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ABSTRACT

Clinical information systems can record numerous variables describing the patient’s
state at high sampling frequencies. Intelligent alarm systems and suitable bedside
decision support are needed to cope with this flood of information. A basic task here
is the fast and correct detection of important patterns of change such as level shifts
and trends in the data. We present approaches for automated pattern detection in
online-monitoring data. Several methods based on curve fitting and statistical time
series analysis are described. Median filtering can be used as a preliminary step to
reduce the noise and to remove clinically irrelevant short term fluctuations.

Our special focus is the potential of these methods for online-monitoring in intensive
care. The strengths and weaknesses of the methods are discussed in this special
context. The best approach may well be a suitable combination of the methods
for achieving reliable results. Further investigations are needed to further improve
the methods and their performance should be compared extensively in simulation
studies and applications to real data.
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1 Introduction

In the last three decades there has been a rapid development of the equipment
used for monitoring of critically ill patients in intensive care. Clinical information
systems (CIS) allow an comprehensive acquisition and storage of this data with high
sampling frequencies. Up to 2000 physiological variables, laboratory data, device
parameters, medication parameters etc. are recorded in the course of time. The
volume of these data frequently exceeds the human ability to assimilate, identify
and conceptually relate the observations [1]. While a physician can be confronted
with more than 200 variables of the critically ill patient during a typical morning
round [2], it is well-known that human beings are not able to develop a systematic
response to any problem involving more than seven variables [3]. Moreover, humans
are limited in their ability to judge the degree of relatedness between only two
variables [4]. Another serious problem is the detection of slow trends in the data.
Additionally, personal bias, subjective experience, and a certain expectation toward
the respective intervention may distort an objective judgement [5]. Thus electronic
bedside decision support offers large potential benefit.

The automatic alarm systems which are currently used are based on fixed thresh-
olds which have to be chosen by the health care professional. They produce a huge
number of false alarms due to measurement artifacts, patient movements or tran-
sient fluctuations past the set alarm limit. Coughing, turning of and movements of
the patient, therapy, blood sampling and flushing of the catheters cause transient
artifacts. Most of the alarms, about 90%, are irrelevant in terms of patient care [1],
[6], [7]. O’Carrol [8] reports that in a study of 1455 alarms that occurred during
three weeks only eight cases were actually life-threatening. While the large num-
ber of false alarms could be reduced by choosing sufficiently wide thresholds, this
precludes the detection of intervention effects and the problems in detecting slow
monotone trends increase even more. The unreliability of fixed threshold alarms
may even lead to critical or life-threatening situations.

Clinical decision support aims at providing physicians with therapy guidelines di-
rectly at the bedside. The best recommendation possible should be supplied under
all circumstances [9]. To achieve this goal quantitative measurements and qualita-
tive reasoning have to be integrated in a system that recommends interventions in
real time. One step to reach this aim is to abstract the numerical measurements
of the patient’s vital signs into qualitative patterns, because usually changes of a
variable over time are more important than a single pathological value at the time
of observation. The online detection of qualitative patterns such as artifacts, level
changes and trends is important for assessing the patient’s state.

Several approaches for qualitative data abstraction have been suggested. Haimo-
witz and Kohane [10], [11] fit trend templates to the data, which are predefined
functional forms of relevant patterns. Miksch et al. [12] (1996) propose to measure
deviations of measurements from a given target range. Mäkivirta [1] suggests to pre-
process the data by a median filter, which is common practice in signal processing.
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Statistical intervention analysis is useful for retrospective assessment of the effec-
tiveness of therapeutical actions. In statistical process control, Shewhart, CUSUM-
and EWMA-charts are applied. Smith and West [13] and Gather et al. [14] use
methods based on statistical time series analysis.

In the following sections we describe several approaches to pattern recognition in a
sequence y1, . . . , yn of subsequent observations of a physiological variable measured
at equidistant time points with a high sampling frequency such as one observation
per minute. We neglect approaches like RESUME [15], [16] which are designed for
low-frequency data.

2 Curve fitting

Several curve fitting methods have been developed and applied to clinical problems,
the most obvious being the first order approximation with a straight line. Although
higher order polynomials have also been used, their applications are limited to cases
where such a relation is assumed to exist.

Haimowitz and coworkers [10], [11] developed TrenDx using the concept of trend
templates for diagnosing pediatric growth disorders and detecting clinically signifi-
cant trends in hemodynamics and blood gases in intensive care units. A trend tem-
plate denotes a time-varying pattern in multiple variables common to a diagnostic
population. Predefined patterns of normal and abnormal trends represent disorders
as typical patterns of relevant parameters. Trends are diagnosed by matching the
observed data to the trend templates.

Each pattern contains representations of landmark events and a set of phases. The
trend templates are temporally linked to the patient history. The anchor points
used for the trend templates are not necessarily identical to particular events in the
patient’s history, but may lay within a certain time range around the time point of
an event. The phases are represented by a partially ordered set of time intervals
with variable endpoints to consider uncertainties. Low-order polynomials constrain
the observed values of the variables during each time interval. Hence, these value
constraints are parameterized linear regression models describing variation in data
assigned to an interval. Haimowitz and coworkers use seven qualitatively distinct
elementary regression models corresponding to constant, linear and quadratic mod-
els. They consider these seven models to be sufficient to roughly distinguish between
different behaviors.

The trend templates are organized in monitor sets which belong to a certain clinical
state (”context”) of the patient, i.e., all trend templates within a monitor set are
assumed to belong to the same patient’s state described by the context. One of the
monitor sets is the expected or normal model, while the others should warrant the
attention of the physician. All members of a monitor set are concurrently matched
to the observed data and a matching score is calculated for each template. This
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score is defined to be the mean absolute percentage error between the observations
and regression model estimations. An overall score is obtained for each monitor set
using a weighted average of these error scores.

If multiple hypothesized diseases and disease chronologies have to be matched to the
data and compared to one another this repeated calculation can become prohibitively
expensive. Therefore some simplifying strategies are implemented in the system.

The major disadvantages of TrenDx are the necessary predefinition of the expected
normal behavior of the variables during the whole time considered and the usage of
absolute value thresholds matching a trend template, which do not take into account
the different degrees of parameters’ abnormalities. Moreover, the thresholds should
be dynamically derived according to the patient’s status in the past [12]. TrenDx is
designed for trend detection only and does not cover the activation of therapeutic
actions and the assessment of the effectiveness of therapeutic actions.

Miksch et al. [12] developed VIE-VENT. In this system knowledge-based monitoring
and therapy planning for artificially ventilated newborn infants are integrated. First,
the incoming data are validated to arrive at reliable values. Then these values are
abstracted into qualitative descriptions, i.e., temporal patterns. The procedure for
temporal data-abstraction consists of transformation of quantitative measurements
to qualitative values, smoothing of data oscillating near thresholds, smoothing of
schemata for data-point transformation, context-sensitive adjustment of qualitative
values and transformation of interval data.

The measurements are transformed into qualitative values by dividing the numerical
range of each variable into regions of interest and attainable goals. Each of these
regions corresponds to a qualitative value. For blood-gas measurements e.g. they use
seven qualitative categories of blood-gas abnormalities. The corresponding regions
are smaller the nearer the target range since they represent different degrees of
abnormalities. The definition of these regions requires specific predefined target
values depending on different attainable goals.

Since oscillation of the measurements near a threshold causes rapid oscillation of the
qualitative categories smoothing is applied to keep the categories stable. Miksch et
al. predefine neighborhoods of the regions of interest and a maximum smoothing
activation time period. The size of the neighborhood depends on the size of the
region. Smoothing starts if the category for the incoming observation yt is not the
same as the category for the previous measurement and yt lies within the neighbor-
hood of the previously observed category. In this case the qualitative values of the
new observations are set to the category before the change. Smoothing stops if the
new observation leaves the neighborhood or the maximal smoothing time is reached.

For different contexts, i.e., different clinical states, different target values are used
for the categories. Changing the context would result in a sudden shift of the
category resulting possibly in a recommendation for drastic therapeutic intervention.
Therefore the thresholds of the schemata are smoothed within a predefined time
period, which may be three to eight hours, after changing the context.
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Schemata for trend-curve fitting are defined describing the dynamics of different
degrees of parameter abnormalities. The qualitative categories are combined with
qualitative trend descriptions expected by the physician. In this way qualitative
descriptions resulting in an explicit categorization of the change of the variables
over time are obtained. Changes of the parameters are modelled by exponential
functions, which are piecewise linearized to reduce the complexity. For instance,
Miksch et al. consider four different durations of trends. In this way, e.g. the
results of therapeutic actions can be assessed.

Miksch et al. tested their approach on simulated and real data of blood-gas mea-
surements. They found the therapeutic recommendations to be consistent and rea-
sonable, except when invalid measurements occurred, but they also considered some
limitations of their approach. Information about the frequency of therapeutic inter-
actions in the past would be useful for future reasoning. Data abstraction should
include a memory which weights the data since more recently observed data are
more important for the reasoning process than data observed in older time periods.
Moreover, they found more noise in the real data than expected because of mea-
surement errors, online transmission problems and input from different people in
different environments and in different experimental settings.

Both methods presented in this section do not consider correlations within the data
and they demand predefinition of expected behavior, which may be hard to specify
in advance in critical care. Curve fitting methods behave poorly in the presence of
large noise and short term transients which are typical problems in intensive care
monitoring [1]. Median filtering helps to overcome this problem.

3 Median filtering

Mäkivirta and coworkers [1], [17] suggest the use of median filters for preprocessing
the observations. Median filtering is a basic non-linear method for signal processing
which helps to remove noise and transients from the signal without distortion of the
signal’s baseline. For subsequent observations y1, . . . , yN the median filter of length
2l + 1, l ∈ N, is defined by

ỹt = median{yt−l, . . . , yt+l}, t = l + 1, . . . , N − l .

This filter responds to a change in the signal with a time delay of l observations.
On the other hand, this filter tolerates up to l artifacts within a time span of
2l + 1 observations without breaking down completely. Therefore, there is a trade-
off between noise attenuation and the time delay. Particularly, these filters have
excellent attenuation of impulsive noise since their response to an impulse is zero.
Median filters preserve sudden level changes in the signal and diminish the strong
noise-like variability with frequent transients. The bias of the filter is related to
the variance of the noise and the height of the edge. Therefore, in the presence of
excessive noise the ability of a median filter to preserve edges deteriorates.



6

Mäkivirta [1] noted that increasing the length of the median filter causes a radical
decrease of the incidence of both false and true alarms. Therefore, a dual limit
alarmer was proposed [17] based on a short and a long median filter. For the short
median filter, wide control margins are used to detect sudden critical changes in
the patient’s state while for the long median filter narrower margins are used to
assess therapy effects. Trends can be detected by fitting a linear regression model
to the filtered data. In a clinical study, a decrease of about 64 % of the false alarms
could be achieved in comparison to usual threshold alarming performed from the
unfiltered data.

Several variations of the basic principle of median filtering can be found in the
literature. Justusson [18], [19] suggests a weighted median filter giving more weight
to the current observation. Nieminen et al. [20], [21] develop median filter based
algorithms for real-time trend detection. Their methods are based on so-called FIR
median hybrid (FMH) filters which are constructed from several linear subfilters
using median operations. These algorithms gradually refine trends when new data
becomes available. A particular concern is the detection of slope changes in a trend.
This is important because of the frequent transients and sudden changes in the
physiological variables of a critically ill patient. Nieminen et al. state that their
methods have excellent noise attenuation properties with respect to the delay of the
system. However, all these approaches do not include correlations within the data
into the analysis.

4 Statistical time series analysis

Endresen and Hill [22] consider methods which are based on the independence of
the observations to be not appropriate for the analysis of an observed series from
variables such as the heart rate and the blood pressures. When analyzing such
time series they found large positive correlations between subsequent measurements.
Woodward and Gray [23] point out that high positive correlations within subsequent
observations of a time series do often lead to the false detection of a trend. This
supports the demand to incorporate autocorrelations within a time series into the
analysis as stated by Endresen and Hill [22].

Statistical time series analysis allows to consider autocorrelations, leads to inter-
pretable descriptions of complex underlying dynamics, provides forecasts, gives con-
fidence bounds and allows the assessment of the clinical effects of therapeutic in-
terventions [24], [25]. It has also been shown to be useful for online detection of
characteristic patterns in univariate time series. For pattern detection in single
variables dynamic linear models [26], ARIMA-models [27], [28] and models based
on a phase space type approach [29] have been applied.

In this section we give a brief, but general introduction into statistical time series
analysis. Here, the measured sequence of observations (time series) y1, . . . , yN is
assumed to be generated from a stochastic process {Yt : t ∈ Z}, i.e., yt is regarded



7

as a realization of a random variable Yt, t = 1, . . . , N . We assume mean and variance
to exist for the random law describing the distribution of Yt and denote them with
µt and σ2

t respectively. Often joint normality of the random variables is assumed.
Under this assumption all information about the dependencies between the variables
is contained in their correlations. Statistical time series analysis incorporates these
dependencies into the reasoning process and uses them to improve decision making
based on the observed values. Therefore, the main focus of basic time series models
are usually the correlations between the variables while the mean of the random
variables Yt is assumed to be constant over time, i.e., µt = µ for all t ∈ Z. This
property is called mean-stationarity, while we call the series variance stationary if
the variances of the random variables are constant over time, i.e., σ2

t = σ2, t ∈ Z.
If not only the variances σ2

t = Cov(Yt, Yt), but all covariances Cov(Yt, Yt+h) of the
stochastic process are independent of t for all time lags h ∈ N we call the series
second order stationary and define the autocorrelation function ρ : N → R by

ρ(h) =
Cov(Yt, Yt+h)

V ar(Yt)
.

A series which is both mean stationary and second order stationary is called weakly
stationary. For the ease of notation, the constant mean µ is usually assumed to be
zero. In a practical application we can estimate the mean by the sample mean and
subtract it from the series if we assume the underlying stochastic process to be at
least mean stationary.

Autoregressive integrated moving average (ARIMA) models are perhaps the most
often used time series models, see [30], [31]. An ARIMA(p, d, q) model assumes that
the d-times differenced time series follows a weakly stationary ARMA(p, q) model.
Differencing means to calculate the increments, i.e. the differences dt = yt − yt−1

between subsequent observations.

An ARMA(p, q) model assumes that Yt can be represented as

Yt − φ1Yt−1 − . . . − φpYt−p = at − θ1at−1 − . . . − θqat−q, t ∈ Z,

where {at : t ∈ Z} is a white-noise process of independent identically N(0, σ2
a)-

distributed random variables (”shocks”) and φ1, . . . , φp, θ1, . . . , θq are unknown
weights measuring the influence of past observations and past shocks on the cur-
rent observation. For q = 0 we simply call the process AR(p) process, while it is
called MA(q) process if p = 0. The statistical properties of these models can be
exploited using the algebraical theory for polynomials. For this reason the backshift
operator B is defined by Byt = yt−1. Then Φ(B) = 1 − φ1B − · · · − φpB

p and
Θ(B) = 1 − θ1B − · · · − θqB

q are polynomials in B of degrees p and q respectively.
In ARMA models it is assumed that both polynomials have all their roots outside
the unit circle. The former demand follows the assumption of (weak) stationarity
of the time series. For an AR(1) model for instance this means that the absolute
value |φ1| must be smaller than one. An AR(1) model with φ1 = 1, which has a root
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located at 1, is a non-stationary ARIMA(0,1,0) model. In this simple model, which
is called a random walk, the variance of the observation Yt increases over time.

Any ARMA model which fulfills the assumptions stated above can also be written
in the so-called AR(∞) form as

Π(B)Yt = at

where Π(B) = Θ(B)−1Φ(B) = 1 − π1B − π2B
2 − . . . − . . ., or in the MA(∞) form

as
Yt = Ψ(B)at

where Ψ(B) = Φ(B)−1Θ(B) = 1 − ψ1B − ψ2B
2 − . . ..

ARMA models for a given time series y1, . . . , yN are often constructed using an
iterative procedure described in [31]. In this procedure the steps identification,
estimation and diagnosis are repeated. An investigator using this procedure should
have some experience with it since active interaction is needed.

In the identification step, the orders p and q of the ARMA model are determined.
For this reason the sample autocorrelation function SACF

ρ̂(h) =

∑N−h
t=1 (yt − y)(yt+h − y)∑N

t=1(yt − y)(yt − y)
, y =

1

N

N∑
t=1

yt,

and the sample partial autocorrelation function SPACF are analyzed. The former
estimates the unknown autocorrelation function of the process, while the latter
estimates the autocorrelations between Yt and Yt+h after elimination of the linear
influences of Yt+1, . . . , Yt+h−1 on Yt and Yt+h. The SPACF can be calculated from
the SACF using some recursions [30], [31]. For an AR(p) process the SACF should
be exponentially declining and the SPACF should be about zero at all time lags
h > p. Conversely, for an MA(q) process the SACF should be about zero from
time lag q + 1 on, while the SPACF should be exponentially declining. For mixed
ARMA(p, q) processes the SACF and SPACF show more complex patterns. Their
identification often takes several cycles of the procedure.

In the estimation step, the unknown parameters φ1, . . . , φp, θ1, . . . , θq are estimated
from the data. While usage of exact maximum likelihood estimators is preferable
for short time series with N ≤ 50 observations, for long time series with N > 100
simpler techniques such as conditional maximum likelihood, which is equivalent to
conditional least squares under the assumption of normality, usually provide almost
identical results. A detailed description of these algorithms can be found in [30] and
[31].

In the diagnosis step we check whether the model provides an adequate description of
the time series. Commonly the estimated residuals are compared to white noise. The
hypothesis of white noise can be tested with the Box-Ljung Q-statistics for instance,
while the Durbin-Watson test gives information about possible non-stationarities of
the time series. If the model turns out to be satisfactory we can use it for further
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analysis, otherwise we should modify it according to the impressions gained in the
diagnosis stage and then iterate the three steps of the procedure until a satisfactory
model is derived.

5 Intervention analysis

The basic assumption of (weak) stationarity is not fulfilled for the physiological time
series observed in intensive care. In the contrary, the detection of changes in the
patient’s state, which may be caused by possibly life-threatening complications or
by a change in medicamentation, are the main reason to analyze these data. More-
over, biorhythm causes systematic long-term oscillations, and many measurement
artifacts occur in clinical time series. Intervention analysis has been proposed to
incorporate patterns of change in statistical time series analysis, and appropriate
methods for the retrospective detection of such extraordinary events have been de-
veloped. The effects of such events are modelled by using deterministic functions of
time for describing a time-varying mean structure. Although these methods cannot
be applied online since past and future observations of the variable are used in the
analysis, their retrospective application can be useful to assess the effectiveness of
therapeutical methods and to construct a knowledge base for future bedside decision
support.

Intervention analysis is accomplished via an iterative procedure for detection and
removement of patterns of change. Dummy variables are used to model changes in
the mean of a time series [32]. Chang et al. [33] propose an iterative procedure based
on repeated likelihood ratio tests for outlier detection and parameter estimation
which is generalized in Tsay [34] to include level shifts and temporary changes.
Nowadays, the procedure of Chen and Liu [35] for outlier detection and parameter
estimation in ARIMA models seems to be widely used. Commonly four patterns
of change in the mean are considered in statistical time series analysis. These are
additive outliers AO, innovational outliers IO, level shifts LS and transient changes
TC [36].

An additive outlier AO represents an isolated spike in the time series, which can
be caused by an external error, e.g. a measurement artifact, changing the observed
value at one particular time point τ without further effects on the future values
of the time series. In this case, we observe a modified series z1, . . . , zN instead of
y1, . . . , yN , which is related to the latter by

zt =

{
yt t �= τ
yt + ωA t = τ

Here, ωA is the unknown effect of the AO. Using the AR(∞)-representation of the
ARMA model, we can write the AO model as

Π(B)(zt − ωAI
(τ)
t ) = at .
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The dummy variable I
(τ)
t is identical to zero for all t with the only exception t = τ

where I
(τ)
τ = 1. An additive outlier can have serious effects on the estimated residuals

of the future observations after time point τ and on the estimated model parameters.
The residuals et of the observed process after time point τ are related to the residuals
of the underlying ARMA process via

eτ+j = aτ+j − πjωA, j ≥ 0 ,

where π0 = −1. Moreover, it can be proved that a single additive outlier pushes all
sample autocorrelations toward zero [36].

An innovational outlier IO can be due to an internal change or endogenous effect
which causes an extraordinary shock at some time point τ . The model for an IO is

zt = yt + Ψ(B)ωII
(τ)
t ,

where ωI is the unknown size of the IO. Hence, the effects of an IO on the observed
time series depend on the ARIMA model. The IO model can be written equivalently
as

Π(B)zt = at + ωII
(τ)
t .

In case of known model parameters, an IO only affects the residual of the observed
process at the time point τ

eτ = aτ + ωI ,

and et = at otherwise. It is well-known that IOs usually have minor effects on
the sample autocorrelations and on the parameter estimates [37]. For a time series
which forms white noise AO and IO are equivalent, while an IO in a random walk
is equivalent to a level shift.

A level shift LS corresponds to a step change in the mean level of the process at a
time point τ . The model for a LS is

zt =

{
yt, t < τ
yt + ωL, t ≥ τ

,

where ωL is the size of the step. This model can also be written as [36]

Π(B)zt = at + ωLΠ(B)(1 − B)−1I
(τ)
t .

A LS affects all residuals after the time point when the shift occurs:

eτ+j = aτ+j + 	jωL, j ≥ 0,

where 	j, j = 0, 1, . . . are the coefficients of 	(B) = Π(B)(1 − B)−1. A LS pushes
the sample autocorrelations at all time lags to one if there are many observations
before and after the shift.

A transitory change TC is a temporary LS that dies out exponentially with rate δ
and initial impact ωT , i.e., it is a level shift that decreases with time and fades to



11

zero, see Tsay [34]. Alternatively we could describe it as a spike that takes a few
time periods to disappear. The model for a TC is

Π(B)zt = at + ωT Π(B)(1 − δB)−1I
(τ)
t .

For δ = 1, a TC is identical to a LS, while for δ = 0, a TC is an AO. Therefore,
a TC with 0 < δ < 1 can be seen as an intervention in between a LS and an AO.
Generally, the parameter δ specifies how fast the effect of a TC decreases. Tsay
[34] chose the values δ = 0.8 and δ = 0.6 and stated that the results were only
slightly different in his applications. In case of high positive autocorrelations within
the time series, the TC model is close to an IO model. This can result in some
misclassifications [34].

Furthermore, in the physiological variables observed in intensive care slow monotone
trends can be found which lead to a modified level of the process. A linear trend
can be modelled by a ramp shift outlier RS

zt = Ψ(B)at + ωRR
(τ)
t (1)

R
(τ)
t =

{
0 t < τ
t − τ t ≥ τ

(2)

R
(τ)
t is called a ramp effect. This model means a temporary LS over the first differ-

ences after time point τ

(1 − B)zt = Ψ(B)(1 − B)at + ωR(1 − B)−1I
(τ)
t .

Piecewise linear trends, i.e., trends with a slope which changes occasionally, can be
modelled by several subsequent ramp shift outliers.

For retrospective estimation and testing of intervention effects we first assume that
the parameters of the ARMA model for yt are known. Let et = Ψ(B)zt be the
residuals from the observed series given the true model parameters. For an AO, IO,
LS and TC the model for the residuals can be written in regression form as

et = ωxt + at

where we have ω = ωA and xt = Π(B)I
(τ)
t for AO, ω = ωI and xt = I

(τ)
t for IO,

ω = ωL and xt = Π(B)(1 − B)−1 for LS, and ω = ωT and xt = Π(B)(1 − δB)−1 for
TC. As the model parameters and therefore xt are assumed to be known and the
residuals at are independent, ω can be estimated by ordinary least squares, leading
to ω̂ =

∑
t etxt/

∑
t x

2
t , with variance σ2

a(
∑

x2
t )

−1 [36]. Estimation and testing of
an RS can be done by applying the methods designed for an LS to the differenced
residuals.

In the AO case this approach leads to

ω̂A = ρ2
AΠ(F )eτ ,
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where F is the forward shift operator defined by Fzt = zt+1, and ρ2
A = (1+π2

1 + . . .+
π2

N−τ )
−1. This result corresponds to the fact that all residuals after τ are affected

by an AO and therefore all of them carry some information. The variance reads
V ar(ω̂A) = ρ2

Aσ2
a.

For an IO only the residual at time τ carries information on ωI . The estimate is

ω̂I = eτ

and the variance is V ar(ω̂I) = σ2
a.

In case of an LS, all residuals after the change point τ are informative. The estimate

ω̂L = ρ2
L	(F )eτ

with ρ2
L = (1 + 	2

1 + . . . + 	2
N−τ )

−1 combines this information in a linear way. It can
be shown that this statistic measures the difference of the levels before and after
time point τ [36]. The variance of the estimate is V ar(ω̂L) = ρ2

Lσ2
a.

For a TC we have
ω̂T = ρ2

τβ(F )eτ

where ρ2
T = (1 + β2

1 + . . . + β2
N−τ )

−1 and the βi are the coefficients of β(B) =
Π(B)(1 − δB)−1. The variance is V ar(ω̂T ) = ρ2

T σ2
a.

In order to test whether an outlier of known type j ∈ {AO, IO, LS, TC} has occurred
at time point τ , one typically tests

H0 : ωj = 0 versus H1 : ωj �= 0

using the likelihood ratio method. This criterion leads to comparing the parameter
estimate to its standard error. The resulting test statistic

λj,τ =
ω̂j,τ

ρj,τσa

,

can be compared with a percentile of the student-t-distribution. We add the index τ
to stress that the corresponding statistics are calculated for a particular time point
τ .

On the other hand, if the type, but not the location of an outlier is known, a test
statistic based on the maximized likelihood ratio λj = maxτ{λj,τ} can be used. The
distribution of this maximum is complicated because of the correlations between the
λj,τ . Approximations of these distributions based on simulations can be found in
Chang et al. [33] and Ljung [38].

For the realistic case that neither the model parameters nor the location or the type
of the outliers are known, Tsay [34] suggested an iterative procedure for outlier de-
tection. This procedure consists of specification, estimation, detection and removal
cycles. Simulation studies revealed that this procedure seems to work very well in
case of isolated outliers [34]. It can be summarized as follows:
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1. An ARMA model is fitted to the observed time series using maximum likeli-
hood under the assumption that no outlier has occurred; the model residuals
are calculated.

2. The maximum of all likelihood ratio statistics λ = maxj λj is calculated. If
λ is larger than a predetermined constant c we assume that an outlier of the
corresponding type has occurred at this particular time point. We define new
residuals by subtracting the estimated effects of this outlier from the model
residuals.

3. Using these new residuals, a new estimate of the residual variance is obtained,
and the likelihood ratios are computed again using the new residuals from step
2. Steps 2 and 3 are repeated until no further outliers are found.

4. In the second stage the sizes of the identified outliers and the parameters of
the time series model are estimated jointly by fitting the corresponding model
to the observed time series. Using the resulting residuals steps 1 to 4 are
repeated until no further outliers are found.

Imhoff et al. [39] employed intervention analysis to assess the effects of therapeutic
interventions at known times within short time series of pulmonary target variables.
They only considered level shifts which describe relevant, long-term therapeutic ef-
fects measuring the change in mean level caused by an intervention. As a result, they
could separate effective from non-effective interventions, which allows to reconsider
therapeutic strategies.

6 Statistical process control

Statistical process control is a widely applied methodology for controlling industrial
manufacturing processes for instance. Control charts such as the Shewhart-, the
CUSUM- and the EWMA-chart aim at fast detection of systematic changes, par-
ticularly level shifts, in a process. The standard measure of the performance of a
control chart is the average run length ARL, which is the expected time until an
alarm is given. One has to consider both the in-control and the out-of-control ARL
of a chart. The former is the ARL of a process which is under control, i.e., if no
shift occurs within the time period considered. The latter is the ARL in the case
that a shift by a certain amount occurs. It is a function of the size of this shift. For
simplicity the shift is usually assumed to occur at the first observation considered.
Obviously, large values of the in-control ARL and small values of the out-of-control
ARL are good. One has to find a balance between these goals since increasing the
in-control ARL by choosing larger control limits for a special chart means to increase
the out-of-control ARL, too. To compare two control charts, usually the in-control
ARL of both charts is set to a certain value by adjusting the control limits and then
the out-of control ARLs of the charts are considered.
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The performance of classical control charts suffers seriously from autocorrelations
[40], [41], [42], [43]. Two approaches have been proposed to overcome this problem
[42]: Modified control charts compare the original measurements to control limits
which are appropriately changed to consider autocorrelations. Forecast-based mon-
itoring schemes consist of a two-stage procedure. First a time series model is fitted
to the data and then the one-step ahead forecast residuals are monitored using tra-
ditional control charts. If the time series model is correctly specified, the forecast
residuals are independent and identically distributed with mean zero during the
steady-state, and thus the traditional control chart used in the second step should
be reliable. Forecast-based monitoring schemes often employ autoregressive AR(p)-
models since they constitute a quite flexible model class describing a wide variety of
autocorrelation functions, and since simple computational formulae for prediction
and confidence bounds estimation exist. Simulation studies show that the properties
of forecast-based monitoring schemes strongly depend on the parameter estimates
[42], [43], [44], [45].

The individuals-chart is a special form of the Shewhart-chart for which the individ-
ual observations are compared to predetermined upper and lower control limits UCL
and LCL. An observation outside the control limits results in an alarm suggesting
that some action is required. These control limits are based on a certain allowable
deviation from a target value, which may be an estimate of the mean during the
steady state, for instance. The allowable deviation is often based on normal theory
resulting in UCL = µ0 + ks and LCL = µ0 − ks, where µ0 is the target value, s
is an estimate of the variability found in the undisturbed process, e.g. the stan-
dard deviation, and k can be chosen as a certain percentile of the standard normal
distribution. Fixed threshold alarms can be regarded as classical individuals-charts
where the original observations are monitored. In case of autocorrelated observa-
tions, the individuals chart can be applied to the forecast errors of an AR model [46].
Both the classical and the forecast-based individuals charts are not robust against
measurement artifacts since an alarm is triggered in case of a single extreme value.
Sometimes it is suggested to add a run rule to an individual chart, e.g. ”if two out
of the last three observations are between two and three standard deviations away
from the centerline and on the same side of it, an alarm should be given” [45].

EWMA-charts use exponential weighting methods for suppressing large variability
in the monitored variable. The EWMA-chart with weighting factor λ monitors the
weighted sum of the observations

EMt = λYt + (1 − λ)EMt−1 .

An initialization EM0 is needed which can be set to a target value or a mean value
obtained from past data. Then EMt is compared to appropriately chosen control
limits. It is well-known that EMt describes the best predictor if the observed variable
follows an ARIMA(0,1,1) process with parameter θ1 = 1−λ. Although this property
could be used to choose the value of λ by fitting an ARIMA(0,1,1) model to the
data [47], usually a value λ ≤ 0.2 is chosen [48], [49] since λ defines the influence
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of the latest measurement. An EWMA-chart with λ = 1 is an individuals chart.
For small values of λ, EMt is a low-pass filter which diminishes artifact noise and
most of the fast fluctuations of the measured signal. Generally, EWMA-charts with
large λ perform better for large level shifts, while EWMA-charts with small λ do
better for small shifts [42]. Zhang [49] proposed an EWMA-chart with control
limits modified to consider correlations within the data, while Montgomery and
Mastrangelo [50] developed an EWMA-chart based on the forecast errors of an AR(1)
model. EWMA-charts can also detect slow trends [48]. Nevertheless, Mäkivirta [1]
stated that there is no evidence that exponential weighting is preferable to any other
weighting method, apart from the fact that exponentially weighting allows to use a
very convenient recursive structure.

Cumulative sum (CUSUM-)charts [22] accumulate differences between the actual
and the expected values of a monitored variable. Timmer, Pignatiello and Long-
necker [51] among others constructed a CUSUM-chart for an AR(1) process using a
likelihood ratio approach. Two recursive filters, an upper and a lower one, are used
for the detection of upward and downward shifts in the mean of an AR(1) process
with mean µ0 during the steady state. Choosing a certain out-of-control value µA of
the mean, which should be detected with high probability, the upper filter is given
by

Ut = max[0, Ut−1 + (Wt − mWt − ktσWt)] ,

where

Wt =

{
(1 + φ1)Y1, t = 1
Yt − φ1Yt−1, t > 1

mWt =

{
(1 + φ1)µ0, t = 1
(1 − φ1)µ0, t > 1

kt =

{
(1 + φ1)k, t = 1
(1 − φ1)k, t > 1

σWt =

{ √
1+φ1

1−φ1
σa, t = 1

σa, t > 1
,

and k = (µ0 + µA)/2 is the reference value for detection of a shift towards µA for an
i.i.d. chart. This means that at each time point t > 1 the previous value is modified
by adding the amount the forecast error is larger than an certain percentile of its
steady-state distribution if the resulting value is larger than zero, and by restarting
from zero otherwise. This percentile is chosen according to the size of a shift which
should be detected very soon with high probability. Additionally, an initialization
U0 has to be chosen. The filter for detecting downward shifts is defined accordingly.
By its construction, a CUSUM-chart is not robust against artifacts since an extreme
observation has large influence on the filters. Hence, artifacts can either result in
false alarms or hinder the fast detection of a level shift.

As pointed out by Lin and Adams [48], a forecast based individuals-chart has high
probability of detecting a level shift immediately, but it has low probability of shift
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detection after the first observation because of the recovery of the forecasts. On the
other hand, EWMA charts have low probability of fast signals, but higher proba-
bility of detection at subsequent observations. The performance of the individuals
chart applied to forecast errors is better than the performance of EWMA-charts in
case of large level shifts, while the performance of the individuals chart is inferior
to the performance of EWMA- and CUSUM-charts in case of small or moderate
shifts [48], [49], [51]. In a comparison of several Shewhart and EWMA-charts, Lu
and Reynolds [42] recommended a Shewhart-chart of the observations for the de-
tection of large shifts in case of positive autocorrelations, an EWMA-chart of the
residuals for medium shifts and an EWMA-chart of the observations for small shifts.
Zhang [49] considered his modified EWMA-chart to be preferable to several other
individuals- and EWMA-based charts in case of small and moderate autocorrelations
and medium-sized level shifts. In the case of very strong positive autocorrelations
and a medium-sized or large level shift he supposed a residuals-chart to be superior.
However, Kramer and Schmid [43] concluded that Shewhart-charts based on the
original observations perform better than Shewhart-charts of the residuals in case of
positive autocorrelations. Run rules can be misleading for autocorrelated data [42].
Adams and Tseng [45] found individuals charts to be more robust against misspec-
ification of the model parameters than EWMA- and CUSUM-charts. Simulations
in Bauer et al. [29] provide evidence that the individuals chart for forecast errors is
powerful against single outliers, but that an approach described in the next section
is better for the detection of multiple outliers and level shifts.

Schack and Grieszbach [52] suggest an adaptive trend estimator based on exponen-
tial weighting. However, they apply it for visualization only and do not construct
a significance test based on their approach. Montgomery and Mastrangelo [50]
constructed a cumulative tracking signal using the sum of forecast errors from an
EWMA chart, which is standardized by the mean absolute deviation. They specify
critical values for this tracking signal from their experience. However, a cumulative
sum is very sensitive against artifacts because of its long memory. The tracking
signal developed earlier by Trigg [53], which uses exponential weighting of the fore-
cast errors, has some advantages in this respect. Simulation studies [54] show that
Trigg’s tracking signal TTS performs better than the cumulative tracking signal for
small values of λ w.r.t. the average run length in case of independent measurements.
TTS has difficulties to detect level shifts occurring in several steps [22] and does not
distinguish between trends and level shifts [55]. Stoodley and Mirnia [56], who also
use a cumulative sum of forecast errors provided by an EWMA chart, suggested
rules based on the number of subsequent forecast errors having the same sign or
being larger (smaller) than a certain value δ to recognize whether a trend, a level
shift or an artifact has occurred.

The greatest problem of the usage of statistical control charts for online monitor-
ing in intensive care is the implicit assumption of (weak) stationarity of the data
generating mechanism and the existence of a target value for the data. However, in
the clinical application of monitoring vital signs it is impossible to determine more
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than a region of acceptable values for a physiological variable. Moreover, physiolog-
ical processes are not stationary, but change according to the clinical state and the
biorhythm of the patient. The mean value of a physiological variable does not re-
main fixed all of the time [57]. Rather, the aim in intensive care is to detect and limit
extreme variation. Moreover, parameter estimation from past data, which is often
suggested for industrial processes, is difficult for vital signs because of fundamental
differences between the individuals.

7 Online pattern recognition based on statistical

time series analysis

The statistical control charts presented in the previous section are particularly de-
signed for the detection of step changes and assume the existence of a target value
the observations should be compared with. Statistical time series analysis, however,
allows to estimate a time-varying mean value and to detect unusual changes in this
mean. Intervention analysis does not work online since we need future observa-
tions of the variable to calculate the likelihood ratio statistics. Generally, pattern
recognition will be more reliable the more observations we can use in the analysis.
In the following we discuss several strategies for online pattern detection based on
statistical time series analysis which can be found in the literature.

In an early attempt to apply statistical time series analysis to online monitoring
data, Smith and West [13] used a multiprocess dynamic linear model to monitor
patients after renal transplantation. In dynamic linear models (DLMs) [58] the
observation Xt at time t is regarded as a linear transform of an unobservable state
parameter. This state is assumed to change dynamically in time according to a
simple regression model. Particularly, the linear growth model

Xt = µt + εt

µt = µt−1 + βt−1 + δt,1

βt = βt−1 + δt,2

is very appealing in the context of physiological variables since its state at time t
consists of a level parameter µt and a slope parameter βt which are easily inter-
pretable. In the multiprocess version used by Smith and West different variances of
the random observation error εt and the random changes in evolution δt,j, j = 1, 2,
at time t are used for describing the steady state, artifacts, level changes and trends.
For pattern classification they calculated the posterior probabilities of these states
in a Bayesian framework using a multiprocess Kalman filter. Routine application of
this model has not been practiced yet because of its very strong sensitivity against
misspecification of the hyperparameters, particularly of the error variances, and its
insensitivity against moderate level shifts.
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The number of the hyperparameters and the necessary computational effort can be
significantly reduced by using a single-process model. Wassermann and Sudjianto
[59] constructed a control chart by comparing the current mean estimate to a spec-
ified target value. An alarm is triggered in their approach if the abolute difference
is larger than a fixed multiple of the estimated standard deviation of the mean.
However, this rule does not allow early detection of trends.

All patterns can be detected by assessing the influence of recent observations on the
parameter estimates via suitably chosen influence statistics [60], which compare esti-
mates of the state parameters calculated with these recent observations to estimates
calculated without them. For a level change and a trend the recent observations
should have a large influence on the estimate of the level and the slope parameter
respectively, while an outlier should be far from the estimated level.

This approach based on influence statistics was successfully applied for retrospective
pattern detection [60, 61]. For online application, however, we have to estimate the
hyperparameters from a rather short estimation period. Practical experience shows
that difficulties arise if the variability during the estimation period is low, if level
changes occur in several little steps and if patterns of outliers occur in short time
lags. Little variability during the estimation period causes the detection of outliers
and level changes to be too sensitive subsequently. Level changes in several steps
are hard to detect since the smoothed level parameter adjusts in each step, so that
possibly the influence statistics are not significant at any time. Several outliers in
short time lags may either mask each other or may be mistaken for a level change.
Nevertheless, all kind of patterns in hemodynamic time series could correctly be
identified in most of the cases [62].

Alternatively, for the online recognition of patterns of change in a dynamical system
we can model the underlying process during the equilibrium or steady state from
past data and use a measure to detect deviations from this steady state. Experience
from earlier studies of physiologic variables [28], [39], [63] shows that physiological
time series can typically be described adequately by low order AR(p) models during
the time interval in between extraordinary events. The choice p = 2 seems to be
sufficient in most cases. An intuitive rule for the detection of an outlier is to compare
the incoming observation to the one-step ahead prediction in such a model, i.e., to
use a forecast based Shewhart chart.

Bauer et al. [29] used an alternative approach to develop an automatic procedure
for the online detection of outliers and level shifts in time series. They modeled
the marginal distribution of m-dimensional vectors of subsequent observations yt =
(yt, yt−1, . . . , yt−m+1

)′
. In this way the dynamical information of the univariate time

series is transformed into a spatial information within an m-dimensional space and
rules for outlier identification in multivariate data can thus be transferred into the
time series context. The embedding dimension m should be chosen according to
the dependence structure of the underlying process. Since most physiological time
series can be described by AR(2) models, m = 3 is an obvious choice.
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Under the assumption of joint normality of the random variables during the steady-
state, the time-delay vectors ym, . . . ,yN should form an m-dimensional elliptical
cloud. A control ellipsoid can be constructed using the Mahalanobis distance

MDTS(t) =
√(

Yt − ȲN−m+1

)′
S−1

Y,N−m+1

(
Yt − ȲN−m+1

)
,

t = m, . . . , N. Here ȲN−m+1 = 1
N−m+1

∑N
t=m Yt is the arithmetic mean of the time-

delay vectors and SX,N−m+1 is the sample covariance matrix

SY,N−m+1 =




γ̂N(0) γ̂N(1) · · · γ̂N(m − 1)

γ̂N(1) γ̂N(0)
...

...
. . .

...
γ̂N(m − 1) · · · · · · γ̂N(0)


 ,

with γ̂N(h) = 1
N

∑N−h
t=1 (Yt − ȲN)(Yt+h − ȲN), h = 0, . . . ,m − 1, where ȲN =

1
N

∑N
t=1 Yt.

Bauer et al. [29] compared this approach in a simulation study to forecast based
detection for ARMA(p, q)-models as mentioned above. They find the forecast based
detection to perform better for single outliers, while the approach based on the
multivariate Mahalanobis distance is preferable for patterns such as level shifts which
affect several subsequent observations. This is according to the forecast recovery of
one-step ahead prediction. For a patch of outliers or a level shift the approach
based on forecasts fails with high probability if the first outlier is not detected
and not replaced by a prediction. This deficiency is even more serious in case of
biological systems like the health state of a patient, which often shows a step-wise
reaction to disturbances and interventions. On the other hand, using the marginal
distribution means to judge m subsequent observations simultaneously. The power of
the rule based on the Mahalanobis distance should be increasing with the number of
subsequent outliers since they move the time-delay vector further out of the control
ellipsoid than a single outlier does. Therefore, the rule based on the Mahalanobis
distance will be better than an approach based on one-step ahead prediction for
patchy outliers and level shifts at the slight expense of lower power against single
outliers, which are clinically a much less relevant phenomenon. Robust estimators
of the autocovariances and the mean could be used to overcome problems such as
swamping and masking effects of outliers [64].

The approaches based on forecasts and the Mahalanobis distance are suitable for
the detection of outliers and level shifts, but not for the detection of slow trends. In
intensive care, many changes of actual interest have a duration ranging from some
minutes to several hours [1].

For retrospective detection of slow trends in time series data regression based models
can be used for instance [23]. Here, it is assumed that the observation Yt at time
point t is a measurement of the current process level µt = α+βt, which is disturbed
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by autocorrelated noise Et. For the noise, often an AR(p) model is assumed. Thus,
the model reads

Yt = α + βt + Et ,

Et = φ1Et−1 + . . . + φpEt−p + at .

We either can use simple least squares estimators for α and β and adjust their vari-
ances for the autocorrelations within the noise process estimated from the regression
residuals, or we can use maximum likelihood or robust techniques to estimate all
model parameters jointly. Neglecting the autocorrelations increases the probability
of erroneous conclusions [23]. Such a regression based approach can be modified
for online monitoring by using a moving time window. The test statistic can be
calculated for the current time window including the last n observations. An inher-
ent problem is the appropriate choice of the window width n since for trends with
different length different window widths should be optimal.

Another problem is that linearity of the trend is assumed since trends which are non-
linear might not be detected this way. In [65] a rule for retrospective detection of any
monotone trend which was proposed by Abelson and Tukey [66] for independent data
and by Brillinger [67] for time series was adapted to the online monitoring situation.
Let µt be the time-varying level of the process, which is disturbed by autocorrelated
noise Et, such that

Yt = µt + Et, t ∈ Z.

Then a weighted sum
∑N

t=1 wtYt of the observations of the current time window
is used to test for any form of monotone change of µt during the time interval
t = 1, . . . , n, i.e., µ1 ≤ µ2 ≤ . . . ≤ µn with µt < µt+1, or µ1 ≥ µ2 ≥ . . . ≥ µn

with µt > µt+1 for at least one t ∈ {1, . . . , n − 1}. Since the weights w1, . . . , wn are
restricted to have arithmetic mean w = 0, the weighted sum has mean zero if µt is
constant over time. The weights are then determined to solve

max
w

min
µ

|∑(wt − w)(µt − µ)|2∑
(wt − w)2

∑
(µt − µ)2

with µ = n−1
∑

µt. This means, they are chosen to have a worst case discriminatory
power for an extremely unfavorable trend which is as high as possible. This results
in

wt =

[
(t − 1)

(
1 − t − 1

n

)]1/2

−
[
t

(
1 − t

n

)]1/2

and the corresponding worst case is a single step change. Comparing the
mean of time delayed moving windows with length m, which is a standard ap-
proach to detect systematic differences [68], has lower worst case discrimina-
tory power since it corresponds to using a weighted sum with weights w1 =
−1/m, . . . ,−1/m, 0, . . . , 0, 1/m, . . . , 1/m. The hypothesis of a constant mean should
be rejected in favor of a monotone increasing (decreasing) mean if

∑n
t=1 wtYt is large
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(small) in comparison to its variance. During the steady state this variance is equal
to

V ar

(
n∑

t=1

wtYt

)
=

n∑
t=1

n∑
s=1

wtwsγ(t − s) , (3)

where γ(h), h = 0, 1, . . . , are the autocovariances of the noise process. Hence, pa-
rameter estimation can be accomplished easily if we have reliable estimates of these
autocovariances. Since a trend has a serious impact on the usual sample autocovari-
ances, we can try to eliminate a (local) linear trend α + βt by regression methods
first and estimate the autocovariances from the residuals [65]. In a simulation study,
suitable critical values for the standardized weighted sum were determined. This
procedure seems reliable for the detection of both linear and non-linear trends which
are not very slow. Nevertheless, very large positive autocorrelations may cause some
problems. Since very large positive autocorrelations result in monotone sequences
just like deterministic trends, these mechanisms are hard to distinguish within short
time series anyway [23].

8 Conclusion

There are several approaches to pattern detection within physiological time series.
Each of them has its own strengths and weaknesses. In intensive care, very complex
combinations of several patterns may be observed within rather short time intervals.
This complicates the online application of curve fitting methods, for instance, since
they require predefined functional forms. Fixed target values can hardly be specified
in advance because of fundamental differences between individuals and because of
the uncertain temporal development of the patient’s state. Therefore, usual control
charts and methods developed within other clinical contexts such as mechanical
ventilation can hardly be used. Autocorrelations within subsequent measurements
should be considered since neglecting them may lead to false conclusions. Another
problem is that methods which detect large changes with high probability and with
a short time delay as is needed for life-threatening complications may be insensitive
against small or moderate shifts. Reliable detection of the latter is important for
assessing intervention effects and as an input for knowledge-based bedside decision
support [69]. A particularly difficult problem is the fast and correct detection of a
slow trend. Mäkivirta [1] stated that the trend detectors developed at that time had
little practical use. Moreover, a useful system should not only detect a trend, but it
should also be able to quantify it. In view of all these difficulties certainly the best
approach for online pattern recognition within physiological time series is to search
for a proper combination of several methods [14]. The individual methods should
be further refined and improved using ideas from other approaches. For instance,
the performance of the method for online detection of outliers [29] was improved
for real time series by replacing the usual fixed significance levels by significance
levels which adapt to the time-varying variability of the process. Such an adaptive
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significance level corresponds to a control limit, i.e., a certain allowable deviation
from the process level which is fixed by the physician.

For multivariate monitoring, we either can combine the information contained in
several variables using logical rules, or we can try to calculate joint control regions.
The latter approach suffers from the ”curse of dimensionality” [70], i.e., from the
large number of unknown parameters which have to be estimated from the data.
To fill a high-dimensional sample space we need huge sample sizes, which are rarely
available in practice. Physicians usually select one variable out of a group of closely
related variables and base their decisions on the patterns found in this variable
only. Statistical methods for dimension reduction like factor analysis can be used
to compress the relevant information into a few important variables [71]. Graphical
models [72] provide additional information to guarantee that the results obtained
from dynamic factor analysis are interpretable by the physician. In a case-study it
was shown that latent factors can be more adequate for detection of patterns in the
observed variables than each single variable [14].

In conclusion, methods for automatic online analysis of physiological variables of-
fer an opportunity for a more reliable evaluation of the individual treatment and
lead to intelligent alarm systems. A future task is the construction of intelligent
bedside decision support systems. Such a system can be based on techniques for
data abstraction as we have outlined here. These techniques could be combined
with methods of artificial intelligence which use the patterns found in the statistical
analysis to assess the current state of the patient. By classifying these patterns ac-
cording to existing knowledge gained from physicians and former data analysis [69]
the physician in charge might then be given options of how to respond properly.

Acknowledgements

The financial support of the Deutsche Forschungsgemeinschaft (SFB 475, ”Reduc-
tion of complexity in multivariate data structures”) is gratefully acknowledged.

References

[1] Mäkivirta, A. (1989), ”Towards reliable and intelligent alarms by using median
filters,” Research Reports 660, Technical Research Centre of Finland.

[2] Morris, A., and Gardner, R. (1992), ”Computer applications,” Principles of
critical care, Hall, J., Schmidt, G., Wood, L. (eds.), McGraw Hill, New York,
pp. 500-514.

[3] Miller, G. (1956), ”The marginal number seven, plus or minus two: Some limits
to our capacity for processing information,” Psychol. Rev., vol. 63, pp. 81-97.



23

[4] Jennings, D., Amabile, T., and Ross, L. (1982), ”Informal covariation asess-
ments: Data-based versus theory-based judgements,” Judgment Under Uncer-
tainty: Heuristics and Biases, Kahnemann, D., Slovic, P., Tversky, A. (eds.),
Cambridge University Press, Cambridge, pp. 211-230.

[5] Guyatt, G., Drummond, M., Feeny, D., Tugwell, P., Stoddart, G., Haynes, R.,
Bennett, K., and LaBelle, R. (1986), ”Guidelines for the clinical and economic
evaluation of health care technologies,” Soc. Sci. Med., vol. 22, pp. 393-408.

[6] Lawless, S.T. (1994), ”Crying wolf: False alarms in a pediatric intensive care
unit,” Critical care medicine, vol. 22, pp. 981-985.
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