ′H ′
d(Π

′ ⊗ Ik)(Qb ⊗Qk)η}

= `′τ +
1

c1

`′Γ′H ′
d(Π

′Qb ⊗Qk)η (10)

and

Eδ(`
′τ̂) = `′τ +

1

t!b!c1

`′
∑

Γ

∑
Π

Γ′H ′
d(Π

′Qb ⊗Qk)η.

For any t-dimensional vector x we have 1
t!

∑
Γ Γ′x = 1

t
1t1

′
tx. This implies that

Eδ(`
′τ̂) = `′τ +

1

tb!c1

`′1t1
′
t

∑
Π

H ′
d(Π

′Qb ⊗Qk)η

= `′τ. (11)

To calculate varδ(`
′τ̂) we use (10) and get

varδ(`
′τ̂) =

1

t!b!c2
1

`′
∑

Γ

∑
Π

Γ′H ′
d(Π

′Qb ⊗Qk)ηη′(QbΠ⊗Qk)HdΓ`.
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In order to simplify this expression we define

Sη =
1

b− 1


b∑

i=1

Qkηiη
′
iQk −

1

b

(
b∑

i=1

Qkηi

)(
b∑

i=1

Qkηi

)′
 .

It can be shown that

tr Sη = η′(Qb ⊗Qk)η/(b− 1) (12)

and
1

b!

∑
Π

(Π′Qb ⊗Qk)ηη′(QbΠ⊗Qk) = Qb ⊗ Sη. (13)

Here, (12) follows from

(b− 1) tr Sη = tr

{
b∑

i=1

η′iQkηi −
1

b

(
b∑

i=1

η′i

)
Qk

(
b∑

i=1

ηi

)}
= tr {η′(Qb ⊗Qk)η} .

Recall that Π is a permutation matrix. If we write Π′η = [η′Π−1,1, . . . , η
′
Π−1,b]

′ we get

1

b!

∑
Π

(Π′Qb ⊗Qk)ηη′(QbΠ⊗Qk)

=
1

b!

∑
Π

((
(Π′ − 1

b
1b1

′
b

)
⊗Qk

)
η1

...

ηb

 [η′1, . . . , η
′
b]

((
Π− 1

b
1b1

′
b

)
⊗Qk

)

=
1

b!

∑
Π

{
QkηΠ−1,1

...

QkηΠ−1,b

[η′Π−1,1Qk, . . . , η
′
Π−1,bQk

]

−1

b

[
1b ⊗

b∑
i=1

Qkηi

][
η′Π−1,1Qk, . . . , η

′
Π−1,bQk

]

−1

b


QkηΠ−1,1

...

QkηΠ−1,b


[
1′b ⊗

b∑
i=1

η′iQk

]

+
1

b2
1b1

′
b ⊗

b∑
i=1

Qkηi

(
b∑

i=1

η′iQk

)}
.
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Summing over all Π we have

1

b!

∑
Π

(Π′Qb ⊗Qk)ηη′(QbΠ⊗Qk)

=
1

b!


(b− 1)!

∑b
i=1 Qkηiη

′
iQk (b− 2)!

∑
i

∑
j 6=i Qkηiη

′
jQk

. . .

(b− 2)!
∑

i

∑
j 6=i Qkηiη

′
jQk (b− 1)!

∑b
i=1 Qkηiη

′
iQk


−2

(b− 1)!

b b!

(
1b ⊗

b∑
i=1

Qkηi

)(
1′b ⊗

b∑
i=1

η′iQk

)
+

1

b2
1b1

′
b ⊗

b∑
i=1

Qkηi

(
b∑

i=1

η′iQk

)

=


b

b(b−1)

∑b
i=1 Qkηiη

′
iQk

1
b(b−1)

∑b
i=1 Qkηi

∑b
j=1 η′jQk

. . .
1

b(b−1)

∑b
i=1 Qkηi

∑b
j=1 η′jQk

b
b(b−1)

∑b
i=1 Qkηiη

′
iQk


− 1

b(b− 1)
1b1

′
b ⊗

b∑
i=1

(Qkηiη
′
iQk)−

1

b2
1b1

′
b ⊗

b∑
i=1

Qkηi

(
b∑

i=1

η′iQk

)

=

(
b− 1

b
1b1

′
b + (Ib − 1b1

′
b)

)
⊗ −1

b(b− 1)

(
b∑

i=1

Qkηi

)(
b∑

i=1

Qkηi

)′

+

(
Ib −

b− 1

b(b− 1)
1b1

′
b

)
⊗ 1

b− 1

b∑
i=1

Qkηiη
′
iQk

= Qb ⊗ Sη,

which completes the proof of (13).

This implies

varδ(`
′τ̂) =

1

t!c2
1

`′
∑

Γ

Γ′H ′
d(Qb ⊗ Sη)HdΓ`.

Condition (GYD1) implies that there are t× t-permutation matrices ∆1, . . . , ∆b with

Hd =


Hd1

...

Hdb

 =


[Ik, 0] ∆1

...

[Ik, 0] ∆b

 ,

see Kunert and Utzig (1993). Since d is uniform on the periods if follows that

b∑
i=1

[Ik, 0]∆i =
b

t
1k1

′
t.
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Therefore,

varδ(`
′τ̂) =

1

t!c2
1

`′
∑

Γ

Γ′
{ b∑

i=1

∆′
i

[
Ik

0

]
Sη [Ik, 0] ∆i −

1

b

(
b∑

i=1

∆′
i

[
Ik

0

])
Sη

(
b∑

i=1

[Ik, 0] ∆i

)}
Γ`

=
1

t!c2
1

`′
∑

Γ

Γ′

{
b∑

i=1

∆′
i

[
Ik

0

]
Sη [Ik, 0] ∆i

}
Γ`.

For an arbitrary matrix M with row and column sums zero it holds

1

t!

∑
Γ

Γ′MΓ =
tr M

t− 1
Qt.

Note that Sη has row and column sums zero. Together with (12) this implies

varδ(`
′τ̂) =

1

c2
1(t− 1)

tr

(
b∑

i=1

∆′
i

[
Ik

0

]
Sη [Ik, 0] ∆i

)
× `′Qt`

=
1

k − 1
tr Sη × `′C+

δ `

=
1

(b− 1)(k − 1)
η′(Qb ⊗Qk)η × `′C+

δ `. (14)

It only remains to show that

Eη(σ̂
2) =

1

(b− 1)(k − 1)
η′(Qb ⊗Qk)η.

For this calculation we can assume without loss of generality that τ = 0. Then

Eη(σ̂
2) =

1

(b− 1)(k − 1)− t + 1
{η′(Qb ⊗Qk)η − Eη τ̂

′Cδ τ̂} .

Observe that

Eη(τ̂
′Cδ τ̂) =

1

t!b!c1

∑
Γ

∑
Π

η′(QbΠ⊗Qk)HdΓΓ′H ′
d(Π

′Qb ⊗Qk)η

=
1

t!b!c1

tr
∑

Γ

∑
Π

{Γ′H ′
d(Π

′Qb ⊗Qk)ηη′(QbΠ⊗Qk)HdΓ}

=
1

c1

tr

(
b∑

i=1

∆′
i

[
Ik

0

]
Sη [Ik, 0] ∆i

)
=

t− 1

(b− 1)(k − 1)
η′(Qb ⊗Qk)η
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and get

Eη(σ̂
2) =

1

(b− 1)(k − 1)− t + 1

{
η′(Qb ⊗Qk)η −

t− 1

(b− 1)(k − 1)
η′(Qb ⊗Qk)η

}
=

1

(b− 1)(k − 1)
η′(Qb ⊗Qk)η.

This completes the proof.

B Proof of Proposition 2

The proof of proposition 2 follows that of proposition 1. Note that for a Generalized Youden

Design with k = t we have Cd = c2Qt, where

c2 = b +
(b− ta) {b− t(a + 1)}

b(t− 1)
,

where a is the integer part of b/t. After randomizing treatment labels and assessors we still

have a Generalized Youden Design with the same information matrix as before randomiza-

tion, i.e. Cδ = c2Qt.

To show that E(`′τ̂) = `′τ , it suffices to replace c1 by c2 in the proof of proposition 1 since

the calculations up to (11) do not require d to be a Generalized Youden Design.

It remains to show that E(v̂arδ(`
′τ̂)) = varδ(`

′τ̂). Again, we replace c1 by c2 in the proof of

proposition 1. Since k = t,

Hd =


∆1

...

∆b

 ,

and
∑b

i=1 ∆i = a1t1
′
t + Q where the elements qij of Q are 1 if treatment j appears in period

i exactly a + 1 times and 0 else. Note that

QQ′ =


b− ta (b−ta)(b−ta−1)

t−1
. . .

(b−ta)(b−ta−1)
t−1

b− ta



25



is completely symmetric. It follows

tr

(∑
i

∆i

)′

Sη

(∑
i

∆i

)
= tr Sη

(∑
i

∆i

)(∑
i

∆i

)′

= tr

c3Sη1t1
′
t + Sη


− (b−ta){b−t(a+1)}

t−1
0

. . .

0 − (b−ta){b−t(a+1)}
t−1




= −(b− ta){b− t(a + 1)}
t− 1

tr Sη

for some constant c3.

From this, we get the variance of our estimate

varδ(`
′τ̂) =

1

t!c2
2

`′
∑

Γ

Γ′
{ b∑

i=1

∆′
iSη∆i −

1

b

(
b∑

i=1

∆′
i

)
Sη

(
b∑

i=1

∆i

)}
Γ`

=
1

t!c2
2

`′
c2 tr Sη

t− 1
Qt

=
1

(b− 1)(t− 1)
η′(Qb ⊗Qt)η × `′C+`.

Since varδ(`
′τ̂) = σ2`′C+

δ `, we need to show

Eη(σ̂
2) =

1

(b− 1)(t− 1)
η′(Qb ⊗Qt)η.

With the same methods as in the proof of proposition 1 we get

Eη(σ̂
2) =

1

(b− 2)(t− 1)
{η′(Qb ⊗Qt)η − E(τ̂ ′Cδ τ̂)} .

Here,

E(τ̂ ′Cδ τ̂) =
1

b!t!c2

∑
Γ

∑
Π

η′(QbΠ⊗Qt)HdΓQtΓ
′H ′

d(Π
′Qb ⊗Qt)η

=
1

b!t!c2

tr

{∑
Γ

∑
Π

Γ′H ′
d(Π

′Qb ⊗Qt)ηη′(QbΠ⊗Qt)HdΓ

}
= tr Sη.

Finally

Eη(σ̂
2) =

1

(b− 2)(t− 1)

{
η′(Qb ⊗Qt)η −

1

b− 1
η′(Qb ⊗Qt)η

}
=

1

(b− 1)(t− 1)
η′(Qb ⊗Qt)η.

This completes the proof of proposition 2.
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C Proof of Proposition 3

We use the randomization distribution of δ to consider the performance of the estimate `′τ̂

under model (5). Then

Eδ(`
′τ̂) = Eδ

{
1

c1

`′T ′
δ(Qb ⊗Qk)(Tδτ + Fδρ + η)

}
and from (10) and (11) we have

Eδ

{
1

c1

`′T ′
δ(Qb ⊗Qk)(Tδτ + η)

}
= `′τ.

The bias equals

Eδ

{
1

c1

`′T ′
δ(Qb ⊗Qk)(Ib ⊗W )Tδρ

}
=

1

t!c1

`′
∑

Γ

Γ′H ′
d(Qb ⊗QkW )HΓρ.

Note that

H ′
d(Qb ⊗QkW )Hd = H ′

d(Ib ⊗QkW )Hd −
1

b
H ′

d(1b1
′
b ⊗QkW )Hd.

Since d is uniform on the periods, we have

H ′
d(1b1

′
b ⊗QkW )Hd =

(
b∑

i=1

H ′
di

)
QkW

(
b∑

i=1

Hdi

)
= 0.

Let Dd12 = H ′
d(Ib ⊗QkW )Hd. Then

Dd12 = Md −
1

k

b∑
i=1


ndi1ñdi1 ndi1ñdit

. . .

nditñd11 nditñdit

 . (15)

Here Md is the matrix whose entries mdij indicate how often in d treatment i is preceded by

treatment j and ndij indicates how often assessor i receives treatment j. ñdij indicates how

often assessor i receives treatment j in periods 1, . . . , k − 1. Note that there is no run-in

period and no product can be preceded by itself.

We have tr Dd12 = −b(k − 1)/k and for r = 1, . . . , k it holds that

b∑
i=1

ndirñdi1 + . . . + ndirñdit = k(k − 1)
b

t
and

b∑
i=1

ndi1ñdir + . . . + nditñdir = k(k − 1)
b

t
.
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This implies that Dd12 has row and column sums zero.

Thus the bias equals
1

t!c1

`′
∑

Γ

Γ′Dd12Γρ = −1

k
`′ρ.

To calculate the variance we can once again assume without loss of generality that τ = 0.

We get

Eδ(`
′τ̂)2 =

1

c2
1

Eδ {`′T ′
δ(Qb ⊗Qk)(Fδρ + η)(Fδρ + η)′(Qb ⊗Qk)Tδ`}

=
1

c2
1

Eδ`
′
{

Dδ12ρρ′D′
δ12 + Dδ12ρη′(Qb ⊗Qk)Tδ

+T ′
δ(Qb ⊗Qk)ηρ′D′

δ12 + T ′
δ(Qb ⊗Qk)ηη′(Qb ⊗Qk)Tδ

}
`,

where Dδ12 = T ′
δ(Qb ⊗Qk)Fδ = Γ′Dd12Γ.

From (14) we obtain that

1

c2
1

Eδ {`′T ′
δ(Qb ⊗Qk)η}2

=
1

(b− 1)(k − 1)
η′(Qb ⊗Qk)η × `′C+

δ `.

The middle terms vanish because

Eδ {Dδ12ρη′(Qb ⊗Qk)Tδ} =
1

b!t!

∑
Γ

∑
Π

Γ′Dd12Γρη′(QbΠ⊗Qk)HdΓ

and ∑
Π

QbΠ = (b− 1)!Qb1b1
′
b = 0.

For the first term we get

Eδ(`
′Dδ12ρρ′D′

δ12`) =
1

t!

∑
Γ

(`′Γ′Dd12Γρ)2.

If we let Ñ such that

Dd12 = −c1

k
Qt + Ñ ,

then Ñ has row and column sums zero and tr Ñ = 0.
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This implies

1

t!

∑
Γ

(`′Γ′Dd12Γρ)
2

=
1

t!

{∑
Γ

(
−c1

k
`′Γ′QtΓρ

)2

− 2
c1

k

∑
Γ

`′Γ′QtΓρ`′Γ′ÑΓρ +
∑

Γ

(
`′Γ′ÑΓρ

)2
}

≥
(
−c1

k
`′ρ
)2

− 2
c1

k
`′ρ`′

∑
Γ

Γ′ÑΓρ

=
(
−c1

k
`′ρ
)2

. (16)

If both the starting design d and the design d∗ which consists of the first k − 1 periods

of d are Generalized Youden Designs and uniform on the periods and d is also balanced

for carryover, then the off-diagonal elements of Md in (15) equal b(k − 1)/(t(t − 1)) and∑
i ndirñdir = b(k − 1)/t for r = 1, . . . , t. Finally, for r 6= s we have

∑
i

ndirñdis =
b(k − 1)2

t(t− 1)
.

Hence Dd12 = − b(k−1)
k(t−1)

Qt, Ñ = 0 and equality holds in (16).

Combining the results above we have

varδ(`
′τ̂) = Eδ

{
(`′τ̂)2

}
− {Eδ(`

′τ̂)}2

≥
(

1

c1

)2(−c1

k

)2

(`′ρ)2 +
1

(b− 1)(k − 1)
η′(Qb ⊗Qk)η × `′C+

δ `−
(
−1

k
`′ρ

)2

=
1

(b− 1)(k − 1)
η′(Qb ⊗Qk)η × `′C+

δ `

with equality for a balanced design d with both d and d∗ GYD. As in Proposition 3, this

shows that the variance of the case without carryover effects is a lower bound, and that the

balanced design where d∗ is a GYD has the same variance with or without carryover effects.

29



D Data

Assessors
Periods

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.18 0.35 0.32 0.06 0.49 0.55 0.21 0.48 0.21 0.67 0.88 0.90 0.38 0.23 0.50

2 0.49 0.71 0.69 0.43 0.72 0.86 0.52 0.67 0.57 1.04 1.16 1.02 0.67 0.47 0.52

3 1.24 1.23 0.77 0.84 1.56 1.06 1.07 0.73 1.91 1.65 1.23 1.05 1.41 0.48 2.60

4 2.42 2.53 1.99 3.01 1.91 1.36 1.67 1.07 1.96 2.06 2.18 1.16 1.66 1.46 5.29

5 3.68 4.43 3.16 10.00 4.88 1.42 3.70 1.50 6.08 3.82 10.00 2.34 3.40 3.38 6.75

Assessors
Periods

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 0.27 0.37 0.24 0.71 0.45 0.20 1.18 0.37 0.44 0.30 0.71 0.49 0.51 0.33 0.53

2 0.28 0.87 0.47 1.35 0.80 0.34 1.93 0.41 0.53 0.52 0.83 0.87 0.84 0.52 1.23

3 0.98 1.25 0.92 3.63 1.20 0.61 2.61 1.70 1.95 1.12 1.50 1.32 0.94 1.12 1.25

4 2.62 3.10 1.03 5.23 1.78 2.04 6.37 3.49 2.50 2.73 1.81 1.37 2.39 1.75 1.28

5 2.64 3.53 1.23 5.82 5.84 3.14 8.49 4.70 4.05 2.91 2.29 1.73 3.14 1.87 4.00

The data that was used in the analysis, rounded to two digits.
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